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Analytical Surface Charge Method for Rotated Permanent Magnets:
Boundary Element Method Comparison and Experimental Validation

J. R. M. van Dam1, J. J. H. Paulides1, E. A. Lomonova1, and M. Dhaens2

1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612 AP, The Netherlands
2Advanced Chassis Research, Tenneco Automotive Europe BVBA, B 3800 Sint-Truiden, Belgium

This paper is concerned with the analytical calculation of the interaction force between two permanent magnets (PMs) under
relative rotation by means of the surface charge method, taking into account the non-unity relative permeability of the PMs. This
model combines high accuracy and a short calculation time. As the considered PM configuration is a free-space, unbounded problem,
the results from the surface charge method are compared to its numerical counterpart, the Boundary Element Method (BEM). The
analytical expressions were validated by means of the measurement results obtained from a 3-D printed test setup.

Index Terms—Analytical models, electromagnetic fields, electromagnetic forces, permanent magnets.

I. INTRODUCTION

THE increasing interest in wireless sensors and wearable
electronics has encouraged the research into renewable

battery-replacement technologies, as to reduce the mainte-
nance and resource cost inseparably related to batteries. An
attractive alternative is to harvest energy from natural vibration
sources as they are widely available, and potentially contain
a high power density. The conversion of the kinetic energy
in vibrations into electrical energy has been achieved using
many different types of transducers, such as mechanical [1],
magnetoelectric [2], electrostatic [3], electromagnetic [4], or
piezoelectric [5]–[7].

In piezoelectric cantilever beam energy harvesters [6], [7],
the beam fundamental resonance frequency is usually matched
with the system excitation frequency, as to yield the largest
harvested energy. However, to allow for a range of excitation
frequencies, the interaction forces between permanent magnets
(PMs) are applied to tune the beam resonance frequency.
In [7], the PM interaction forces result from an approxi-
mation function. The optimization of the energy harvesting
capabilities requires an improved accuracy with respect to the
determined interaction forces. Hence, a PM modeling method
which provides a 3-D magnetic field solution, works well
in free-space unbounded problems, handles relative rotations
between PMs, and does not require periodicity of the con-
sidered magnetic structure should be considered. Moreover,
to allow for fast optimization and geometry selection, an
analytical model is preferred over numerical alternatives. Both
the surface charge method [8]–[13] and the Boundary Element
Method (BEM) [14] satisfy the above conditions.

This paper provides an improved calculation of the inter-
action force between two permanent magnets under relative
rotation with respect to existing cantilever beam vibration en-
ergy harvesters. The analytical surface charge method and the
BEM simulation results are compared to the results from the
Finite Element Method (FEM). Additionally, an experimental
setup is designed to validate the simulation results.

II. CONSIDERED GEOMETRY

An implementation of the considered energy harvesting
cantilever beam is shown in Fig. 1. Environmental vibrations

are transferred to the beam structure, where minor vibrations
of the tip mass are amplified by the forces between the PMs.
The beam oscillates at its resonance frequency, fr, which is
partially determined by the height and length of the beam,
∆c and l, respectively, and the distance between the PMs,
∆t and ∆b. Energy is generated by the deformation of the
piezoelectric elements in the beam. This is illustrated on
an energy harvesting cantilever beam in Fig. 1, where the
energy harvester consists of a non-magnetic beam to which
piezoelectric elements, PMs, and a non-magnetic free end tip
mass are attached. A simplified representation of the cantilever
beam PMs is shown in Fig. 2, where only two PMs are
considered. The PM dimensions are summarized in Table I.

III. SURFACE CHARGE METHOD FOR ROTATED PMS

Simplified two-dimensional analytical models to obtain the
interaction force between magnets in radial bearings and
couplings were initially proposed using superposition of the
interaction force [15]–[19]. Using the magnetic imaging tech-
nique [20], a soft-magnetic slotless back-iron was incorporated
in the models of the PM coupling [18]. Investigation into 3-D
solutions performed in [21], [22] resulted in semi-analytical
equations requiring a numerical integration of the logarithmic
terms. The current sheet model used in [21], [23] employed
the Lorentz force calculation for a simple topology.

The surface charge method has been a research topic as
of 1984, when Akoun and Yonnet expressed analytically
the magnetic field and the interaction force between two
axially displaced PMs with parallel magnetization [8]. Several
researchers have contributed to the model advancement, for
instance by developing equations for interactions between
perpendicularly magnetized PMs for multi-axial displace-
ments [11]. More recently, a comprehensive overview of the
surface charge method was composed [13], in which the force
equations for rotated permanent magnets were stated, based
on [9].

A short derivation of the surface charge method, resulting in
expressions for the interaction force between relatively rotated
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TABLE I
PERMANENT MAGNET DIMENSIONS

2a1 17 mm 2a2 17 mm α 0 mm
2b1 11.5 mm 2b2 11.5 mm β 60 (cos θ − 1)mm
2c1 3.5 mm 2c2 3.5 mm γ 60 sin θmm
Br 1.18 T µr 1.02

permanent magnet

mass

piezoelectric cantilever beam

attractive force

repulsive force

∆t

∆b
∆c

adjustable
height

ŷ

ẑ

x̂

l
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Fig. 1. Energy harvesting piezoelectric cantilever beam.
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Fig. 2. Two permanent magnets under relative rotation.

permanent magnets, will be presented now [10]. Starting with
the magnetostatic Maxwell equations for current-free regions,

∇× ~H = 0, ∇ · ~B = 0,

the magnetic scalar potential, ϕm, is introduced by means of
the vector identity ∇× (∇ϕm) = 0,

~H = −∇ϕm. (1)

To relate the magnetic scalar potential to the permanent
magnet magnetization vector, ~M , substitute the constitutive
relation ~B = µ0

(
~H + ~M

)
and (1) into ∇ · ~B = 0 to obtain

∇2ϕm = ∇ · ~M.

If ~M only exists inside a volume V , bounded by S, then the
solution to this equation is represented by means of the free-
space Green’s function as

ϕm (~x) = − 1

4π

∫
V

∇′ · ~M (~x′)

|~x− ~x′|
dv′ +

1

4π

∮
S

~M (~x′) · n̂
|~x− ~x′|

ds′,

in which the volume charge density, ρm = −∇ · ~M
(
A/m2

)
,

and the surface charge density, σm = ~M · n̂(A/m). The
magnetic flux density for a uniformly magnetized permanent
magnet, i.e. where ρm = −∇ · ~M = 0, is calculated with

~B (~x) =
µ0

4π

∮
S

σm (~x′) (~x− ~x′)
|~x− ~x′|3

ds′.

Usually, the relative magnetic permeability, µr, is assumed
unity in the charge method. This introduces a deviation be-
tween the analytical results, and the results from FE sim-
ulations. The correct value for µr is taken into account by
adjusting the remanent magnetization, Br, using [24]

σ =
Br/µ0

µr
(
3
2 −

µr

2

) , and Br = σµ0.

Consider the magnets PM1 and PM2 in Fig. 2 of dimensions
[a1, b1, c1]

T and [a2, b2, c2]
T , respectively. Their centers are

displaced by [α, β, γ]
T , and PM2 is rotated with respect to

the x-axis by an angle θ. As α is zero, and only a rotation
around the x-axis is considered, Fx is zero. If θ is an integer
multiple of π rad, the magnetization directions of the PMs are
(anti-)parallel and Fz is calculated according to [8], [11], [13]

Fz|θ=kπ =
Br1Br2 cos (θ)

4πµ0

1∑
i,j,k,l,m,m=0

[−1]
i+j+k+l+m+n

f3z (x′, y′, z′) , (2)

where

x′ = α+ (1− i) a1 − (1− j) a2,

y′ = β + (1− k) b1 − (1− l) b2 +
1

2
c2 sin (θ),

z′ = γ + (1−m) c1 − (1− n− cos (θ)) c2 −
1

2
b2 sin (θ),

and, using r =
√
u2 + v2 + w2,

f3z (u, v, w) = uv arctan
( uv
wr

)
− wr

− 1

2
uw ln

(
r − u
r + u

)
− 1

2
vw ln

(
r − v
r + v

)
. (3)

The limit cases for these expressions have been derived in [25].
Complementary, for θ 6= kπ, Fz follows from [9], [13]

Fz = −Br1Br2
4πµ0

1∑
i,j,k,l,m,m=0

[−1]
i+j+k+l+m+n

(
f3 (U, V,W, θ, b1k, 0, b2l, 0)

tan θ

+
f3 (UU, V V,WW,−θ, b1k, 0, b2l, 0)

sin θ

)
, (4)

where

U = α− (i− 1) a1 + (j − 1) a2,

V = β + b1 − b2 cos θ + (1− n) c2 sin θ,

W = γ − (m− 1) c1 + (n− 1) c2 cos θ − b2 sin θ,

UU = −α− (i+ 1) a1 + (j + 1) a2,

V V = −V cos θ −W sin θ,

WW = V sin θ −W cos θ,
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and

f3 (u, v, w, θ, b, c, y, z) = uf5 [ln (f4 − u)− 1] +

uf6 arctan

(
uf4 − f26 − u2

f5f6

)
+

1

2
πu sgn f5 |f6|+

1

2
f4f5 +

1

2

(
f26 − u2

)
ln (f4 + f5), (5)

in which

f4 =
√
u2 + f25 + f26 ,

f5 = y + (v − b) cos θ + (w − c) sin θ,

f6 = z − (v − b) sin θ + (w − c) cos θ.

For both considered cases, the y-component of the force,
Fy , is calculated according to

Fy =
Br1Br2
4πµ0

1∑
i,j,k,l,m,m=0

[−1]
i+j+k+l+m+n

f3 (U, β + b1 − b2 cos θ + c2 sin θ,

γ + (1−m) c1 − b2 sin θ + c2 (cos θ − 1 + n) ,

θ, b1k, c1m, b2l, c2n) . (6)

IV. SIMULATION SETUP

Contrary to the analytical surface charge method, a numer-
ical approach to model the permanent magnet configuration
in Fig. 2 is the Boundary Element Method (BEM). The BEM
is well-suited for the problem, as the considered configuration
is a free-space, unbounded problem, in which the material
properties are assumed linear and homogeneous. In the fol-
lowing, the results from the analytical surface charge method
and the BEM will be compared, both to each other, as well as
to FE simulation and experimental results. The applied BEM
is the software package Faraday 3-D Eddy Current Solver
Version 8.0, 2009 by Integrated Engineering Software. In the
simulation, 972 2-D quadrilateral elements have been taken
into account. The solving process of a single step takes less
than a second. The applied electromagnetic 3-D FEM is Flux
Version 12 Service Pack 2, 2015 by Cedrat. In the simulation,
3,621,184 volume elements have been taken into account. The
solving process takes approximately 24 hours.

V. COMPARISON AND VALIDATION

The measurement results that were obtained on the 3-
D printed test setup shown in Fig. 3 are used to validate
the results from the charge method. The PMs were in a
repulsive configuration, hence, PM1 was pushed to the load
cell, whereas PM2 retained its position because of the slotted
construction. A six degree-of-freedom (6-DoF) load cell was
used, whose output was logged by means of a dSPACE module
and a logging computer. Multiple runs were performed, and
the filtered average results are displayed in Fig. 4 together
with the simulation results.

Very close agreement between the charge method and the
BEM is found, as the results deviate on average 0.63 %, as
shown in Fig. 5. This deviation is attributed to numerical
inaccuracies in the assignment of the PM dimensions. The

PM1

PM2

3-D printed test setup

Load cell

dSPACE

Logging

PC

Fig. 3. The experimental setup.
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Fig. 4. Comparison of the simulation and measurement results, where ANA is
the analytical surface charge method, BEM is the Boundary Element Method,
FEM is the Finite Element Method, and EXP are the experimental results.

results from the FEM are less accurate, which is attributed to
numerical noise resulting from an insufficiently dense mesh.
Such dense mesh is required, as a free-space, unbounded
problem is considered, which is less suitable for the FEM
as compared to the charge method and the BEM.

The measurement results confirm the simulated force de-
velopment in both the y- and z-direction. However, for the
smallest θ-value, the measurement results deviate, and espe-
cially the y-component deviates largely, as shown in Fig. 5.
This is attributed to inaccuracies in the test setup, which are
composed of deviations in the remanent magnetization and
magnetization angle of the PMs, 3-D printer manufacturing
tolerances, and deviations in the alignment of the test setup
with respect to the xy-plane of the load cell.

VI. DISCUSSION

A close agreement between the results from the surface
charge method and the BEM was found, despite the distinct
differences between the methods. The BEM employs a densely
populated, non-symmetric system matrix which elevates mem-
ory usage and could, potentially, increase computer times to
the level of the FEM. Additionally, material properties are
assumed linear and homogeneous, which renders the BEM
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Fig. 5. Percentage deviation between the analytical surface charge method
and the (top) BEM, and the (bottom) experimental results.

unsuitable for configurations involving soft-magnetic material.
A major asset of the BEM surfaces when considering free-
space, unbounded problems, as it only requires field source
boundaries to be discretized, resulting in faster solutions than
the FEM. Contrary to the BEM, the surface charge method
is analytically formulated, resulting in faster solutions. As a
result of recent developments, the applicability of the surface
charge method has improved by (semi-)analytically including
the relative permeability of soft-magnetic materials [26].

For now, the applicability of the surface charge method is
limited to rotations around the x-axis, in combination with
a translation with respect to the y- and z-axes. Therefore,
the method does not serve FEM-replacement yet [13]. Model
extensions include the forces between cylindrical PMs with
single-axis rotation. Subsequently, the forces and torques be-
tween pairs of cuboidal and pairs of cylindrical PMs with arbi-
trary rotation should be considered. Then, expressions for the
forces and torques between pairs of spherical, triangular, and
differently-shaped permanent magnets should be developed.

VII. CONCLUSION

In this paper, the analytical surface charge method is
applied to two relatively rotated permanent magnets (PMs).
The calculated interaction force is compared to results from
the Boundary Element Method (BEM), and validated against
experimental results. Although the surface charge method
already shows superior applicability and computational time,
compared to the BEM, great promise lies in the extension of
the method to allow for multi-axial rotations to provide a 6-
DoF permanent magnet interaction model, which can serve as
a fast, analytical replacement to the finite element method.
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