

Verification of interconnects

Citation for published version (APA):
Joosten, S. (2016). Verification of interconnects. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics
and Computer Science]. Technische Universiteit Eindhoven.

Document status and date:
Published: 24/02/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/86f70c54-9644-4e0b-862c-e900bac4e13a

Verification of Interconnects

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties,

in het openbaar te verdedigen op
woensdag 24 februari 2016 om 16:00 uur

door

Sebastiaan Jozef Christiaan Joosten

geboren te Enschede

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

Voorzitter: prof. dr. J. de Vlieg
Promotoren: prof. dr. M. C. J. D. van Eekelen (Open Universiteit Nederland)

prof. dr. ir. J. F. Groote
Copromotor: dr. J. Schmaltz
Leden: prof. dr. A. Biere (Johannes Kepler Universität Linz)

prof. dr. K. G. W. Goossens
prof. dr. T. F. Melham (University of Oxford)
prof. dr. J. C. van de Pol (Universiteit Twente)

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Sebastiaan Joosten

Verification of Interconnects

Sebastiaan Joosten
Department of Mathematics and Computer Science
Eindhoven University of Technology
The Netherlands

Cover: Bram Joosten

This research is supported by the NWO project Effective Layered Verification of
Networks on Chip (ELVeN) under grant no. 612.001.108

A catalogue record is available from the Eindhoven University of Technology
Library ISBN: 978-90-386-4029-7

Acknowledgements

I thank dr. Julien Schmaltz for advising me during the last four years. I have
enjoyed our discussions, his feedback, and his cooperation with the papers we
wrote together. I am also thankful for the freedom he gave me to pursue various
different lines of research. Julien has been very enthusiastic and result driven,
which are qualities I value in him as a supervisor.

I thank Prof. Marko van Eekelen. He has supported me on organisational
matters. Even when I left the Open University during my PhD in order to follow
Julien in joining the TU/e, he continued to have my back. I really appreciate his
continued support.

I also thank the other members in my committee, prof. dr. A. Biere, prof. dr.
K. G. W. Goossens, prof. dr. T. F. Melham, prof. dr. J. C. van de Pol and prof.
dr. ir. J. F. Groote, for reading my thesis and your excellent comments. Armin
Biere’s comments have greatly helped improve the first three chapters. His results
on the complexity classes of several hardware descriptions have also been of great
help. Kees Goossens’ comments have helped make fundamental improvements to
the introduction, which I believe has improved the overall readability of this thesis.
I thank Tom Melham for all his comments, especially his suggestion of adding an
appendix to this thesis. I thank Jaco van de Pol for pointing out many typos, and
for clarifying where the flow of the text needed to be improved. I also thank Jan
Friso Groote for his elaborate feedback.

Many thanks to all the supporting staff, especially Chrisja Muris at the Open
University, Irma Haerkens and Simone Meeuwsen at the Radboud University, and
Margje Mommers and Tineke Bosch at the TU/e. You have helped me find my
way through the essential but cumbersome administrative tasks, such that my
focus could always be on research.

Freek Verbeek, Bernard van Gastel, Sanne Wouda and Tessa Belder, thank you
for working with me, and for our insightful discussions about networks on chips.
Special thanks also go out to Jaap van der Woude, and to Bas and Bram Wester-
baan, for our elaborate discussions on the more mathematical subjects. Thanks to
Freek Wiedijk and Josef Urban for keeping me informed on other theorem provers
than ACL2. I thank Bart Jacobs for accepting me in his Digital Security research
group, and providing a nice environment for doing research. Baris, Fabian and
Rody are thanked for being part of that environment and also a friend. All the

other colleagues at the Radboud University, the TU/e and the Open University
are also much appreciated.

I thank Angélique for supporting me through most of my PhD process, that she
used to be someone I could come home to. Many thanks to my life-long friend Stijn,
for loyally maintaining our friendship while I was busy doing research. Thanks
also to my ‘paranimfen’, Maarten and Rienco, and to Jurjen, Koen, Vic and all
my other friends, for their support.

Last but not least, I thank my family. My brother and confidant, Bram, who
did an excellent job designing the cover of this thesis. He took care of many
details I could not have thought of in a highly professional way. As my thesis
had to go to press while I was in Innsbruck, Bram was my feet on the ground in
the Netherlands. We had inspiring conversations in the process, and I think the
thesis came out looking really nice. My mother, Janny, for reminding me to finish
on time, for her love and her emotional support. My father, Stef, for being my
coach in the world of academia, a coauthor and fellow researcher in my Ampersand
related work, a colleague at the Open University, for being a friend, and, above
all, for being my dad.

Contents

1 Introduction 1
1.1 Hardware descriptions . 3
1.2 Hardware verification . 5
1.3 Contribution of this thesis . 9

2 Micro-architectural models of communication fabrics 15
2.1 Definition of xMAS . 15

2.1.1 Queue . 18
2.1.2 Composition of components 20

2.2 Non-standard xMAS components 20
2.2.1 Interfaces in RTL . 21
2.2.2 Treating queues as black boxes 23

3 Analysis of circuits 25
3.1 Introduction . 26
3.2 Definition of a Circuit . 28
3.3 Combining modules . 32
3.4 Circuit size . 35

3.4.1 Polynomial time algorithm for making a circuit acyclic . . . 36
3.4.2 A worst-case circuit . 37

3.5 From gates to Boolean formulas . 39
3.6 Discussion . 42
3.7 Conclusions . 43

4 Invariants 45
4.1 Method . 46

4.1.1 A simple example . 46
4.1.2 Well-defined interfaces . 47
4.1.3 Interpretation of function s 48
4.1.4 Translation of function s . 48
4.1.5 An algorithm for finding inductive invariants 50
4.1.6 Data dependent queues . 52

4.2 Step by step analysis . 53
4.3 Conclusions . 53

Contents

5 Liveness verification 55
5.1 Liveness . 55
5.2 A manual proof . 56

5.2.1 A simple example . 56
5.2.2 Liveness proof . 58

5.3 Automated proof . 59
5.3.1 Runs and lassos . 59
5.3.2 Encoding liveness as averages 60
5.3.3 Relating average values . 61
5.3.4 Queue properties. 62
5.3.5 Summary . 62

5.4 Conclusions . 63

6 Extraction of xMAS from RTL 65
6.1 Translation of RTL to xMAS . 65

6.1.1 From ports to a forest . 67
6.1.2 Orienting the forest . 68

6.2 Resulting Graph Correctness . 70
6.3 Discussion . 72
6.4 Conclusion . 73

7 Experimental results 75
7.1 Investigated designs . 75

7.1.1 Virtual channels with buffer 75
7.1.2 Two-entry scoreboard . 76
7.1.3 Parallel queues . 77

7.2 Invariants . 78
7.2.1 Virtual channels with buffer 78
7.2.2 Two-entry scoreboard . 78
7.2.3 Parallel queues . 79
7.2.4 Scalability of the approach 79

7.3 Deadlock verification . 80
7.3.1 Verification Flow . 80
7.3.2 Parallel queues . 81
7.3.3 Buffered virtual channels 81
7.3.4 Other networks and scalability 82

7.4 Extracting xMAS from RTL . 83
7.4.1 Scalability . 83
7.4.2 Validation of the resulting networks 86

7.5 Conclusions . 87

8 Discussion and conclusions 89
8.1 Performance . 89

8.1.1 Limitations . 90
8.1.2 Possible improvements . 91

8.2 Analytical power . 92
8.2.1 Limitations . 93
8.2.2 Possible improvements . 95

Contents

8.3 Feedback limitations . 95
8.3.1 Limitations . 96
8.3.2 Possible improvements . 97

8.4 Conclusions . 98

A Verification of Interconnects: an Implementation in Haskell 99
A.1 Example input: a design in Verilog 101
A.2 On using DAGs in Haskell to represent formulas 104

A.2.1 Use of RankNTypes . 106
A.2.2 Does type safety protect against all cycles? 107

A.3 Representations of four-valued Booleans 108
A.3.1 Symbolic instance . 109
A.3.2 Optimizations on symbolic instances 110
A.3.3 Eliminate cyclic dependencies 111

A.4 Multiple analysis methods in a single tool 114
A.4.1 Switching between different Boolean representations 114
A.4.2 Boolean instance from Rings 117

Glossary 121

Bibliography 123

Summary 129

Samenvatting 131

Curriculum Vitae 133

Contents

Chapter 1
Introduction

The design of microchips is becoming increasingly complex. The size and cost per
transistor are going down, and the number of transistors goes up as a result. In
1971, the Intel 4004 had around 2,300 transistors. Fourteen years later (1985),
the 386 had 275,000. In 1999, the Pentium 2 Mobile Dixon had over 27 million
transistors. The 10-core Xeon (2011) has 2,6 billion transistors. This number is
expected to go up with the same pace.

Microchips with such complexity can only be designed from components, called
Intellectual Properties (IPs), or IP blocks. Most designs these days are formed
through the integration of other designs: we are in an integration era. The func-
tionality we expect from a chip is also growing. The Intel 4004 had an ALU and
could fetch instructions from ROM. Later generations added caches and a small
code queue. Pentiums have multiple caches and multiple pipelines. Smartphones
now have IPs for multiple Central Processor Units (CPUs), graphical processors,
GPS units and video decoders. Modern chips feature multiple processors, some-
times even different kinds of processors.

For these components to work together, they need to communicate. With a
large number of components, it is not possible or desirable to let all components
operate on the same clock frequency. This makes communication between com-
ponents a complex task, so a component is created for that task. The component
that facilitates communication between components is called the interconnect. Of-
ten the interconnect is spread throughout the chip, in order for all components to
be able to communicate with each other. Such spread-out interconnects are called
communication fabrics, or Network on Chips (NoCs). An interconnect together
with the components is called a System on Chip (SoC).

When designing a SoC, the design will at some point be described at the gate
level. The gate level design describes components in terms of their most primitive
blocks: gates. Typical gates are the AND, NOT, XOR and MUX gate. The AND, NOT
and XOR gates correspond to their logical counterparts. MUX corresponds to an
if-then-else statement. There are also gates which do not necessarily produce a
value on all of their outputs, like the DEMUX. The DEMUX produces its first input
at an output that is selected by its second input, but no value – meaning Z, or
high-impedance – on the other outputs. A gate level design forms a good model
for hardware, since it is a description that is present in every hardware design flow.

1

1 Introduction

Ensuring correctness of hardware designs is important. After a system is de-
signed, there are many steps that need to be taken in order to create a finished
product. For instance, a gate level description of the design has to be translated
into a floor plan. Such a floor plan translates into physical mask structures. These
masks then determine where various structures are deposited onto the final silicon.
If a design error makes it into silicon, the costs of repairing it will be severe; it
is like remaking a stone carving. For instance, Intel had to write off around $1
billion in response to a flaw with Sandy Bridge’s SATA companion chips [IntelPR,
2011]. To prevent such issues from occurring, a lot of effort is put into the verifica-
tion of designs. Nowadays, hardware design teams have around three verification
engineers per design engineer.

A trend in hardware verification is to use formal techniques [Kropf, 2013]. For-
mal techniques make statements about all possible runs of a system, by considering
all of its reachable states. Model checking is an example of such a formal tech-
nique. The advantage compared to testing is that there can be no untested corner
case remaining. This gives the strongest possible guarantee about the assertion.
The state of the art in hardware verification is to verify correctness of a component
without any testing, also called ‘formal sign-off’ [Kim et al., 2014]. This means
that the confidence in an IP block can be based on formal techniques only, and
designs are made final based on this. Existing metrics, such as code coverage, are
being adapted for formal [Aggarwal et al., 2011]. A downside to formal verification
is that it only works for relatively small components. Scalability remains an issue.

What it means for a hardware design to be correct can be expressed through
assertions. Assertions are properties that are written together with the rest of
the design. Using assertions to verify a design is called assertion based verifica-
tion (ABV). A major benefit of ABV is that it allows assertions to be translated
through the design process. This way, different tools can check the same asser-
tions in different ways: a computer simulator may run the design together with
the assertions and report when it does not hold. When a chip is emulated in a
Field Programmable Gate Array (FPGA), the assertions can be checked simul-
taneously [Boule and Zilic, 2005]. It may even be possible to use the assertions
for post-silicon testing [Gao and Cheng, 2010]. On the gate level design, model
checkers may symbolically check all possible outcomes of an assertion [Gupta,
1993].

Another method to prove hardware correct, is through the use of a golden
model. A golden model is a description of hardware which is known to be correct,
or better suited for verification than the gate level implementation. To ensure that
a golden model, which may also be a gate level model, corresponds to the gate
level implementation, equivalence checkers are used. Checking the correspondence
between a golden model and the regular gate level implementation can potentially
be very fast. Of course, this leaves open the problem of verifying the golden model
itself.

A problem in verification lies with properties that are emergent. These are
properties that cannot be stated about a single component in isolation, but depend
on the interaction between components. As a result, verification of emergent
properties cannot be applied to small isolated components.

‘Liveness’ is a class of properties that are emergent, and common in intercon-

2

1.1 Hardware descriptions

nects. In general, liveness means that an event will eventually trigger a response.
In the context of NoCs, this property would state that when a message is available
to a certain component, it will eventually be transferred there. In other words: a
message will not get stuck at a certain point. This property becomes interesting
when a message may have to wait a while before the next component can accept
it. This means that the analysis of the accepting component needs to be included.
That component may, in turn, also contain a packet that is waiting to be accepted,
and so on. In short, whether or not a network is live may depend on the behavior
of all components. There is currently no solution to verify liveness for hardware at
the scale of NoCs or communication fabrics. Existing techniques to prove liveness
are limited to models of designs, that do not necessarily correspond to the imple-
mented hardware design. When model checking techniques are applied to these
liveness properties in gate level designs, they tend to run out of memory, or take
much too long to complete. Additional information is required to verify liveness
of even relatively small designs [Ray and Brayton, 2012; Ray, 2013].

This thesis gives almost automatic methods to prove liveness. Our contribu-
tion uses that hardware is built in components. The general idea is to take a
common component, and look at properties about its interface, while hiding its
implementation. This means that a hardware designer is required to annotate a
component. Using this annotation, the verification can then be automated. We
call this ‘interface based verification’. In interconnects, a very common component
is the queue. For most networks, nearly the entire state of the network can be
described through the state of the queues. Annotating the queues allows us to
abstract away non-essential implementation details, while still giving us enough
information to prove important properties such as liveness. We hide both timing
and some data information, so our interface based verification can be seen as a
form of behavioral abstraction [Melham, 1990].

This thesis offers solutions to verification engineers, as will be explained in
Section 1.3. Based on the annotations, we can derive invariants about the design.
Such invariants may improve the scalability of current model checkers. They also
enable us to verify liveness of a design. These are analyses previously performed
with the help of a high-level model, which can now be performed through the use
of queue annotations only.

Before discussing the outline of this thesis, we give some background into sev-
eral hardware descriptions, and existing verification techniques.

1.1 Hardware descriptions

A hardware design language is a language in which to model hardware. Two
major hardware design languages are Verilog and VHDL [IEEE, 2001, 2009]. The
examples in this thesis will be in Verilog. Verilog has some features that make it
convenient as a programming language. For example, a generate statement can
be used like a for-loop in C or Java, which will create several similar structures,
one for each iteration of the loop. As a consequence of these features, it is possible
to create very small Verilog code fragments to describe very large structures in
hardware. It is even possible to use statements that do not correspond to any
hardware at all, but may be useful when simulating the hardware on a computer.

3

1 Introduction

Below is an example of some Verilog code. It is just meant to give an impression
about the kind of statements that are possible in Verilog. This code writes, at each
clock tick, to address i, for LENGTH different values of i, starting from 0. If the
value of in is equal to i, and writing is set to high (i.e. true), the value written is
i0.data. If not, the old value is written, such that the value remains unchanged:

generate
genvar i;
for (i = 0; i < LENGTH; i = i + 1)

always @(posedge clk)
data[i] <= ((writing && in==i)

? i0.data : data[i]);
endgenerate

Aside from describing hardware in a language which humans can write, we also
look at hardware in descriptions which can be analysed more easily. The previous
section mentioned gate level hardware as such a description. Gate level hardware
can be seen as using a very restricted subset of Verilog. In particular, gate level
Verilog only allows wire declarations, and Verilog statements in which either a
module or a gate is instantiated. For the example given above, if LENGTH is 2, the
gate level Verilog could be the following:

register r1 (.d(n40), .clk(clk), .s(1’b0), .r(1’b0),
.q(\data[0] [0]));

not (n38, in);
and (n39, writing, n38);
mux (n40, n39, i0_data[0], \data[0] [0]);
register r2 (.d(n45), .clk(clk), .s(1’b0), .r(1’b0),
.q(\data[1] [0]));

and (n44, writing, in);
mux (n45, n44, i0_data[0], \data[1] [0]);

Intermediate expressions have been translated to additional wires. Register r1 is
a module instance of a single register, driven by n40. The wire n40 represents the
expression n39 ? i0_data[0] : \data[0] [0], since it is the output of the
mux gate on the fourth line. Similarly, n39 stands for writing && n38, where
n38 stands for the negation of in. Turning intermediate expressions into gates
makes the code harder to read, but easier to parse. By using gate level Verilog as
input for our tools, only a limited set of primitive gates needs to be supported.

The take-away message from this example, is that instantiation statements in
gate level Verilog fall into two categories: (1) statements in which a built-in gate
is instantiated, such as the and gate, or the not gate, and (2) statements in which
another module is instantiated, such as the register statements. By allowing
modules to be instantiated, it becomes explicit when the same hardware design
occurs in multiple places. For instance, this makes it possible for us to easily
identify all queues in a design.

Another advantage of this language, is that it can be generated automatically
from the full Verilog language. In this translation, blocks like generate will
expand into several repetitions of the inner statements. A statement that does

4

1.2 Hardware verification

not have a gate level counterpart, will throw a warning or an error. Code that
can be translated into gate level descriptions are called synthesizable. The name
‘synthesizable’ stems the fact that the translation from Verilog to a gate level
description is called ‘synthesis’. We tend to avoid this name, as most synthesis
tools also perform optimizations, such as reducing the number of gates produced,
and do not necessarily produce Verilog as output. In this thesis, we use ‘Verific’1

to translate Verilog to gate level Verilog, for its ability to parse industrial Verilog,
its industrial use [Haynal et al., 2008], and its free academic license.

Gate level descriptions are not the only descriptions used for verification. As
input for model checkers, it is important that the ‘next state’ of a system is spec-
ified. For hardware, the next state can be described through a function that gives
the next value for each register. This description is called Register Transfer Level
(RTL).

RTL is a useful format for verification, and a convenient way to describe hard-
ware. The following Verilog code would correspond with an RTL description:

always @(posedge clk) begin:
data[0] <= (writing && in==0) ? i0.data : data[0];
data[1] <= (writing && in==1) ? i0.data : data[1];
end

We found a class of gate level Verilog programs that could not be translated into
RTL by existing tools. While engineers may be able to work around this in many
cases, we found that busses fall into this class that could not be translated. Since
busses are common structures in interconnects, we decided to remedy this problem.
We propose our own translation from gate level to RTL in Chapter 3.

1.2 Hardware verification

This section looks at formal hardware verification techniques.

In the introduction, we saw that certain properties of hardware could be
checked, using model checking techniques. Model checkers contain algorithms
that can decide for a large class of properties whether or not they hold. These
approaches have gained a lot of popularity, as they do not require additional user
input. Model checkers determine whether some model of a system satisfies a cer-
tain specification. The model is described as a state machine, so hardware is
usually represented at the RTL. The specification is described in a temporal logic.
A model checking algorithm searches a state, or sequence of states, that does not
satisfy the specification [Biere et al., 2003]. When found, the user can be presented
with a counterexample. If such a counterexample is not found, the user is certain
that the specification holds.

Model checkers sometimes do not give an answer for certain problems, even if
these fall into the language required for them. The issue is that a model checker
may run out of memory, or will take so long that its execution gets aborted. There
are several ways to mitigate this issue.

1http://www.verific.com/

5

http://www.verific.com/

1 Introduction

Theorem proving refers to the technique of writing down a mathematical proof
in such a detailed way, that a computer program can check it. The required user
input is a full proof. These proofs are established in close collaboration with the
computer program that checks it, in a process called interactive theorem proving.
A major benefit of theorem proving is that it allows a very large class of properties
to be proven. It is applied to gate level hardware designs [Hunt Jr, 1989; Hunt and
Swords, 2009]. Unfortunately, interactive theorem proving is seen as a technique
which requires a lot of manual effort, and highly skilled users.

Another way to find an answer, is by adding an assumption to the model.
Some model check algorithms use a Satisfiability (SAT) encoding as an over-
approximation of the reachable state space. If an assumption is added to the
model, this assumption strengthens that SAT encoding. This strengthening can
help the model check algorithm derive that no counterexample can be found.
Model check algorithms that use ‘explicit state model checking’ only keep an
under-approximation of the reachable state space. The additional assumptions
are less likely to help with these algorithms, although in rare cases the encoding
of the under-approximation might be somewhat simplified. When it is possible to
prove the desired property with the added assumption, the assumption becomes
an assertion that needs to be verified as well. This adds a new assertion to the
list of assertions that needs to be verified. It is therefore important to choose the
assumptions such that they hold, and are easy to verify. Adding assumptions can
be a trial and error process, and is used a lot in practice.

Equivalence checking refers to a technique of comparing two hardware models
that are described at the same level. This is useful when a different description of
the hardware is easier to verify. It can also be used when such different description
has already been verified, but changes have been made to it later on. In equivalence
checking, the model which is known to be correct is called the golden model, in
order to distinguish it from the regular model.

A common technique that is incorporated in equivalence checking is SAT sweep-
ing[Kuehlmann, 2004; Zhu et al., 2006]. This method uses information about which
registers in one model correspond to which registers in the other. Two models cor-
respond if the inputs of the corresponding registers will always hold the same value
in both models, given that the external inputs and the outputs of the registers are
the same. SAT sweeping iterates over all wires and decides which wires correspond.
Often there is a structural correspondence. For example, say wire w is the output
of an and gate of wires a and b in one design, and a and b correspond to the wires
a′ and b′ in the other. In that case, the output wire of the and gate of wires a′

and b′ is known to correspond to w. If there is no structural correspondence, a set
of test cases is run to check whether correspondence can be ruled out. If not, a
call to a SAT solver is made. The question whether two wires can hold a different
value is posed to the SAT solver. If not, the wires correspond. If so, the SAT
solver will respond with a new test, which is able to distinguish between the two
wires. When the two hardware models are similar, especially when the registers
in the two models have a one-to-one correspondence, equivalence checking is very
fast, making it a common method in the hardware design industry.

Validation can also be seen as a verification technique. Definitions of what
validation means vary. Here, we position it as deciding if two descriptions made

6

1.2 Hardware verification

on different levels of abstraction correspond. A typical way to verify this, is to
automatically translate one level to the other, and verify their equivalence. Typ-
ically the more abstract level model would be translated into the more concrete
one, called generation. If the translation is simple or independently verified, the
generated model would be ‘correct by construction’. In this case, the generated
model plays the role of a golden model in equivalence checking. Another way to
verify the correspondence, is to generate assertions from more abstract model, and
verify them on the more concrete one. It may be the case that the more abstract
model only exists in terms of such assertions, making this validation strategy a
very obvious one. Validation is a type of verification that often involves many
manual steps, but it is such a crucial one that it is commonly seen in the hardware
design industry.

Figure 1.1 shows some of the types of verification that are typically seen. A
high level idea is created by a hardware architect, which is communicated to
design engineers in order for it to be implemented. In the mean time, verification
engineers write assertions corresponding with the general ideas of the architect.
Once an initial implementation has been produced, it can be checked against
the assertions using model checkers. If an assertion does not hold, either the
implementation or the assertion must be changed. In some cases, this can be
because the high level model was wrong. If the model checker cannot verify the
assertion, other approaches are taken. For instance, a verification engineer can
add assumptions to the model, or work with designers to create a golden model
that can be verified. The work in this thesis can help verification engineers in
these approaches, and provides an alternative way to verify liveness. We will go
into details on the ‘contribution’ part of this figure in Section 1.3.

Liveness

As discussed previously, liveness means that an event will eventually trigger a re-
sponse. Previous attempts to verify liveness include attempts to improve the per-
formance of model checkers using information that is not available directly from
the Verilog description. They only work on relatively small examples. Liveness has
been verified on RTL descriptions of networks, provided that the additional infor-
mation is available. This is best illustrated in the PhD thesis of Sayak Ray [Ray,
2013], and in research by Alexander Gotmanov et al. [Gotmanov et al., 2011]. One
of the key properties used by both researchers, is that invariants need to be derived
automatically from a separate description of NoCs, in a language called xMAS.
Aside from the benefits that these invariants can be generated from xMAS, it also
allows RTL implementations to be generated from it. This is shown to speed-up
hardware model-checking [Chatterjee and Kishinevsky, 2012; Ray and Brayton,
2012]. The xMAS language will be explained in Chapter 2. We will discuss these
invariants in Chapter 4.

In the case of interconnects, liveness cannot be checked in isolation. This is
shown in work by Freek Verbeek and Julien Schmaltz [Verbeek and Schmaltz,
2012a,b]. In this work routing topology is analysed separately from the switching
scheme in a formal analysis of NoCs at an abstract level, called GeNoC. Many
properties can be verified in isolation, but for liveness verification the topology and

7

1 Introduction

Verilog.vVerilog.v
 Module 1
 Module 2
 Module 3

High level
models

(Chapter 2)

Assertions
 Property 1
 Property 2
 Property 3
 Liveness

Model
checking

Proven
properties

implement

ok

Model check
golden
model

Model check
under

assumptions
Additional
Assumption

use invariant
as assumption

Verilog.v
built for
verification

unknown

Contribution

Gate level
to RTL

(Chapter 3)

Invariants

(Chapter 4)

Liveness
verification
(Chapter 5)

Extraction
of xMAS

(Chapter 6)
Black-box
annotations

compare

generate Verilog
as golden model

liveness is
verified directly

Equivalence
check

Figure 1.1: A summary of how the tool support is embedded in the design flow. Arrows
represent which information is used for which algorithms. Dotted arrows represent new
verification possibilities.

8

1.3 Contribution of this thesis

switching scheme need to be combined. The authors recognize that the switching
scheme, network topology and routing all contribute to the behavior of a NoC. A
later review by Balaji Venu and Ashwani Singh [Venu and Singh, 2012] confirms
this, and identifies liveness as the main challenge in the design of a NoC.

Some work on liveness verification focusses on a specific interconnect architec-
ture. The Ætheral protocol as described by Kees Goossens [Goossens et al., 2005],
for instance, has been proven live (free of deadlocks in their terminology) with
the use of the theorem prover PVS in [Gebremichael et al., 2005]. The argument
for liveness is similar to that of José Duato, for his NoC design language [Du-
ato, 1993]: given the dependencies, if there is no circular wait, there cannot be
a deadlock [Duato, 1995]. It was recently noted that although the argument is
presented as necessary and sufficient, it is not necessary, meaning that there are
deadlock-free circuits in Duato’s language that do have circular waits [Verbeek
and Schmaltz, 2011a].

1.3 Contribution of this thesis

In this thesis, we aim to verify interconnects, with the analytical strength and
performance of algorithms that operate at an abstract level, on a hardware design
described at gate level. Certain components, such as queues and routers, are
incredibly common in communication fabrics. They are so common that in many
NoCs, they are in fact the only state-holding elements. Since routers do not ‘hold’
packets, the notion of a ‘packet in a network’ can be expressed through the notion
of a packet in a queue. It can be difficult to define what it means for a packet to
be in a network, expressed in terms of RTL code. At a high level, it is often clear:
a queue has a certain number of places, and for each place that contains a packet,
that packet is in the queue.

A convenient form of verification is done at the RTL, provided that we keep
relevant module information. As mentioned, at the gate level we allow for hardware
to be expressed in terms of modules. Queues are often expressed as separate
modules. This makes it possible for us to consider the queue at a high level,
while considering the rest of the RTL at a low level. To do so, we hide the RTL
implementation of a queue.

A module, of which the implementation is hidden is called a black box. The
remaining hardware still has an interface with the black box, over wires. Conceptu-
ally, this interface is very similar to the interface the NoC has with its environment:
the NoC has a set of input wires from which it gets information, and a set of out-
put wires to which it can write information. The environment may then react
to that information. Note that the input wires of the NoC are output wires of
the environment, and vice versa. Similarly, the output wires of a black box are
considered to be input wires of the NoC, and vice versa.

The main difference between in- and output wires with the environment, and
those with a black box, is the scope of the wire names. This is illustrated with
an example in Figure 1.2. The black box, called queue, is used once in the
module intermediate. Here it has the instance name wait. The module
intermediate is used twice in the top level module called top. Each use of the
module intermediate has a different name: inst1 and inst2 respectively. To

9

1 Introduction

queue

top

intermediate

wait
(queue instance)

inst1
(intermediate

instance)

inst2
(intermediate

instance)

Figure 1.2: The black box ‘queue’ is used once in all instances of ‘intermediate’. As
‘intermediate’ occurs twice in ‘top’, the black box module also occurs twice in ‘top’.

distinguish the two occurrences of queue, we take into account the entire ‘path’
from top to queue, through the instance-names. For instance, inst1/wait
and inst2/wait would be the path for the queues in our example. These paths
uniquely identify every queue instance. If the queue module has the output wire
not_full, we can treat inst2/wait/not_full as a free variable. Similarly,
if the module has the input wire enqueue, the module described in the figure
assigns a value to inst2/wait/not_full, giving it the role of an output value
relative to the top level module.

To translate gate level designs to RTL designs, the usual approach is to forbid
designs for which a straight-forward translation is not possible. In the previous
example, we need to know whether not_full is an input or an output in order
to decide whether or not to treat it as a free variable. Problems arise when a wire
can be both an input and an output. Unfortunately, these situations do arise in
practice. In Chapter 3, we show how such gate level designs can be translated to
RTL designs.

When proving properties about designs with a large state-space, invariants
help constrain this state-space. Invariants are typically seen as a property that is
easy to obtain from abstract descriptions of hardware, but very difficult to obtain
from RTL designs. They play a crucial role in proving emergent properties, such
as liveness. Chapter 4 describes a novel method to obtain invariants at RTL
automatically, which aids the model checking process. This chapter is based on a
paper published at MEMOCODE in 2013 [Joosten and Schmaltz, 2013]:

Joosten, S. J. C. and Schmaltz, J. (2013). Generation of inductive invari-
ants from register transfer level designs of communication fabrics. In Formal
Methods and Models for Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM
International Conference on, pages 57–64. IEEE

As discussed in Section 1.2, liveness is an important property to check about
interconnects. Chapter 5 presents a novel technique to prove liveness through the

10

1.3 Contribution of this thesis

absence of local deadlocks on RTL designs automatically. This chapter is based
on a paper published at DATE in 2014 [Joosten and Schmaltz, 2014]:

Joosten, S. J. C. and Schmaltz, J. (2014). Scalable liveness verification for
communication fabrics. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition, pages 113:1–113:6

A general challenge is to use our interface based technique to verify everything
that can potentially be verified at an abstract level. Chapter 6 is a first attempt
to address that challenge. It shows how to derive an xMAS network from the RTL
netlist. This research was published at DATE in 2015 [Joosten and Schmaltz,
2015]:

Joosten, S. J. C. and Schmaltz, J. (2015). Automatic extraction of micro-
architectural models of communication fabrics from register transfer level de-
signs. In Proceedings of the Design, Automation & Test in Europe Conference
& Exhibition, pages 1413–1418

For this thesis, several algorithms for the analysis of circuits are implemented.
The ‘Contribution’ box in Figure 1.1 gives an overview of how these algorithms
relate. The implementations are tested in Chapter 7. This chapter combines the
experimental results section of several published papers [Joosten and Schmaltz,
2013, 2014, 2015], together with some new experimental results.

Chapter 8 combines the future work section of several papers, and gives a more
thorough outlook based on the most recent experiences.

Appendix A describes the application of functional programming techniques
to create a framework for the analysis of Verilog designs. The chapter is intended
as a reference for anyone interested in using, improving or rebuilding the frame-
work. The described implementations are by the author of this thesis, and can be
downloaded from the link given in the chapter.

The methods in this thesis look at interconnects at the gate level and the RTL.
To be able to easily convey the design of interconnects, we describe them in an
abstract model. To describe interconnects, we use the language xMAS, for several
reasons. First, it has a straightforward gate level implementation. Second, it
allows us to compare our methods to those that require the xMAS models.

The xMAS language and notation is introduced in Chapter 2. This chapter is
largely based on work by Chatterjee et al. [Chatterjee et al., 2012, 2010]. We also
use this chapter to introduce the queue annotations that are used throughout this
thesis.

Work that is not presented in this thesis

The author of this thesis contributed to a paper about automatic deadlock verifica-
tion for asynchronous click circuits. The xMAS language we describe in Chapter 2
can be seen as a synchronous version of click circuits. For that reason, liveness

11

1 Introduction

verification methods that work on xMAS turn out to be possible on click circuits
as well. This paper deviates slightly from the line presented in this thesis, and
contains a significant body of work that was solely done by Freek Verbeek. For
these reasons, the following paper is omitted from this thesis [Verbeek et al., 2013]:

Verbeek, F., Joosten, S. J. C., and Schmaltz, J. (2013). Formal dead-
lock verification for click circuits. In Asynchronous Circuits and Systems
(ASYNC), 2013 IEEE 19th International Symposium on, pages 183–190.
IEEE

The author of this thesis helped to give process algebra semantics to xMAS
components. The main contribution of the corresponding paper, is that it shows
how to use model checking at the xMAS level. This work with Sanne Wouda is
omitted from this thesis entirely, but published separately [Wouda et al., 2015]:

Wouda, S., Joosten, S. J. C., and Schmaltz, J. (2015). Process algebra
semantics & reachability analysis for micro-architectural models of communi-
cation fabrics. In Formal Methods and Models for Codesign (MEMOCODE),
2015 Thirteenth ACM/IEEE International Conference on

A tool for designing interconnects using xMAS is presented in [Joosten et al.,
2014b]. This tool, called ‘Wicked xMAS’ was implemented by several students
(some of which I supervised) over the course of several years, and is maintained by
Freek Verbeek, Bernard van Gastel, Julien Schmaltz and the author of this thesis.
Use of Wicked xMAS has helped reproduce some xMAS designs, some of which are
used throughout this thesis. This thesis contains some details about xMAS, but
we could not find a satisfactory place to describe the tool Wicked xMAS, which is
why the paper is omitted from this thesis:

Joosten, S. J. C., Verbeek, F., and Schmaltz, J. (2014b). WickedXmas: De-
signing and verifying on-chip communication fabrics. In International Work-
shop on Design and Implementation of Formal Tools and Systems (DIFTS)

The papers [Joosten and Zantema, 2013; Joosten et al., 2014a, 2013; Joosten
and Joosten, 2015] are based on research by the author, but were omitted from
this thesis because they have no obvious relation to communication fabrics:

Joosten, S. J. C. and Zantema, H. (2013). Relaxation of 3-partition in-
stances. In CTW, pages 133–136

12

1.3 Contribution of this thesis

Joosten, S. J. C., Kaliszyk, C., and Urban, J. (2014a). Initial experiments
with TPTP-style automated theorem provers on ACL2 problems. In Interna-
tional Workshop on the ACL2 Theorem Prover and its Applications, volume
152, pages 77–85

Joosten, S. J. C., Van Gastel, B., and Schmaltz, J. (2013). A macro for
reusing abstract functions and theorems. In Gamboa, R. and Davis, J., editors,
International Workshop on the ACL2 Theorem Prover and its Applications,
volume EPTCS 114, pages 29–41

Joosten, S. and Joosten, S. J. C. (2015). Type checking by domain analysis
in ampersand. In RAMICS 2015, 15th International Conference on Relational
and Algebraic Methods in Computer Science, Braga

13

1 Introduction

14

Chapter 2
Micro-architectural models of

communication fabrics

To formally verify communication fabrics, micro-architectural models are com-
monly used. A graphical language, xMAS, was recently proposed by Intel [Chat-
terjee et al., 2012]. It is intended to specify such micro-architectures formally. For
this language several properties can be proven automatically for reasonably large
networks, such as invariants [Chatterjee and Kishinevsky, 2012], channel type in-
formation [Van Gastel et al., 2014] and deadlock freedom [Verbeek and Schmaltz,
2011b].

Another way to use high-level models, is to improve the effectiveness of hard-
ware model checking [Chatterjee and Kishinevsky, 2012; Gotmanov et al., 2011;
Ray and Brayton, 2012]. Hardware designs analyzed in the aforementioned works
are generated from xMAS models, such that the correspondence between the hard-
ware which is checked, and the xMAS models used is clear. In practice, high-level
models are difficult to create and their relation to actual designs can be unclear.

We introduce the reader to the part of the xMAS specification relevant to this
work.

2.1 Definition of xMAS

An xMAS model is a network of primitives connected via typed channels. A
channel is connected to an initiator and a target primitive. To indicate whether
a primitive acts as an initiator or a target, we say a channel is an output channel
of the initator, or an input channel of the target. A channel is composed of three
signals. Channel signal c.irdy indicates whether the initiator is ready to write to
channel c. Channel signal c.trdy indicates whether the target is ready to read
from channel c. Channel signal c.data contains data that are transferred from the
initiator output to the target input. Data is transferred if and only if both signals
c.irdy and c.trdy are set to true.

Figure 2.1 shows the eight primitives of the xMAS language. A function prim-
itive manipulates data. Its parameter is a function that produces an outgoing
packet from an incoming packet. Typically, functions are used to convert packet
types and represent message dependencies inside the fabric or in the model of the

15

2 Micro-architectural models of communication fabrics

switch merge source sink

fork join function queue

i

i

a

a

b

b

o

o

a

a

b

b

i o

Figure 2.1: There are eight xMAS components.

environment. A fork duplicates an incoming packet to its two outputs. Such a
transfer takes place if and only if the input is ready to send and the two outputs
are both ready to read. A join is the dual of a fork. The function parameter de-
termines how the two incoming packets are merged. A transfer takes place if and
only if the two inputs are ready to send and the output is ready to read. A switch
uses its function parameter to determine to which output an incoming packet must
be routed. A merge is an arbiter. It grants its output to one of its inputs. The
arbitration policy is a parameter of the merge. A queue stores data. Messages are
non-deterministically produced and consumed at sources and sinks. Below are the
original definitions for fork, join, switch and merge [Chatterjee et al., 2012]:

fork Duplicates a packet. It has output channels a and b, and input channel i:

a.irdy := i.irdy ∧ b.trdy

b.irdy := i.irdy ∧ a.trdy

i.trdy := a.trdy ∧ b.trdy

a.data := i.data

b.data := i.data

join Combines two packets. For input channels a and b, and output channel o:

a.trdy := o.trdy ∧ b.irdy

b.trdy := o.trdy ∧ a.irdy

o.irdy := a.irdy ∧ b.irdy

The o.data value depends on an additional function, which takes a.data and
b.data as arguments.

switch Routes a packet to one of its output channels. For output channels a and

16

2.1 Definition of xMAS

b, and input channel i:

a.irdy := i.irdy ∧ s
b.irdy := i.irdy ∧ ¬s
i.trdy := (a.trdy ∧ s) ∨ (b.trdy ∧ ¬s)
a.data := i.data

b.data := i.data

s := f(i.data)

Note that s is used as a switching function which should only depend on the
input data.

merge Selects a packet from one of its input channels. For input channel channels
a and b, and output channel o:

a.trdy := o.trdy ∧ u ∧ a.irdy

b.trdy := o.trdy ∧ ¬u ∧ b.irdy

o.irdy := a.irdy ∨ b.irdy

o.data :=

{
a.data when u

b.data otherwise

The original definition states that u is ‘a local state variable that ensures
fairness’, where fairness means that if o.trdy is high infinitely often, a and
b get infinitely many turns: a.trdy and b.trdy will be high eventually. This
condition prevents starvation.

function Changes the data:

i.trdy := o.trdy

o.irdy := i.irdy

The o.data value is given by an additional function, which takes i.data as an
argument.

sink, source These generally represent components which are abstracted away
from, or external in- and outputs to the network. As such, the source has
i.irdy and i.data as free input variables. The sink has i.trdy as free input
variables. For the source, when .irdy is high and .trdy is not, the .data signal
does not change at the next clock tick.

Sometimes a sink or a source is always ready to send a packet. This is
indicated by adding the word ‘eager’ near the sink or source.

eager source Is always ready to send a packet.

o.irdy := true

eager sink Is always ready to receive a packet.

i.trdy := true

queue We will describe the queue in greater detail in the next section.

17

2 Micro-architectural models of communication fabrics

2.1.1 Queue

We give an implementation of a four-place circular queue in this section. Using
this queue, and similar ones, we construct the networks on which we focus our
examples and experiments throughout this thesis. We illustrate the interaction
between these components in Section 2.1.2, by giving a small example.

p p

output data

input data
in

out

Figure 2.2: A four place circular buffer. This figure shows a situation with two packets,
indicated by a ‘p’.

The implemented queue is a circular queue (Figure 2.2). An advantage of using
a circular queue is that it reduces the writes to registers inside it: every time a
register changes its value, some amount of energy is consumed. A queue that
minimises writes to registers, also reduces power consumption.

The idea behind a circular queue is to use two pointers: one called in to indi-
cate a slot where the next packet should be written, and one called out to indicate
where the current output data should come from. The queue presented here has
four places, so we use a two bit register in to keep track of where the packet
entering next should be placed. Another two bit register out keeps track of which
packet is offered at the output side. In Verilog, the statement reg [1:0] in;
declares in as a two bit register.

When the read data, called o$data, is set, the queue waits until it is read. To
indicate this, o$irdy is set to high. This is acknowledged by the environment by
a high o$trdy value. For o$data and o$trdy, the $ sign is used in the place
of a dot, as a dot is not allowed in unescaped Verilog identifiers. The environment
is reading when o$irdy and o$trdy are both high. In Verilog, we use the local
variable reading to indicate this: wire reading = o$irdy && o$trdy;.

In our queue implementation, instead of erasing the data, the out pointer
is increased with 1. Updates which should be made on the next clock tick are
indicated by a <= in Verilog, and should always be inside an always block, to
indicate which clock tick. Within such blocks, we can take care of resets as well.

We use a two-bit local variable nextout to indicate the next value of the out
pointer in case it is read. A local wire can be declared and assigned in one Verilog
statement: wire [1:0] nextout = ...;. An update of the out pointer is
written as: out <= rst ? 0 : (reading ? nextout : out);.

If the queue is full or empty, in and out point to the same position. The
distinction between full and empty queues is made by an additional single-bit
register: reg full;.

Every time a packet is injected (input is ready and queue is not full), in is

18

2.1 Definition of xMAS

raised by one. When a packet is taken (output is ready and queue is not empty),
out is raised by one. When the two are equal, the queue is either full or empty.
To distinguish between the two cases, a one-bit-register full is set to high if in
is raised to be the value of out while no packet is taken. On the input, .trdy is
defined as the negation of full. In Verilog: assign i$trdy = !full;. If
output-ready is low, no packet enters the queue, even if a packet is taken from the
turn of that cycle (so latency increases if the full capacity of the queue is used).

For this implementation, the data is 8 bits. Therefore i$data and o$data
are declared as 8-bit in and output wires by their range [7:0].

module circular_queue_explicit (clk, rst, i$irdy, i$trdy,
i$data, o$irdy, o$trdy, o$data);

input clk, rst, i$irdy;
output i$trdy;
input [7:0] i$data;
output o$irdy;
input o$trdy;
output [7:0] o$data;

reg [1:0] in, out;
reg [7:0] data0, data1, data2, data3;
reg full;

assign i$trdy = !full;
assign o$irdy = !(in==out) || full;
assign o$data = out==0 ? data0 :

(out==1 ? data1 : (out==2 ? data2 : data3));

wire writing = i$irdy && i$trdy; // writing into the queue
wire reading = o$irdy && o$trdy; // reading from the queue
wire [1:0] nextin = in==3 ? 0 : (in+1);
wire [1:0] nextout = out==3 ? 0 : (out+1);

always @(posedge clk) begin
in <= rst ? 0 : (writing ? nextin : in);
out <= rst ? 0 : (reading ? nextout : out);
full <= (rst || reading) ? 0 : ((nextin==out && writing)

? 1 : full);
data0 <= (writing && (in==0)) ? i$data : data0;
data1 <= (writing && (in==1)) ? i$data : data1;
data2 <= (writing && (in==2)) ? i$data : data2;
data3 <= (writing && (in==3)) ? i$data : data3;
end
endmodule

Note that by the definition of reading and writing, the queues are the
components that ensure that a packet is transferred if and only if both .irdy and
.trdy signals are high. Also, the queues ensure that the data does not change if

19

2 Micro-architectural models of communication fabrics

qoqi
source

eager sink

1

0

Figure 2.3: A small xMAS network, to help explain how .irdy and .trdy values propagate.

.irdy is high, and no transfer occurs.

2.1.2 Composition of components

When xMAS components are combined using channels, .irdy and .data values
are propagated in the direction of the arrows, while .trdy is propagated in the
other direction. Figure 2.3 gives a small example as to what this looks like at the
interface of a queue. In this example, the source can inject packets with data 0 or
1 in order to decrease or increase the number of packets in the queue. The sink in
this example will always accept packets, thus it is eager.

The queue has three inputs-wires: qi.irdy, qi.data and qo.trdy. These are
assigned values by the network. In the example given, the value of qi.irdy depends
on the value given by the switch, which was defined as: i.irdy ∧ s. The select
function s is true if the data on its input is high, and the value i.irdy is given by
the source: source.irdy. Consequently, the value of the qi.irdy wire at the input of
the queue is given by:

qi.irdy = source.irdy ∧ (source.data = 1)

The .data signal to qi is rather trivial. While a transfer can only occur at the
input of the queue if qi.irdy is high, and therefore source.data = 1, the value of
qi.data can still be 0:

qi.data = source.data

Similarly, qo.trdy depends on the join, switch and sink:

qo.trdy = source.irdy ∧ (source.data = 0)

2.2 Non-standard xMAS components

Many nice examples can be made using the standard xMAS components. This
work shows types of analysis that apply to non-xMAS networks as well. For this
reason, we do not only use xMAS components, but also some components that do
not exist within xMAS.

20

2.2 Non-standard xMAS components

bit 0 bit 1

Figure 2.4: Two single registers that behave as one-place queues with no data.

A simple two-bit shift counter is shown in Figure 2.4. The idea is that when
.irdy is high at the input, the packet is accepted by setting the first bit – bit 0
– to high, while data is not stored. That first bit must become low again before
another packet can be accepted, which can happen by setting the second bit –
bit 1 – to high. That second bit will wait for a high .trdy at the output before
becoming low. The Verilog is as follows:

module counter (clk, rst, i$irdy, i$trdy, o$irdy, o$trdy);

input clk, rst, i$irdy, o$trdy;
output i$trdy, o$irdy;
reg bit0, bit1;

assign i$trdy = !bit0;
assign o$irdy = bit1;

wire writing = i$irdy && i$trdy;
wire reading = o$irdy && o$trdy;

always @(posedge clk)
bit0 <= rst ? 0 : (writing ? 1 : (bit0 ? bit1 : 0));

always @(posedge clk)
bit1 <= rst ? 0 : (reading ? 0 : (bit1 ? 1 : bit0));

endmodule

Note that the interface to this module is similar to that of a queue, so this com-
ponent can be used within xMAS networks.

2.2.1 Interfaces in RTL

In the previous section, we saw how we could wrap non-xMAS elements inside an
xMAS wrapper. When such wrappers do not exist, we still analyse the hardware.
In order to do so, there should be some agreement on when a packet enters the
queue, and when it leaves. The property which encodes when a packet is put into
the queue is called tr. The property that encodes when a packet leaves the queue is
called ts. These properties do not need to exist as wires in the physical hardware,
but it should always be possible to express them in terms of wires that are in the
hardware.

21

2 Micro-architectural models of communication fabrics

We make clear what we mean by a property through a preliminary definition.
In the next section, we generalise this definition slightly to account for black boxes.

We focus on synchronous RTL: all registers can be perceived as being updated
simultaneously, by an implicit clock. While we write RTL in Verilog, we illustrate
our approach using an abstraction as a starting point. The disjoint union between
sets is written as ⊕, and the set of Boolean values as 2.

Definition 2.1 (Circuit without black boxes, state, property) A circuit without
black boxes consists of (a finite set of) inputs I and registers F , together with a
next-step function n : (I⊕F → 2)→ (F → 2). A state σ of a circuit is a function
σ : I⊕F → 2 which assigns a value to every input and every register. A property p
in a circuit is a function which, given a state, produces a value p : (I⊕F → 2)→ 2.

By this definition, the value of inputs is part of the state, such that a property
only depends on the state of the network. The value at an output wire of a chip
can be considered a property.

For a network to function correctly, it should not attempt to write to full
queues, or read from empty queues. To prevent the network from doing this, a
queue could indicate when it is ready to receive, rr, or to send, rs. These wires,
however, need not exist. Suppose, for example, that rr is not available. In this
case, the hardware must ensure that a packet can never be written to the queue if
it is full. For the queue, this means that it must be of a size that is sufficient for
where it is used. If this can be asserted, we may use true as the expression for rr.
In other words: it is always possible to give an expression for rr and rs.

In summary, a queue interface can be identified by the following (Boolean)
properties:

rr The queue is ready to receive.

rs The queue is ready to send.

tr A packet is added to the queue at the next tick.

ts A packet is sent at the next tick.

The queue interface satisfies tr implies rr and ts implies rs, meaning that
whenever a packet is enqueued, the queue must be ready for it, and whenever a
packet is dequeued, the queue should have been ready. In most RTL designs, this
is true. Note that this also holds when rr or rs (or both) are simply defined as
true. Together, tr and rr give rise to a ‘port’, as do ts and rs. The former – on
the receive side – is the input port of a queue, the latter is the output port. The
term port is defined as follows:

Definition 2.2 (port) A port (in a circuit) is an object x for which properties
rx and tx are defined. We require that tx(σ)→ rx(σ) for every state σ, and refer
to tx as the transfer property, and to rx as the implied property.

22

2.2 Non-standard xMAS components

For an xMAS queue, the r and s ports are defined as follows:

rr = i.trdy

tr = i.trdy ∧ i.irdy

rs = o.irdy

ts = o.trdy ∧ o.irdy

Note that we can have more information about a queue. For instance, it is
possible to have information about the data going in and out of a queue. We write
dx[i] to indicate data-bit i on port x.

2.2.2 Treating queues as black boxes

In hardware, a module is called a black box when its interface is given, but its
implementation is not. Black boxes are often used in the design process of hard-
ware. In this thesis, we also use them for the analysis of hardware. By using a
black box, we hide irrelevant details from the analysis.

A downside to using a black box, is that some relevant features may also be
missing. In this thesis, each queue will be treated as a black box. Consequently,
we need a way to find out the values of rr, tr, rs and ts for each queue. This is
achieved by annotating queues: stating that some module is to be treated as a
black box, while adding the necessary extra information.

For our tool, Voi, we annotate the module xmas_queue_2, a queue that can
hold 2 packets, and xmas_queue_4, of size 4, with the following syntax:

annotate queue; // Queue sizes 2 and 4
module(.upperBound(2)) xmas_queue_2;
module(.upperBound(4)) xmas_queue_4;
inputReady i$trdy;
inputTransfer i$trdy && i$irdy;
inputData i$data;
outputReady o$irdy;
outputTransfer o$trdy && o$irdy;
outputData i$data;

endannotate

The value rr is called inputReady, rt is called inputTransfer, and so on.
We could have annotated the modules xmas_queue_2 and xmas_queue_4 in
separate statements. However, by using upperBound to indicate an integer, we
annotate queue modules of all sizes in one annotate statement.

We can use the same mechanism to annotate registers:

annotate register;
module(.upperBound(1)) register_mod;
inputReady !q; // low = ready to rise
inputTransfer d && !q; // rise
outputReady q; // high = ready to fall
outputTransfer !d && q; // fall

endannotate

23

2 Micro-architectural models of communication fabrics

Since we do not look at the implementation of a black box, any registers inside
it are hidden as well. This means that to express a property p : (I ⊕F → 2)→ 2,
the value of a register f ∈ F may not be available: we may not be able to determine
σ(f). Instead, only the inputs I, some visible registers F ′ and all outputs wires
of black box modules are available. In the analysis, output wires of black boxes
take the role of free variables, just like input wires in the overall design I. Instead
of complicating our definition of state to account for output wires of black box
modules, we simplify it. All wires that play the role of free variables during our
analysis, including I and F , will be called fundamental wires. Let W be the set
of fundamental wires: then all inputs I ⊆W , all registers F ⊆W , and the output
wires of black box modules are in W .

Definition 2.3 (Circuit, state, property) A circuit consists of (a finite set of)
registers F , and fundamental wires W such that F ⊆W , together with a next-step
function n : (W → 2)→ (F → 2). A state σ of a circuit is a function σ : W → 2
which assigns a value to every input and every register. A property p in a circuit
is a function which, given a state, produces a value p : (W → 2)→ 2.

We keep track of the state holding elements in W , namely F , because it helps
us to reason about time dependent behavior caused by the next-step function of
the circuit, n. Some circuits may have a starting state, denoted σ0. This denotes a
state of the circuit after a reset. Given such a state, we can look at time dependent
behavior of RTL circuits.

Definition 2.4 (successor-state, trace) We say that σ′ : W → 2 is a successor
state of σ if for all f ∈ F , n(σ)(f) = σ′(f). In a circuit with next-step function n,
a sequence of states σ0, σ1, . . . is called a trace if σ0 is a starting state, and σi+1 is
the successor state of σi, for all i ≥ 0. When the trace is known, we will refer to
σi as the state at time i.

Note that by the annotations in this section, rr is a property for a queue
given by the fundamental wire i.trdy. Hence rr(σ)↔ σ(i.trdy). For tr, we cannot
express the property in fundamental wires without knowing more about the circuit:
i.irdy is not a fundamental wire since it is an input wire to a queue. Its value in
terms of fundamental wires depends on where the queue is used. Taking the
example from Section 2.1.2, we can express qi.irdy, qi.data and qo.trdy in terms
of fundamental wires:

qi.irdy(σ) = σ(source.irdy)∧!σ(source.data[0])

qi.data[0](σ) = σ(source.data[0])

qo.trdy(σ) = σ(source.irdy) ∧ σ(source.data[0])

Consequently, we can express tqi and tqo in fundamental wires:

tqi(σ) = qi.irdy(σ) ∧ rqi(σ) = σ(source.irdy)∧!σ(source.data[0]) ∧ σ(qi.trdy)

tqo(σ) = rqo(σ) ∧ qo.trdy(σ) = σ(qo.irdy) ∧ σ(source.irdy) ∧ σ(source.data[0])

We can also use the definitions for rr, rs, tr and ts for gate level descriptions
as well. The next chapter will provide insight in the relation between gate level
and RTL.

24

Chapter 3
Analysis of circuits

In the previous section, we saw how NoCs could be described in terms of xMAS.
We aim to analyse NoCs that cannot be described in xMAS as well. One of the
best known types of interconnect is a bus. In a bus, multiple components can talk
to each other. When a wire in a design is used in two directions, called an inout
wire, cycles occur. Unlike sequential cycles, where the cycle is intended to store
state, such cycles are combinational. Combinational means that, under certain
inputs, the value of all wires is determined. That is: the wire value does not
depend on timing, or previously held capacitive charges. This chapter shows how
to adapt such structures, such that it can be analysed with conventional methods.

There are several strategies to deal with inout wires. A common way to deal
with combinational cycles, is to let X denote the value of all wires in such a cycle
during analysis. This means that X is used in its interpretation as invalid value,
even if the design is valid. Another way to deal with inout wires, is to avoid the
cycles from arising. This is done by modeling the inout wire with an input and an
output wire, if possible. The approach taken here is to give an interpretation to
designs with cycles.

In Verilog, hardware is described using a four-valued logic: 0, 1, X, and Z. A
value Z models an open or high impedance wire while a value X, in Verilog, means
unknown, invalid, or a don’t care. Note that VHDL uses a more fine-grained
approach, where X only stands for invalid, and unknown is modeled by U . Verilog
has no U . Another maybe counter intuitive property, is that the output of a not

gate driven by Z is X, which is also the output of a not gate driven by X. Some
work on four- on five valued logic, such as that by Bergstra in [Bergstra and Ponse,
1999], has the nice property that ¬(¬(v)) = v for all v, which is not the case in
hardware.

To handle cycles in designs, it is recognised that a fixed-point should be cal-
culated. In constructive logic, such a fixed-point can be calculated by start-
ing with absence of knowledge, leading to derived values, as shown by Kees
Goossens [Goossens, 1993]. The approach taken here is to model absence of knowl-
edge with a fifth value, ⊥, as used in work by Riedel and Bruck [Riedel and Bruck,
2012]. Contrary to the work of Riedel, we give an interpretation of circuits in which
four-valued logic is also used, allowing us to deal with inout wires. A side-effect of
using Verilog’s four-valued logic, is that we can also use X as a return value, which

25

3 Analysis of circuits

Riedel and Bruck could not. After completing our analysis, should values of ⊥
remain (meaning we cannot derive their values), we will return X. This allows us
to keep X as a local value, while translating the rest of the circuit, where the work
of Riedel and Bruck [Riedel and Bruck, 2012] would just make the observation
that the entire circuit is not combinational.

We relate our semantics to circuits with previous results from Riedel and
Bruck [Riedel and Bruck, 2012]. Riedel and Bruck argue that the use of cyclic
circuits can yield better circuits, and give semantics of such cyclic circuits. For
the semantics they propose, they show:

• For any cyclic circuit with n gates, an equivalent acyclic circuit with n2 gates
exists.

• A concrete circuit with n gates, for which any equivalent acyclic circuit has
2n gates.

For our semantics, we will arrive at these results:

• For any cyclic circuit with n gates, there is an equivalent acyclic circuit with
2n2 gates, thus ‘losing’ a factor 2. If we require – as Riedel and Bruck do
– that the wires in the cyclic circuit are always 0 or 1, then for any cyclic
circuit with n gates, there is an equivalent acyclic circuit with n2 gates.

This shows that the factor 2 between the acyclic circuits is due to the use of
four-valued logic. In addition, we manage to find circuits for which the equivalent
acyclic version needs to be much larger:

• We build a concrete circuit with n gates, for which any equivalent acyclic
circuit using the same gates has 1

2n(n+1) gates. This means that our circuit
shows a bigger gap between cyclic and the acyclic circuits.

This is an example of a circuit for which an acyclic equivalent is much larger, when
compared to the 2n gates required for the circuit provided by Riedel and Bruck.

This chapter will arrive at a procedure that uses five values: 5 = {0, 1,X,Z,⊥}.
We interpret a gate level circuit m : 5W → 5W as a two-value logic (Boolean)
formula f : 2I → 2O, and pay some attention to how to do this symbolically.
This allows us to interpret gate level circuits as Boolean formulas in the rest of
this thesis. We will describe how we interpret a gate level circuit by a function
m : 5W → 5W in the next section, and gradually reshape this into the form
f : 2I → 2O.

3.1 Introduction

First, we show what could go wrong when using a straightforward gate translation.
Rivest already showed in 1977 that cycles in circuits are required to design minimal
circuits [Rivest, 1977]. Our first example will be without cycles, but shows a circuit
that contains an error. A straightforward gate-wise translation to SAT would cause
us to derive properties that simply do not hold, including properties that do not
even concern (this part of) the circuit.

Consider the Verilog code corresponding to the design in Figure 3.1:

26

3.1 Introduction

test myInstance

NOT

BUF

x

d

e

c

b

a

Figure 3.1: A design for which formal analysis is tricky.

module test (a, b)
input a; output b; wire c;
submod myInstance (a,c,c,b);
endmodule
module submod (d,d,e,e)
inout d; inout e; wire x;
not(x,d); // x = ! d
buf(x,e); // x = e (information flows from e to x)
endmodule

The module interface (d,d,e,e) is unconventional. It is a shorthand for the
interface (d,d2,e,e2), where d2 is assigned to d, and e2 to e. The industrial
parser we work with accepts the Verilog code above as valid input.

Consider what would happen if the module test would be given some input,
say 0: the wire a is connected to 0, giving it the value 0. Module submod is
instantiated under the name myInstance. In this instantiation, it is given value
0 as its first parameter, and it uses the same wire called d as its second parameter.
Hence the value of wire a and that of wire d are equal (both 0). Looking at
myInstance again, that value of d is assigned to c, which assigns it to e, finally
causing the output b to have the same value. In hardware, this part of the design
is just a single wire, which is called a, b, c, d and e in various places of the code.
Note that there are two gates (buf and not) that share one output wire, called x.
Since these gates are directional, they do not influence the value of their inputs (d
and e). The not gate will return a low output on a high input, and a high output

27

3 Analysis of circuits

on a low input. The buf gate returns a high output on a high input, and a low
output on a low output.

A straightforward translation to Boolean logic, or SAT – we use the SMT-LIB
notation here – would look like this:

(AND (= a d)
(= d c)
(= c e)
(= e b)
(= x (NOT d))
(= x e))

As expected, this allows us to derive (= a b). Unfortunately, it also allows us to
derive (= 0 b) and (= 1 b), or even (= 1 0). All of these statements are not
valid in the hardware. This is due to the fact that the SAT formulation contains
a contradiction, whereas the hardware just contains a local short-circuit at x. Of
course, a short-circuit is usually undesirable in hardware, but this should not cause
our formal analysis techniques to derive 0 = 1. We give a sound translation from
digital circuits to SAT formulas.

The main contribution of this chapter is to put a mathematical foundation
under the analysis of four valued circuits (tristate buffers, two-way assignments
and multiple assignments) and of cycles, whereas other works only treat either one.
The novelty lies in a new interpretation of circuits given in Section 3.2. Previous
results on creating acyclic circuits from cyclic ones follow directly from this new
interpretation, as shown in Section 3.4. Based on this novel definition, we find a
method to reduce such circuits to Boolean formulas in Section 3.5. This shows
that any formal tool that can analyse properties symbolically, can be extended
to the analysis of circuits with inout wires, etc. We do not consider behavior
of circuits that relies on timing. The parts of the circuit that do have a state
(registers, memory and clock) need to be modeled separately. This makes most
formal tools able to handle a larger set of designs, even when they were just made
for Boolean formulas initially. For a practical implementation thereof, we refer to
the appendix.

3.2 Definition of a Circuit

A gate level circuit – notation (M,W) – is a set of modules M over a set of wires
W . Our definition of gate level circuit differs from the (RTL) circuit given in the
previous chapter. For notation, we will use w ∈ W to be a wire. Different wires
will be denoted as w1, w2, ... Each wire can hold a value from the set {0, 1,X,Z,⊥}.
We write 5 for this set: 5 = {0, 1,X,Z,⊥}. The value which is not in standard
four-valued logic, namely ⊥, is used to indicate that the wire value is not (yet)
known. It is only an intermediate value. According to the Verilog standard, X can
be used to indicate a value that is not stable, so we can get rid of value ⊥ in final
descriptions.

The standard four values stand for: a low voltage drive 0, a high voltage drive
1, an unknown value X, and an undriven value Z. We say that a wire is ‘driven’
when there is a conductive path between it and either the high or the low voltage.

28

3.2 Definition of a Circuit

out ⊥ Z 0 1 X
in
⊥ (Z,⊥) (Z,Z) (Z, 0) (Z, 1) (Z,X)
Z (Z,X) (Z,X) (Z,X) (Z,X) (Z,X)
0 (0, 1) (0,X) (0,X) (0, 1) (0,X)
1 (1, 0) (1,X) (1, 0) (1,X) (1,X)
X (X,X) (X,X) (X,X) (X,X) (X,X)

Figure 3.2: Truth table for the module not(in, out).

In our semantics this means that the value is 0, 1 or X. A Z value can move to
a 0 or 1, depending on conditions not captured in a gate level model, so it is not
driven.

An assignment x̄ : W → 5 is a mapping of values to all wires W . All such
assignments over a set of wires W , are written as 5W . For instance, if w1 and
w2 are wires with values 0 and Z respectively, x̄ = (0,Z) is the assignment, and
(0,Z) ∈ 5{w1,w2} = {0, 1,X,Z,⊥} × {0, 1,X,Z,⊥}. A module m ∈M over a set of
wires W is a function m : 5W → 5W that, given an assignment of W , yields a new
assignment of W .

We intend to use modules to model entire circuits, just gates, or even a single
transistor. We take the not gate as an example. This example should give a general
idea of how we model modules as functions. It is common to call the not gate a
gate with one input and one output – which would be a function 5{in} → 5{out}.
We take a different approach, and consider it to be a module on two wires with
W = {in, out} – a function m : 5{in,out} → 5{in,out}. Its truth-table is shown in
Figure 3.2.

The table in Figure 3.2 is over wires called in and out. Remember that in
and out are just names, not necessarily indicating the flow of information. We
discuss what it means for a wire to be an ‘output’ in Section 3.3. Each pair in the
table is an assignment over W = {in, out}, to be read as (in, out). For instance
not(⊥,⊥) = (Z,⊥) indicates that if wire in is unknown, we cannot compute out.
This explains the ⊥ in the second place. We can, however, compute in: it is Z. A
hardware designer would phrase this as: in is not driven by this gate.

On the first wire in, this function is the identity if in 6= ⊥. This corresponds
with our intuition of ‘input’: the gate does not affect its value. The output wire
out is ‘driven’ by the gate. Of particular interest are the fixed-point values in the
table. That is, values for which not(in, out) = (in, out). They can be seen as
possible ‘solutions’ to a circuit with only a not gate module. To ensure that such
solutions exist, we restrict the functions that we can consider to be a module.

Not every function from 5W to 5W actually represents a module. When a wire
has value 1, there is no way to ‘unknow’ this value. Our not gate respects this.
To formalize this, we introduce a partial order . to indicate which value has the
most information. Conflicting information will be modeled as X, no information
(value not yet known) as ⊥. Hence in the partial order ., ⊥ is the unique smallest
element, X is the unique largest, and all other elements are incomparable, as shown
in Figure 3.3. For notational convenience, we define the join t with respect to this
order.

29

3 Analysis of circuits

⊥

X

0 1Z

Figure 3.3: Hasse diagram for ..

Definition 3.1 (., t) The partial order . is defined on 5 by:

u . v ⇔ (u = v ∨ u = ⊥ ∨ v = X)

We also apply this order on assignments and functions, so for f, g ∈ 5W and
u, v ∈W , and for f, g : 5W → 5W and u, v ∈ 5W ; we define:

f . g ⇔ ∀u. f(u) . g(u)

We write u t v for the least upper bound of u and v with respect to ..

While Definition 3.1 fully defines t on values, assignments and functions, it
might help to see the operation written out. This is its definition on values:

u t v =


X X ∈ {u, v} ∨ (u 6= v ∧ ⊥ 6∈ {u, v})
u u = v ∨ v = ⊥
v u = v ∨ u = ⊥

The definition has overlapping cases, but these cases have the same value, so the
definition is well-formed.

We require that modules are monotonically increasing with respect to this
order. In words, this means that as we learn more about the input values, we
should also learn more about the output values.

Definition 3.2 (monotonically increasing) A function f : 5 → 5, f : 5W → 5
or f : 5W → 5W is monotonically increasing if for all u and v (u, v ∈ 5, u, v ∈ 5W

or u, v ∈ 5W respectively):

u . v ⇒ f(u).f(v)

A related requirement is that modules are not allowed to ‘forget’ information.
This property is called ‘monotonic’. We require modules to be monotonic.

Definition 3.3 (monotonic)

x̄ . m(x̄)

As t is the join for ., this definition is equivalent to:

m(x̄) = x̄ tm(x̄)

30

3.2 Definition of a Circuit

To understand what a module does, we will first look at Figure 3.2. Suppose
we know nothing about the inputs, then not(⊥,⊥) = (Z,⊥) gives some extra
information: the first wire, in, is not driven by anything, so it will become equal
to Z. We can use this extra information, not(Z,⊥) = (Z,X), so the second wire
will become X. If we try again, we get not(Z,X) = (Z,X). This is a fixed-point,
the final result for this module. Note that a fixed-point is not necessarily unique:
not(X,X) = (X,X) is also a fixed-point, but it is not the fixed-point we reach from
(⊥,⊥). Even a minimal fixed-point with respect to . is not unique: not(0, 1) =
(0, 1) is incomparable to (Z,X): both are minimal fixed-points.

We find fixed-points by repeatedly applying a function to its input, increasing
the knowledge about the function.

Definition 3.4 (Kleene-star, m, m∗) Let m be given by:

m(x̄) = x̄ tm(x̄)

We call m∗ the Kleene-star of m, which is the limit of mn with n→∞, or:

m∗(x̄) = x̄ tm(x̄ tm(x̄ tm(· · ·)))

In this definition, m is introduced to ‘make m monotonic’: the statement ‘m
is monotonic’ is equivalent to ‘m = m’.

Lemma 3.1 The Kleene-star of m, written m∗, is monotonic. If m is monoton-
ically increasing, then so is m∗.

Proof. Since t is an upper bound on x̄, it follows that x̄ . x̄ t m(x̄) = m(x̄).
We conclude that mn . mn+1. So mn forms an increasing sequence in a finite
domain. Therefore the limit in Definition 3.4 exists and for some b, it holds that:
mn(x̄) = mn+1(x̄) = m∗ if n ≥ b.

We show that m∗ is monotonic. By induction, we show that mn is monotonic.
For the base case: m0(x̄) = x̄ is monotonic. We use (in this order) associativity of
function composition, the definition of m, our induction hypothesis, then x̄ = x̄tx̄,
and again the definition of m (with associativity of function composition), to
obtain:

mn+1(x̄) = m(mn(x̄))

= mn(x̄) tm(mn(x̄))

= x̄ tmn(x̄) tm(mn(x̄))

= x̄ t x̄ tmn(x̄) tm(mn(x̄))

= x̄ tmn+1(x̄)

Hence mn+1(x̄) = x̄tmn+1, so mn+1 is monotonic (for all n). By mn+1 = m∗ for
some n, it follows that m∗ is monotonic too.

By associativity of function composition, mn(ml(x̄)) = mn+l(x̄). Let n be a
large enough value such that mn(x̄) = m∗, then:

m∗(m∗(x̄)) = mn(mn(x̄)) = mn+n(x̄) = m∗(x̄)

Hence m∗ yields a fixed-point.

31

3 Analysis of circuits

Suppose m is monotonically increasing, then so is m. For x̄ . ȳ:

m(x̄)(w) = x̄(w) tm(x̄)(w) . ȳ(w) tm(x̄)(w) . ȳ(w) tm(ȳ)(w) = m(ȳ)(w)

Therefore m is monotonically increasing. The function composition of two mono-
tonically increasing functions also is monotonically increasing, which implies that
mn is monotonically increasing if m is. Therefore, we can conclude that m∗ is
monotonically increasing if m is.

We can understand m∗ in terms of input and output wires. Let I,O ⊆ W be
sets of input and output wires, respectively. We define a function i : 5I → 5W as
follows:

i(x̄)(w) =

{
x̄(w) if w ∈ I
⊥ otherwise

Similarly, we can drop wires o : 5W → 5O, defined by:

o(x̄)(w) = x̄(w)

With these functions, o(m∗(i(x̄))) gives an output assign 5O for every input as-
signment x̄ ∈ 5I .

3.3 Combining modules

To be able to combine modules, we look at what happens when wires are combined.
This is modeled by u ·v, to indicate that u overwrites v. Since there is no inherent
order in hardware, this also means that v overwrites u: the operator · must be
commutative.

This operation can also be applied to assignments, such that assignment x̄
overwrites assignment ȳ, indicated by x̄ · ȳ, obtained by piecewise application of
the operation for wires.

Definition 3.5 (overwrites) We write · for the binary operation overwrites. On
the set 5, u · v it is given by:

v ⊥ Z 0 1 X
u
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
Z ⊥ Z 0 1 X
0 ⊥ 0 0 X X
1 ⊥ 1 X 1 X
X ⊥ X X X X

On 5W and on 5W → 5W , operation · is defined as:

(x̄ · ȳ) (w) = x̄(w) · ȳ(w) (mi ·mj) (x̄) = mi(x̄) ·mj(x̄)

The definition of overwrites corresponds to the Verilog standard for resolving
multiple drivers on a wire (Table 6-2 [IEEE, 2001]). The only difference is that
we included ⊥. Since ⊥ models a lack of information, we choose ⊥ such that

32

3.3 Combining modules

⊥

X

0 1

Z

Figure 3.4: Hasse diagram for the poset corresponding to the · operation.

v · ⊥ = ⊥ if the outcome of v · w depends on w. The choice for ⊥ · X = ⊥ rather
than ⊥ ·X = X, is made such that · is associative. Choosing ⊥ ·X = X would yield
(0 · 1) · ⊥ = X while 0 · (1 · ⊥) = ⊥. It defines a partial order shown in Figure 3.4.

Note that t and · do not distribute: 0t (0 · Z) 6= (0t 0) · (0t Z). However, we
can prove the following:

Lemma 3.2 Given u . v, then u · w . v · w.

Proof. For w = ⊥, u · ⊥ = ⊥ = v · ⊥: the lemma holds, so assume w 6= ⊥. For
u = v the lemma follows from reflexivity of ., so assume u 6= v. We complete
our proof with a case distinction on u ∈ {X, 0, 1,Z,⊥}. Since u . v, u 6= X. If
u ∈ {0, 1,Z}, then v = X and v · w = X, since w 6= ⊥. If u = ⊥, then u · w = ⊥,
completing the proof.

Lemma 3.3 The operation · is closed for monotonic modules, and for monoton-
ically increasing modules.

Proof. From commutativity of · allows us to write Lemma 3.2 as follows:

u . v ⇒ w · u . w · v (1)

Combining Lemma 3.2 and the previous equation yields:

u . v ∧ w . x⇒ u · w . v · x (2)

As a corollary, by filling in u = w, and using u · u = u:

u . v ∧ u . x⇒ u . v · x (3)

We can use this to prove that the combination of monotonically increasing
functions is monotonically increasing. Suppose m1 and m2 are our monotonically
increasing functions. We can perform the following substitution in Equation 2.
Let u = m1(x̄), v = m1(ȳ), w = m2(x̄) and x = m2(ȳ). As a consequence
m1(x̄) ·m2(x̄) . m1(ȳ) ·m2(ȳ).

Equation 3 suffices to prove that the combination of monotonic modules will
be monotonic. Let u = x̄, v = m1(x̄) and x = m2(x̄), then x̄ . m1(x̄) ·m2(x̄).

33

3 Analysis of circuits

The effect that a circuit has on wires is the combined effect of the modules,
applied several times. To combine the effect of modules, we can use ·. We run into
a problem if the modules are defined on a different set of wires. For instance, the
not gate in Figure 3.2 was defined on {in, out}. If we want to combine it with, say
another not gate, we clearly want to be able to make new combinations. For this,
we introduce the function z, which can be used when a wire is never driven.

Definition 3.6 (Not driven, z) Function z is defined as:

z(w) =

{
w if w 6= ⊥
Z if w = ⊥

We say a wire w is never driven by m if for all x̄:

m(x̄)(w) = z(x̄(w))

Note that Figure 3.2 shows that in is never driven. In fact, like many gates,
the not gate has just one non-driven port. We use this as a defining property for
‘gate’: This means that for every gate m, there is at most one wire w that changes
its value.

Definition 3.7 (Gate) An admissible module m on wires W is a gate with output
port w if:

∀ x̄ ∈ 5W , v ∈W. v 6= w → m(x̄)(v) = z(x̄(v))

If it is clear from the context which output port w is intended, or if the intended
output port is of no importance, we will say that m is a gate.

A module that changes two wires could be modeled as two gates, but never as
one. Note that this deviates from the Verilog standard slightly, since in Verilog
some gates1 have multiple outputs.

Using the observation that a not gate has an input and an output port, it can
be defined independently of W , as long as W contains in and out:

not(x̄)(w) =

{
z(x̄(w)) if w 6= out

x̄(out) t not(x̄(in)) if w = out

where not is given by:

not(x) =


⊥ x = ⊥
1 x = 0

0 x = 1

X otherwise

Single input function not corresponds exactly to the Verilog specification, with
only the x = ⊥ case added. The way we express the module not : W →W can be
used as a template for every gate from the specification. Note that the definition
of not given above corresponds to the definition given earlier in Figure 3.2. The

1An example would be the demultiplexer.

34

3.4 Circuit size

observation that not corresponds to the Verilog specification, relates the Verilog
specification to Figure 3.2.

The not gate must be monotonically increasing, so our function not must be,
too. Therefore, ⊥ is the only allowed value for not(⊥). In general, gates will
only return ⊥ on an output if filling in remaining ⊥s at the inputs might change
that output. This corresponds to ‘using all the knowledge we have’. For instance:
and(0,⊥) = 0, rather than and(0,⊥) = ⊥, as 0 teaches us more than ⊥ (⊥ . 0).

We summarize what we have so far.

• We describe a module as a function 5W → 5W .

• To extend the module over a larger W , the extra wires behave as z : 5→ 5.

• The combination of two modules, m1,m2 : 5W → 5W , is described asm1·m2.

• To compute the final value of a module m : 5W → 5W , we use m∗, which is
a finite computation.

The final value of a combination of modules can be expressed as a single finite
computation. That is: a computation that directly yields a fixed-point.

Definition 3.8 (final value) The modules ({m1, . . . ,mn},W) have final value
m : 5W → 5W , where m is given by:

m = (m1 · · · · ·mn)∗

The final value m of a set of modules is always monotonic. If all modules are
monotonically increasing, so is the final value. This follows from the fact that both
· and ∗ preserve these properties.

As in the previous section, we can find the output values, given a set of input
values through o(m(i(x̄))). We will show how to turn this into a Boolean formula
in Section 3.5. In the next section, we will study the size of the computation given
in Definition 3.8. In this analysis, our notion of gate will count as the basic unit
of computation.

3.4 Circuit size

We answer the question: given a circuit with any number of gates, how large does
an acyclic circuit need to be to capture the behavior of the original circuit. As
pointed out in the introduction, this will improve on the results of Riedel and
Bruck [Riedel and Bruck, 2012].

When describing a wire with a Boolean formula, the size of the formula can in-
crease. If we do not use sharing, this increase is exponential in the worst-case, and
quite often also in practice. The usual solution is to use Directed Acyclic Graphs
(DAGs) to represent formulas. This increases the sharing inside expressions. This
applies to the formulas in four-valued logic, as well as the Boolean formulas. A
downside to such DAGs, is that they need to be acyclic.

35

3 Analysis of circuits

3.4.1 Polynomial time algorithm for making a circuit acyclic

Many algorithms have been proposed to change a combinational cyclic circuit into
an acyclic one automatically. A combinational cyclic circuit is a cyclic circuit in
which no ⊥ values remain if all the inputs are set to something other than ⊥.

We found that the algorithms proposed in the literature check that the original
circuit is combinational. This is a co-NP-hard problem: checking for cycles is fast,
but checking that those cycles are combinational makes the problem hard. This
causes such algorithms to have an exponential runtime. This section shows how
the semantics defined in this chapter give us an algorithm in a straightforward
manner. This algorithm does not take the functionality of the individual gates
into account, giving it a polynomial runtime.

m0

m1

m0

m1

m0

m1

m0

m1

l

2n

Figure 3.5: Construction of m∗: make 2n copies of l.

We already defined what we mean by a circuit with n gates, and what it does.
Let l = m1 · · · · ·mn. So, l is the circuit of our n gates combined, for each gate
applied only once. In our definition of the Kleene-star, we already saw that we
can use a finite series to express it. For a large enough value of k:

m = (m1 · · · · ·mn)∗ = l∗ = lk

Since mi is monotonic, so is m1 · · · · ·mn. Therefore, l = l and:

m = lk

The number of gates used for m is kn (n for each l). This way of counting gates still
holds if the · operation is to be counted as a gate. In such a case, one · operation
is needed in the original circuit for every additional assignment to a wire (adding
to n). To construct l, we use the · operations in exactly the same places, again
giving n gates to construct l. By our assumption that gates are monotonic, we do
not need to introduce a t operation anywhere.

36

3.4 Circuit size

Since every mi is a gate, each has an output wire wi. Let Wo = {w1, . . . , wn}
be this set of output wires. For some input of the network x̄, we can give the
increasing series:

x̄0 = x̄

x̄j+1 = l(x̄j) = lj(x̄)

Using only that l is monotonic, we conclude that x̄j is an increasing sequence
with respect to .. If x̄j+1 = x̄j , the same holds for higher values of j. Every wire
in Wo can be increased at most twice, from ⊥ to X via 0, Z or 1. Wires in Wo are
the only ones that can change. The number of distinct elements in {x̄0, . . . , x̄j}
is therefore at most twice the number of wires in Wo. Since the number of wires
in Wo is at most n, we conclude that for k = 2n, lk = m. That is: 2n copies of
l suffice to compute m. In this case, 2n2 gates are used to describe m (without
cycles). This makes the algorithm almost trivial (see Algorithm 1). Figure 3.5
graphically illustrates our construction.

Data: A set of gates m0, . . . ,mi

Result: A circuit m that is represented by those gates
1 Let l := m0 · · · · ·mi;
2 Mutable m := id;
3 for 2n times do
4 Mutable m := l(m).
5 end

Algorithm 1: Algorithm for creating an acyclic circuit.

If we assume that the value X is never attained, we can repeat the original
construction from Riedel and Bruck [Riedel and Bruck, 2012]. If x̄j(w) 6= X for
all j and w, then every wire in Wo is increased at most once. The number of
distinct elements in {x̄0, . . . , x̄j} is at most the number of wires in Wo in such a
case. Hence if X does not occur, n copies of l suffice to compute m. In this case,
n2 gates are used to describe m. Note that in this construction, not all values for
x̄ are allowed as input, and for some circuits there is no value for x̄ such that X
does not occur in {x̄0, . . . , x̄j}. In the work of Riedel and Bruck, these circuits are
called ‘not Boolean’ and excluded from their analysis, as well as circuits in which
occurrences of ⊥ remain.

3.4.2 A worst-case circuit

The previous analysis gives insight in how to create a worst-case circuit: for every
wire, one gate has it as its output wire, and each gate uses every input. We use
the full directed graph on n nodes, in which every node is a gate. Such a graph
is drawn for n = 4 in Figure 3.6. We call the gates in this ‘full-graph’ circuit
m1, . . . ,mn, and refer to these as nodes.

We do not consider what function the nodes are for now: given an acyclic
circuit, and depending on that circuit, we make the nodes perform functions such
that, if the output value of the acyclic circuit and our ‘full-graph’ circuit coincide,
the number of nodes in the acyclic circuit is at least 1

2n(n+ 1).

37

3 Analysis of circuits

Figure 3.6: A worst-case circuit on n = 4 nodes.

Assume some acyclic circuit uses k gates, called a1, . . . , ak. Since the circuit
is acyclic, we assume that gate ai can use values from aj if j < i, but not vice
versa. We ‘drive’ both circuits with ⊥ for every wire. Circuits (m1 · · · · ·mn)∗

and a1(a2(· · · (aj(⊥, . . . ,⊥)) · · ·)) should give the same outputs on all wires.

Each of these should correspond to one of the original nodes m1, . . . ,mn. For
each node mi, there must be a gate aj that corresponds to it: if not, let mi(x̄) = 1,
and let the other nodes yield 0. If there are wires in the acyclic circuit that
correspond to this configuration, they will not correspond to the configuration
with all nodes yielding 0, so the acyclic circuit does not perform the same function
as the original.

Pick the node mi for which its first occurrence in a1, . . . , ak is the last among
all nodes. Without loss of generality, we assume that this is node mn (we can
rename the nodes if needed). The corresponding gate in a1, . . . , ak is af (f for
first), with j ≥ n.

Let node mn(x̄) = 1, and all the other nodes have ⊥ as output while mn is
not defined. As a consequence, the input for the network ai with i > f is the
same as that with the gates a1, . . . , ai−1 removed. Similarly, if we remove node
mn and drive its output wire with 1, we are left with a new ‘full-graph’ on n− 1
nodes. This gives two new networks: a new original with n − 1 gates, and a new
acyclic one with at most k − n gates. In it, we can choose another ‘initial’ node
by letting its value depend on the wire from gate mn. Repeating the process gives
n+ (n− 1) + · · ·+ 1 = 1

2n(n+ 1) ≥ k.

There is another – perhaps more intuitive – way to view this construction: for
every path through the full graph, there must be a path through the same nodes
in the DAG. We construct the gates such that only that path through the original
full graph yields 1, and any deviation from it will yield 0 or ⊥.

A reader may not like that we change the implementation of a gate after the
acyclic network is defined. This can be circumvented by adding extra input wires,
which can then be used to choose the implementation of our gate.

38

3.5 From gates to Boolean formulas

3.5 From gates to Boolean formulas

Circuits are translated to Boolean formulas in two steps. First, all modules are
expressed symbolically as formulas in four-valued logic. These four-valued formulas
are then encoded in Boolean formulas, such that Boolean tools like SAT solvers
can be applied to modules.

To go from 5 to four-valued logic, we identify ⊥ with X. As a consequence,
gates that used to be monotonic and monotonically increasing no longer are, and
we loose the argument on why we will reach a fixed-point. The rationale behind
this is as follows: we may first compute a fixed-point, and then identify ⊥ with
X, such that X takes its traditional role of being the ‘undefined’ value. If all gates
agree2 on ⊥ and X, then first identifying ⊥ with X, and then computing the fixed-
point, will produce the same result. In such a procedure, X will be the initial value
(taking the place of ⊥) for ‘undefined’ wires. While setting ⊥ to X or setting X to
⊥ is merely a syntactical difference, we choose the former as X is a Verilog value,
while ⊥ is not. We did not need the t operation in computing the fixed-point, we
only need to define · on 4 = {0, 1,X,Z}. We can reuse its original definition.

To illustrate our approach and the modeling of inout wires, we consider an
n-type Metal-Oxide-Semiconductor field effect transistor (nMOS) transistor (see
Figure 3.7(a)). This transistor has three wires: source (ns), drain (nd) and gate
(ng). If the input to the gate is high, the drain is connected to the source. If
the input to the gate is low, the drain acts like an open wire. We also consider a
p-type Metal-Oxide-Semiconductor field effect transistor (pMOS) transistor that
connects the drain to the source when the input gate is low. Figure 3.7(b) shows a
CMOS inverted composed of an nMOS and a pMOS transistors. We will describe
the circuit using two helper functions, nMOS : 4× 4→ 4 and pMOS : 4× 4→ 4.
Function nMOS(g, x) equals x whenever g = 1, and it equals Z when g = 0, as
in Figure 3.7(c). Function pMOS(g, x) equals x whenever g = 0, and it equals Z
when g = 1.

With respect to the Verilog specification, the specified values L and H have
been replaced by X. This safely changes nMOS into one in which all values are
defined. In fact, the Verilog standard considers the nmos gate to be uni-directional.
We could model this as well, but instead focus on modeling the actual transistors,
which are symmetrical in silicon. The corresponding Verilog gate modeled here is
called ‘tranif1’ for nMOS, and ‘tranif0’ for pMOS.

Modules to four-valued logic Each module is described using gates. A gate
is a function over a set of four-valued arguments that yields a four-valued answer.
Our syntax for formulas F uses function symbols indicating unary or binary gates
(f1 : 4 → 4, f2 : 4 × 4 → 4). Typically, function symbols will include the usual
gates, e.g. not, nand. The syntax can of course be extended with any other
gates. The mapping assigning formulas to the wires they represent is noted M.

F := w | Z | 0 | 1 | X | F · F | f1(F) | f2(F,F)

M := w 7→ F;

2We did not come across any gates in the Verilog standard that do not agree on ⊥ and X.

39

3 Analysis of circuits

dn

sn
gn

(a) nMOS tran-
sistor

sp

dpgp

dn

sn
gn

1

0

outwinw

(b) CMOS inverter

x Z 0 1 X
g
Z Z X X X
0 Z Z Z Z
1 Z 0 1 X
X Z X X X

(c) Function nMOS(g, x)

Figure 3.7: Example module and circuit.

In this syntax, the nMOS transistor of our example is described as follows:

ng 7→ Z; ns 7→ nMOS(ng, nd); nd 7→ nMOS(ng, ns);

The symbolic · is interpreted as the · in Definition 3.5. This allows us to
evaluate every formula F for some assignment, and understand a set of lines in the
syntax of M as a module m. We write eval(F, x̄) for such an evaluation of F.

Definition 3.9 (Symbolically defined module) A symbolically defined module M
is a set whose elements have the form M. Function m′(M, x̄) : W → 4 is recursively
defined as:

m′(M, x̄)(w) =

{
eval(F, x̄) ·m′(M\w 7→F, x̄)(w) if w 7→F ∈M
eval(w, x̄) otherwise

The semantics of M is the module m : 4W → 4W given by m(x̄) = (m′(M, x̄))∗.

To give a symbolic representation for the inverter, we simply combine existing
modules. We apply two minor optimizations to the symbolic representation, jus-
tified by Definition 3.8. (1) In the description of the nMOS, we may omit the line
ng 7→ Z. (2) The single statement wout 7→ nd · pd has the same semantics as two
separate statements for wout 7→ nd and wout 7→ pd written separately, so we may
write the former. The CMOS inverter can thus be modeled as follows:

ns 7→ nMOS(ng, nd) · 0; nd 7→ nMOS(ng, ns) · wout;

ps 7→ pMOS(pg, pd) · 1; pd 7→ pMOS(pg, ps) · wout;

pg 7→ win; ng 7→ win; wout 7→ nd · pd; win 7→ pg · ng;

As a simplification procedure, we eliminate unexposed wires. We are interested
in the solution to the system constrained under a set of ‘inputs’. In our example,
we are interested in the module when win is fixed. Furthermore, we are only

40

3.5 From gates to Boolean formulas

interested in the value of wout. This means we seek a solution in which all other
wires (ns, nd, . . . , pg) have their minimal value.

To eliminate a rule w 7→ F (if wire w has no rule, use w 7→ Z), we find a fixed-
point (in w) for F. To replace all occurrences of w in F by x, we write F[w : x].
The fixed-point in x, namely F∗[w : x], is equivalent to F′ = F[w : F[w : x]]. To see
this: F[w : x] evaluates to Z, 0, 1 or X. The latter implies that F[w : X] = X, so it
is always a fixed-point (and F′ = X). If F[w : x] = Z, then x = Z by admissibility
of F and Z is a fixed-point. If F[w : x] = 0 then F′ 6= Z (again by admissibility)
so either F′ = 0, in which case 0 is a fixed-point, or F′ = X, which is always a
fixed-point. Should we compute a fixed-point from X, then F∗[w : X] = F[w : X],
which is significantly easier to compute.

We apply this procedure to our CMOS inverter example by calculating a fixed-
point in Z for the non-input wires, and win for the input wire. We first eliminate
ns. This yields nd 7→ nMOS(ng, nMOS(ng, nd)·0)·wout;. The fixed-point for nd can
be simplified using: nMOS(ng,Z) · 0 = Z · 0 = 0 and nMOS(ng, nMOS(ng, x) · y) =
nMOS(ng, x ·y). This yields nMOS(ng, 0 ·wout ·0) ·wout = nMOS(ng, 0 ·wout) ·wout.
Doing the same for np allows us to complete the procedure. We can omit win 7→
win · win and are left with:

wout 7→ nMOS(win, 0 · wout) · wout · pMOS(win, 1 · wout) · wout;

Finding the least fixed-point of wout simplifies things a little:

wout 7→ nMOS(win, 0) · pMOS(win, 1); (4)

In this case, this is the unique minimal solution for our circuit (given a value for
win). In general, each wire will either have a minimal value, or be equal to X.

Note that every time we simplify our design by eliminating a single wire, we
potentially double its size. The replacement F′ = F[w : F[w : Z]] requires two
copies of F: one where w is replaced by Z, and one where it is replaced by F[w : Z].
After n replacements, we could increase the size of a network by a factor of 2n.
By using the construction illustrated in Section 3.4.1, we can prevent this blowup.

Four-valued logic to SAT Formulas in four-valued logic can be changed into
Boolean formulas. To allow for shared expressions in some gates, it is beneficial
to use a fresh variable for each wire to indicate which bit we are interested in.
Therefore, each wire is encoded as two bits.

For each wire w, we write w′ for the fresh variable introduced for w. The value
of wire w can then be encoded as a Boolean function f(w′). To get back the value
in the four-valued logic, we use the following Boolean lookup table:

w :


Z if f(0) = 0 and f(1) = 1 (f is the identity on w′)

0 if f(0) = 0 and f(1) = 0 (f = 0, independently of w′)

1 if f(0) = 1 and f(1) = 1 (f = 1, independently of w′)

X if f(0) = 1 and f(1) = 0 (otherwise)

This means that for every wire W , we introduce a second wire.

41

3 Analysis of circuits

Other choices are possible. The advantage of this choice is that we can encode
0 as 0, and 1 as 1, without introducing helper variable w′. The Boolean encoding
of each gate is found through its truth-table. We give the Boolean encoding (which
uses an if-then-else for the case distinction) of · as an example:

(f1 · f2)(w′) =

{
f1(w′) ∨ f2(w′) if w′ = 0

f1(w′) ∧ f2(w′) if w′ = 1
(5)

To see what happened with this second choice, let’s assume that for some
network, all inputs are either 0 or 1. Using two bits per value in four-valued logic,
our module is given by a signature of type wI → wO+O. With O+O we duplicated
every formula for an output wire. Every output wire o is defined by two values:
o1, o2 ∈ O +O. By using an extra helper variable w′, we can distinguish between
the two: if w′ is low, return o1, if w′ is high, return o2. This gives a signature of
type wI′ → wO, where I ′ = I ∪ {w′}. If an output value does not depend on w′,
it represents a 0 or a 1 value. Otherwise, it represents a Z or X value.

If it is clear that a wire will only hold a 0 or 1 value, it can be encoded with
just a single SAT variable instead of two. This consideration was already made by
Drechsler et al. [Drechsler et al., 2008] and applies to our setting as well. In our
example, we used gates that are hardly ever used directly, immediately introducing
cycles and Z values. In most hardware designs, the majority of the number of gates
used returns a 0 or 1 whenever the all inputs are in {0, 1}. This corresponds to
a value being independent from w′, which means we do not need to consider w′

as an input value. In all examples we considered, simplifying expressions in four
valued logic was sufficient to eliminate all · operations and most Z and X values.
Among these designs were cross-bars that used tristate buffers. This was to be
expected, since designers wish to avoid making errors that are due to incorrect
handling of Z values or due to cycles. Tools usually warn whenever a · cannot be
eliminated (through warnings about ‘writing to an input’ or ‘double assignment’).

3.6 Discussion

Dealing with X and Z values remains an active issue. Several workarounds have
been proposed in the past and recently. When using value X in a specification,
the intention is a don’t care. Synthesizers and test generators [Drechsler et al.,
2008] can ignore value X in case of output wires with value X. In implementations,
this value should not arise, thus X means here ‘invalid’. Some tools yield an X
when unable to predict a value, giving it the meaning ‘unknown’. In related work,
designers are simply warned against the many pitfalls of X [Mills, 2012; Sutherland
and Mills, 2007; Turpin, 2003]. Nevertheless, a formal semantics of four valued
logic exist, for example the 4v books in ACL2 [Kaufmann et al., 2015]. This
semantic does not consider circuits with cycles. It also uses a different condition
for monotonically increasing: in the partial order 4v-<=, X is the unique smallest
element, and all other elements are incomparable. As a result, all their gates are
monotonically increasing: a gate that is admissible and monotonically increasing
with respect to our partial order . is monotonically increasing in the sense defined
with respect to 4v-<=.

42

3.7 Conclusions

The intermediate value ⊥ is also used by Riedel and Bruck [Riedel and Bruck,
2012]. They use the same ordering, and assume monotonic gates, although they
do not make this requirement explicit. The element ⊥ is used in the way we do
here. They do not use the values X and Z. We have shown how to extend their
approach to four-valued logic.

Encoding four-valued logic inside two-valued logic has been suggested by Hunt
and Swords [Hunt and Swords, 2009]. In this work, two Booleans are encoded
per wire instead of just one. One of these is called ‘offset’, the other ‘onset’. We
propose using a single free variable for this purpose, such that only one symbolic
Boolean value per wire is used. Our lookup table also differs from theirs. These
differences are not fundamental, it just shows that the distinction between four
values can be encoded in several ways.

Backes and Riedel [Backes et al., 2008; Riedel and Bruck, 2012; Backes and
Riedel, 2012] and Bruck [Riedel and Bruck, 2007] consider cycles in stateless cir-
cuits. When formal methods are applied to such circuits, they use equivalent
acyclic circuits, which can be created by breaking the cycles [Gupta and Selvidge,
2012; Riedel and Bruck, 2012]. In the work of Stephen Edwards [Edwards, 2003],
an algorithm is proposed for this. In the paper, Edwards acknowledges that his
algorithm has an exponential runtime, but that the growth is slow in practice.
Nevertheless, a later paper by Neiroukh, Edwards et al. [Neiroukh et al., 2008]
gives another exponentially complex algorithm for removing cycles that is sup-
posed to fix the exponential blowup experienced in the previous paper. In the
paper by Backes et al. [Backes and Riedel, 2012], a proof is made that for every
combinational cyclic circuit with m gates, there is an acyclic circuit with m2 gates.

Even though we propose different semantics, our goal is not to be more general
than all existing related work. Indeed: works that consider the full temporal
behaviour of a circuit, as in asynchronous analysis [Eggersglüß et al., 2010], are
more general than our work, and significantly more complex.

3.7 Conclusions

Typical hardware includes cycles, open wires, inout wires, and multiple assign-
ments. These features make the use of formal verification techniques difficult. We
proposed a novel definition of such circuits. This definition handles circuits with
cycles and four valued logic.

As we can describe more circuits, we were able to find cyclic circuits with n
gates, for which the acyclic counterpart contains at least 1

2n(n + 1) gates. This
improves on previous results by Riedel and Bruck, who showed size differences of
only a constant factor.

Finally, we discuss how a translation can be made from such circuits to those
that are readable by conventional tools. This is done through a reduction of such
circuits to Boolean formulas. This enables the application of Boolean verification
techniques – like SAT – to more hardware designs.

Since we can move from gate level Verilog to Boolean functions, the rest of
this thesis will focus on circuits in which the interpretation of the combinational
part of a circuit m : 5W → 5W is known. We can also assume that it satisfies
m(m(x̄)) = m(x̄), that is: it reaches a fixed point in one iteration. In case the

43

3 Analysis of circuits

sets of in- and output wires I,O ⊆ W are known, we can fill in ⊥ for unassigned
wires, and the values 0 and 1 for the others, giving us a function of type 2I → 5O.
Identifying ⊥ with X and using an additional variable to represent all four values
as Booleans, and adding an additional element to I: I ′ = I + 1, we get a function
of type 2I′ → 2O.

44

Chapter 4

Invariants

This chapter presents a method to extract inductive invariants from the RTL
design automatically. High-level invariants are key to rule-out false deadlocks or
other spurious counter-examples in progress verification. Ray and Brayton [Ray
and Brayton, 2012] write:

The fact that buffer relations are making proofs inductive for many
designs is the key factor that makes our approach scalable.

Ray and Brayton use the word ‘buffer’ to refer to a ‘queue’, and by ‘buffer rela-
tions’, they refer to invariants.

These seemingly intuitive relations are quite non-trivial to mine from
a bit-level implementation of a fabric, unless they are explicitly hinted
by the architects.

Invariants are either added manually or automatically extracted from xMAS rep-
resentations of the fabrics.

This illustrates the aim of this chapter: make model checking approaches scal-
able, by mining invariants from a bit-level implementation of the fabric. A ver-
ification engineer would use this approach to add assumptions about his model.
Although the invariants generated in this chapter all hold by construction, they
turn out to be fast to check as well.

Provided well-defined interfaces of queues and registers, as described in Chap-
ter 2, the method is automatic and scales to large fabrics. We decompose designs
into a set of queues and a set of registers (flip-flops), all interconnected by com-
binational logic. The queue interface precisely defines when a packet enters and
when a packet leaves a queue. From this definition, invariants express the num-
ber of packets stored in a queue as the difference between the number of packets,
which have entered a queue and the number of packets, which have left it. The
main components of our approach are a symbolic function computing the number
of times a wire has been high until the current time and the translation of the
usual Boolean connectives to expressions over this function.

45

4 Invariants

4.1 Method

To obtain invariants, we focus on the interfaces of queues. For this chapter, the
focus on queues also allows us to compare our results with invariants that have
been added manually. We require designers to indicate which Verilog modules are
queues. For each queue, we generate an equality about the number of packets
in that queue. Each equality states that a variable representing the number of
packets in a queue, must be equal to a sum of linearly independent variables. This
sum is obtained by rewriting Boolean expressions about the transfer of packets
into linear expressions.

The final step, which produces the invariants, is Gaussian elimination on the
system of equalities. This step is the same in many methods for deriving invariants,
such as those for Petri-Nets and for xMAS networks [Chatterjee and Kishinevsky,
2012]. Our focus is on finding the system of equalities. We assume the reader is
familiar with Gaussian elimination and systems of linear equalities.

Definition 4.1 (Linear) We say that an equation is linear if it is of the form:

c1v1 + c2v2 + · · · = c0

where the ci are constants, and vi are variables. Except for c0, the constants ci
are nonzero.

We start with an example to illustrate the invariants we generate. We show in
Section 4.1.1 that it suffices to know equalities about a cumulative function called
s. In Section 4.1.4, we zoom in on the properties of s essential to obtaining these
equalities. We finish with an overview of the algorithm in Section 4.1.5.

4.1.1 A simple example

B1 B2

B3

Figure 4.1: A very simple network with three queues, in which one invariant holds.

Figure 4.1 shows a micro-architectural model of a simple network. It is a net-
work with one input and one output. At the input, a fork element duplicates
packets, which are offered to queues B1 and B3. Queue B1 is connected to B2,
and the packets in queues B2 and B3 are combined at the output by a join ele-
ment. From the RTL implementation of this network, we automatically derive the
following invariant:

num(B1) + num(B2) = num(B3)

46

4.1 Method

Such an invariant seems obvious from the micro-architectural model. It can indeed
be automatically inferred from such a model. The challenge is that this nice
architectural structure is not directly available from the RTL design.

The basic idea of our method is to define variables enter(x) and exit(x). Vari-
able enter(x) represents the number of packets that have entered queue x. Variable
exit(x) represents the number of packets that have left queue x. We assume that
at time 0, there is a reset and all queues are empty. Therefore, the number of pack-
ets currently in queue x up to some global time N is expressed as the difference
between enter(x) and exit(x).

Regarding the example in Figure 4.1, we can express the following equalities:

num(B1) = enter(B1)− exit(B1)

num(B2) = enter(B2)− exit(B2)

num(B3) = enter(B3)− exit(B3)

The three equalities above are simplified by performing a translation of enter(x)
and exit(x). After this translation, we perform a Gaussian elimination to eliminate
all variables except for num(x). A key aspect of the translation is to identify the
following equalities, where v1, v2 and v3 are arbitrary variables:

enter(B1) = v1

enter(B2) = v2

enter(B3) = v1

exit(B1) = v2

exit(B2) = v3

exit(B3) = v3

These equalities play a central role in the derivation of the invariants: using
Gaussian elimination, we can derive the aforementioned invariant. We will see
how we got to the variables v1 to v3 in the next sections.

4.1.2 Well-defined interfaces

In order to show soundness of our approach, we give an interpretation of enter(x)
and exit(x). In our interpretation, the integer N is used, which stands a the time
period in terms of clock ticks. Our interpretation of enter(x) and exit(x) will be
determined by the number of events when a packet is entering or leaving queue
x during that period. For every queue an expression can be defined to indicate
when a packet is entering, and another one to indicate when one is leaving a queue.
Providing these expressions is the only manual requirement for the RTL designer.
The rest of our method is fully automatic.

Our method is fully transparent to the number of places in a queue. We only
look at data bits that are used for routing, so if a fixed number of bits is used for
routing, our method is also transparent in the width of the queues.

The expressions that determine when a packet is entering, and when one is
leaving, have been described in Section 2.2.1. The property tr describes when a

47

4 Invariants

packet is entering, while ts describes when one leaves. To relate variables enter(x)
and exit(x) with properties, we use an event counter – noted function s – as
follows:

enter(x) = s(tr, N)

exit(x) = s(ts, N)

In Section 4.2 we give an example of what s might be.
The variable N can be seen as a free integer constant. The properties tr and

ts are described symbolically as Boolean expressions. Our method requires the
definition of these events for all queues of the design. Note that these definitions
need not be the same for all queues.

4.1.3 Interpretation of function s

The bit-level structure of the network is known in terms of values such as input
wires and queue interface wires, and gates such as and, or, xor and not. The
value of a wire w at time t is given by function v(w, t), which returns 0 for false
(low) and 1 for true (high). Time is indicated by natural numbers (starting at
time 0). To obtain the number of 1 values of some wire w up to some time t, we
can accumulate v to obtain function s:

s(w, t) =

t−1∑
i=0

v(w, i)

Keeping this interpretation of s in mind, allows the reader to verify the soundness
of the translation of s.

4.1.4 Translation of function s

In this section, we translate s(x,N) into a set of variables. We show in Theorem 4.1
(see next sub-section) that the variables used at the end of the translation are lin-
early independent. Taking a variable for every occurence s(x,N) does not suffice to
obtain the correct inequalities, since it would not identify s(x,N) = s(¬¬x,N) by
itself. That is: s(x,N) and s(¬¬x,N) are still linearly dependent. The proposed
translation does identify equivalent terms.

In this Section, we focus on properties of v. Given these properties, we define
a rewrite system on s, allowing us to omit v.

The reader may verify that:

v(0, t) = 0

v(¬x, t) = v(1, t)− v(x, t)

v(x ∨ y, t) = v(x, t) + v(y, t)− v(x∧y, t)
v(x XOR y, t) = v(x, t) + v(y, t)− 2 · v(x∧y, t)

We are dealing with integers, so a−b is a shorthand for a+−1·b. Note that we wrote
v(1, t) instead of 1 in the equation for ¬x. As a consequence, all the equations are
linear without constants. To translate and gates (or ∧), we introduce operation

48

4.1 Method

⊗. On v, this operation is just multiplication. The operation ⊗ is commutative
and associative, and the following equations hold:

v(x ∧ y, t) = v(x, t)⊗ v(y, t)

(a+ b)⊗ c = a⊗ c+ b⊗ c
0⊗ b = 0

b⊗ b = b

Note that these equalities applied from left to right, together with associativity
and commutativity, translate any Boolean expression into a sum in which every
term is a constant times a list v(a0, t) ⊗ · · · ⊗ v(an, t). Up to associativity and
commutativity of both + and ⊗, this translation yields a canonical form.

Lists separated by ⊗ can be thought of as sets of constants (without duplicates,
since v(x, t)⊗ v(x, t) = v(x, t)). Suppose x is some expression translated this way:

v(x, t) = αv(a0 ∧ a1 ∧ . . . , t) + βv(b0 ∧ b1 ∧ . . . , t) + · · ·

By summing over all values of t from 0 to N , we obtain:

s(x,N) = αs(a0 ∧ a1 ∧ . . . , N) + βs(b0 ∧ b1 ∧ . . . , N) + · · ·

Hence, for every remaining term s(c,N), c is a conjunct of independent wires. We
refer to these final terms as primitives. These primitives are the variables in our
final Gaussian elimination.

Instead of writing s(. . . , N), we write the corresponding set of independent
variables:

s(x,N) = α{a0, a1, . . .}+ β{b0, b1, . . .}+ · · ·
Note that the above is a linear equality, with sets in the places where you would
normally expect the variables. The empty set will correspond to value N .

We can apply this translation directly on s. Where previously ⊗ could be
thought of as a product, it does not correspond to an operation that can be
expressed in terms of s. Therefore the operation ⊗ must be read as a purely
syntactic intermediary. The translation is still sound due to its counterpart on v.

Our rewrite system is as follows:

s(0, N) = 0

s(1, N) = {}
s(¬x,N) = {} − s(x,N)

s(x ∨ y,N) = s(x,N) + s(y,N)− s(x,N)⊗ s(y,N)

s(x XOR y,N) = s(x,N) + s(y,N)− 2 · s(x,N)⊗ s(y,N)

s(x∧y,N) = s(x,N)⊗ s(y,N)

(a+ b)⊗ c = a⊗ c+ b⊗ c
c⊗ (a+ b) = a⊗ c+ b⊗ c

(1)

When we are done rewriting in this way, we replace ⊗ by interpreting s(x,N) as
1 · {x} and applying:

c1 · S ⊗ c2 · T = c1 · c2 · (S ∪ T)

49

4 Invariants

To summarize our approach, we look at a small example, the translation of the
term ¬(¬x∧¬y):

s(¬(¬x∧¬y), N) = 1 · {} − s(¬x∧¬y,N)

= {} − ({} − {x})⊗({} − {y})

Since {} ∪ {} = {}, {} ∪ {x} = {x} and so forth:

= {} − {}+ {y}+ {x} − {x, y}
= {y}+ {x} − {x, y}

From the above, one can verify that the translation correctly identifies s(x∨ y,N)
with its De Morgan dual.

The translation given by our rewrite system (1) is exponential in terms of the
depth of the logical formula, which is bounded in most practical applications.

4.1.5 An algorithm for finding inductive invariants

Rewrite system (1) allows us to express enter(x) and exit(x). We can define
num(x) directly:

num(x) = enter(x)− exit(x)

This yields one equation per queue. Note that num(x) denotes the number of
packets in a queue at time N , while enter(x) and exit(x) denote the number of
enter and exit events up to (not including) time N . All linear inductive invariants
are found through Algorithm 2, where the function ‘rewrite’ is given by rewrite
system (1).

Data: Set of queues Q, functions tr, ts that produce expressions for enter
and exit events for each queue.

Result: Set of linear equations E
1 for each queue x in Q do
2 let enter(x) = rewrite(tr(x)) ;
3 let exit(x) = rewrite(ts(x)) ;
4 Add the equation ‘num(x) = enter(x)− exit(x)’ to E.

5 end
Algorithm 2: Reducing ports

The translation may yield many variables and only as many equations as there
are queues. It generates a system of equations that implies every linear inductive
invariant that can be expressed in terms of num(x). Key is that we only find
single inductive invariants.

Definition 4.2 (Inductive invariant) We say that a property p is an inductive
invariant if p holds in the initial state, and if p(s) implies p(s′) if s′ is a successor
state of s.

Note that by our definition, an inductive invariant should not only hold for
reachable states, but for all states s. Recall that we defined properties and suc-
cessor states in Section 2.2.1.

50

4.1 Method

This is the statement of the theorem below.

Theorem 4.1 Given a system of equations that, for each queue x, contains the
equation num(x) = enter(x) − exit(x) in which enter(x) and exit(x) have been
translated. All inductive linear equalities that are expressed solely in terms of
num(x) are derivable from that system of equations.

Proof. We prove the Theorem by contradiction. Assume there is a linear equality
in terms of num(x), which is not implied from the system of equations. Say this
equality is a0num(x0) + a1num(x1) + · · · = v.

We argue that the constant v must be zero: Take a sequence of assignments
of wires up to time N , and repeat it. Given the original invariant up to time N ,
we get a second, namely: 2a0num(x0) + 2a1num(x1) + · · · = v. Multiplying the
original invariant by 2 gives v = 2v, hence v = 0.

Replacing the occurrences of num(x) with the definitions of enter(x) and
exit(x) yields the equation of primitives: b0 ·c0+b1 ·c1+· · · = 0 (with bi 6= 0). Here
ci are conjuncts, and possibly N for the empty set. This equation is not implied
from the original system of equations, so we know that the left hand side of this
equation is not empty. (If this translated to 0 = 0, the original equality would be
implied.) Now we derive a contradiction to bi 6= 0, assuming independent wires.

Let ci be a smallest conjunct, that is, for no j every cj ⊂ ci. Note that the wires
in ci are all fundamental wires, as defined in Definition 2.3. Now let N = 0, and
assign a value of 1 to all wires in ci at t = 0, while assigning 0 to all other wires.
This implies that ci = 1 and cj = 0 for j 6= i. Filling in these assignments of c into
our equation of primitives gives us: bi1 = 0, so bi = 0, which is a contradiction.

The main limitation of this theorem lies in the definition of state, which allows
every assignment of fundamental wires to occur. Hardware typically has a state,
and even for the queues, the number of packets that can leave typically depends on
the history. To give an artificial example, consider two queues that never receive
any input, say B1 and B2. From B1, we accept all available packets, while from B2,
we do not. Our analysis derives num(B2) = 0, but it will not derive num(B1) = 0
or num(B1) = num(B2) because it does not recognize that no packets could ever
leave B1. In practice, however, such situations are rare to communication fabrics.

Using the previous observations, our algorithm can be summarized as follows:

1. For every queue, the hardware designer gives an expression indicating when
a packet enters, and when one leaves.

2. Generate the system of equations with an equation for every queue x:

num(x) = enter(x)− exit(x)

Translate enter(x) and exit(x) into primitives according to Equations (1)

3. Perform Gaussian elimination to obtain all equalities between num(x).

51

4 Invariants

B2

B1

Figure 4.2: A network with message dependency in B2

4.1.6 Data dependent queues

We are also interested in the number of packets of a certain type. To see when
this might be useful, consider Figure 4.2. In this figure, queue B2 is preceded by
an arbiter, and has a switch at its output. We call the packets that are switched
upwards to be of ‘type A’. The other packets are of ‘type B’. Depending on the
particular configuration of this network, B2 might contain as many packets of type
A as the number of packets in queue B1. Such an invariant could be necessary to
prove progress of this network.

We handle these invariants by adding a different kind of queue:

numA(x) = enterA(x)− exitA(x)

enterA(x) = s(x.in.irdy∧x.in.trdy∧A,N)

exitA(x) = s(x.out.irdy∧x.out.trdy∧A,N)

Note that the above is only one equation: enterA(x) and exitA(x) are only there
for readability. It is not necessary to add this equation of every possible type A and
every queue x. After translating all terms, we inspect every conjunct occurring
in this translation. In the case that data wires of the output of Bi occur in a
conjunct, we add the equation above, with A defined as the conjunction of all the
data wires of the output of Bi. Adding this equation causes a translation of s
again, which may introduce new conjuncts. For this reason, we iterate the process
until we reach a fixed point.

52

4.2 Step by step analysis

4.2 Step by step analysis

In this section, we go through the network shown in Figure 4.1. The first step is
to identify the enter and exit conditions:

enter(B1) = s(B1.in.trdy∧inR∧B3.in.trdy, N)

enter(B2) = s(B2.in.trdy∧B1.out.irdy, N)

enter(B3) = s(B3.in.trdy∧inR∧B1.in.trdy, N)

exit(B1) = s(B1.out.irdy∧B2.in.trdy, N)

exit(B2) = s(B2.out.irdy∧outR∧B3.out.irdy, N)

exit(B3) = s(B3.out.irdy∧outR∧B2.out.irdy, N)

Note that there are no occurrences of .out.trdy or .in.irdy: these wires are
input wires for B1 to B3. Therefore, they can be written in terms of other wires
in the circuit. Two of these wires are inR and outR. These stand for whether a
packet is ready to be injected by some environment, or whether the environment
is ready to receive one.

The next step is to translate each of these conditions. For this circuit, these
are fairly trivial, as all conditions consist of conjunctions only:

s(B1.in.trdy∧inR∧B3.in.trdy, N)

={B1.in.trdy, inR,B3.in.trdy}

We substitute num(B1) with enter(B1) − exit(B1) (and do the same for B2
and B3):

num(B1) = enter(B1)− exit(B1)

= {B1.in.trdy,B3.in.trdy, inR} − {B1.out.irdy,B2.in.trdy}
num(B2) = enter(B2)− exit(B2)

= {B1.out.irdy,B2.in.trdy} − {B3.out.irdy,B2.out.irdy, outR}
num(B3) = enter(B3)− exit(B3)

= {B1.in.trdy,B3.in.trdy, inR} − {B3.out.irdy,B2.out.irdy, outR}

With Gauss elimination, we can find one equation that does not contain any
of the ‘set’ terms, namely:

1 · num(B1) + 1 · num(B2)− 1 · num(B3) = 0

By pretty printing negative terms to the right hand side of the equality, while
printing positive terms on the left, we get the equality in exactly the desired form:

num(B1) + num(B2) = num(B3)

4.3 Conclusions

We presented a fully automatic method to derive inductive invariants from RTL
designs of communication fabrics. Our method requires a precise definition of the

53

4 Invariants

events of entering or leaving a queue. From this definition, the remaining analysis
is fully automatic. Recent advancements in the verification of communication
fabrics all required high-level models. Our approach leverages these advancements
to regular RTL designs. This opens up the possibility of studying the scalability
of the combination of our invariant generation technique with hardware model-
checking techniques for arbitrary RTL designs.

We will see in Chapter 7 that all invariants can be extracted from certain
designs with 800 queues in around a second.

54

Chapter 5
Liveness verification

As discussed in Chapter 1, liveness is a class of properties that indicate that an
event will eventually trigger a response. In the context of communication fabrics,
liveness is both important, and difficult to verify. For this reason, we propose a
separate method for it.

We propose a novel approach for liveness verification of RTL designs of commu-
nication fabrics. Our approach does not require a high-level model and scales up to
designs with hundreds of queues. Similar to all related works, our method is sound
but incomplete. As in the previous chapter, we use an abstraction from the details
of queue implementations. Queues are replaced with uninterpreted functions and
a set of queue properties. These properties capture essential characteristics of a
queue.

The new idea used here is to express liveness as the average values of wires
along infinite runs. Such infinite runs are represented by finite runs with a lasso
(See Theorem 9, [Biere et al., 1999]). The invariants introduced in the previous
chapter are also necessary in our approach. We then describe a network and
liveness properties as a Satisfiability Modulo Theories (SMT) problem.

Our SMT encoding distinguishes three behaviours of a wire: the initial value
until the start of the lasso, its value at the start of the lasso, and its average value
over the lasso. Using these average values, liveness of a wire means that its average
value is not 0. If a wire is not 0 on average, it is 1 infinitely often. To relate all
values, we add several properties to the SMT instance. In doing so, we abstract
away from irrelevant timing details. The soundness of our approach follows from
the correctness of these individual properties.

5.1 Liveness

Given the xMAS protocol introduced in Chapter 2, we define liveness of channel
x this way: when x.irdy is high, x.trdy will eventually be high too. Expressed as
an LTL property, a channel x is live if:

�x.irdy⇒ ♦x.irdy ∧ x.trdy

If x is the output of a queue as described in Section 2.2.1, we can use that rt
corresponds to x.irdy ∧ x.trdy, and rs to x.irdy. This leads us to the following

55

5 Liveness verification

equivalent formula:
�rs ⇒ ♦rt

Given a trace σ0, σ1, . . ., we interpret this LTL formula as follows:

∀i. rs(σi)⇒ ∃i′ ≥ i. ts(σi′) (1)

Liveness at the input of a queue does not need to be checked, if liveness at
its output can be established. Let in, out be the input and output channel of a
queue. Then in.trdy will be high if the queue is not full. This happens if out is
live. Therefore, if out is live, then in is also live.

Liveness of out depends on out.trdy, which is determined by other elements. It
is even possible for these elements to be outside of the communication fabric. We
expect those elements to be modeled as part of the communication fabric design.

5.2 A manual proof

We prove liveness of a small example. While doing so, we give general equations
that hold in every network. Given these equations, we are able to generalize our
technique in Section 5.3.

In this section, we will prove deadlock freedom of a design manually. This
design is chosen to be simple, yet require most of the techniques we automated.

5.2.1 A simple example

bit 0 bit 1

Queue
r s

Figure 5.1: A queue and two flops.

Consider the example in Figure 5.1. It shows a small network consisting of
a source injecting packets, two single-bit flops, a queue, and a sink consuming
packets. Whenever a packet enters the queue, the first bit is raised. If the first
bit is high, and the second is low, the bits swap values at the next clock cycle.
A packet leaves the queue if it exists, the sink is available, and the second bit is
high. As a packet leaves the system, the second bit is set to zero. Should the first
bit be high, the system is considered full and no packets can enter the queue.

The queue has the interface as given in Section 2.2.1. A high tr puts the packet
available on dr in the queue if and only if the queue is not full.

The components are combined as described earlier. For clarity, we give tr, ts,
rr and rs for the queue in the system in Figure 5.1, and repeat the next state for
the two registers.

56

5.2 A manual proof

We abstract away from the queue implementation, we do not give the entire
circuit. However, let bit 0, bit 1 ∈ F be registers in our circuit. As inputs we
have sinkReady, sourceReady ∈ W . In order for us to prove liveness, we need to
assume fairness of the sink: there will always be a point in time where the sink
is ready to accept. In other words, σi′(sinkReady) is true infinitely often. In
general, we assume fairness of all sinks and sources, i.e., the source offers a packet
infinitely often, and the sink is ready to accept infinitely often.

The parts of the circuit which we do not abstract away from – the remaining
logic – is as follows:

• An available packet is enqueued if the first flop is low, and space is available
in the queue.

tr(σ) = ¬σ(bit 0) ∧ σ(sourceReady) ∧ rr(σ)

• A non-empty queue can remove its header package if the sink is ready, and
the second flop is high.

ts(σ) = σ(bit 1) ∧ σ(sinkReady) ∧ rs(σ)

• The first flop keeps a previous ‘true’ value if it cannot hand over its value to
the second. It becomes ‘true’ after a packet is enqueued.

n(σ)(bit 0) = (σ(bit 1) ∧ σ(bit 0)) ∨ (¬rs(σ) ∧ ¬σ(bit 0))

• The second flop keeps a previous ‘true’ value if no packet is dequeued. It
becomes ‘true’ if it has to take a value from the first flop.

n(σ)(bit 1) = (σ(bit 1) ∧ ¬ts(σ)) ∨ (¬σ(bit 1) ∧ σ(bit 0))

• Initially, the system is empty and the bits are low. Let σ0 denote the initial
state, then:

bit0(σ0) = false

bit1(σ0) = false

For this circuit, we wish to treat the queue as a black box, but we still say
something about rr and rs. These depend on the number of packets in the queue:
if the queue is not empty, it is ready to send, so rs is high. If the queue is not full,
it is ready to receive, so rr is high. In order to do so, without having to look at
the queue implementation, we define the number of packets in the queue, which is
a number that depends on the state. If σ′ is a successor state of σ, then:

Q(σ′) = Q(σ) + (tr(σ) ? 0 : 1)− (ts(σ) ? 0 : 1)

We are now able to relate the values rr and rs to Q: let k ≥ 1 be the size of
the queue, then the queue is full if it holds k packets. It is empty if it holds zero.

rr(σ) := (Q(σ) < k)

rs(σ) := (Q(σ) > 0)

Q(σ0) := 0

57

5 Liveness verification

5.2.2 Liveness proof

We prove liveness of Formula 1 by contradiction, i.e, we are looking for a counter-
example. A counter-example would be an infinite run of the system, such that for
some T :

Q(σT) > 0 ∧ ∀i′ ≥ T. ¬ ts(σi′)

Using the definition of ts(σi′), we get:

Q(σT) > 0 ∧ ∀i′ ≥ T. ¬ σi′(bit 1) ∧ σi′(sinkReady) ∧ rs(σi′) (2)

Lemma 5.1 (Queue never empty) For i′ ≥ T , rs(σi′).

Proof. Induction on m and our assumptions on Q gives us Q(σT+m) ≥ Q(σT),
since ¬ ts(i

′) for i′ > T . From Q(σT) > 0 we obtain Q(σi′) > 0, so by the
definition of rs, rs(σi′) for i′ ≥ T .

Lemma 5.2 (Last flop eventually permanently 0) For all i′ ≥ T , ¬σi′(bit 1).

Proof. Assume not, and let i′ be a value bigger than T for which σi′(bit 1).
Induction on m gives us σi′+m(bit 1) from the definition of n(σ)(bit 1), using
¬ts(σi′). We conclude that σi′(bit 1) for i′ ≥ T .

For some i′ ≥ T we have σi′(sinkReady), by fairness of the sink. Together with
Lemma 5.1, this contradicts Equation 2. Therefore, ¬σi′(bit 1) for i′ ≥ T .

Lemma 5.3 (First flop eventually permanently 0) For all i′ ≥ T , ¬σ′i(bit 0).

Proof. From Lemma 5.2, ¬σi′(bit 1). From the same lemma, ¬σi′+1(bit 1), so
¬n(σi′)(bit 1). Using the definition of n(σ)(bit 1), it follows that ¬σi′(bit 0).

We have Q(σ0) = 0, ¬σ0(bit 0) and ¬σ0(bit 1). As a packet enters, Q in-
creases, but the flops toggle as well.

Lemma 5.4 (Invariant) For all i ≥ 0, Q(σi) = (σi(bit 0) ? 0 : 1)+(σi(bit 1) ? 0 :
1).

Proof. By induction on i. The base case for i = 0 is immediate. Definitions of
Q(σ′), n(σ)(bit0) and n(σ)(bit1) prove the induction step.

Lemma 5.2 and 5.3 imply Q(σT) = (σi(bit 0) ? 0 : 1)+(σi(bit 1) ? 0 : 1) = 0,
contradicting Equation 2, which requires Q(T) > 0. This proves Equation 1,
liveness of our example.

58

5.3 Automated proof

5.3 Automated proof

In the liveness proof of the last section, induction is used several times. It is used
to prove that a queue is never empty, and that the last flop is permanently 0.
These induction proofs are of a similar nature: given that a wire w has a value in
state σ, it will have the same value in successor state σ′. These are proofs that a
wire will permanently hold a value, under certain conditions.

The core idea of our approach is to express the statement ‘after time T , a wire
is permanently zero’ as ‘the average value of the wire over the lasso is equal to
zero’. For ‘the average value’ to be defined, and for these two statements to be
equivalent, we will only look at lasso runs. Lasso runs will be discussed in the next
section.

We develop an SMT encoding of the negation of liveness, such as Equation 2,
together with relevant information about the circuit. Our encoding is an over ap-
proximation of a possible trace of our circuit. This means that all the information
added about the trace must be valid, but we do not expect the set of all traces
to be defined by the SMT instance. Consequently, the SMT encoding may have
solutions, while there is no trace to prove that our circuit is not live.

5.3.1 Runs and lassos

We briefly justify the fact that traces of a circuit are represented by finite runs with
a lasso. This argument comes from one used to justify bounded model checking
(e.g. Theorem 9, [Biere et al., 1999]). Let σ0, σ1, . . . be a trace in a circuit. Since
there are only finitely many possible states of the network, some of the states are
in the run infinitely often. Since sinks and sources are fair, the events of offering
and accepting packets occur infinitely often as well. This means we can pick two
times, say time T and time T + l, such that:

• the state σT is identical to the state σT+l

• between time T and time T + l, a packet is offered at least once, and sinks
are ready to accept at least once

From this, we construct a lasso run ρ0, ρ1, . . . as follows: Up to time T + l, our
constructed lasso run is identical to the original run, so ρi = σi for i ≤ T + l. At
time T + l, all inputs start behaving exactly as they have at time T , so ρi+l = ρi
for i ≥ T . Note that ρi+1 is a successor state of ρi, since σi+1 is a successor state
of σi. Therefore, our sequence ρ0, ρ1, . . . is a trace. If a channel is not live in the
σ-trace, then there is a ρ-trace in which it is not live either. This ρ-trace, however,
is described completely by its first T + l states. We use this property to define the
average value of a wire over an infinite trace.

The value of property w at time i is given by w(σi). Note that w(σi) is not
a variable that is calculated anywhere in our approach, nor is it one that occurs
in the final SMT encoding. We do relate all variables of the SMT encoding to
σi, such that any run gives an assignment to the SMT variables. Soundness of
our approach will follow from checking every clause added to the SMT instance
against its interpretation according to σ. In the next section, we also write σ(w)

59

5 Liveness verification

as part of a clause to indicate an SMT expression in terms of other SMT variables
equivalent to σ(w).

5.3.2 Encoding liveness as averages

To describe the counterexample, we encode the long term behaviour of the property
“a packet leaves the queue”, i.e. ts(σ). Recall from Section 2.2.2 that such a
property is described in terms of fundamental wires W .

We define the following variables:

Fp A persistency variable for a property ¬p. Boolean Fp is true iff: ¬p(σi) for
i ≥ T .

ap An average value to relate several properties in the lasso, this is a sum in
which p(σi) takes the value 1 if it is high, and 0 if it is low:

ap =

i+l−1∑
i=T

p(σi)

l

cw A current value for every fundamental wire w ∈ W . This is a Boolean:
cw = σT (w).

Variables Fp to cw will be variables in the SMT problem. Their definitions are not
encoded in the SMT problem, but used to motivate the properties added to the
SMT problem. We can express ‘eventually never p’, by ‘Fp’.

In our example of the previous section, we showed that rs(σT) ∧ Fts leads to
a contradiction. Given a queue annotation, we can express rs(σT) in terms of cw
values. Therefore, rs(σT) ∧ Fts can be expressed in SMT variables entirely. We
let an SMT solver deduce the contradiction for us. To achieve this, we add several
clauses that relate these variables.

The first clauses added to the SMT problem directly follow from the definitions
of F , a, c and c′.

Fp ↔ (ap = 0) (3)

Fw → ¬cw (4)

Ff → ¬σT+1(f) (5)

The clauses above are added for all relevant properties p – we will discuss which
properties are relevant later, for all fundamental wires w, and for those funda-
mental wires f for which the next value can be expressed in terms of the state
W → 2. In other words: the value referred to in Equation 5 by σT+1(f), can is
expressed in terms of the wire driving f , thus using the values cw (for different
w). Equations 3 to 4 are formulated in SMT format as is, but the expression for
σT+1(f) are expanded for Equation 5 based on the circuit.

60

5.3 Automated proof

5.3.3 Relating average values

To relate average values, we use that we are in a lasso. This implies that if bit1 is
raised, it must also be lowered at some point for the state of the network to return
to the current state. Indeed, for register f with driving wire d we know:

ad = af if d drives flop f (6)

In addition to relating F to averages, we also relate averages amongst them-
selves. In particular:

au ≤ av if u→ v (7)

au + av ≤ aw + 1 if u ∧ v = w (8)

To recognize equalities like u→ v and u ∧ v = w, we use the rewrite system from
the previous chapter, namely:

a¬p = atrue − ap
ap∨q = ap + aq − ap ⊗ aq
ap∧q = ap ⊗ aq

Where ⊗ is eliminated by using:

(ax + ay)⊗ az = ax ⊗ az + ay ⊗ az
az ⊗ (ax + ay) = ax ⊗ az + ay ⊗ az

ax ⊗ ay = ax∧y

If these were averages over a single time unit (l = 1), ⊗ can be interpreted as
multiplication, and the equations would be in the ‘Arithmetic sum-of-product
format’ considered by Minato [Minato and Somenzi, 1997]. To see that for other
values for l, note that the values for a in their rewritten form are linear equations
over real numbers, which are fast in most SMT solvers. Doing the rewriting first
(on v, using multiplication for ⊗), and then taking the average, will result in
the same equations as taking the average first, and then rewriting (using ⊗ as
uninterpreted syntax).

This allows us to write down a linear expression in place of every aw, such that
each resulting term ac has just a conjunction of input bits as c. The averages can
then more easily be related amongst themselves using Equations 7 and 8.

To add invariants, as in Lemma 5.4, we use the procedure from the previous
chapter. We introduce extra integer variables to express the invariants.

qx A state variable for every queue x, which is an integer indicating the number
of packets in queue x at time T .

fx A state variable for every flop x, which is an integer indicating its output at
time T .

For flops, this state variable is related to our instance via:

cx ↔ (fx = 1) (9)

¬cx ↔ (fx = 0) (10)

61

5 Liveness verification

Queues are related to their state as well, which we discuss in relation to other
queue properties. In contrast to the linear equalities and inequalities relating
average values, these equations are expressed in terms of integer variables.

5.3.4 Queue properties.

For every queue of size size, we add the following clauses:

0 ≤ q ≤ size (11)

q = 0↔ ¬rs(σT) (12)

q = size↔ ¬rr(σT) (13)

F¬tr → F¬rr (14)

F¬ts → F¬rs (15)

Ftr → (crr → F¬rr) (16)

atr = ats (17)

Clause 17 states that for every packet entering the queue in the lasso, it must
also leave, for the queue to return to its original state.

Some networks contain data dependencies. Instead of looking at all possible
packets in brute force, we form different expressions for several data types. We
consider a packet to be of a certain type, if some set of its bits is high. To determine
what types to consider, we find out what data bits occur in the averages found
among Equation 17. Each average variable ax1∧x2∧···, containing some data bits
in its conjunction (among the x’s) constitutes a type of packet. For these types,
we add a variable:

dx state variable indicating the number of packets for a particular data type in
queue x.

We write the property dto to indicate that the output data has the type we care
about, and dti for the same input type. These clauses are added for each queue,
we omit the x to indicate the queue:

(d = q)→ (q = 0 ∨ dto(σT)) (18)

(d = 0 ∧ crs)→ ¬dto(σT) (19)

¬Ftr ∧ Fdti → d = 0 (20)

¬Ftr ∧ F¬tr→dti → d = q (21)

Fts∧dti ∧ dto(σT)→ F¬rs∧dto (22)

a(enqueue ∧ not full ∧ dti) = a(dequeue ∧ not empty ∧ dto) (23)

5.3.5 Summary

In the final SMT instance, we defined the following variables:

qx Integer indicating the number of packets in queue x at time T .

fx Integer indicating the flop output at time T .

62

5.4 Conclusions

cx Boolean denoting v(x, T).

dx Integer indicating the number of packets with a certain kind of data in a
queue at time T .

Fw Boolean F¬w, true iff: v(w, t) = 0 for t ≥ T .

aw Real: average value arising wherever a F is created.

In our implementation, the first three variables can be defined for the entire net-
work. The last four variables are defined where needed: they occur in the property
we are trying to disprove, or in a property of one of the other variables. These
properties are Equation 3 to 23. Next to these, we add invariants on q, f and d,
and we add the negation of the property that all queues are live.

5.4 Conclusions

We presented a novel verification method for liveness properties of RTL designs of
communication fabrics. Our method abstracts away from queue implementations
and timing details. Liveness properties are expressed using the average values of
wires along lasso runs. Properties together with a representation of the network
are translated to an SMT instance. It is sound but incomplete.

Experimental results will show that we are able to prove liveness of small and
medium sized examples in Chapter 7.

63

5 Liveness verification

64

Chapter 6
Extraction of xMAS from RTL

Here we give an algorithm that extracts an xMAS high-level model from an RTL
design. The input of our flow is a Verilog description together with a specification
of which modules represent queues, and when messages enter or leave a queue.
After parsing the Verilog, the RTL design can be considered a set of queues and
registers interconnected by combinatorial logic. Our approach extracts the micro-
architectural structure of the design from this unstructured combinatorial logic.
This is achieved by identifying when the transfer of messages depends on synchro-
nisation with other messages or on routing or arbitration decisions. The result
is an acyclic xMAS network transfer equivalent to the original RTL design. This
means that a transfer occurs – a message moves from a queue to another one –
in the xMAS model if and only if the same transfer occurs in the RTL design.
To ensure that the generated xMAS satisfies the assumptions made by various
high-level tools such as deadlock detection tools, we check local properties using a
standard model checker.

In Section 2.2.1, we defined the notion of port, which is the basic building block
for our algorithm. We describe this algorithm in Section 6.1, and its correctness in
Section 6.2. There is no definition of what the ‘best’ abstraction would be, but the
resulting abstraction is suitable for verification. Discussion and conclusion follow
in Section 6.3 and 6.4

This chapter relies on the definition of port as introduced earlier in Chapter 2.

6.1 Translation of RTL to xMAS

A queue gives rise to exactly two ports. For each port the transfer property is
known, see Figure 6.1(a). The control logic is modeled as a sink or a source that
emits or accepts a packet whenever the routing logic would, see Figure 6.1(b). As
a consequence, each such sink or source depends on a large enough part of the
original network such that it mimics the original routing logic. This is not a very
satisfactory model of a network. The abstraction is sound: the transfer properties
are preserved, but it does not tell us much about the communication fabric.

To get a network, we link ports together using xMAS-like elements similar
to the merge, join, switch and fork. The xMAS merge and switch are placed
into a category we call ‘arbiters’. The xMAS join and fork are of the category

65

6 Extraction of xMAS from RTL

control logic

(a) Control logic as a
jumble of wires

(b) Trivial network
with identified ports

S A

S

(c) Abstract forest (d) xMAS network

Figure 6.1: Summary of our method

‘synchronizers’. Linking ports together using these two elements for each link,
gives rise to a graph in the form of a forest: a set of trees, with an arbiter or
synchronizer at each branch, and a port at each leaf. This forest has arbiters and
synchronizers at every branch, a single port at the root, and queue inputs and
outputs at the leaves, see Figure 6.1(c). Section 6.1.1 gives the translation from
identified ports to such a forest. We place an eager source or sink at each root,
and replace the arbiters and synchronizers with their respective components, see
Figure 6.1(d). Some arbiters become switches, and synchronizers become forks
and joins. This is an orientation step, given in Section 6.1.2.

We begin with an informal illustration of how synchronizers and arbiters are
created. Our first example has ports u and v, and an oracle P modeling packet
injection. After parsing the Verilog, assume we obtain the following equations:

ru = B3.trdy

tu = AND(B3.trdy, B1.trdy, P)

rv = B1.trdy

tv = AND(B1.trdy, B3.trdy, P)

The transfer properties are equivalent in every state, that is, tu(σ) ↔ tv(σ). We
create a synchronizer s with the transfer property of u and as implied property
the conjunction of the implied properties of u and v. This yields a new port s:

rs = AND(B3.trdy, B1.trdy)

ts = AND(B3.trdy, B1.trdy, P)

If u and v are both input ports, the synchronizer is refined into a fork. Fig-
ure 6.2(a) shows the result. If u and v would be output ports, the synchronizer
would be refined into a join.

Our second example (Figure 6.2(b)) has two ports and policy A deciding to
which port to give the turn. Packets are accepted when property P holds. After
parsing the Verilog, assume we obtain the following equations:

ru = B2.irdy

tu = AND(B2.irdy, OR(A, NOT(B1.irdy)), P)

rv = B1.irdy

tv = AND(B1.irdy, NOT(AND(A,B2.irdy)), P)

66

6.1 Translation of RTL to xMAS

1 3

(a) A fork

B2B1

P

(b) A merge

Figure 6.2: Output of our method

A SAT solver detects that tu ∧ tv ⇒ 0. We therefore add an arbiter a with
ta = tu ∨ tv.

If u and v are output ports, we refine the arbiter into a merge. If u and v would
be input ports, A would be a routing function and we would refine the arbiter into
a switch.

6.1.1 From ports to a forest

Creating a synchronizer takes two ports and creates a new one. To indicate the
new synchronizer, we write a tuple S〈x, y〉, where x and y indicate the combined
ports: either queue ports, synchronizers or arbiters. When we create an arbiter,
there is a switching function, or an arbitration policy. A property t will indicate
when x should get a turn, containing the information required to implement the
switching function or arbitration policy. An arbiter is written as A〈x, y, t〉.

Let x and y be ports. There are two cases in which we combine these ports.

1. If the transfer properties are mutually exclusive: tx(σ) ∧ ty(σ) → 0 for all
states σ. In this case, we create an arbiter a = A〈x, y, tx〉. We turn a into a
port by choosing ra(σ) = rx(σ) ∨ ry(σ) and ta(σ) = tx(σ) ∨ ty(σ).

2. If the transfer properties are equivalent: tx(σ) ↔ ty(σ) for all states σ. In
this case, we create a synchronizer s = S〈x, y〉. We turn s into a port by
choosing rs(σ) = rx(σ) ∧ ry(σ) and ts(σ) = tx(σ).

The reader can verify that the arbiter and a synchronizer, added in the way noted
above, preserve t(σ)→ r(σ).

To decide whether expressions like tx(σ) ∧ ty(σ) → 0 are the case, we use
a SAT procedure. Using SAT instead of model checking means that we might
overlook some cases: we may erroneously decide that tx(σ) ∧ ty(σ) → 0 does
not always hold. In that case we fail to create an arbiter (or a synchronizer in
the case of tx(σ) ↔ ty(σ)). It is easy to come up with artificial cases where this
happens. In our designs – and in xMAS generated Verilog in general – registers are

67

6 Extraction of xMAS from RTL

eager

(a) Change an out-
put to an input

eager

(b) Change an in-
put to an output

eager

(c) A circuit equiv-
alent to a wire

Figure 6.3: Different ways of changing the direction of a port

driven independently. Consequently, a SAT solver gives exactly the same results
as a model checker. We did not come across any designs where a model checker
provides more insight than a SAT solver, but this is most likely due to the fact
that we used xMAS generated Verilog.

Starting out with a set of ports, we combine them using one of the two methods
illustrated above. By making as many combinations as possible, we reduce the
number of remaining ports as much as possible. For this reason, we give priority
to the creation of synchronizers.

After these steps, it may be possible that a port has an implied property
which is equivalent to the transfer property. In case the two differ, we add a sink
(or a source) that accepts (or provides) a packet in states for which the transfer
property is high. This ensures that every port x satisfies rx(σ) ↔ tx(σ). Such
sinks or sources are denoted as P 〈t〉 for ‘port’, satisfying rP〈t〉 = t. In other words:
the sink or source is ready to yield a packet at precisely the moment a transfer
occurs. We end up with an algorithm for combining ports that gives precedence
to adding synchronizers (Algorithm 3, lines 1–17).

After running the algorithm, we obtain a set of xMAS objects with one open
end. We discuss what to do with this open end after introducing function orient-
PortToGraph. The last few lines of Algorithm 3 beginning with ‘let r’, set r and
p in a way that do not effect the output of the algorithm. The values for r and p
are only used in the correctness proof provided in the next section.

6.1.2 Orienting the forest

By connecting the leaves that correspond to the same buffer (one is an input,
the other an output), we obtain an undirected graph. To turn this graph into
an abstract network, all edges need to get a direction. This turns synchronizers
into forks and joins, and arbiters into switches and merges. That step is done
by orientPortToGraph: it changes the undirected graph in a directed graph, by
orienting all ports.

In this section, we describe how ‘orientPortToGraph’ may be implemented. We
show in the next section that this choice does not matter for the correctness of
our translation. For this reason, many orientation algorithms would suffice, and
we do not give a pseudo-code algorithm for it.

Independent of the orientation algorithm used, there is always the possibility
that one has to deal with non-matching in- and outputs. In other words: the
direction of an in- or output will have to be changed. Figure 6.3 shows circuits
that achieve this. The first circuit consists of a join connected to an eager sink.

68

6.1 Translation of RTL to xMAS

Data: Set of ports C, maps t and r on C
Result: Reduced set of ports C ′

1 repeat
2 for x, y ∈ C with x 6= y do
3 if t[x]⇔ t[y] then
4 remove x, y from C, add S〈x, y〉 to C;
5 let r[S〈x, y〉] = AND(r[x], r[y]);
6 t[S〈x, y〉] = t[x];

7 end

8 end
9 for x, y ∈ C with x 6= y do

10 if t[x] ∧ t[y]⇒ 0 then
11 remove x, y from C, add A〈x, y, tx〉 to C;
12 let r[A〈x, y, tx〉] = OR(r[x], r[y]);
13 let t[A〈x, y, tx〉] = OR(t[x], t[y]);
14 break;

15 end

16 end

17 until Nothing changed ;
18 Create a new set C ′;
19 for x ∈ C do
20 if r[x]⇔ p[x] then
21 add orientPortToGraph(x) to C ′;
22 else
23 let r[P 〈t[x]〉] = t[x]; t[P 〈t[x]〉] = t[x];
24 let r[S〈x, P 〈t[x]〉〉] = t[x]; t[S〈x, P 〈t[x]〉〉] = t[x];
25 add orientPortToGraph(S〈x, P 〈t[x]〉〉) to C ′;

26 end

27 end
Algorithm 3: Reducing ports

This connects to an input, and provides an output with the same transfer property.
The second circuit is roughly the same: a fork with an eager source that connects
to an output, providing an input.

Since so many implementations suffice for orientPortToGraph, we could ask
what would be a ‘best orientation’. Two considerations can be made here: one
is to keep the resulting circuit as small as possible. This means that we wish
to minimize the number of direction changes, as this introduces two components
(shown in Figure 6.3). Another consideration we could make is that switches
depend on data, while arbiters do not. If we know which wires are responsible for
data, we can base our choice on the transfer properties of an arbiter.

We investigate how to minimize the number of direction changes. We can
assume that the direction of ports is fixed. To indicate the direction, we will call
input ports ‘down’, and output ports ‘up’. This corresponds to the direction of a
tree that has the root on top, and input- and output- sides of queues as leaves at
the bottom.

69

6 Extraction of xMAS from RTL

A synchronizer with three ports will treat all of them the same: they have a
transfer simultaneously. For the three connections leading to a synchronizer, at
least one must be an input, and at least one an output. Depending on the third, we
then create a fork or a join. This means that when we encounter a synchronizer,
we can first orient the underlying branches. If both branches are up, or both
are down, the synchronizer is fixed (up or down respectively). Otherwise, we can
choose to orient the synchronizer freely.

Since a synchronizer can create a ‘freely orientable’ node, this means that there
are three cases to consider:

1. A node is oriented ‘down’, which means that requiring it to be oriented
‘up’ will introduce one of the circuits of Figure 6.3, costing exactly two
components.

2. A node is oriented ‘up’: requiring it to be oriented ‘up’ introduces one of
those circuits.

3. A node is oriented ‘free’: the underlying circuit size is independent on how
the node is oriented.

For the synchronizer, if at least one of its branches is freely orientable, we can
always orient it such that one of its branches is an input, and the other is an
output. In such a case, the synchronizer node is freely orientable as well.

An arbiter has stronger requirements: all of its branches must be ‘down’, in
which case it is a switch, or all of its branches must be ‘up’, making it a merge.
If we try to give an orientation with the least number of direction changes, we
can apply the following strategy: count the number of branches that are ‘down’,
and the number of branches that are ‘up’. If one of them is a majority, choose
that orientation for all branches. This possibly re-orients some of its branches. If
neither of them is a majority, this node becomes ‘free’, and the way we orient our
branches depends on how the parent node would like to orient this node.

A final consideration is what to do at the top node, which does not have a
parent. If the top node is an arbiter, we can only choose to orient it and add a
source or a sink at the top. In the case of a synchronizer that is oriented ‘up’ or
‘down’, we do the same. A free synchronizer with two branches, however, can be
omitted altogether: it is necessarily possible to orient the two branches as ‘up’ and
‘down’ or vice versa. These two channels ‘fit’: they can simply be connected.

6.2 Resulting Graph Correctness

We show that the resulting graph is equivalent to the network in the original
circuit, using the semantics for the xMAS components as presented in Chapter 2.

On the RTL design, we require the different input and output ports together
with the corresponding property t to indicate that a transfer occurs, to be known.
At the xMAS level, we know all channels and their transfer conditions. We say
that an xMAS model and an RTL design are transfer equivalent if and only if their
transfer conditions are equivalent. Transfer equivalence is defined as follows:

70

6.2 Resulting Graph Correctness

Definition 6.1 (Transfer equivalence) Let X be a set of queue inputs and out-
puts, and let f1 and f2 be functions that give the transfer property for every
element of X. We say that f1 and f2 are transfer equivalent if for all elements
x ∈ X and all states σ: f1(x)(σ) = f2(x)(σ).

Lemma 6.1 Let C be the inputs and outputs of the queues in a circuit with the
transfer properties tx for each c ∈ C. Let t′c = c.irdy ∧ c.trdy where c.irdy and
c.trdy follow the xMAS semantics as extracted from C by the proposed algorithm.
Then t and t′ are transfer equivalent.

Proof. To show equivalence, we just need to show that t ↔ o.irdy ∧ o.trdy on a
queue output o, and that t↔ i.irdy∧ i.trdy on a queue input i. We show that the
following properties hold for all ports inductively:

Each input corresponding to port c:

tc → c.trdy (1)

c.trdy→ rc (2)

¬tc ∧ rc → ¬c.irdy (3)

tc → c.irdy (4)

Each output corresponding to port c:

tc → c.irdy (5)

c.irdy→ rc (6)

¬tc ∧ rc → ¬c.trdy (7)

tc → c.trdy (8)
Taken together, these equations imply tc ↔ c.irdy ∧ c.trdy.

The algorithm combines ports, building a tree structure. On each port that
remains, the underlying tree is connected to an eager sink or source. We perform
induction over each such tree structure in two directions. We first do induction
over the top equations (queues to trunk), and then - using these equations - over
the bottom equations (trunk to queues). Both proofs are by a case analysis over
the components. We start with the base cases.

For the queue output c corresponding to port x, we know rx = c.irdy (Equa-
tion 6 holds), and for the queue input c, we know rx = c.trdy (Equation 2 holds).
By tx → rx, Equations 1 and 5 hold. At the ‘trunk’ side of the network, c ∈ C ′,
there is an eager sink or source. If c is an input then c.irdy is high (eager sink), and
c.trdy is high if c is an output, thus Equations 4 and 8 hold. For the corresponding
port x we know rx ↔ tx, so Equations 3 and 7 hold.

The induction step is by case distinction on the xMAS component and the
port direction. The proof for the bottom two equations (Equation 3, 4, 7 and 8)
depends on that for the top two (Equation 1, 2, 5 and 6), but not vice versa.

Suppose the port o is an output, and the xMAS component is a join, originating
from a synchronizer with its inputs connected at the outputs at a and b. By
construction of the synchronizer we have to = ta = tb. We know that ta → a.irdy
and tb → b.irdy by induction for Equation 5. Together with o.irdy := a.irdy∧b.irdy
for the xMAS semantics of the join, this yields to → o.irdy, proving the induction
step for Equation 5. We can do the same for Equation 6, yielding o.irdy → ro by
a.irdy→ ra and b.irdy→ ra and the synchronizer property ro = ra ∧ rb.

We now perform the induction step in the other direction. We are still using
that tb → b.irdy, so ta → b.irdy. By induction to → o.trdy, so ta → o.trdy. The
xMAS definition of a join a.trdy := o.trdy∧b.irdy, hence ta → a.trdy, Equation 8.
Similarly, ¬to ∧ ro → ¬o.trdy. Using the properties of a synchronizer, we get
¬ta ∧ ra ∧ rb → ¬o.trdy. Using the xMAS definition of a join: ¬o.trdy→ ¬a.trdy,

71

6 Extraction of xMAS from RTL

so ¬ta ∧ ra → ¬a.trdy, Equation 7. For b we can supply the same proofs by
symmetry.

The case we treat is where o is an output, the xMAS component is a merge,
originating from an arbiter with its inputs connected at the inputs at a and b, and
arbitration policy ta. Inductively, ta → a.irdy and tb → b.irdy, so ta∨tb → a.irdy∨
b.irdy, which yields Equation 5 for o through the definition of the merge. The same
reasoning applies to Equation 6, so we focus on the induction step in the trunk to
queue direction. The definition of the merge yields a.trdy := o.trdy ∧ ta ∧ a.irdy.
We have ta → a.irdy from the previous induction, to → o.trdy from this one,
yielding ta → o.trdy since to = ta ∨ tb. Combining these observations yields
ta → a.trdy (Equation 5). The other port has b.trdy := o.trdy∧¬ta ∧ b.irdy. The
arbiter is only created when tb → ¬ta (by tb ∧ ta → 0), so Equation 5 is satisfied
using the same observations as for a. Equation 7 holds for port a immediately by
definition of a.trdy. For port b, we use the way an arbiter was created to conclude
¬tb → ta ∨ ¬to and rb → ro. Together, this yields ¬tb ∧ rb → (¬to ∧ ro) ∨ ta. By
induction ¬to ∧ ro → ¬o.trdy, from which we may conclude ¬tb ∧ rb → ¬b.trdy by
the xMAS definition of b.trdy. This completes the induction step for a merge.

The other output ports (networks used for reversing direction, and sources)
are left to the reader. For the input ports, the proofs are roughly symmetric
and left for the reader as well, with the exception of the switch (the most involved
component). Let i be an input, and the xMAS components be a switch, originating
from an arbiter with its outputs connected at the inputs a and b, and arbitration
policy ta.

By induction: ta → a.trdy and tb → b.trdy, so ta ∨ tb → (a.trdy ∧ ta) ∨
(b.trdy ∧ ¬ta). The switch is defined as i.trdy := (a.trdy ∧ ta) ∨ (b.trdy ∧ ¬ta),
while the arbiter has to = ta∨ tb, resulting in Equation 1 for i. Similarly: i.trdy→
a.trdy ∨ b.trdy→ ra ∨ rb, resulting in Equation 2 for i. The induction step in the
other direction is symmetric to that of the merge and left to the reader.

This completes our induction, which implies that tc ↔ c.irdy ∧ c.trdy for all
queue in- and output ports.

The proof is independent of choices from the orientation function, so orientation
of synchronizers and arbiters does not change whether transfer equivalence holds.
In the networks we obtain, we have the liberty to change merges into switches,
forks into joins, and vice versa.

6.3 Discussion

Our method also applied to virtual channel examples, which were analyzed in
related works [Chatterjee et al., 2012; Ray and Brayton, 2012]. Similar to these
related works, our experiments are performed on xMAS generated code. One bias
is that these models already contain architectural insight. This bias appears in
the generation of the Verilog which is done by translating each xMAS module
separately. Note that the design is fully flattened before being processed by our
method. The latter captures the parts of a design where packets synchronize with
each other or where the progress of packets depends on arbitration or switching
decisions. The key element is to identify when transfer properties are mutually

72

6.4 Conclusion

exclusive or equivalent. In more realistic and larger cases, these properties are
larger and more complex. Still, they always involve a relatively small subset of the
design and therefore should stay within the capabilities of SAT solvers.

Additionally, all registers in our designs are independent. As a result, using
SAT solvers instead of model checkers suffices. When a single wire is the driving
wire for two different registers, this is not the case. We can craft a network in
which a synchronizer is not detected automatically, because two queues use two
different registers that always have the same value. There are industrial examples
in which this situation arises. The straightforward solution is to use model checking
instead of SAT solving. Another solution is to pre-analyze the network in the spirit
of Chapter 4, and identify such registers.

A final bias is that we only produce xMAS networks in which every cycle
contains a buffer. In other words: the method fails to recognize structure when
applied to RTL circuits with a cycle without a buffer.

In all cases where our method fails to detect structure, it returns a non-eager
source or a sink at that place. The translation to a model checking problem can
help to distinguish between output which is desired, and output in which still
some structure is missing. In other words: it is feasible to detect all places where
structure is missing. Future work should be able to fill all these gaps, by further
investigating the cases where they arise.

Thanks to observations at the xMAS level, intended queues can be implemented
more efficiently. The trouble is that once we use these observations, the implemen-
tation is no longer pure xMAS. Our approach obtains the routing logic between
queues, in a way tolerant for several different queue and buffer implementations.

6.4 Conclusion

We presented an algorithm that automatically extracts the micro-architectural
structure of RTL descriptions of communication fabrics. We proved that the orig-
inal RTL circuit is transfer equivalent to the extracted micro-architecture. Our
approach will be applied on typical examples found in the literature in the next
chapter.

Bridging an important gap between unstructured RTL designs of communi-
cation fabrics and their micro-architectural structure, our approach provides de-
signers with key insight into their design. More importantly, micro-architectural
models play a key role for verification. Until now, the manual construction of
an xMAS model was required to apply all these techniques. Our approach re-
moves this barrier. This opens up new ways to use previous works and tackle the
challenge of directly verifying RTL designs of communication fabrics.

73

6 Extraction of xMAS from RTL

74

Chapter 7
Experimental results

The previous chapters describe methods to analyse communication fabrics. This
chapter tests those methods on a set of designs.

We describe a set of designs in Section 7.1. These designs fall into two cat-
egories: designs used to clearly illustrate our approach, and designs taken from
previous publication about xMAS, to show that the approaches work on such de-
signs as well. In both cases, we use the xMAS language to describe communication
fabrics, and build the corresponding Verilog code.

The queue interfaces to our designs are annotated as described in Section 2.2.2.
The same annotations are used for all our algorithms. We clustered most of the
algorithms done for this thesis in a new tool called Voi. The examples used in this
section can be found at the same link as the tool: http://sjcjoosten.nl/
voi/

7.1 Investigated designs

In Chapter 2, we introduced some xMAS primitives. Although we see queues on an
abstract level, other tools do not. It is only for this reason that the implementation
of the queue matters. Our techniques give the same results with any queue of size
2 or larger – queues of size 1 do not have a state in which reads and writes can
occur at the same time. Similarly, most techniques do not suffer from having large
packets, that is: data lines consisting of many bits. A comparison involving very
large queues, say of depth 256, with 64-bit packets, may force timeouts in the
analysis of other tools, while our methods would still work. A comparison with
very small queues, say of size 2, may not show the benefits of our methods.

7.1.1 Virtual channels with buffer

Figure 7.1 shows a design proposed by Sayak Ray and Robert Brayton [Ray and
Brayton, 2012]. Packets in the queue labeled as ‘Buffer’ are identified by a bit,
such that packets originating from In1 are routed to B3, and those originating
from In2 are routed to B4. The arbiter alternates between accepting packets from
In1 and In2 if one is offered. The arbiter is persistent in the sense that if the

75

http://sjcjoosten.nl/voi/
http://sjcjoosten.nl/voi/

7 Experimental results

Buffer

B1 B2

B3

B5 B6

B4

In1

In2

Out1

Out2

Figure 7.1: Virtual channels and a message dependent buffer

‘Buffer’ is full, and the packet from In1 (or In2) is offered, at the next clock tick
the packet from In1 (In2) is offered to the Buffer again.

We can vary the queue sizes: the size of queue B2 limits the number of packets
in B1, Buffer and B3. If the sizes of B2 and B6 together do not exceed the size of
Buffer, a blocked channel from In1 to Out1 will not cause a blocked channel from
In2 to Out2. In this sense, the available positions in B2 and B6 model credits for
the rest of the network, which are stored in B1 and B5 respectively, and returned
when the packets leave B3 and B4.

7.1.2 Two-entry scoreboard

A two-entry scoreboard is shown in Figure 7.2. The general idea behind the
scoreboard is that transactions – modeled as xMAS packets – come in from the
left, obtain a ‘tag’, and are processed in two phases. The two phases are modeled
through the channels at the bottom of the figure: each phase has an outgoing and
a returning channel. After processing, transactions are retired on the right. The
scoreboard contains the logic to track transactions of two types.

This example originates from a paper intended to illustrate the expressive
power of xMAS, by Satrajit Chatterjee et al. [Chatterjee and Kishinevsky, 2012].
The same example is later seen in a paper by Sayak Ray [Ray and Brayton, 2012].
The Verilog implementation used in both of these works was not available to us,
so we reimplemented the designs based on the figures in those papers.

The size of B3 and B4 can be chosen such that at most one transaction of
each type is allowed into the scoreboard simultaneously. The switch on the left,
connecting to B5 and B10, is such that packets with bit [3] set are routed to
B5, while packets that do not have that bit set are routed to B10. The packets in
queues B1 to B4 model tokens.

76

7.1 Investigated designs

B6B5 B7 B8 B9

B14B13B12B11B10

B1 B2

B3 B4

Figure 7.2: A 2-entry scoreboard

7.1.3 Parallel queues

(a) Two queues.

Credit
counter

(b) A credit counter with a queue.

Figure 7.3: Two layouts with parallel queues. On a more abstract level, the designs are
the same. In their implementation, the two designs might differ, although they exhibit
the same behavior.

Figure 7.3 shows how a queue can be placed in parallel with something else:
packets accepted from the source are put in the top queue, and something is added
to the bottom component as well. In both designs, queues are initially empty, and
so is the credit counter. On an abstract level, this makes the two layouts the same.
The idea behind these two designs is that it allows us to investigate to what extent
state holding elements need to be abstracted.

We implement the credit counter in Figure 7.3(b) using registers, but only
annotate these registers, as described in Section 2.2.2. If the size of the credit
counter is 2n − 1 for some n, all of these register states will be reachable. Designs
where the size of the credit counter is not 2n − 1 will have unreachable states.
This property allows us to clearly distinguish between designs which we can, and
designs which we cannot fully analyse.

77

7 Experimental results

7.2 Invariants

A queue can be identified using the properties inputTransfer, inputData,
outputTransfer and outputData. The analysis of invariants takes a look at
those annotations starting with annotate queue, and finds invariants in the
manner explained here. For this analysis, outputData can contain output wires
of the queues, but not expressions made from those wires. From the network
described in the original chapter, Figure 4.1, we obtained exactly the desired
invariant.

Speed measurements in this section are performed on one 1.7 GHz I7-4650U
core1

7.2.1 Virtual channels with buffer

We tested our approach on various credit-flow systems by Ray and Brayton. Fig-
ure 7.1 shows the configuration of a buffered virtual channel. The buffer labeled
as ‘Buffer’ can contain two types of packets: those for B3 and those for B6. The
last bit of the packet data is used to indicate this.

Running our tool results in the following output:

B0 + buffer[0] = B1 + B3 + buffer
B4 + B5 + buffer[0] = B6

The variable buffer[0] indicates the number of packets in which bit 0 (the
last bit) was set. In the first invariant, buffer - buffer[0] can be read as:
packets in which bit 0 was not set. These two invariants are exactly the invariants
required in the analysis by Ray and Brayton [Ray and Brayton, 2012]. Generating
these invariants took 0.06 seconds for our implementation.

7.2.2 Two-entry scoreboard

In this example, the top right switch causes B9 and B14 to have a data dependency.
Because of this, all buffers B5 to B14 have data dependencies. Analysing the
network took 0.11 seconds. The invariants found were slightly different from the
invariant the authors added:

B10[0] + B11[0] + B12[0] + B13[0] + B14[0] + B4 + B5[0] +
B6[0] + B7[0] + B8[0] + B9[0] = B10 + B11 + B12 + B13 + B14

+ B2 + B5 + B6 + B7 + B8 + B9

B3 = B1 + B10[0] + B11[0] + B12[0] + B13[0] + B14[0] +
B5[0] + B6[0] + B7[0] + B8[0] + B9[0]

Note that for our network, B10 does not receive any packets with bit [0] set. For
this reason, we can deduce B10_[0] = 0. Applying this argument iteratively, we
obtain B11_[0]=B12_[0]=B13_[0]=B14_[0]=0. On the other side, we know:
B5_[0]=B5, and apply this argument to the next buffers. These two arguments
suffice to get the same two invariants as those of Ray and Brayton, namely:

1Using one core increases the base frequency to 3.3GHz.

78

7.2 Invariants

B10 + B11 + B12 + B13 + B14 + B2 = B4
B1 + B9 + B8 + B7 + B6 + B5 = B3

The above invariant would become invalid if we simulate the network from an
(unreachable) state in which B10_[0]=B10=1. This implies that the invariant
(which the authors of the paper found by ‘manual inspection’) is not one step
inductive by itself for our implementation. The authors mentioned that their one
step induction technique failed to prove the invariant for this scoreboard.

An alternative way to obtain the invariant, is to change the network such that
it holds. Do to so, change Buffers 5 to 14 such that they are three bits wide instead
of four, so no distinction can be made on the last bit [0].

7.2.3 Parallel queues

In the case of Figure 7.3(a), a linear invariant is generated:

qtop = qbottom

For our implementations in Figure 7.3(b), the credit counter is not abstracted
as a queue. Instead, the internal state is given by the state of some flops in the
credit counter. We consider two implementations for a credit counter of size 3. In
one implementation, we count the number of credits in a unary way, similar to a
shift register. Our method finds the following invariant:

qtop = f0 + f1 + f2

In a different implementation, we use only two flops, and count binary: packets
may enter if either bit is zero. Once again, our method finds the desired invariant:

qtop = f0 + 2 · f1

Limitation of invariants If we make a slight modification, and decide that the
credit counter should hold at most two credits, we can get an invariant for the
unary encoding:

qtop = f0 + f1

For the binary encoding, however, we cannot find any invariants. This occurs
because the unreachable state f0 = f1 = 1, which corresponds to three packets,
does not satisfy the invariant one-step inductively. If we allow a packet to enter
(or leave) in such a case, the invariant does not hold for that transition. This
example shows that it can be beneficial to use the same abstraction for counters
as for queues.

7.2.4 Scalability of the approach

To test the performance of our method, we repeated the configuration in Figure 7.1
several times by connecting the outputs to the inputs of another design. The results
are shown in Figure 7.4. In this case, each repetition of the virtual channels

79

7 Experimental results

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

0	 20	 40	 60	 80	 100	

Network size (# of repetitions)

R
un

tim
e

(s
ec

on
ds

)

Figure 7.4: Finding invariants. Runtime for repetitions of Figure 7.1

contains 11 buffers, so the 80 repetition example has 880 buffers. It generated
160 invariants. Also, the invariants were generated as two local invariants per
repetition (as we would expect), and not as a linear combination of those invariants.
Note that the invariant analysis does not use the fact that the same network is
repeated several times.

7.3 Deadlock verification

We did not combine the deadlock verification analysis into the tool Voi2. Instead,
we use a parser written in ACL2 to analyse the Verilog. The resulting structure
needs to be copied into a separate file, which we call EMOD module. This makes
the deadlock verification more cumbersome to use, but also provides a first step
towards obtaining formally verified deadlock-free networks in a theorem prover.

7.3.1 Verification Flow

Hardware
design

(Verilog)

Centaur
parser

(ACL2)

Mealy
machine
(EMOD)

Property
description

(SMT)
Translation
(Haskell)

Figure 7.5: Verification Flow for the EMOD framework.

Figure 7.5 shows the different steps of this approach. The input to our method
is an RTL description of the on-chip network architecture using the Verilog hard-
ware description language. The Verilog file is parsed and interpreted using a parser
developed by Centaur Technology [Hunt and Swords, 2009]. These files are trans-
lated to one EMOD module. During this translation, queues are identified by

2When the analysis is integrated, the Voi website will reflect this.

80

7.3 Deadlock verification

special tags, and their inner working is hidden as a black box. The rest of the
design is identified as combinatorial logic and flops. An SMT instance is created
from our definition of liveness, and from properties that hold for the combinatorial
logic, flops, and queues.

The Centaur translator targets a subset of Verilog. Arithmetic and bitwise
operations are supported, as well as non-blocking assignments. A (syntactic) lim-
itation is that no blocks can be used. Transistor-level constructs, real variables,
hierarchical identifiers, and multi-dimensional arrays are not supported. After this
translation, all wires are assigned Boolean expressions, in which X and Z values
can be regarded as input wires.

We recognise which wires are used for queues, and abstract away from the
queues themselves. After a tree of modules is built, each queue in the list of those
identified by the hardware designer is syntactically replaced by a function. Flops
are treated similarly. Concretely, the EMOD file expresses values using AND,
XOR and NOT, but also using queue specific functions. To give an example, the
following value could determine whether a transfer occurs in a sequence of two
queues:

(AND (not_empty Q1) (not_full Q2))

If the original RTL contained any cycles, the translation to EMOD gets rid of
them, or fails.

In the following sections, we give some artificially constructed examples to
indicate when our approach works, and when it does not.

7.3.2 Parallel queues

Figure 7.3 from the previous section shows an example for which our approach
works, as well as an example for which it does not. Like the queue, the credit
counter accepts tokens until it is ‘full’. While full, it prevents packets from entering
at the source. Similarly, the top queue is prevented from releasing its packets in
case the credit counter is empty. This means that in the unreachable case that
the top queue is full, and the bottom half is empty, the system is in deadlock.

These designs illustrate that the invariants added to the SMT instance prevent
us from getting false positives. Indeed: cases for which an invariant is found are
proven deadlock-free, whereas the cases where no invariant is found yield false
deadlocks.

7.3.3 Buffered virtual channels

We again direct our attention to the example in Figure 7.1. Using our method,
the data dependent invariants corresponding to this network are found, and every
buffer in the network is proven live (provided all sources and sinks are fair).

Limitations of one-step simulation We can modify the arbiters’ behaviour
such that it allows packets from In1 more often than the packets from In2. For
instance, it can take two packets from In1, and then only one from In2. In this
case, the properties presented so far are insufficient to verify that B5 is live (or

81

7 Experimental results

that packets from In2 are eventually accepted). To prove this, one could add these
equations to the SMT instance:

Tw → v(w, n+ 2) Fw → ¬v(w, n+ 2)

In essence, these equations add a one-step simulation to our analysis. The equa-
tions above allow us to perform a two-step simulation. Unfortunately, adding these
equations has a severe impact on the performance of the analysis.

7.3.4 Other networks and scalability

Next to the networks described above, we have analysed the network in Figure 7.1
without the queue called Buffer (with its outputs and inputs connected with a wire
instead). In all cases, we proved liveness of all queues, with extra queues added
at the sources and sinks (thereby verifying their liveness as well), and under the
assumption of fairness of sources and sinks.

To illustrate the scalability of our approach, we took the network in Figure 7.1.
As with the invariant generation, the network is cloned several times, connecting
the outputs to the inputs (Out1 to In1, Out2 to In2). All queues could be verified
to be live. The time it took to verify this property is shown in Figure 7.6.

0"

5"

10"

15"

20"

25"

0" 5" 10" 15" 20" 25" 30"

Ti
m
e%
in
%se

co
nd

s

Repe..ons%of%the%network

Solving"SMT"

Genera4on"

Figure 7.6: Execution times for cascaded buffered virtual channels.

The measurements in this section were performed using one core on a 1.8 GHz
Intel Core i7-2677M3, using Z3 as the SMT solver. A network with 25 repetitions
containing 279 queues (25 repetitions of 11 queues - for of which are at sinks
or sources, plus four queues for the unattached sinks and sources) is analysed
in 25 seconds. When investigating a network with 26 repetitions, we aborted
the execution after 10 minutes. We consider 280 queues to be a rough limit for
networks with medium complexity, at which the current SMT solvers tend to fail
for solving the instances.

3Using one core increases the base frequency to 2.9GHz.

82

7.4 Extracting xMAS from RTL

7.4 Extracting xMAS from RTL

The extraction of xMAS has been fully implemented in Voi. The switch -xgraph
generates a dot file for graphviz. The switch -forest generates an ASCII rep-
resentation of the forest before orienting it. The forest can be generated without
looking at the ‘ready’ properties, so -forest does not take those into account.
CPU speed measurements on this section are performed on four 1.7 GHz I7-4650U
core processors. The SAT solver uses all four cores, the rest of the algorithm is
sequential.

We used a Haskell interface to minisat built by Niklas Eén [Eén and Sörens-
son, 2004]. This SAT solver takes conjunctive normal forms as input (instead of
Boolean formulas), which requires an additional translation step. The solver runs
in Haskell’s IO-monad and allows incremental solving. This allows us to translate
the entire circuit to a single SAT instance, and then query it for its properties.

In our designs, we could automatically rewrite 4-valued logic to 2-valued logic.
In interconnects that use busses, this may not be the case. Our tool Voi handles 4-
valued logic, but this feature has not been thoroughly tested, since the considered
designs do not rely on it.

Figure 7.2 shows a network of a two entry scoreboard with two phases. The
top half models tokens preventing an overflow of packets entering the bottom
half. The switch at the bottom left is configured such that tokens from B1 are
used to route data to B5, while tokens from B2 are used in packets for B10. To
illustrate our approach, we applied our method to Verilog generated from this
xMAS model. Our method only uses a Verilog description in the form of the ports
of each queue module. The output of our method is a graph visualised using the
graphvis program ‘dot’ [Ellson et al., 2002]. To generate the graph, the call to Voi
becomes:

time voi xmas_annotations scoreboard.v -xgraph -m mod | dot
-Tpdf -oscoreboard.pdf

This generation took 0.8 seconds, of which 0.15 seconds are due to Voi.
Figure 7.7 shows the structure extracted by our method from the scoreboard

example Figure 7.2. Properties used at sources and sinks are labeled with P and
a number. While our method largely reconstructed the original design, a few
subtle differences arise. For instance, B2 is connected to B10 in the extracted
model, while B2 is connected to B5 and B10 in the original xMAS model. Because
the switch is configured properly, tokens from B2 are actually routed to B10. Our
extraction method makes this fact visible. Also, our method focuses on the control
logic. The ‘ready’ signal of data coming from the input in the top left corner is
hidden in P1.

Figure 7.8 shows the result for buffered virtual channels. Its generation took
0.76 seconds, of which 0.08 seconds are due to Voi.

7.4.1 Scalability

To test scalability, we again use several copies of the buffered virtual channels.
The number of calls to the SAT solver is quadratic in the number of ports. The

83

7 Experimental results

��

�
���

��

�
���

��

�
���

��

�
���

��

�
���

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

��

��

��

��

��

��

��

Figure 7.7: Two entry scoreboard extraction result

84

7.4 Extracting xMAS from RTL

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
��

��

�
������

��

��

��

��

��

��

Figure 7.8: Buffered virtual channel extraction result

85

7 Experimental results

size of the SAT problem grows with the size of the network, but the difficulty does
not. Estimating a linear growth in SAT solver runtime, we expect to see a O(n3)
complexity, where n is the number of repetitions of the buffered virtual channels.
Measuring the runtime confirms this. Figure 7.9 shows the results for 1 to 10
repetitions.

0	

10	

20	

30	

40	

50	

60	

70	

0	 2	 4	 6	 8	 10	 12	

Network size (# of repetitions)

R
un

tim
e

(s
ec

on
ds

)

Figure 7.9: Extracting xMAS from Verilog. Runtime for repetitions of Figure 7.1

The runtime may be improved in two orthogonal ways. One way, is to build a
cone of influence, or use a SAT solver that does so, such that as the network grows,
the size of the SAT problem does not. This would give us an O(n2) runtime on
average, for repetitions of the virtual channel. Another way to reduce the runtime,
is to use the module structure in the Verilog code. This may not only reduce the
runtime, but also opens up the possibility to create a similar module structure in
the extracted network.

7.4.2 Validation of the resulting networks

Obtaining an xMAS model may provide some insight by itself, but the main reason
to want an abstraction, is to be able to perform verification of the design using
high level techniques. The method for finding inductive invariants (such as [Chat-
terjee and Kishinevsky, 2012]) is directly applicable to our generated graph. Such
methods do not require specific xMAS properties like fairness of merges or the
restriction that switching functions only depend on message data. Other tech-
niques, like deadlock detection [Verbeek and Schmaltz, 2011b], do require such
properties. In order to be able to use these techniques, we show that it is feasible
to verify fairness properties using standard methods. The approach is as follows:
we write a nuXmv [Cavada et al., 2014] description of the remaining flops. We
hide the queue implementations (treat them as black boxes, leaving their outputs
as undefined variables) in order to reduce the state space. We then formulate the
property for a merge A〈x, y, t〉 as an LTL sentence expressing that the merge is
fair. That is: if y gets turns (so not G¬yt), and if x requests turns (xr), then x
should get turns as well (xt). We want the same to hold when we interchange x

86

7.5 Conclusions

and y.
G F ((xr → xt) ∨G¬yt) ∧G F ((yr → yt) ∨G¬xt)

The left side of that expression says that eventually x gets a transfer if it is ready,
given that y is not blocking. The right side says the same for y. We check both
sides of the expression separately using the model checker nuXmv. The runtime
for nuXmv was well under a second. All merges provably satisfy the equation
above, which does not come as a real surprise, as they also satisfy this property
in the original design.

7.5 Conclusions

We have seen the algorithms of the previous chapters applied to several examples.
The scalability of our algorithms show that generating invariants is relatively fast,
deadlock verification has a larger and less predictable runtime, and extracting
xMAS is the slowest of these methods. Arguably, the algorithms are ordered in
how useful they are for verification. As such, the most useful method is the least
scalable.

Ideas on how to improve the scalability are mentioned in the next chapter.
This chapter also includes some small examples of where our methods fail.

87

7 Experimental results

88

Chapter 8
Discussion and conclusions

In the previous chapters, we have shown how circuits that describe communication
fabrics can be analysed. Specifically, we have shown how to derive invariants that
will aid in the analysis of networks. We have also shown that it is possible to
prove deadlock freedom of networks directly, without suffering from the same type
of state-space explosion problems to which model checkers are typically prone.
Our approach, however, does have its limitations. These limitations fall into three
categories:

1. Limitations concerning the performance or scalability of our approach. While
we do not suffer from state-space explosion problems the way model check-
ers do, we do suffer from the fact that other parts of the algorithm have
exponential growth with respect to the input.

2. Limitations concerning the analytical power of our approach. It is possible to
prove or disprove a range properties. For a specific property, our approach
is either able to prove it on some designs for which it holds (we refer to
this as soundness), or to disprove it on some designs for which it does not
(completeness).

3. Limitations concerning the feedback of our approach. It is nice to have
something which can prove properties based on assumptions of certain net-
works. However, it is arguably even more important that whoever uses the
approach, understands what these properties mean, and how to specify his
assumptions.

8.1 Performance

Performance limitations are sometimes seen as limitations of least importance.
One might say that if an algorithm is too slow for a certain purpose, we can either
decide to parallelize it, use more or faster hardware, or precompute certain critical
operations in memory. This section is not about the performance limitations to
which such logic applies.

89

8 Discussion and conclusions

Certain designs suffer from performance bottlenecks that grow exponentially
as certain features of that design grow linearly. These are bottlenecks that deserve
the name ‘limitation’. In such cases, algorithmic improvements will be necessary.

In verification of hardware, we always deal with code in languages that can
express PSPACE-complete problems (and often even harder ones). Even after
disregarding a lot of timing considerations, as we did in this work, we are left
with NP-complete problems. This means that there will probably never be an
algorithm with a polynomial runtime on a conventional computer to treat these
problems. As a consequence, every available algorithm will at some point become
prohibitively slow: as hardware grows in both speed and complexity, the increased
complexity will always outweigh the increased speed in the long run. However, this
does not mean that we cannot keep up with the growth of hardware. In fact, SAT
and SMT solvers, integer programming solvers, and model checkers have shown
exponential performance increases over the last decades as well. Their speedup
has been significant.

It has in fact been significant enough to keep up with hardware: using todays
algorithms on hardware from the 90’s would be faster on most benchmarks than
using algorithms from the 90’s on todays hardware. But the speedup is more
profound than that: in 1990 the number of transistors per microprocessor was
about a million, it is roughly five thousand times higher these days (The Xbox
One and the 61-core Xeon Phi, from 2013 and 2012 both report having 5 billion
transistors).

We can be optimistic: algorithmic improvements for verification may be able
to keep up with the growth of hardware. To achieve this, we can improve our
algorithms using the same effort that improved SAT solvers over the last decades.
Alternatively and more realistically, we can use SAT solvers for the bottlenecks
and benefit from future improvements in their performance.

8.1.1 Limitations

The algorithm for expressing a Boolean value as an integer element – presented
as a rewrite system in Section 4.1.4 – is an example of an exponential algorithm.
As the logic depth is bounded in most hardware, this may not pose a problem.
However, it is probably the most likely place to find performance benefits. Also,
during the design phase, a design might be so different to the final hardware, that
its logic depth is still too large, essentially growing with the size of the design.

To illustrate how the exponential growth may be a problem, we give an example
with two switches. To determine whether the ‘type’ of a packet was a request or
not, a switch would check if some field is equal to 0 (for request). Another switch
would check if that field was equal to 1 (for response). These tests could of course
be implemented by a single gate: both switches would have a small logic depth of
just 1.

In a practical occurrence of this issue, however, the ‘type’-field was modeled
as an 8-bit integer. A bit-by-bit comparison between the value ‘0’ and an 8-bit
integer turned out to require a logic depth of 7. Combining the switch that checked
for ‘1’ with the switch that checked for ‘0’ gave a logic depth of 14. While the
final version of the two switches would probably have a low logic depth, it had a

90

8.1 Performance

much larger one during the design phase. This can make our analysis prohibitively
memory consuming.

Another place where performance problems might arise, is when we propagate
properties through queues. The integer representation of the output type is more
or less ‘copied’ to the input of that queue. The complexity, expressed as the
number of terms used to describe the type as an integer, is the product of the two.

We give another example for this. Suppose we have a large network, in which
we consider two queues, q1 and q2. The output of q1 is connected to a switch,
which sends packets in which the first bit is high to q2, and other packets to
some other part of the network. The output of q2 is connected to a switch as well,
which looks at the last bit. Depending on the last bit, that switch sends packets to
different parts of the network. For our analysis technique, we need to distinguish
packets in q1 based on the value of their first bit. Since some of these packets
enter q2, however, we also need to distinguish packets in q1 based on their last
bit. This means that for q1, we will distinguish four types of packets. This shows
that the number of packets that are to be distinguished may double every time we
add a queue and a switch, another example of exponential growth in the memory
requirements.

Such examples also arise in practice: in the case of a mesh, for instance, all
of the destination address bits eventually end up being relevant in certain queues.
This means that if there are 16 such bits, there will be 216 packet types to consider.
Of course, a mesh that uses 16 address bits might very well be a mesh with 216

nodes, in which case this blowup is acceptable. Alternatively, a one-hot encoding
could be used for the destination. This means that of the 16 bits, only one is high,
which allows us to build faster switches. In such a case, a 16 bits address space
would stand for only 16 nodes. Unfortunately, this would result in the same 216

blowup, which in this case is not acceptable.

8.1.2 Possible improvements

There are several ways to improve performance. One way to improve the analysis,
is to use more of the information from the underlying module structure. If a module
is instantiated several times, the translation of one instantiation should still be
very similar to the others. Currently, there hardly is any sharing between these
translations. Some networks can have many identical parts. In a ring network, for
instance, a packet could get a destination as the number of hops it needs to take:
at each hop its ‘destination’ is decreased by one, and when it is zero, the packet
leaves the network. Such networks can benefit directly from sharing translations.
Our expectation is that this will speed up the analysis, and maybe even improve
the quality of its results.

Other networks will have similar, but non-identical parts. For instance, a
network in which the destination remains constant, and the packet leaves the
network if its destination header matches the location of that specific node. In
such cases, sharing translations would be more difficult.

Another way to improve performance, is by sharing more DAG nodes. Syn-
tactically equal terms are identified in the underlying DAG. We can improve on
this, by identifying all equivalent terms. This idea has already been applied to

91

8 Discussion and conclusions

AIGs in the model checker ABC [Mishchenko et al., 2005], where it has shown a
great performance benefit. Being able to quickly test two nodes for equivalence
can potentially improve our algorithms in several ways. The most obvious place
where this could be used, is in the extraction of xMAS procedure. Other analysis
procedures might also benefit, as a smaller DAG implies that fewer nodes need to
be translated.

Similarly, we can improve the procedures in which invariants are required. In
the translation from DAGs to a ring representation, every term is expanded until
it is expressed in terms of free variables. As a consequence, two identical terms
need to be expanded first, and then compared, even if they come from the same
node in the original DAG. It should be possible to limit the number of terms that
need expanding. This would overcome a very concrete bottleneck that arises in
practice: To decide whether a certain packet header is equal to 0, all bits from
the header need to be 0. If the expression to decide whether a packet is equal
to 0 or not is not expanded, it can be represented as one term. The underlying
logic depth for that comparison would then be irrelevant. This would decrease the
memory usage, and boost performance.

Even better would be to reduce the need to expand terms. To decide whether or
not a term needs to be expanded, we could look at its cone of influence. By using a
SAT solver to decide whether two expressions can be true and false independently,
we can even avoid having to expand terms altogether. This would give an algorithm
that relies heavily on a SAT solver. We expect this to give a performance benefit.
In general, an attempt to speed up our approaches by making better use of existing
tools would be a new line of research in itself.

While building our implementation, we could often choose between implement-
ing a new feature, or speeding up the existing ones. Unless the performance of the
implementation was prohibitively slow, we decided on the former. Implementing
features that increase the class of designs that can be analysed is often the most
exciting, and the most rewarding choice. As a result, we believe that there is still
a lot of low hanging fruit to improve the performance.

In contrast to improving the performance, we can also imagine many ideas that
would add to the strength of our analysis. Adding these may degrade the perfor-
mance, but adds to the analytical power of our methods. This will be discussed
in the next section.

8.2 Analytical power

We can prove deadlock freedom of several designs. For certain designs for which
our implementation fails to prove deadlock freedom, we are able to indicate how
to change the implementation. Unfortunately, none of these techniques will be
able to prove deadlock freedom for all designs. The fundamental reason is that
deciding whether arbitrary RTL is deadlock-free, is a PSPACE-hard problem. We
have tried to abstract away from issues that make it PSPACE-hard, and obtained
performance benefits from it.

Note that we do not claim that verification of hardware is PSPACE-complete.
This depends on how the hardware is described exactly, and the property being
checked. Most, if not all, hardware descriptions that translate into an arbitrary

92

8.2 Analytical power

1

2

Figure 8.1: Two parallel queues.

[0]

others

1

2

Figure 8.2: Two parallel queues and one switch.

number of gates, make the problem harder. For example, the reachability problem
on hardware described with word-level constructions is shown to be EXPSPACE-
complete [Kovásznai et al., 2014].

There is a trivial way to make all our analysis techniques sound and complete
for a certain problem. We can simply make a call to a model checker in those
cases where our techniques would normally be unsure. In such a case, we do not
expect the model checker to be very efficient.

This would mean that we use the efficient algorithms for the cases we considered
‘solvable’ so far, but resort to a prohibitively slow analysis for the cases we believe
to be corner cases. This would only give a false representation of our analysis:
experimental results would give good results as the slowest parts of the analysis
are never run.

So far, we did not connect any model checkers to our analysis: a corner case
network will not result in a timeout, but simply in an answer which is probably
unsatisfactory to the user, such as a candidate counterexample to liveness in a live
network.

This section will look at examples for which our analysis techniques do not
give the desired result, for which we could not find a fundamental reason to ‘miss’
these cases. Future techniques may be able to efficiently solve these cases.

8.2.1 Limitations

We proved that any linear invariant that holds inductively, will be found by our
analysis technique of Chapter 4. This assumes the availability of variables over

93

8 Discussion and conclusions

[0]

others

[0]

others

2

1

Figure 8.3: Two parallel queues and two switches.

which the invariants are calculated, and full independence of these variables. In
some examples, neither is the case. As a result, too many false deadlocks may be
found in the analysis of Chapter 5.

As an example of a network in which not all variables are available, see Fig-
ure 8.1. The obvious invariant – which is found – is that the number of packets
in the first queue, say q1, is equal to q2, the number of packets in the second.
Additionally, the packets entering and leaving the first queue are the same packets
as those entering and leaving the second one. As a result, the number of packets
of type 0 in the first queue, say q1[0], is equal to those in the second, say q2[0].
This second invariant is not found for two reasons. The first reason is that the
variables q1[0] and q2[0] are never created, because nothing in this circuit depends
on the type of either of the packets. This is what we mean with the availability
of variables: they are never a candidate variable, so they do not appear in any
invariants.

We can slightly change the circuit such that the variables q1[0] and q2[0] do
become available, see Figure 8.2. This figure shows two parallel queues between a
fork and a join, with a switch after the join. The join just concatenates the data of
both packets, and the switch will route packets upwards if both of the concatenated
packets are of type 0. An extra queue after the last join makes sure that the type
of packets in q1 and q2 becomes relevant. Unfortunately, the invariant q1[0] = q2[0]
is still not found. This happens because events in which packets of type 0 leave
the two queues cannot happen independently, but our analysis assumes this can.
The invariant q1[0] = q2[0] relies on this. If we could somehow get the packets
from these queues out-of-order, the invariant q1[0] = q2[0] would not hold.

Even if the right invariants are found, it may still be impossible to prove liveness
of the circuit. Figure 8.3 is an example of a circuit which, given that all sinks are
fair, has no local deadlocks. It has two queues in parallel, each followed by a
switch that routes packets of type 0 upwards, and others down. Packets are then
synchronised, because of this join it becomes obvious that in the event in which
a packets of type 0 leaves one queue, a packet will always leave the other queue
simultaneously. As a result, q1[0] and q2[0] are created, and the required invariant
q1[0] = q2[0] will be found. Unfortunately, it is not immediate that the packet at
the head of the first queue will always have the same type as the packet at the
head of the second queue. As a result, we find a deadlock configuration which

94

8.3 Feedback limitations

would never occur, in which each queue holds two packets of a different type, and
in a different order.

A final limitation to our method lies in that we assume a single clock for all
components. In practice, networks may have multiple clocks. In such cases, we
would not be able to describe queues in terms of their in- and output transfers.
This means that we cannot use our techniques to perform any analysis on such
circuits.

8.2.2 Possible improvements

Accounting for multiple clock domains is most likely the easiest limitation to lift.
Clock domains are usually sufficiently isolated from one another: input and out-
put events, or the averages as in Chapter 5, from different clock domains can be
assumed to be incomparable.

Accounting for the order between packets may be very challenging. However,
the relevant information may be a high level property that is expressible in terms
of the wires in the RTL. In the example of Figure 8.3, we could add the information
that the packet at the output of the queues is always the same. This extra piece
of information would even suffice to get the additional invariant that is relevant
in Figure 8.2. Finding a way to express such a property, or perhaps even derive
it, would cause our methods to be applicable to a greater class of circuits.

One way to arrive at the relevant high level properties, would be to develop
a tight integration with model checkers that use property directed reachability or
IC3 [Bradley, 2011]. The idea of this model checking technique is that it guesses
invariants based on whether certain states can be reached or not. These invari-
ants are typically of a very different nature than the invariants we find: they are
typically Boolean formulas which are one-step inductive. The invariants we find
are linear formulas. It is already known that adding the linear invariants which we
can derive, will help with the efficiency in model checkers. We believe that using
the Boolean invariants found by the model checkers, will help find more linear
invariants. Seeking improvement in this direction would be an interesting line of
future research.

Finally, we could search for polynomial invariants, instead of linear invariants.
The procedure we use to find linear invariants uses a certain normal form to
find them: the Jordan normal form. For polynomials, such a normal form exists
as well, called the Gröbner basis. We do not know whether this would yield
stronger invariants, or more efficient techniques to find them. These techniques
are scalable enough to verify large arithmetic circuits, as shown by Farahmandi and
Alizadeh [Farahmandi and Alizadeh, 2015]. So far, we have not found non-linear
polynomial invariants, so we do not expect direct improvements in the analysis
of NoCs. Using these techniques could, however, be a first step to make our
techniques applicable in other domains.

8.3 Feedback limitations

We can say that a method is ‘practical’ as soon as someone can apply a method
to his or her own real world examples. So far, we have been the only people using

95

8 Discussion and conclusions

our tool, Voi. Consequently, we assumed that those using it, would know what
they were doing. Even though we kept the required interaction with our tool to
a bare minimum, mistakes can be made along the way. This section can be read
as a warning and disclaimer section, but ideally any tool would alert users on all
errors they might make. As such, any error that can be made accidentally, should
be regarded as a limitation to our tool.

Some of these issues can be resolved through better feedback to the user. Other
issues require extra checks, which would be more involved but also more interest-
ing.

8.3.1 Limitations

In terms of user feedback, the biggest issue is with our approach in Chapter 5.
Here, an SMT solver will say SAT or UNSAT, from which we know that a NoC
potentially has a deadlock, or that it is deadlock-free, respectively. Both cases turn
out to be unsatisfactory: UNSAT can be an unsatisfactory answer, since it provides
no additional information. Although this would prove absence of deadlocks, it does
not explain why there is no deadlock. Some of these reasons would indicate that
errors may still occur in the network: the specification of queues might be wrong.
Packets may be misrouted. Packets may be dropped before they reached their
destination. In other words: deadlock-free designs may still contain errors. In
these cases, receiving ‘UNSAT’ is unsatisfactory.

If the NoC potentially has a deadlock, our solver will return SAT, and we
would usually like to know more about it. Questions would be: how could this
deadlock arise, and what does it look like? Given that all queues in the NoC are
identified, a deadlock could be visualised by showing the packets inside queues.
Similarly, we can imagine that a trace could show where the packets are over time.
Unfortunately, reconstructing such a trace from the model is not trivial.

Another problem in the ‘SAT’ case, is that a potential deadlock does not guar-
antee that there actually is a deadlock. To investigate the root of the problem,
assumptions about the design may need to be made in order to rule out any dead-
locks. Such assumptions may or may not hold, and it could be helpful to have an
overview of these assumptions, such that they can be checked later. One of the
assumptions which is made in any case, is that all black box modules match their
pre-conditions. In other words: the specification of queues might be wrong. How-
ever, in investigating a design, whether it is faulty or not, it should be possible to
make additional assumptions, and check them later. Currently, it is not possible
to add assumptions, nor is it possible to check any of the assumptions made by
default.

Finally, other tools and verification procedures might require the result of our
analysis. If a design is proved correct in, say, a theorem prover, we could add
the deadlock freedom (under the relevant assumptions), to it as an axiom. This
would allow for errors to arise in many places: the theorem stated in the theorem
prover might differ from the one we actually proved, the assumptions we made
while implementing our algorithms may not hold, additional assumptions may be
forgotten when adding the theorem to the prover, we might have made errors in the
implementation of our analysis, and the design under investigation in our method

96

8.3 Feedback limitations

may be different from the design under investigation in the theorem prover. If the
design changes during its verification – which is likely – then there is a big risk
of accidentally using a deadlock freedom proof of one design, while assuming that
the proof concerns another.

8.3.2 Possible improvements

Ideally, our tools would be a part of larger frameworks. Depending on the lim-
itation mentioned, a different framework would apply. If we want to visualise a
deadlock, a design automation tool in which the user can jump between visuali-
sations of the network, wire values and Verilog code, would be ideal. If we want
to investigate how a deadlock arose, integration with model checking techniques
might be helpful. Finally, if we want to be able to depend on the results of our
tool, while combining them with other results, integration into a theorem prover
would be ideal. These three frameworks: design automation tools, model checkers,
and theorem provers, all exist presently. We have not integrated our tools with
either of these.

To integrate with a design automation tool, we would need to build the visu-
alisation of the deadlocks. There are several design automation tools, and each
requires a different means of integration. We do not have a clear understanding of
the work required to carry out such integration.

For a model checker, there are a few open source candidates, the most im-
portant one being ABC [Synthesis and Group, 2015], as it has a strong focus on
hardware. Another choice would be nuXmv [Cavada et al., 2014], which we used
in Chapter 6 to verify properties about the extracted network. The use of these
would require us to export and import properties through an interface for model
checkers. This would require an acceptable amount of work. To help the model
checker find a trace in an acceptable amount of time, would require more research.
The information from the SAT instance should be able to help direct its search.

Integrating our method with a theorem prover could be done in several ways.
First, we could define our tool Voi, or a version thereof, in a theorem prover,
and prove their correctness. This would allow us to run the algorithms in that
theorem prover. To do so would require a very large amount of work, and degrade
the performance and flexibility of Voi. Another way would be to let Voi emit
certificates, which should be checkable by the theorem prover in a reasonable
amount of time. Checking such a certificate should cause the theorem prover to
accept the correctness of a network as a theorem. This would also require some
amount of future research, but largely preserve the performance and flexibility of
Voi. Either way, all assumptions will have to be made explicit in order for the
theorem prover to accept the theorem. Another way to integrate our method with
a theorem prover, would be to allow our correctness proofs to be exported as an
axiom. This would be the easiest to achieve, but also the most dangerous: any
assumption we forget to export would strengthen the axiom, in which case it no
longer holds.

The feedback limitations illustrate that Voi has been developed as a proof of
concept.

97

8 Discussion and conclusions

8.4 Conclusions

We verify properties about interconnects from their low level implementation. In-
stead of requiring high level knowledge about the design, we only use a specification
of the interface of queues in the design.

The gate level implementation of a NoC design can be translated to combi-
national logic. We can automatically derive linear inductive invariants from the
implementation and a specification of the interfaces of queues and registers. Sim-
ilarly, we can use the same information as input to an algorithm that formulates
a Satisfiability Modulo Theory (SMT) problem that has a solution if the NoC has
a reachable local deadlock. For many NoCs, the SMT problem turns out not to
have an answer, which proves that these NoCs are live. To reproduce an abstract-
level description from the implementation, we give a procedure that constructs
a tree of synchronising and arbitrating elements from the interface descriptions.
After orienting the elements in the tree, we obtain an xMAS-like network that is
transfer equivalent to the implementation. Most of the proposed algorithms are
implemented as part of a tool called Voi.

98

Appendix A
Verification of Interconnects: an

Implementation in Haskell

This chapter explains how reasoning about circuits is implemented in Haskell. It
is intended for who is interested in some technical details.

The Haskell implementation provides a tool that allows for different verification
techniques. We have called this tool ‘Voi’. The tool is illustrated in Figure A.1.
The dotted rectangles indicate in which file a certain step can be found primar-
ily. Arrows indicate the flow of information and rounded rectangles are data-
structures. Note that the boxes ‘Liveness verification’ and ‘BooleanXZ to SMT’
are only drawn to indicate where these parts would fit in the tool. As indicated
in Chapter 4, they are not a part of Voi yet.

After processing a Verilog file, a directed acyclic graph, or DAG, is constructed
to describe each module. The main code for this can be found in ‘Processor.hs’.
These modules are simplified and combined; the resulting module is described as
a DAG again, as indicated in the figure by the rounded rectangle called ‘Top level
module’. All verification techniques presented in this thesis can be integrated into
our tool by creating an appropriate instance of a BooleanXZ class. This class
provides a uniform way to handle four-valued logic. There is a function to translate
the DAG structure into an arbitrary instance of the BooleanXZ class.

A verification technique can be seen as something which performs these steps:

1. Parse a Verilog module into a DAG.

2. For all the instances in that module: substitute their simplified DAGs in a
manner similar to the simplification step.

3. Simplify the module such that every wire has its symbolic fixed-point value.

4. Translate the symbolic representation into another one, through the interface
of the BooleanXZ class.

5. Perform the analysis on the representation obtained in this way.

Most of the experimentation happens in the last two steps, which are extremely
flexible.

99

A Verification of Interconnects: an Implementation in Haskell

Processor.hs

Boolean.hs

Verilog.vVerilog.v
 Module 1
 Module 2
 Module 3

Translate
to DAG

Module 1
Module 2

Module

(as a
DAG)

simplify

substitute
module

BooleanXZ
to Sum of
products

simplify

substitute
module

simplify

Top level
module

Module
annotations

BooleanXZ
to SMT

Invariants Liveness
verification

Extraction
of xMAS

Black-box
annotations

moduleAnalysis.hs

calc.hs

Processor.hs

BooleanXZ
to SATTranslate

to DAG

Figure A.1: Voi tool as implemented in Haskell

100

A.1 Example input: a design in Verilog

We will give a general introduction about DAGs in Section A.2. We then turn
to the specifics of our BooleanXZ class, and show that we can make a symbolic
instance for it using DAGs in Section A.3.1. This symbolic representation is used
for instantiating and simplifying modules. The way modules are simplified is
illustrated in Section A.3.2. We end this chapter with an abstract representation
that can be used for Booleans, namely that of a ring, in Section A.4.2. This will
illustrate how one of the analysis techniques can be used in our tool.

A.1 Example input: a design in Verilog

There are clear benefits of using four-valued logic. Circuits that make effective
use of un-driven wires may require less on-chip area and use less power, when
compared to designs that do not use such wires. We believe that the main reason
that four-valued logic is scarce in practice, is that formal verification of circuits
using it is not properly supported. Nevertheless, such circuits do occur, especially
at the boundary of chips, where io-ports are common.

We constructed a small design, to serve as an example about what details need
to be supported for the analysis of circuits. It is inspired by a bus structure, but it
adds a delay, repeating data in a certain direction. Such a repeater can be useful
for decreasing the logic depth of a circuit, thereby increasing clock speed. It could
also help to break long wires, to get a better signal to noise ratio. To repeat data,
registers are required to store it. Such registers can be expensive, so we will use
only one register per data bit. For simplicity, we only use a one bit wide data size
in our design, and indicate which part has to be repeated per bit.

For this section, we use an example that may be useful in communication
fabrics. We call our module TwoWayRepeater, and show it in Figure A.2. The
gate-level verilog code for this module is:

module TwoWayRepeater (clock, reset, fromLeft, fromRight,
enabled, dataLeft, dataRight);

input clock,reset; // for the register
input fromLeft; // direction of data flow
input fromRight; // don’t write data when False !
input enabled,dataLeft,dataRight;
wire writeData,readData; // data from/to register
wire outData; // output of register
wire wasEnabled,wasntEnabled,leftToRt,rightToLt;

nor(leftToRt,rightToLt,fromLeft);
nor(rightToLt,leftToRt,fromRight);
reg_module_no_reset data_register (.drive(writeData), .clk

(clock), .q(outData));
// for each bit of data, the following has to be repeated
reg_module was_enabled_reg (.drive(enabled), .clk(clock),

.set(1’b0), .reset(reset), .q(wasEnabled), .notQ(
wasntEnabled));

// using both a pmos and an nmos increases reliability

101

A Verification of Interconnects: an Implementation in Haskell

D

Clk

Q

Q

D

Clk

Q

Q

R

clock

clock

reset

dataLeft dataRight

enabled

writeData

readData

fromLeft fromRight

NOR NOR

c

c

c

c

c

rightToLt

leftToRt

Figure A.2: A two way repeater

102

A.1 Example input: a design in Verilog

// cmos is the gate-name of these two transistors:
cmos(readData , outData , wasEnabled, wasntEnabled);
cmos(writeData, dataRight, rightToLt, fromLeft);
cmos(writeData, dataLeft , leftToRt , fromRight);
cmos(dataRight, readData , leftToRt , fromRight);
cmos(dataLeft , readData , rightToLt, fromLeft);
endmodule

The design has two task: The first task is to take data from ‘left’ to ‘right’.
The wire dataLeft is driven (with data), and the wire fromLeft is set to
high (otherwise, it is kept low). In this case, leftToRt is high, the data is
put at writeData, and written to the register called data_register. Note
that we use a cmos gate to set the value of writeData. In hardware, this
gate connects dataLeft to writeData bi-directionally if fromRight is low,
and if leftToRt is high. This uses two transistors, one of them is a pmos,
which connects dataLeft to writeData if fromRight is low. If the data-signal
dataLeft is low, however, the pmos gate becomes resistive. This is undesired
analog behavior, that can cause the (analog) value of writeData to slightly differ
from the zero voltage supplied at dataLeft. The nmos transistor suffers from a
similar problem, but only when dataLeft is high. To solve this problem, we use
both transistors.

If enabled is high, the next clock tick will put that same data at readData,
which is connected to dataRight. The second task is to take data from ‘right’
to ‘left’, and it is similar to the former. Before changing directions, enabled has
to be low for one cycle. This allows the last data to be read.

In the case that the repeater is not used, fromLeft and fromRight are both
low, and dataLeft and dataRight are connected via the pmos transistors and
via both the writeData and readData wires. It is therefore important that
no data is written from the left while fromLeft is low, and no data is written
from the right while fromRight is low. Our design contains a cycle between
two wires (leftToRt and rightToLt). By adding that cycle, the design is
no longer combinational. The distinction between leftToRt and fromLeft
has the benefit of closing all cmos gates when data is written from left and right
simultaneously. Using one-input not gates instead of the nor gates would achieve
the same effect, use fewer transistors, and avoid creating cycles. The only reason
we add the cycle, is to show how we obtain an acyclic network for analysis. If
the inputs fromLeft and fromRight both are low, the wires leftToRt and
rightToLt retain their old values. For performing sound analysis, the value of
leftToRt and rightToLt can be over-approximated with the unknown value
X. We use this example because it illustrates that the circuit can be in a valid
state and still have an X value occur due to the sequential nature of the design.

The design uses ten transistors per data-bit, one (non-resettable) register per
data-bit, plus a fixed cost of twelve transistors and one additional register. Since
our parser does not handle Verilog parameters, we just give the implementation for
one bit of data. Our implementation parses most gates in the Verilog standard, but
we will just use transistor-level Verilog in our example. Even this simple transistor-
level Verilog is not supported in all tools. Specifically, some FPGA architectures
may not have support for them. The effect of internal tri-state buffers are said to

103

A Verification of Interconnects: an Implementation in Haskell

sometimes cause problems during simulation [Coffman, 1999].
We mentioned in the previous chapter that the Verilog standard assumes pmos

and nmos to be uni-directional (the output being the first argument). We make the
same assumption in our tool. There is quite a large collection of switch primitives
doing the same thing in Verilog: pmos, tranif0 and bufif0 (or nmos, tranif1
and bufif1 respectively) are described as doing the same thing. We propose the
following distinction:

tranif0. The designer intends bi-directionality: this should be synthesized
as a symmetric transistor. The code described in this work assumes bi-
directionality.

pmos. The designer intends uni-directionality, and guarantees this gate will be
used that way, even when synthesized as a symmetric transistor. The code
described in this work assumes uni-directionality, as if it were a bufif0 gate,
but future versions may give warnings or even fail with an error message when
this condition is not satisfied.

bufif0. The designer intends uni-directionality, but does not guarantee that a
symmetric transistor will behave that way. A synthesis tool should add an
extra buf gate if needed (or rather: assume it is needed, and optimize it
away if possible). In this view bufif0 does not model a single transistor.
Our tool therefore must assume uni-directionality: bi-directionality would
be wrong.

As such, we chose the pmos gates for our design (combined with their nmos
counterparts). We know the direction of information flow, but want full control
over the number of transistors used.

The example contains a lot of the Verilog that is considered ‘tricky’ to deal
with. Delays and wire-strengths, however, are not present in our example, since
our tools do not support these features.

A.2 On using DAGs in Haskell to represent for-
mulas

Before diving into the details of our Haskell implementation, it helps to get some
background into how a DAG can be implemented. This section will be just about
that, in the hope that it aids in understanding the implementation. If you feel
confident about DAGs and Haskell, this section can be skipped without affecting
the flow.

The code in this section forms a module called “MyDAGS”. Code meant as an
illustrative example not part of this module is shown without syntax highlighting.
Code that is part of that module is highlighted as follows:

{-# OPTIONS_GHC -Wall #-} -- show almost all warnings
{-# LANGUAGE RankNTypes, GeneralizedNewtypeDeriving

, RoleAnnotations #-}
module MyDAGS (main, WithDAGT, runDAG, freezeRefN, addNode,

104

A.2 On using DAGs in Haskell to represent formulas

showDAG, RefN, Node, DAG) where
import Control.Monad.State

This code begins our Haskell file with the necessary switches, imports and
exports. If the reader wishes to follow this section using Haskell, highlighted
portions can be copied into an editor, while the non-highlighted ones can be tried
from ghci.

A DAG is a set of nodes together with a function from each node to a list (or
set, depending on who defines “DAG”) of nodes, in such a way that the function
forms no cycles.

The “no cycle” requirement means that we will get an invariant which we need
to keep consistent. This involves keeping track of which DAG each node belongs
to. To do this, we add a type variable to each DAG, node and reference.

newtype DAG name = DAG [Node name] deriving Show
data Node name = Node String [RefN name] deriving Show
newtype RefN name = RefN Int deriving Show
-- add a node to the DAG, return reference to the new node
hiddenAddNode :: String -> [RefN n] -> DAG n

-> (RefN n, DAG n)
hiddenAddNode label refs (DAG nodes)
= (RefN (length nodes)

, DAG (nodes ++ [Node label refs])
)

The newtype statement is nearly synonymous1 with the data statement. In
the first statement, the first occurence of DAG is a type, and the second is a
constructor. The deriving Show is not necessary, but convenient for debugging,
and presenting the results below.

Note that the name part is not used anywhere, this is called a Phantom Type,
and it will help us keep track of nodes and which references belong to which DAGs.
If we refrain from using cyclic definitions, then “new” nodes can just be built from
“old” ones. Since the old ones point to existing nodes, the new nodes will point
backwards in the latest DAG:

(dagnode1,dag1) = hiddenAddNode "node1" [] (DAG [])
(dagnode2,dag2) = hiddenAddNode "node2" [dagnode1] dag1
-- dag2 == DAG [Node "node1" [],Node "node2" [RefN 0]]

Unfortunately, Haskell will just match “name” to any type we throw at it, so
we could also write:

(dagnode1,dag1) = hiddenAddNode "node1" [] (DAG [])
(dagnode2,dag2) = hiddenAddNode "node2" [dagnode1] (DAG [])
-- dag2 == DAG [Node "node2" [RefN 0]]
-- ouch! Node 0 refers to Node 0, a cycle!

1Their difference is in a property called strictness.

105

A Verification of Interconnects: an Implementation in Haskell

A.2.1 Use of RankNTypes

So here is the problem we wish to solve: "node2" points to itself, and we only
used hiddenAddNode and DAG []. The problem is that the second (DAG [])
refers to an old version of the DAG, while dagnode1 is a reference to a newer
version. As a solution, we pass the DAG implicitly, such that we are forced to use
the newest version all the time. Monads are great for this; we should be able to
write:

someDAG :: String
someDAG

= showDAG (do dagnode1 <- addNode "node1" []
_dagnode2 <- addNode "node2" [dagnode1]
return ())

The type of DAG n -> (DAG n, RefN n) is precisely the right type for
the state monad. The state monad also allows us to get to the internal state via
get and put, which is what we want to prevent. Therefore we create our own
monad instead, and use it for addNode:

newtype WithDAGT name a = WithDAG (State (DAG name) a)
deriving (Monad,Applicative,Functor)

addNode:: String->[RefN name]->WithDAGT name (RefN name)
addNode label refs

= WithDAG (state (hiddenAddNode label refs))

The deriving statement gives us the most reasonable instance for the Monad
class, which is by definition also an instance of Applicative and Functor
classes.

We have to supply an initial empty DAG somewhere, somehow. This is where
rankNTypes come in. We use them with exactly the purpose they were introduced
for in 1994 [Launchbury and Peyton Jones, 1994].

runDAG :: (forall name. WithDAGT name a) -> (a, DAG ())
runDAG (WithDAG st) = runState st (DAG [])

Function runDAG allows us to get all the values. The ‘name’ of the correspond-
ing DAG, however, is marked as (). This prevents us from ever using that DAG
inside runDAG ever again. This is because name does not match with (), which
is exactly what that forall was for. In fact, it even prevents us from getting
references out of the WithDAG:

someNode = fst (runDAG (addNode "node1" []))

gives the following type error:

Couldn’t match type ’a’ with ’RefN name’
because type variable ’name’ would escape its scope

There is an easy fix:

106

http://en.wikibooks.org/wiki/Haskell/Understanding_monads/State

A.2 On using DAGs in Haskell to represent formulas

freezeRefN :: RefN name -> WithDAGT name (RefN ())
freezeRefN (RefN i) = return (RefN i)
_someNode :: RefN () -- returns "RefN 0"
_someNode = fst (runDAG (do node<- addNode "node1" []

freezeRefN node))

Once again, we get a reference which we will never be able to use inside runDAG.
This means that runDAG, freezeRefN, and addNode are perfectly safe to ex-
port. We are able to write someDAG with them, since we can implement showDAG
with just runDAG:

showDAG :: (forall name. WithDAGT name a) -> String
showDAG wd = show (snd (runDAG wd))

main :: IO ()
main = putStrLn someDAG
-- output: DAG [Node "node1" [],Node "node2" [RefN 0]]

When using this as a library, we would export RefN, Node and DAG. These
are just type names, which is fine, as long as we do not export their constructors:
we want all construction inside WithDAGT. If we would export the constructors,
it would then be trivial to cast a RefN name to a RefN name2.

A.2.2 Does type safety protect against all cycles?

We showed that certain programs that would introduce cycles in a DAG, are no
longer allowed by Haskell’s type system. We can ask whether this is condition
is sufficient, that is: whether we can be certain that our DAGs are acyclic, inde-
pendent of the code. The answer is no: there are at least two ways to introduce
cycles. The “van-Laarhoven DAGs” provide a data-structure that does a better
job at preventing these cycles [Van Laarhoven, 2012], but their types make them
much harder to use in practice. We will show how to introduce cycles in DAGs,
so we can avoid using the tricks that introduce them.

The first way to introduce a cycle, is by using coerce from the module
Data.Coerce. This is a recent feature in Haskell, and we can prevent its use on
our DAGs. However, there is another version, called unsafeCoerce, which has
been available for longer and cannot be disabled that would yield the exact same
results. Unsafe coercions will always allow us to circumvent the type system, even
when we would use van-Laarhoven DAGs. This example shows how we can do
the same with coerce, and justifies that we disable this. With coerce, we can
change the data type of a node:

someNode :: forall name name2. WithDAGT name2 (RefN name)
someNode = do dagnode1 <- addNode "nodeX" []

return (coerce dagnode1)
freeNode :: forall name. (RefN name)
freeNode = fst (runDAG someNode)

107

A Verification of Interconnects: an Implementation in Haskell

We were only supposed to be able to get nodes of the type RefN (), such that
we could not re-use them, but our use of coerce changed this. We can use this to
create a ‘wrong’ DAG:

someDAG2 :: forall name. WithDAGT name ()
someDAG2 = do _dagnode <- addNode "node1" [freeNode]

return ()

Another way to introduce a cycle, is to use Haskell’s lazy evaluation strategy.
A program which ‘clearly loops’ in some languages, might terminate in Haskell.
The textbook-example being take 5 [0..], which produces a list with numbers
from 0 to 4 in finite time, even though the argument [0..] cannot be fully
computed. Here is how we can use that to introduce a cycle:

someDAG3 :: forall name. WithDAGT name ()
someDAG3 = do build

return ()
where

build = do builtNode <- build
dagnode <- addNode "node1" [builtNode]
return dagnode

In this case, the program loops on builtNode <- build. It does not ever
produce the erroneous node, which – considering our objective to prevent it –
is fortunate. We would have to change the implementation of WithDAGT and
its Monad instance, to make someDAG3 productive. The point of this example,
however, is to show that the type system does not prevent us from writing such
programs, even if the runtime system does.

Nevertheless, we found the type restrictions sufficiently strong. The counterex-
amples we attempted to produce here are not programs we expect to accidentally
write in practice: we can disable ‘coerce’ and avoid ‘unsafeCoerce’. Additionally,
it is desirable and natural to write terminating programs, so our second example
can be avoided as well.

A.3 Representations of four-valued Booleans

This section will present portions of Haskell code that are excerpts from our Voi
tool. For brevity and readability, some parts of the code are not documented in
this thesis. The parts that are shown were selected to illustrate how different
circuit analysis techniques can be combined.

We separate the use and the implementation of Boolean formulas through a
class. In the previous section, we saw how addNode should be used within a
Monad. For that reason, our class Boolean has functions of that form:

class (Monad m, Applicative m) => Boolean m boolean where
fromBool :: Bool -> m boolean
andC,orC,eqC,impC,notImpC,xorC
:: boolean -> boolean -> m boolean

108

A.3 Representations of four-valued Booleans

iteC :: boolean -> boolean -> boolean -> m boolean
notC :: boolean -> m boolean

This class basically contains all the two-valued logic gates we encountered, with
some extra functions which were useful in some simplification procedures. Note
that the class could be much smaller: just iteC and fromBool are sufficient
to define all of the other functions. Although this is not shown here, we provide
default function implementations (which can be overwritten when desired) to al-
leviate the burden of defining these. Note that this class can be used for Boolean
functions, but also for the four-valued logic gates used in circuits. To handle
circuits, some of the four-valued gates are missing. They are provided through
separate class, called BooleanXZ:

class (Boolean m boolean) => BooleanXZ m boolean where
gbufC, combineC :: boolean -> boolean -> m boolean
bufC :: boolean -> m boolean
combineListC :: [boolean] -> m boolean
combineListC [] = zC
combineListC [a] = return a
combineListC (h:lst) = foldrM combineC h lst
xC, zC :: m boolean

This class provides the gate ‘buf’ (a gate to direct the flow of information),
its gated version ‘gbuf’ (when its first argument is true, it acts as ‘buf’), and the
operation required to combine wire values: combineC.

A.3.1 Symbolic instance

There is a literal translation from the Boolean and BooleanXZ classes, to a
data structure, but we do some grouping according to how the operators can
be treated. Instead of creating a separate constructor for each Monoid operation
(AND, OR, etcetera), we create one constructor MSymbolic, which gets the relevant
operator as its argument of type MOperator. Similarly, none-monoid operations
are grouped under the constructor Symbolic, and unary operations are grouped
as Unary. The if-then-else operation is the only ternary operation, so it is treated
separately. While X has its own constructor, the monoid operator to connect wires,
called · in Chapter 3, can be used to represent Z, as MSymbolic CONNECT [].

data Symbolic a
= Symbol ScopedWireName
| Symbolic Operator a a
| MSymbolic MOperator [a]
| Unary UnaryOperator a
| ITE a a a
| X
deriving (Foldable, Functor, Traversable, Show, Eq, Ord)

The nodes in our DAG will be of type Symbolic Int. The Int is kept
parametric here, which can help prevent us from mixing up different references

109

A Verification of Interconnects: an Implementation in Haskell

in certain functions. Since Symbolic is not exported, we do not need to add
a phantom type for it. References will be called WireReference, and they do
have a phantom type. The ScopedWireName consists of the name of a wire, a
list of instances to indicate its scope, and an integer as its hash for faster sorting.

data ScopedWireName = ScopedWN Int [ByteString] ByteString
deriving (Show, Ord, Eq)

newtype WireReference a = WireRef{runWireRef::Int}
type DAG = Sequence.Seq (Symbolic Int)
newtype WithDAG btype a
= WD (State DAG a) deriving (Monad, Applicative, Functor)

We make wire references an instance of Boolean and BooleanXZ. The main
helper function is newItem, which adds a node to the DAG and returns its refer-
ence. This is largely trivial, except for perhaps zC and fromBoolean, which are
as follows (the rest of the instance is omitted):

instance BooleanXZ (WithDAG tp) (WireReference tp) where
zC = newItem (MSymbolic CONNECT [])

instance Boolean (WithDAG tp) (WireReference tp) where
fromBool b

= newItem (MSymbolic (if b then AND else OR) [])

A.3.2 Optimizations on symbolic instances

To work with symbolic instances, most techniques require the underlying DAG
to be acyclic. We already guarantee this in our underlying data-structure. The
procedure to substitute wires with their values, however, can re-introduce cycles.
When done naively, this would cause infinite loops. Instead, we show how to
perform this substitution, while keeping the resulting network cycle-free. We use
the algorithm to eliminate cycles as illustrated in the previous chapter.

After parsing a module, we obtain a map describing a reference to a value (in
the DAG) for each wire2. The nmos gate is symbolically expressed using a gated
buffer, GBUF in our code. We combine this node with a unary NOT, to get a pmos
gates. By using this combination, we only have to maintain the implementations
for GBUF. Similarly, cmos gates use three DAG nodes: one for the nmos and two
for the pmos. In some cases we introduce a node simply because it is used a lot
in most designs. Such is the case with the ITE node. To give a bit of a flavour
of what a DAG looks like internally, we list some nodes below. These nodes were
generated after parsing our example design:

{- some DAG nodes:
1: Symbol "dataLeft"
2: Symbol "dataRight"
4: Symbol "leftToRt"
8: Symbol "rightToLt"

21: Symbolic BUFIF 20 2

2We do not consider the code to actually parse the Verilog.

110

A.3 Representations of four-valued Booleans

22: Symbolic BUFIF 4 2
23: MSymbolic CONNECT [21,22]
42: MSymbolic CONNECT [25,26,21,22] -}

Some observations can be made about this DAG. First, very few optimizations
are done. In fact, the only optimization done is grouping of associative operations.
This can be seen in node 42, which was constructed from node 23 and another
node. In node 42, the values of node 23 are repeated, such that node 23 is no
longer referenced in node 42, thus making node 23 obsolete. The obsolete node
is not removed during this parse step, and duplicate nodes are not merged.

The map with wire-value references is only insightful in combination with the
DAG. We look at three map elements: For wire writeData, the node referenced
is 42.

In addition to the DAG node, some wires also contain a reference to a module
instance. For example, writeData has one to the instance data_register.
This accounts for the possibility that that module writes data – later analysis will
show it does not. At DAG node 4, wire leftToRt occurs as a symbol. As a
consequence, node leftToRt may be used in the nodes with a number higher
than 4. This introduces cycles, while keeping the DAG cycle-free. In this example,
such a cycle exists in the value of leftToRt.

A.3.3 Eliminate cyclic dependencies

Our strategy for eliminating cycles as presented in Section 3.4.1, comes from the
observation that the value of a wire can be changed by a gate at most twice. Once
from Z to 0 or 1, and then once to X. To remove cycles, we follow the nodes, while
keeping track of which nodes have been visited. If every node has been visited, we
refer to value X.

The code to follow a single node is called incrementMapLoopless. This is
its code:

type State a
= (a -- next unique value

, IntMap.IntMap (a -- new node number
, Symbolic a) -- its value

-- top layer
, [IntMap.IntMap (a -- new node number

, Symbolic a) -- its value
] -- list of next layers
-- empty list stands for infinite empty maps

, Map.Map (Symbolic a) a -- reverse lookup
)

incrementMapLoopless
:: forall a. -- we can’t mix up a and Int

(Enum a, Ord a, Show a)
=> -- a function to obtain original values:

(Int -> Symbolic Int)
-> IntSet.IntSet -- check cycles (initially empty set)

111

A Verification of Interconnects: an Implementation in Haskell

-> IntSet.IntSet -- nodes which resulted in a new layer
-> State a
-> Int -- reference to follow
-> (State a

, a -- a new reference (in the new map)
)

incrementMapLoopless lookupf cycleCheck layerNodes st nr
= if IntSet.member nr cycleCheck

then addTop (workSharing incrWLayer (stripTop st))
else workSharing incrWithinSameLayer st

where
-- recursive call with proper cycle-protection arguments
symbol = if IntSet.member nr layerNodes then X

else lookupf nr
newCheck = IntSet.insert nr cycleCheck
incrementWith :: IntSet.IntSet -> State a

-> (State a, Symbolic a)
incrementWith useLayers useState
= mapAccumL (incrementMapLoopless lookupf newCheck

useLayers)
useState symbol

incrWLayer = incrementWith (IntSet.insert nr layerNodes)
incrWithinSameLayer = incrementWith layerNodes
-- moving to and from the next layer
stripTop :: State a -> State a
stripTop (nextA,_,layers,revmp)
= case layers of

[] -> (nextA,IntMap.empty,[],revmp)
(h:tl) -> (nextA,h ,tl,revmp)

addTop :: (State a, a)
-> (State a, a)

addTop ((nA, h, tl,revL),v)
= ((nA,currentTopLayer,h:tl,revL),v)

currentTopLayer = let (_,tp,_,_) = st in tp
-- check if any work needs to be done, share nodes
workSharing doWork myState@(_,topLayer,_,_)
= case IntMap.lookup nr topLayer of

-- use the current node from this layer if it exists
Just v -> (myState, fst v)
Nothing-> shareOrAdd (doWork myState)

-- share a node if possible, but do not share X or Z
shareOrAdd (newSt,X) = addNode (newSt,X)
shareOrAdd (newSt,z@(MSymbolic CONNECT []))
= addNode (newSt,z)
shareOrAdd (newSt@(_,_,_,newRevMap), newSymbol)
= case Map.lookup newSymbol newRevMap of

Just v -> (newSt, v)

112

A.3 Representations of four-valued Booleans

Nothing -> addNode (newSt,newSymbol)
-- create the node referenced as ‘newNextA’
addNode :: (State a, Symbolic a)

-> (State a, a)
addNode ((newNextA,newTopLayer,newLayers,newRevMap)

, newSymbol)
= ((succ newNextA

, IntMap.insert nr (newNextA,newSymbol) newTopLayer
, newLayers
, Map.insert newSymbol newNextA newRevMap
)

, newNextA)

Function incrementMapLoopless takes five arguments. The fourth argu-
ment is a structure that can be thought of as a ‘state’. Its last argument is an Int
that indicates which node should be followed. Its return type is the new state,
together with a reference of type a to indicate the position where the followed
node can be found in the new map. Note that the new map uses type a only to
avoid confusion with the old map of type Int. In practice, a will be Int.

If the argument to be followed is in the IntMap of treated nodes, nothing is
done: the state triple remains the same and we return the element found. If not,
we insert a new element into the map of treated nodes, and increase the ‘next
unique value’ (nextA) by one. Function workSharing does this. To get that
new element, we may need to do recursive calls to incrementMapLoopless. In
a recursive call, the previously visited nodes are kept in variable cycleCheck.
When we encounter a node that is already visited, we jump to another layer. If
we encounter a visited node, we return a node that stands for ⊥. Value X is used
as a value for symbol.

The type of incrementMapLoopless does not use our WithDAG protec-
tive wrapper. It is not intended for direct use. We export a function called
selfSimplify that does exactly the type of simplification that is required for
modules. We give its type, without the implementation:

selfSimplify :: forall ap x. Traversable x
=> (forall tp.

WithDAG tp (Map.Map ScopedWireName
(WireReference tp)

, x (WireReference tp)
))

-> WithDAG ap (Map.Map ScopedWireName
(WireReference ap)

, x (WireReference ap))

The map (in the first part of its argument) contains values for each wire. The
second part gives a set of nodes that, for whatever reason, should also be in the
new DAG (they will be optimized away otherwise). The type transformation from
tp to ap ensures that we do not accidentally lose nodes by forgetting to pass them.

113

A Verification of Interconnects: an Implementation in Haskell

A.4 Multiple analysis methods in a single tool

In our method, we allow pieces of the design to be translated as a black box. For
real designs, this is a requirement for several reasons. First, our data-structure of
DAGs only contains combinational gates. The smallest state-holding modules –
usually registers and memory blocks – have to be treated as black box modules.

Another reason is that using a black box module can help perform verification
on a design. In communication fabrics, queues are common state-holding elements.
In addition, they are often easily identifiable. The verification methods in this
thesis rely on annotated queues. We therefore treat queues as black box modules
instead of merely treating the registers inside them as such.

Finally, some designs may contain lookup tables with ‘arbitrary’ routing in-
formation, or processor nodes that perform some ‘arbitrary’ function. To prove
something about a network for all possible routing functions, or all possible pro-
cessor nodes, we can treat these parts of the design as black box modules as well.

A black box Verilog module has wires connecting it to its environment. To
reason about the interaction of the module with its environment, we use separate
files for module annotations. An example syntax would be the following:

annotate flop;
module reg_module_no_reset;
value_in drive;
value_out q;
value_out !notQ;
clock clk;
set 1’b0;
reset 1’b0;

endannotate

The intention of such annotation would be that verification methods that know
about flop, will know what to use as driving value, and what to use as output
value. The annotate syntax is parsed as a list of key-value pairs, in which
multiple values per key are allowed. Keys are property names, and values are
Verilog (right-hand-side) expressions. The only exception is the module property,
which takes a module name. In our example, value_out appears twice to indicate
that q and !notQ both act as output value. Methods unaware of clocks, sets or
resets, simply ignore the fields clock, set or reset. Methods unaware of flops
simply treat all modules with the name reg_module_no_reset as a black box.
We also allow properties concerning multiple bits, which is useful for handling data
wires in the case of queues. The endianness of such properties is determined by
the declarations inside the mentioned module(s). Since the endianness of a wire
influences how an expression is parsed, each expression must be parsed once for
every module mentioned.

A.4.1 Switching between different Boolean representations

Given a symbolic value, we might like to translate it into a different format. To
do so, we implement a function to take one of the symbolic nodes, and return any

114

A.4 Multiple analysis methods in a single tool

other instance of the Boolean class. This way, we can translate a module, simplify
its values, and then perform different types of analysis. The central function for
such translations is symbolicToBoolean:

symbolicToBoolean :: (BooleanXZ m b, Applicative m)
=> (ScopedWireName -> m b) -> (a -> m b)
-> Symbolic a -> m b

symbolicToBoolean f myLookup = join . myTranslate
where
myTranslate (Symbol a) = return$ f a
myTranslate (Symbolic opr a1 a2)
= translateOpr opr <$> myLookup a1 <*> myLookup a2

myTranslate (MSymbolic mop aLst)
= translateMOpr mop <$> traverse myLookup aLst

myTranslate (Unary op a)
= translateUnary op <$> myLookup a

myTranslate (ITE a b c)
= iteC <$> myLookup a <*> myLookup b <*> myLookup c

myTranslate X = return$ xC

translateUnary :: forall boolean m. BooleanXZ m boolean
=> UnaryOperator -> boolean -> m boolean

translateUnary NOT = notC
translateUnary BUF = bufC

Of helper functions translateOpr, translateMOpr and translateUnary,
only the latter is presented (as it is the smallest of these three). Functions
translateOpr and translateMOpr are similar.

One of the uses of symbolicToBoolean, is to display the nodes as a formula.
To achieve this, Bytestring is made an instance of the class Boolean and
BooleanXZ.

instance (Monad m, Applicative m)
=> BooleanXZ m ByteString where

gbufC a b = return$ "gbuf("<>a<>","<>b<>")"
combineC a b = return$ "combine("<>a<>","<>b<>")"
bufC a = return$ "buf("<>a<>")"
xC = return$ "X"
zC = return$ "Z"

The Boolean instance of Bytestring is similar, and this is all there is to it to
interface with a new internal data structure. We can use symbolicToBoolean
with this new instance to see the wire values of the two-way repeater module
from the beginning of this section. As the Bytestring data-structure can-
not be used to perform the selfSimplify procedure (variable substitution
would become very tricky), the selfSimplify procedure is used on the in-
stance Boolean (WithDAG tp) (WireReference tp). We disabled some
additional simplification procedures before generating this output.

115

A Verification of Interconnects: an Implementation in Haskell

Module TwoWayRepeater
dataRight := combine(gbuf(!or(fromRight,!or(fromLeft,!Z)...
reset := Z ;
enabled := Z ;
fromRight := Z ;
dataLeft := combine(gbuf(!or(fromLeft,!or(fromRight,!or(...
fromLeft := Z ;
clock := Z ;

rightToLt := !or(fromRight,!or(fromLeft,!or(fromRight,!o...
outData := data_register>_q_0 ;
leftToRt := !or(fromLeft,!or(fromRight,!or(fromLeft,!Z))) ;
writeData := combine(gbuf(!or(fromRight,!or(fromLeft,!Z)...
wasntEnabled := !was_enabled_reg>reg>_q_0 ;
wasEnabled := was_enabled_reg>reg>_q_0 ;
readData := combine(gbuf(was_enabled_reg>reg>_q_0,data_r...

The symbolic output shows that both register modules were instantiated. The
value for outData is given a ‘fresh’ variable _q_0, from the scope of reg, which
is inside data_register. Apparently, reg is the name of the instantiation used
inside the module reg_module_no_reset. The value of leftToRt is fully
expressed using three nor gates. The input for which the circuit is not combi-
national, namely fromRight = fromLeft = 0, would yield X for leftToRt.
This is the desired value. The value for rightToLt is slightly larger, as it reuses
DAG nodes created for leftToRt. This shows that our strategy of reusing DAG
nodes, while keeping the number of DAG nodes small, creates larger formulas than
strictly necessary. In fact, removing cycles does cause an exponential blowup in
the size of the final formula size, when compared to the smallest possible formula
size. Such a blowup is common in many DAG to formula conversions.

In relation to black boxes that have been annotated with their properties, we
can use the same translation:

transProps :: forall m b x.
(BooleanXZ m b, CreateAtom ScopedWireName m b)

=> InverseProps (WireReference x)
-> WithDAG x (InverseProps (m b))

transProps lst
= flip map lst <$> maPure transFN

transFN :: forall m b t.
(CreateAtom ScopedWireName m b, BooleanXZ m b)

=> Sequence.Seq (Symbolic Int) -- the DAG
-> (WireReference t -> m b)

transFN mavec
= (\(WireRef nr) -> findNr nr)
where findNr = Sequence.index transVec

transVec
= map (symbolicToBoolean createAtom findNr) mavec

The black box module reg_module_no_reset is used once in the our ex-

116

A.4 Multiple analysis methods in a single tool

ample. Using the Bytestring notation, we can see how these properties have
been translated:

flop in data_register
value_in := combine(gbuf(!or(fromRight,!or(fromLeft,!Z...
value_out := data_register>_q_0;
value_out := !data_register>notQ;;
clock := clock;
set := 0;
reset := 0;

When creating designs, visualising formulas (in Bytestring notation) is quite
helpful. When performing verification, other instances of BooleanXZ are used,
but we can be sure that their input is equivalent to the formula produced in
Bytestring notation, thanks to the class mechanism used.

A.4.2 Boolean instance from Rings

We know that Booleans form a Ring. Here, we do the opposite: define a Ring
based on a Monoid. We define our own classes, as the ones on ‘hackage’ are too
fine-grained.

class Monoid m => Abelian m where
(</>) :: m -> m -> m
aTimes :: Int -> m -> m

class Abelian m => Ring m where
rOne :: m
(.*) :: m -> m -> m

In our interpretation, we use rOne for ‘true’, and mempty (from the Monoid
class) for ‘false’. We call our new instance NaturalBoolean, and do not assume
that rOne squared is mempty, as is the case in Boolean rings. While this allows us
to create ‘non-standard’ Boolean values (like rOne squared in case it is unequal
to mempty) through the Ring structure, we cannot create these through the
Boolean interface. By the laws that should hold in Rings, the only resulting
values that can be obtained through the Boolean interface are (or ought to be
equivalent to) mempty and rOne.

newtype NaturalBoolean m
= NaturalBoolean {runNaturalBoolean :: m}
deriving (Monoid,Abelian,Ring)

instance Ring m=> Boolean Identity (NaturalBoolean m) where
fromBool b = return$ if b then rOne else mempty
notC c = return$ rOne </> c
andC a b = return$ a .* b
orC a b = return$ (a <> b) </> (a .* b)
xorC a b = return$ (a <> b) </> aTimes 2 (a .* b)
iteC a b c = return$ (a .* b) <> (c .* (rOne </> a))

117

A Verification of Interconnects: an Implementation in Haskell

We can turn our ‘Ring’ into an instance of BooleanXZ, for which functions
andC etc. stand for their Boolean (two-valued) counterparts, in the way we pro-
posed in Chapter 3. In order to do so, we need to be able to control a single free
Boolean variable. The class SingleHelper provides this.

class Show b => SingleHelper b where
singleHelper :: b
substituteHelper :: Bool -> b -> b
helperDependent :: b -> Bool
helperDependent _ = True -- default implementation

Function helperDependent is assumed to be an over-approximation. When it
returns False on some term, that term with instances of the helper replaced by
True, should be equivalent to the term with instances replaced by False. By
allowing for over-approximations, faster tests like searching for occurrences of the
helper, or simply always returning True, are fine as well. Our instance will be a
new data type DuoXZ that allows us to distinguish between values that might be
four-valued, and those that are guaranteed to be two-valued. Since the greatest
portion of our design will use just the two-valued fragment, it pays off to make
this distinction.

data DuoXZ b
= DuoXZ {runDuoXZ :: b}
| Duo {runDuoXZ :: b}

We assume that when b is used in DuoXZ b, it is an instance of Boolean, and
of SingleHelper. This assumption is slightly stronger than the requirement that
m b would be an instance of SingleHelper, but there have been no problems
in defining suitable instances of SingleHelper so far. Here are the Boolean
and BooleanXZ instances of DuoXZ:

instance (Boolean m b, SingleHelper b)
=> BooleanXZ m (DuoXZ b) where

zC = return$ singleHelper -- identity function
xC = DuoXZ <$> notC singleHelper
gbufC a b = DuoXZ <$> join (iteC (runDuoXZ a)

<$> (runDuoXZ <$> (bufC b))
<*> return singleHelper)

bufC (DuoXZ b)
= DuoXZ

<$> join (iteC singleHelper <$> andC b0 b1
<*> orC b0 b1)

where b0 = substituteHelper False b
b1 = substituteHelper True b

bufC b = return b
instance (Boolean m b, SingleHelper b)

=> Boolean m (DuoXZ b) where
fromBool b = Duo <$> fromBool b
notC (DuoXZ a) = bufC =<< (DuoXZ <$> notC a)
notC (Duo b) = Duo <$> notC b

118

A.4 Multiple analysis methods in a single tool

Again, some of the definitions are omitted for brevity. In particular, the de-
faults for the Boolean class do not apply, as they assume Boolean laws, instead
of the truth tables from the Verilog standard, so all of these function had to be de-
fined. To summarize, we can create an instance of BooleanXZ given an instance
of Ring and SingleHelper. Chapter 4 shows how this can be useful.

119

A Verification of Interconnects: an Implementation in Haskell

120

Glossary

black box A hardware module of which the implementation is either not avail-
able, or hidden on purpose. 9, 10, 23, 24, 81, 96, 114, 116

communication fabric A design that is used to connect components such that
they can exchange information. 1, 3, 9, 12, 55, 56, 63, 75, 89, 101, 114

CPU Central Processor Unit. 1

DAG Directed Acyclic Graph. 35, 38, 91, 92

eager Always ready. For sinks: always ready to receive a packet. For sources:
always ready to send one.. 66, 68, 69, 71, 73

FPGA Field Programmable Gate Array. 2

gate level Gate level netlist, a description of hardware based on logic gates. 1–6,
9–11, 24, 26, 28

IP Intellectual Property. 1, 2

nMOS n-type Metal-Oxide-Semiconductor field effect transistor. 39, 40

NoC Network On Chip: a communication fabric on an integrated circuit. 1, 3,
7, 9, 25, 95, 96

NP Class of problems that can be solved on a non-deterministic turing machine in
polynomial time. A NP-hard problem is a problem to which each problems in
this class can be reduced. An NP-complete problem is an NP-hard problem
which is itself in the class NP. It is commonly assumed that NP-hard prob-
lems do not have polyonimal-time algorithms on conventional computers.
36, 90

one-hot Encoding of n different values, using n different wires of which only one
can be high at any point in time. 91

121

Glossary

pMOS p-type Metal-Oxide-Semiconductor field effect transistor. 39

PSPACE Class of problems that can be solved on a turing machine with poly-
nomial memory. See also NP for the terms ‘PSPACE-hard’ and ‘PSPACE-
complete’. It is commonly assumed that there are strictly more problems in
PSPACE, then there are in NP. 90, 92

queue A hardware module which can receive and store packets, hold a certain
number of these, and send stored packets. 9

RTL Register Transfer Level: hardware abstraction level in which the next state
for each registers is given.

SAT Satisfiability: a problem format that describes a quantifier free first order
Boolean formula, for which a valuation (if it exists) can be found by a large
number of tools, called SAT solvers. The stated problem asks: can a Boolean
formula over a set of propositions can be satisfied. If so, the problem is called
satisfiable, or SAT. If not, the problem is called UNSAT. 6, 26, 28, 39, 42,
43, 67, 68, 73, 83, 86, 90, 92, 96, 97

SMT Satisfiability Modulo Theories. A variant of SAT, in which propositions
can be formulas over a certain theory. In this thesis, we use the theories of
integers and real numbers. 55, 59, 60, 62, 63, 81, 82, 90, 96

SoC System on Chip. 1

synthesis The translation of a hardware description language (like Verilog) into
a gate level language. 5

trace A (possibly infinite) sequence of states of a system, describing one possible
way for the system to behave. 96, 97

Voi Our Haskell tool, available from http://sjcjoosten.nl/voi/. 23, 75,
80, 83, 96, 97, 99, 100, 108

xMAS Executable Micro-Architectural Specification, a language to specify net-
works. 7, 11, 15, 16, 20, 21, 23, 25, 45, 46, 55, 65–68, 70–73, 75, 76, 83,
86

122

http://sjcjoosten.nl/voi/

Bibliography

Aggarwal, P., Chu, D., Kadamby, V., and Singhal, V. (2011). Planning for end-
to-end formal using simulation-based coverage: Invited tutorial. In Proceedings
of the International Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11, pages 9–16, Austin, TX. FMCAD Inc. Cited on page 2.

Backes, J., Fett, B., and Riedel, M. D. (2008). The analysis of cyclic circuits
with Boolean satisfiability. In Computer-Aided Design, 2008. ICCAD 2008.
IEEE/ACM International Conference on, pages 143–148. IEEE. Cited on
page 43.

Backes, J. and Riedel, M. D. (2012). The synthesis of cyclic dependencies with
boolean satisfiability. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 17(4):44. Cited on page 43.

Bergstra, J. A. and Ponse, A. (1999). Process algebra with five-valued conditions.
Cited on page 25.

Biere, A., Cimatti, A., Clarke, E., and Zhu, Y. (1999). Symbolic model checking
without bdds. In Cleaveland, W., editor, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1579 of Lecture Notes in Computer
Science, pages 193–207. Springer Berlin Heidelberg. Cited on pages 55 and 59.

Biere, A., Cimatti, A., Clarke, E. M., Strichman, O., and Zhu, Y. (2003). Bounded
model checking. Advances in computers, 58:117–148. Cited on page 5.

Boule, M. and Zilic, Z. (2005). Incorporating efficient assertion checkers into
hardware emulation. In Computer Design: VLSI in Computers and Processors,
2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on, pages
221–228. IEEE. Cited on page 2.

Bradley, A. R. (2011). Sat-based model checking without unrolling. In Verification,
Model Checking, and Abstract Interpretation, pages 70–87. Springer. Cited on
page 95.

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., and Tonetta, S. (2014). The nuxmv symbolic model
checker. In Computer Aided Verification, pages 334–342. Springer. Cited on
pages 86 and 97.

123

Bibliography

Chatterjee, S. and Kishinevsky, M. (2012). Automatic generation of inductive
invariants from high-level microarchitectural models of communication fabrics.
Formal Methods in System Design, 40(2):147–169. Cited on pages 7, 15, 46, 76,
and 86.

Chatterjee, S., Kishinevsky, M., and Ogras, Ü. Y. (2010). Quick formal modeling
of communication fabrics to enable verification. In Proceedings of the IEEE
International High Level Design Validation and Test Workshop (HLDVT’10),
pages 42–49. Cited on page 11.

Chatterjee, S., Kishinevsky, M., and Ogras, Ü. Y. (2012). xMAS: Quick formal
modeling of communication fabrics to enable verification. IEEE Design & Test
of Computers, 29(3):80–88. Cited on pages 11, 15, 16, and 72.

Coffman, K. (1999). Real world FPGA design with Verilog. Pearson Education.
Cited on page 104.

Drechsler, R., Eggersgluss, S., Fey, G., Glowatz, A., Hapke, F., Schloeffel, J., and
Tille, D. (2008). On Acceleration of SAT-Based ATPG for Industrial Designs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 27(7):1329–1333. Cited on page 42.

Duato, J. (1993). A new theory of deadlock-free adaptive routing in wormhole
networks. IEEE Transactions on Parallel and Distributed Systems, 4:1320–1331.
Cited on page 9.

Duato, J. (1995). A necessary and sufficient condition for deadlock-free adaptive
routing in wormhole networks. IEEE Transactions on Parallel and Distributed
Systems, 6(10):1055–1067. Cited on page 9.

Edwards, S. A. (2003). Making cyclic circuits acyclic. In Proceedings of the 40th
Annual Design Automation Conference, DAC ’03, pages 159–162, New York,
NY, USA. ACM. Cited on page 43.

Eén, N. and Sörensson, N. (2004). An extensible sat-solver. In Theory and appli-
cations of satisfiability testing, pages 502–518. Springer. Cited on page 83.

Eggersglüß, S., Fey, G., Glowatz, A., Hapke, F., Schloeffel, J., and Drechsler, R.
(2010). MONSOON: SAT-based ATPG for path delay faults using multiple-
valued logics. Journal of Electronic Testing, 26(3):307–322. Cited on page 43.

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2002).
Graphviz—open source graph drawing tools. In Graph Drawing, pages 483–484.
Springer. Cited on page 83.

Farahmandi, F. and Alizadeh, B. (2015). Groebner basis based formal verification
of large arithmetic circuits using gaussian elimination and cone-based polyno-
mial extraction. Microprocessors and Microsystems, 39(2):83 – 96. Cited on
page 95.

124

Bibliography

Gao, M. and Cheng, K.-T. (2010). A case study of time-multiplexed assertion
checking for post-silicon debugging. In High Level Design Validation and Test
Workshop (HLDVT), 2010 IEEE International, pages 90–96. Cited on page 2.

van Gastel, B., Verbeek, F., and Schmaltz, J. (2014). Inference of channel types in
micro-architectural models of on-chip communication networks. In Proceedings
of the 22nd IFIP/IEEE International Conference on Very Large Scale Integra-
tion. Cited on page 15.

Gebremichael, B., Vaandrager, F., Zhang, M., Goossens, K., Rijpkema, E., and
Rădulescu, A. (2005). Deadlock prevention in the Æthereal protocol. Correct
Hardware Design and Verification Methods, 3725/2005:345–348. Cited on page 9.

Goossens, K., Dielissen, J., and Radulescu, A. (2005). Aethereal network on chip:
concepts, architectures, and implementations. Design Test of Computers, IEEE,
22(5):414–421. Cited on page 9.

Goossens, K. G. (1993). Embedding hardware description languages in proof sys-
tems. PhD thesis, University of Edinburgh. Cited on page 25.

Gotmanov, A., Chatterjee, S., and Kishinevsky, M. (2011). Verifying deadlock-
freedom of communication fabrics. In Verification, Model Checking, and Abstract
Interpretation (VMCAI ’11), volume 6538, pages 214–231. Cited on pages 7
and 15.

Gupta, A. (1993). Formal hardware verification methods: A survey. In Computer-
Aided Verification, pages 5–92. Springer. Cited on page 2.

Gupta, A. and Selvidge, C. (2012). Acyclic modeling of combinational loops. US
Patent 8,181,129. Cited on page 43.

Haynal, S., Kam, T., Kishinevsky, M., Shriver, E., and Wang, X. (2008). A system
verilog rewriting system for rtl abstraction with pentium case study. In Formal
Methods and Models for Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE
International Conference on, pages 79–88. Cited on page 5.

Hunt, W. J. and Swords, S. (2009). Centaur technology media unit verification.
In Bouajjani, A. and Maler, O., editors, Computer Aided Verification, volume
5643, pages 353–367. Springer Berlin Heidelberg. Cited on pages 6, 43, and 80.

Hunt Jr, W. A. (1989). Microprocessor design verification. Journal of Automated
Reasoning, 5(4):429–460. Cited on page 6.

IEEE (2001). IEEE Standard Verilog Hardware Description Language. Cited on
pages 3 and 32.

IEEE (2009). IEEE Standard VHDL Language Reference Manual. Cited on page 3.

IntelPR (2011). Intel identifies chipset design error, implementing solu-
tion. http://newsroom.intel.com/community/intel_newsroom/
blog/2011/01/31/intel-identifies-chipset-design-error-
implementing-solution. Cited on page 2.

125

http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution
http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution
http://newsroom.intel.com/community/intel_newsroom/blog/2011/01/31/intel-identifies-chipset-design-error-implementing-solution

Bibliography

Joosten, S. and Joosten, S. J. C. (2015). Type checking by domain analysis in
ampersand. In RAMICS 2015, 15th International Conference on Relational and
Algebraic Methods in Computer Science, Braga. Cited on page 12.

Joosten, S. J. C., van Gastel, B., and Schmaltz, J. (2013). A macro for reusing
abstract functions and theorems. In Gamboa, R. and Davis, J., editors, Inter-
national Workshop on the ACL2 Theorem Prover and its Applications, volume
EPTCS 114, pages 29–41. Cited on page 12.

Joosten, S. J. C., Kaliszyk, C., and Urban, J. (2014a). Initial experiments with
TPTP-style automated theorem provers on ACL2 problems. In International
Workshop on the ACL2 Theorem Prover and its Applications, volume 152, pages
77–85. Cited on page 12.

Joosten, S. J. C. and Schmaltz, J. (2013). Generation of inductive invariants from
register transfer level designs of communication fabrics. In Formal Methods and
Models for Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM International
Conference on, pages 57–64. IEEE. Cited on pages 10 and 11.

Joosten, S. J. C. and Schmaltz, J. (2014). Scalable liveness verification for com-
munication fabrics. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition, pages 113:1–113:6. Cited on page 11.

Joosten, S. J. C. and Schmaltz, J. (2015). Automatic extraction of micro-archi-
tectural models of communication fabrics from register transfer level designs. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibi-
tion, pages 1413–1418. Cited on page 11.

Joosten, S. J. C., Verbeek, F., and Schmaltz, J. (2014b). WickedXmas: Designing
and verifying on-chip communication fabrics. In International Workshop on
Design and Implementation of Formal Tools and Systems (DIFTS). Cited on
page 12.

Joosten, S. J. C. and Zantema, H. (2013). Relaxation of 3-partition instances. In
CTW, pages 133–136. Cited on page 12.

Kaufmann, M., Moore, J., Davis, J., and ‘numerous members of the
ACL2 community’ (2015). ACL2 XDOC manual: 4v-<=. http:
//www.cs.utexas.edu/users/moore/acl2/manuals/current/
manual/index.html?topic=ACL2____4V-_C3_D3. Cited on page 42.

Kim, N., Park, J., Singh, H., and Singhal, V. (2014). Sign-off with bounded formal
verification proofs. In Design and Verification Conference and Exhibition. Cited
on page 2.

Kovásznai, G., Veith, H., Fröhlich, A., and Biere, A. (2014). On the complexity of
symbolic verification and decision problems in bit-vector logic. In Mathematical
Foundations of Computer Science 2014, pages 481–492. Springer. Cited on
page 93.

Kropf, T. (2013). Introduction to formal hardware verification. Springer Science
& Business Media. Cited on page 2.

126

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____4V-_C3_D3
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____4V-_C3_D3
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____4V-_C3_D3

Bibliography

Kuehlmann, A. (2004). Dynamic transition relation simplification for bounded
property checking. In Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM
International Conference on, pages 50–57. Cited on page 6.

van Laarhoven, T. (2012). Dependently typed dags. http://www.twanvl.nl/
blog/haskell/dependently-typed-dags. Cited on page 107.

Launchbury, J. and Peyton Jones, S. L. (1994). Lazy functional state threads. In
ACM SIGPLAN Notices, volume 29, pages 24–35. ACM. Cited on page 106.

Melham, T. F. (1990). Abstraction mechanisms for hardware verification. In
Yoeli, M., editor, Formal Verification of Hardware Design, pages 30–49. IEEE
Computer Society Press. Cited on page 3.

Mills, D. (2012). Yet another latch and gotchas paper. In Synopsys Users Group
(SNUG) Sylicon Valley. Cited on page 42.

Minato, S.-I. and Somenzi, F. (1997). Arithmetic boolean expression manipulator
using bdds. Formal Methods in System Design, 10(2-3):221–242. Cited on
page 61.

Mishchenko, A., Chatterjee, S., Jiang, R., and Brayton, R. K. (2005). Fraigs: A
unifying representation for logic synthesis and verification. Technical report,
ERL Technical Report. Cited on page 92.

Neiroukh, O., Edwards, S., Song, X., et al. (2008). Transforming cyclic circuits into
acyclic equivalents. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 27(10):1775–1787. Cited on page 43.

Ray, S. (2013). Scalable Model Checking Beyond Safety-A Communication Fabric
Perspective. PhD thesis, University of California, Berkeley. Cited on pages 3
and 7.

Ray, S. and Brayton, R. K. (2012). Scalable progress verification in credit-based
flow-control systems. In DATE, pages 905–910. Cited on pages 3, 7, 15, 45, 72,
75, 76, and 78.

Riedel, M. D. and Bruck, J. (2007). Synthesis of cyclic combinational circuits. US
Patent 7,249,341. Cited on page 43.

Riedel, M. D. and Bruck, J. (2012). Cyclic Boolean circuits. Discrete Applied
Mathematics, 160(13 - 14):1877 – 1900. Cited on pages 25, 26, 35, 37, and 43.

Rivest, R. L. (1977). The necessity of feedback in minimal monotone combinational
circuits. IEEE Transactions on Computers, C-26(6):606–607. Cited on page 26.

Sutherland, S. and Mills, D. (2007). Verilog and SystemVerilog Gotchas. Springer
US. Cited on page 42.

Synthesis, B. L. and Group, V. (2015). Abc: A system for sequential synthesis and
verification. http://www.eecs.berkeley.edu/˜alanmi/abc/. Cited on
page 97.

127

http://www.twanvl.nl/blog/haskell/dependently-typed-dags
http://www.twanvl.nl/blog/haskell/dependently-typed-dags
http://www.eecs.berkeley.edu/~alanmi/abc/

Bibliography

Turpin, M. (2003). The dangers of living with an X (bugs hidden in your verilog.
In Synopsys Users Group Meeting. Cited on page 42.

Venu, B. and Singh, A. (2012). Formal verification methodology considerations for
network on chips. In Proceedings of the International Conference on Advances
in Computing, Communications and Informatics, ICACCI ’12, pages 220–225,
New York, NY, USA. ACM. Cited on page 9.

Verbeek, F., Joosten, S. J. C., and Schmaltz, J. (2013). Formal deadlock ver-
ification for click circuits. In Asynchronous Circuits and Systems (ASYNC),
2013 IEEE 19th International Symposium on, pages 183–190. IEEE. Cited on
page 12.

Verbeek, F. and Schmaltz, J. (2011a). A comment on “a necessary and suffi-
cient condition for deadlock-free adaptive routing in wormhole networks”. IEEE
Transactions on Parallel & Distributed Systems, 22(10):1775–1776. Cited on
page 9.

Verbeek, F. and Schmaltz, J. (2011b). Hunting deadlocks efficiently in microarchi-
tectural models of communication fabrics. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, FMCAD ’11, pages
223–231, Austin, TX. Cited on pages 15 and 86.

Verbeek, F. and Schmaltz, J. (2012a). Easy formal specification and validation
of unbounded networks-on-chips architectures. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 17(1):1:1–1:28. Cited on page 7.

Verbeek, F. and Schmaltz, J. (2012b). Towards the formal verification of cache
coherency at the architectural level. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 17(3):20:1–20:16. Cited on page 7.

Wouda, S., Joosten, S. J. C., and Schmaltz, J. (2015). Process algebra semantics
& reachability analysis for micro-architectural models of communication fabrics.
In Formal Methods and Models for Codesign (MEMOCODE), 2015 Thirteenth
ACM/IEEE International Conference on. Cited on page 12.

Zhu, Q., Kitchen, N., Kuehlmann, A., and Sangiovanni-Vincentelli, A. (2006). Sat
sweeping with local observability don’t-cares. In Design Automation Conference,
2006 43rd ACM/IEEE, pages 229–234. Cited on page 6.

128

Summary

Verification of interconnects

A communication fabric, or a Network on Chip (NoC), is a way to combine hard-
ware components. For the final hardware to function correctly, it is critical that at
least this NoC functions correctly. Some methods to prove the correctness of NoCs
exist. An important property of correct NoCs, which turns out to be particularly
difficult to prove, is that local deadlocks should not arise. We call NoCs live if
they do not have such local deadlocks. Liveness proofs for networks that are large
enough to be interesting in practice, used to exist only on an abstract level, or rely
heavily on information from the abstract level.

To prove correctness of the concrete implementation of a NoC, we view the net-
work as a set of queues an other state-holding elements, together with some com-
binational logic. This view lies very close to the actual hardware implementation.
Queues and other state-holding elements are annotated through their interface.
For this reason, we call this view on hardware the ‘interface level’.

The gate level implementation of a NoC design can be translated to combina-
tional logic. At the gate level implementations, hardware designers make use of
open wires and multi-directional gates. Where usual translations of gate level im-
plementations are restricted to acyclic circuits with only binary gates, we show how
to translate a richer class of gates to Boolean formulas. These Boolean formulas
represent the gate level implementation of a NoC design.

In a proof about the correctness of a NoC, it can be important to know whether
some queues can hold packets in a specific way. Linear one-step inductive invari-
ants turn out to be a powerful tool to answer this question. Finding the right
linear one-step inductive invariant used to require a high level description of the
NoC. The essential property that is used describes when a packet of a certain type
enters or leaves a queue: when a transfer occurs. By translating this property to
a linear term, we can identify the linear invariants about the NoC. This property
turns out to be available at the interface level. We describe how to translate this
property to a linear term. As a consequence, we can automatically derive linear
inductive invariants at the interface level.

To determine whether or not a NoC is live turns out to be very challenging.
At the abstract level, there is a method that answer this question only partially:
given a NoC, it can either prove that it is live, or it will present a situation which
might be a reachable local deadlock. The latter case leaves the option open that

the situation is not a reachable deadlock, in which case we still do not know
whether or not the NoC is live. However, this methods has a good performance,
and can determine liveness of NoCs of realistic sizes. We show that there is a
similar algorithm at the interface level. Given a gate-level hardware description
of a NoC, together with an interface specification of the queues, we formulate a
Satisfiability Modulo Theory (SMT) problem that has an answer if the NoC has
a reachable local deadlock. For many NoCs, the SMT problem turns out not to
have an answer, which can be verified with standard SMT solvers. This proves
that these NoCs are live, using only information that is available at the interface
level.

We also reproduce an abstract-level description from the interface level. To
do so, we give a procedure that constructs a tree of synchronising and arbitrating
elements from the interface descriptions. Next, we orient the elements, deriving
a graph in which all components are similar to the components in the xMAS
language, a language for describing NoCs at an abstract level, proposed around
2010. For NoCs that were generated from xMAS, the resulting reproduced NoC
is not necessarily equal to the original xMAS. Instead, we define a property called
‘transfer equivalence’, and show that the resulting NoCs are transfer equivalent.

In addition to describing these novel techniques to analyse NoCs at the interface
level, we have implemented the techniques as a proof of concept. Most of those
implementations are now also available as part of a tool called Voi, which stands
for ‘Verify on interfaces’. The tool Voi is implemented in Haskell, and we give
some insight into its implementation. With this tool, we believe to have made
a significant step towards the automated verification of gate-level descriptions of
NoCs.

Samenvatting

Verificatie van interconnects

Een communicatienetwerk, of een Netwerk Op een Chip (NoC), is een manier om
hardwarecomponenten samen te voegen. Om ervoor te zorgen dat de samengestelde
hardware goed werkt, is het belangrijk dat de NoC dat in ieder geval doet. Er
bestaan methoden om de correcte werking van NoCs vast te stellen. Een belan-
grijke eigenschap van correct werkende NoCs, die ingewikkeld is om te bewijzen,
is dat er geen lokale deadlocks voor mogen komen. We noemen NoCs levend wan-
neer ze zulke lokale deadlocks niet hebben. Voor het levend zijn van netwerken
die groot genoeg zijn om in de praktijk relevant te zijn, bestonden voorheen alleen
bewijzen op een abstract niveau, of zij steunden sterk op informatie vanuit het
abstracte niveau.

Om correctheid te bewijzen van een concrete implementatie van een NoC,
beschouwen we het netwerk als een verzameling wachtrijen en andere elementen
met een toestand, samen met wat logica. Deze manier van beschouwen ligt erg
dicht bij de uiteindelijke hardwareimplementatie. Wachtrijen en andere elementen
met een toestand worden aangeduid door hun interface. Om deze reden noemen
we onze manier van het beschouwen van hardware het ‘interfaceniveau’.

De implementatie van een NoC met logische-poorten, kan vertaald worden naar
logica. Bepaalde logische-poorten worden door hardware ontwerpers gebruik om
tot onverbonden draden en communicatie in meerdere richtingen te komen. Terwijl
de meeste vertalingen van logische-poorten het verbieden dat er zulke construc-
ties bestaan, laten wij zien hoe we een rijke klasse aan ontwerpen naar Boolse
formules kunnen vertalen. Deze Boolse formules vertegenwoordigen het logische-
poort-ontwerp van een NoC.

In een bewijs over de correctheid van een NoC kan het van belang zijn om
te weten of wachtrijen bepaalde pakketten kunnen bevatten. Lineaire inductief-
bewijsbare invarianten blijken een krachtige manier te zijn om die vraag te beant-
woorden. Om de juiste lineaire inductief-bewijsbare invarianten te vinden, had
men voorheen een abstracte representatie van het NoC nodig. De essentiële eigen-
schap die daarin gebruikt wordt, beschrijft wanneer een pakket van een bepaald
type een wachtrij in of uit gaat: wanneer er een verplaatsing is. Door deze eigen-
schap als lineaire term te vertalen, kunnen we de lineaire invarianten van het NoC
vinden. Deze eigenschap blijkt ook beschikbaar te zijn op het interfaceniveau. We
beschrijven hoe we deze eigenschap moeten vertalen naar een lineaire term. Als

gevolg hiervan kunnen we automatisch de lineaire inductieve invarianten op het
interfaceniveau vinden.

Besluiten of een NoC levend is, blijkt een uitdaging. Op het abstracte niveau is
er een methode die dit gedeeltelijk beantwoord: gegeven een NoC, kan het bewijzen
dat het levend is, of geeft het een situatie die een bereikbare lokale deadlock kan
zijn. In het laatste geval blijft er de mogelijkheid bestaan dat die situatie geen
bereikbare lokale deadlock is, waarna we nog steeds niet weten of de NoC levend
is. Echter, deze methode werkt vlot, en kan van NoCs met een realistische grote
vaststellen dat ze levend zijn. We laten zien dat er een vergelijkbaar algoritme
op het interfaceniveau bestaat. Gegeven een logische-poort-ontwerp van een NoC,
samen met een aanduiding van wachtrijen door middel van hun interface, kunnen
we een vervulbaar-modulo-theorie (SMT) probleem opstellen, dat een antwoord
heeft als het NoC een bereikbare lokale deadlock heeft. Voor veel NoCs heeft het
SMT probleem geen antwoord, hetgeen automatisch kan worden vastgesteld door
software voor SMT problemen. Dit bewijst dat de NoCs levend zijn, terwijl we
alleen gebruik maken van informatie op het interfaceniveau.

We kunnen ook een abstracte representatie van het NoC geven vanuit het
interfaceniveau. Om dat te doen, geven we een procedure die een boomstructuur
van synchroniserende en bemiddelende elementen bouwt vanuit de beschrijvingen
op interfaceniveau. Vervolgens geven we de elementen een richting, waaruit een
graaf ontstaat waarin alle componenten lijken op componenten uit de taal xMAS,
een taal om NoCs op een abstract niveau te beschrijven, die rond 2010 voorgesteld
is. Voor NoCs die vanuit xMAS gegenereerd zijn, blijkt de resulterende NoC niet
persé overeen te komen met de oorspronkelijke xMAS. We definiëren in plaats
daarvan een eigenschap genaamd ‘verplaatsingsequivalent’, en laten zien dat de
resulterende NoCs verplaatsingsequivalent zijn.

Naast dat we deze nieuwe NoC-analysetechnieken op het interfaceniveau beschri-
jven, hebben we de technieken ook geimplementeerd. De meeste van deze tech-
nieken zijn ook beschikbaar als onderdeel van software met de naam Voi, hetgeen
staat voor ‘Verifieer op interfaces’. Voi is geschreven in Haskell, en we lichten
enkele onderdelen van de implementatie toe. We verwachten met deze software
een flinke stap gezet te hebben om logische-poort-ontwerpen van NoCs automa-
tisch te verifiëren.

Curriculum Vitae

Sebastiaan Joosten
12 January 1985
born in Enschede

Education

Stichting Facta Apeldoorn
MG1, MG3 (MBO-level degrees in Computer Science), 1995

Het Stedelijk Lyceum Enschede
Gymnasium NT and NG with Latin and Computer Science, 2002

University of Twente Enschede
Propaedeutics Applied Physics, 2004
BSc Applied Physics, 2009
MSc Applied Mathematics, 2011 cum laude

Utrecht Summer School Utrecht
International School on Rewriting 2010, Advanced track

Work experience

Teaching assistant University of Twente, 2004 - 2005

Tutor VWO Twente Academy, University of Twente, 2007, 2008

Programmer
Haskell, PHP, ADL, Open University of the Netherlands (OUNL), 2008, 2009
PHP, Flash, JavaScript, Axis Media Ontwerpers, Enschede, 2000 - 2010
PHP, Flash, Axis Media Ontwerpers, Berlin, 2002 - 2003

PhD student Effective Layered Verification of Networks on chips.
Open University (2012 - 2014), Technical University Eindhoven (2014 - 2015)

Titles in the IPA Dissertation Series since 2013

H. Beohar. Refinement of Communi-
cation and States in Models of Embed-
ded Systems. Faculty of Mathematics
and Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis
of Real-Time Task Systems using
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-02

E. Zambon. Abstract Graph Trans-
formation – Theory and Practice.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2013-03

B. Lijnse. TOP to the Rescue –
Task-Oriented Programming for Inci-
dent Response Applications. Faculty of
Science, Mathematics and Computer
Science, RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Compre-
hension for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-06

L.E. Mamane. Interactive math-
ematical documents: creation and
presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-07

M.M.H.P. van den Heuvel. Com-
position and synchronization of real-
time components upon one processor.
Faculty of Mathematics and Computer
Science, TU/e. 2013-08

J. Businge. Co-evolution of the
Eclipse Framework and its Third-party
Plug-ins. Faculty of Mathematics and
Computer Science, TU/e. 2013-09

S. van der Burg. A Reference Ar-
chitecture for Distributed Software De-
ployment. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2013-11

D.H.P. Gerrits. Pushing and
Pulling: Computing push plans for
disk-shaped robots, and dynamic label-
ings for moving points. Faculty of
Mathematics and Computer Science,
TU/e. 2013-12

M. Timmer. Efficient Modelling,
Generation and Analysis of Markov
Automata. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data
Structures in the Black-Box Model.
Faculty of Mathematics and Computer
Science, TU/e. 2013-14

L. Lensink. Applying Formal Meth-
ods in Software Development. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-16

C. de Gouw. Combining Monitor-
ing with Run-time Assertion Checking.
Faculty of Mathematics and Natural
Sciences, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty
of Science, UvA. 2014-01

D. Hadziosmanovic. The Process
Matters: Cyber Security in Industrial
Control Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2014-03

C.-P. Bezemer. Performance Op-
timization of Multi-Tenant Software
Systems. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quanti-
tative Information Flow Analysis for
Multi-threaded Programs. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2014-06

J. Winter. Coalgebraic Characteri-
zations of Automata-Theoretic Classes.
Faculty of Science, Mathematics and
Computer Science, RU. 2014-07

W. Meulemans. Similarity Mea-
sures and Algorithms for Carto-
graphic Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2014-08

A.F.E. Belinfante. JTorX: Explor-
ing Model-Based Testing. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2014-09

A.P. van der Meer. Domain Spe-
cific Languages and their Type Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of
Collaboration in Online Software Com-

munities. Faculty of Mathematics and
Computer Science, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the
Gap between Active Learning and Real-
World Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2014-13

M. Helvensteijn. Abstract Delta
Modeling: Software Product Lines and
Beyond. Faculty of Mathematics and
Natural Sciences, UL. 2014-14

P. Vullers. Efficient Implementa-
tions of Attribute-based Credentials on
Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2014-15

F.W. Takes. Algorithms for Ana-
lyzing and Mining Real-World Graphs.
Faculty of Mathematics and Natural
Sciences, UL. 2014-16

M.P. Schraagen. Aspects of Record
Linkage. Faculty of Mathematics and
Natural Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the Real
World. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient
Abstractions for Visualization and
Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervi-
sory Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
ibility and Trustworthiness. Faculty of

Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Develop-
ers’ Teamwork from within the IDE.
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-05

T. Espinha. Web Service Grow-
ing Pains: Understanding Services and
Their Clients. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Networks.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics
and Computer Science, TU/e. 2015-08

S. Cranen. Getting the point
— Obtaining and understanding fix-
points in model checking. Faculty of
Mathematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of
an Architecture Framework and Qual-
ity Evaluation for Automotive Software
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2015-12

J. Bransen. On the Incremen-
tal Evaluation of Higher-Order At-
tribute Grammars. Faculty of Science,
UU. 2015-13

S. Picek. Applications of Evolution-
ary Computation to Cryptology. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction.
Faculty of Mathematics and Natural
Sciences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifica-
tions of Probabilistic Processes. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

	Introduction
	Hardware descriptions
	Hardware verification
	Contribution of this thesis

	Micro-architectural models of communication fabrics
	Definition of xMAS
	Queue
	Composition of components

	Non-standard xMAS components
	Interfaces in RTL
	Treating queues as black boxes

	Analysis of circuits
	Introduction
	Definition of a Circuit
	Combining modules
	Circuit size
	Polynomial time algorithm for making a circuit acyclic
	A worst-case circuit

	From gates to Boolean formulas
	Discussion
	Conclusions

	Invariants
	Method
	A simple example
	Well-defined interfaces
	Interpretation of function s
	Translation of function s
	An algorithm for finding inductive invariants
	Data dependent queues

	Step by step analysis
	Conclusions

	Liveness verification
	Liveness
	A manual proof
	A simple example
	Liveness proof

	Automated proof
	Runs and lassos
	Encoding liveness as averages
	Relating average values
	Queue properties.
	Summary

	Conclusions

	Extraction of xMAS from RTL
	Translation of RTL to xMAS
	From ports to a forest
	Orienting the forest

	Resulting Graph Correctness
	Discussion
	Conclusion

	Experimental results
	Investigated designs
	Virtual channels with buffer
	Two-entry scoreboard
	Parallel queues

	Invariants
	Virtual channels with buffer
	Two-entry scoreboard
	Parallel queues
	Scalability of the approach

	Deadlock verification
	Verification Flow
	Parallel queues
	Buffered virtual channels
	Other networks and scalability

	Extracting xMAS from RTL
	Scalability
	Validation of the resulting networks

	Conclusions

	Discussion and conclusions
	Performance
	Limitations
	Possible improvements

	Analytical power
	Limitations
	Possible improvements

	Feedback limitations
	Limitations
	Possible improvements

	Conclusions

	Verification of Interconnects: an Implementation in Haskell
	Example input: a design in Verilog
	On using DAGs in Haskell to represent formulas
	Use of RankNTypes
	Does type safety protect against all cycles?

	Representations of four-valued Booleans
	Symbolic instance
	Optimizations on symbolic instances
	Eliminate cyclic dependencies

	Multiple analysis methods in a single tool
	Switching between different Boolean representations
	Boolean instance from Rings

	Glossary
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

