
 

Advanced geometric calibration and control for medical X-ray
systems
Citation for published version (APA):
van der Maas, R. J. R. (2016). Advanced geometric calibration and control for medical X-ray systems. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 03/03/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f1e6cccb-b6c8-47b5-9214-417a5a615ee4


A D V A N C E D  G E O M E T R I C 

C A L I B R AT I O N  A N D  C O N T R O L 

F O R  M E D I C A L  X- R AY  S Y S T E M S

RICK VAN DER MAAS





Advanced Geometric Calibration and
Control for Medical X-ray Systems

Rick van der Maas



The research reported in this thesis is part of the research program of the Dutch
Institute of Systems and Control (DISC). The author has successfully completed the
educational program of the Graduate School DISC.

The research leading to these results has received funding from the Dutch ministry of
Economic affairs and is part of the joint Eindhoven University of Technology/Philips
Healthcare MIxR Project.

A catalogue record is available from the Eindhoven University of Technology Library.
ISBN: 978-90-386-4028-0

Cover design: Alexandra Lillian Garza
Reproduction: CPI - Koninklijke Wöhrman, Zutphen, the Netherlands

c©2016 by R.J.R. van der Maas. All rights reserved.



Advanced Geometric Calibration and
Control for Medical X-ray Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. F.P.T. Baaijens, voor een
commissie aangewezen door het College voor

Promoties, in het openbaar te verdedigen
op dinsdag 3 maart 2016 om 16.00 uur

door

Richard Jacobus Rudolf van der Maas

geboren te Vlissingen



Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. L.P.H. de Goey
promotor: prof.dr.ir. M. Steinbuch
copromotor: dr.ir. A.G. de Jager
leden: prof.dr.ir. N. van de Wouw

prof.dr.ir. T. Singh (State University of New York at Buffalo)
prof.dr.ir. J. Schoukens (Vrije Universiteit Brussel)

adviseurs: dr.ir. T.A.E. Oomen
ir. J.J. Dries (Philips Healthcare)

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeen-
stemming met de TU/e Gedragscode Wetenschapsbeoefening.



Contents

1 Introduction 1
1.1 From X-ray imaging to high-definition 3D reconstruction . . . . . 1

1.1.1 Fundamentals of X-ray imaging and reconstruction . . . . 1
1.1.2 Image-guided interventions . . . . . . . . . . . . . . . . . 3
1.1.3 Influence of system imperfections . . . . . . . . . . . . . . 4

1.2 Next generation interventional imaging . . . . . . . . . . . . . . . 5
1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Current geometric calibration approaches . . . . . . . . . . . . . 8
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Research results beyond this thesis . . . . . . . . . . . . . . . . . 15

2 Model-Based Geometric Calibration 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Preliminaries and proposed procedure . . . . . . . . . . . . . . . 20

2.2.1 Influence of physical system parameters on
3D reconstruction quality . . . . . . . . . . . . . . . . . . 20

2.2.2 Currently applied calibration procedure . . . . . . . . . . 23
2.2.3 Proposed model-based calibration estimation . . . . . . . 25

2.3 Modeling and parameter identification . . . . . . . . . . . . . . . 26
2.3.1 Kinematic modeling . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Modeling of joint compliance . . . . . . . . . . . . . . . . 30
2.3.3 Flexible element modeling . . . . . . . . . . . . . . . . . . 30
2.3.4 Parameter identification . . . . . . . . . . . . . . . . . . . 30

2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Parameter identification experiment . . . . . . . . . . . . 32
2.4.2 3D Reconstruction validation . . . . . . . . . . . . . . . . 34
2.4.3 3D Roadmapping overlay validation . . . . . . . . . . . . 35

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



ii Contents

3 Nonparametric Identification of a Medical X-ray System 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 System description and identification objective . . . . . . . . . . 42

3.2.1 Interventional X-ray system . . . . . . . . . . . . . . . . . 42
3.2.2 Measurement and identification objective . . . . . . . . . 42

3.3 Experiment design . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Nonparametric identification approaches using periodic excitations 45

3.4.1 Best linear approximation by averaging . . . . . . . . . . 45
3.4.2 Local parametric approach . . . . . . . . . . . . . . . . . 49

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Initial experiment . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Excitation signal optimization . . . . . . . . . . . . . . . . 54
3.5.3 Final experimental results . . . . . . . . . . . . . . . . . . 56

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Nonparametric Identification of Parameter Varying Systems 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Linear parameter varying systems . . . . . . . . . . . . . 62
4.2.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . 63

4.3 nD-LPM for periodic excitation signals . . . . . . . . . . . . . . . 63
4.3.1 Local polynomial method . . . . . . . . . . . . . . . . . . 64
4.3.2 nD local parameteric approach for LPV systems . . . . . 66
4.3.3 Closed-loop operating conditions . . . . . . . . . . . . . . 69
4.3.4 Covariance analysis . . . . . . . . . . . . . . . . . . . . . . 69
4.3.5 Implementation aspects . . . . . . . . . . . . . . . . . . . 71

4.4 nD-LRM for periodic excitation signals . . . . . . . . . . . . . . . 72
4.5 Arbitrary excitation signals . . . . . . . . . . . . . . . . . . . . . 73
4.6 System description: medical X-ray system . . . . . . . . . . . . . 74
4.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Data-Driven Geometric Calibration 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Preliminaries and proposed approach . . . . . . . . . . . . . . . . 88

5.2.1 Geometric calibration and parameters . . . . . . . . . . . 88
5.2.2 Model-based geometric calibration . . . . . . . . . . . . . 89
5.2.3 Problem description . . . . . . . . . . . . . . . . . . . . . 90
5.2.4 Proposed data-driven geometric calibration approach . . . 91

5.3 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . 94



Contents iii

5.3.3 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . 95
5.4 Parametric modeling for state-estimations . . . . . . . . . . . . . 97

5.4.1 Parametric modeling . . . . . . . . . . . . . . . . . . . . . 97
5.4.2 Modeling geometric nonlinearities . . . . . . . . . . . . . 100
5.4.3 Initial parameter estimation . . . . . . . . . . . . . . . . . 101

5.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Conclusions and recommendations . . . . . . . . . . . . . . . . . 107

6 Image-Based Measurements for Geometric Calibration 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Problem description and proposed approach . . . . . . . . . . . . 112

6.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 112
6.2.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Image-based marker detection . . . . . . . . . . . . . . . . . . . . 114
6.3.1 Modeling approach: projective geometry . . . . . . . . . . 114
6.3.2 Marker design . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.3 Image processing: line and point detection . . . . . . . . . 121

6.4 Application for medical imaging . . . . . . . . . . . . . . . . . . . 125
6.4.1 Case I: direct measurement of geometric parameters . . . 125
6.4.2 Case II: proposed image-based observer . . . . . . . . . . 126
6.4.3 Alternative applications . . . . . . . . . . . . . . . . . . . 126

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.6 Conclusions and recommendations . . . . . . . . . . . . . . . . . 129

7 Vibration Reduction Using Time-Delay Filtering 131
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Time-delay filtering for periodic movements . . . . . . . . . . . . 133

7.2.1 Second-order systems . . . . . . . . . . . . . . . . . . . . 133
7.2.2 General approach . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.3 Higher-order systems . . . . . . . . . . . . . . . . . . . . . 140

7.3 Extensions and special cases . . . . . . . . . . . . . . . . . . . . . 141
7.3.1 Systems with zeros . . . . . . . . . . . . . . . . . . . . . . 141
7.3.2 First-order systems . . . . . . . . . . . . . . . . . . . . . . 142
7.3.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3.4 Non-differentiable reference signals . . . . . . . . . . . . . 144

7.4 Practical design case . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Conclusions and Recommendations 151
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Recommendations for ongoing research . . . . . . . . . . . . . . . 153

A Overview: Philips Allura X-ray Systems 157



iv Contents

B 3D Reconstruction Theory: Radon Transformation 159

C Various Notations and Clarifications 165
C.1 Sample variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
C.2 Derivation Kalman gain . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 169

Societal Summary 183

Summary 185

Samenvatting 189

Dankwoord 193

List of publications 195

Curriculum vitae 199



Chapter 1

Introduction

1.1 From X-ray imaging to high-definition 3D
reconstruction

With the discovery of X-ray by Wilhelm Conrad Röntgen in 1895 [1], a first
breakthrough towards modern medical imaging was achieved. X-ray radiation
is a electromagnetic radiation, in the wavelength range of 0.01 - 10 nanometers.
Many natural sources emit X-ray, e.g., cosmic radiation and specific materials,
in fact, on average, humans are exposed to twice as much radiation during a
live time due to environmental sources than due to medical applications [2].
X-ray is used for many purposes, e.g., quality checks, security, and in medical
sciences. In this thesis, the focus is on medical applications, typically used
for interventional/minimal invasive surgery, e.g., stent placement or catheter
guidance in the vascular system. The main focus is on improving geometric
calibration procedures for medical X-ray systems that lead to reduced calibration
times and improved image qualities for the next generation imaging systems.

1.1.1 Fundamentals of X-ray imaging and reconstruction

X-rays are generated using an X-ray tube (Fig. 1.1, À), which is a vacuum tube
that contains a cathode and anode. By heating the cathode, free electrons are
accelerated and collide at high speed with the positively charged anode. When
the electrons strike a nucleus, energy is released in the form of X-ray radiation.
By modification of the voltage between the anode and cathode the energy, i.e.,
penetrating power, of the obtained X-rays is controlled. By adjusting the current
applied to the filament, the amount of dose can be controlled [3, Chap. 2].
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À
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Fig. 1.1. Schematic representation of the X-ray imaging process, where
À: X-ray tube, Á: collimator (shutters), Â: radiated X-ray photons, Ã:
object of interest, Ä: attenuated X-ray photons, Å: anti-scatter grid, Æ:
scintillation layer, and Ç: detection layer (photo-diodes).

To avoid unnecessary exposure for the patient and medical staff, the gener-
ated X-ray beam first passes through the collimator (Á). Inside the collimator,
movable shutters are placed such that specific parts of the beam can be blocked,
i.e., to avoid exposure that is not captured by the detector or to focus on a
specific part of the patients anatomy.

The attenuation coefficient is an important material property which forms
the fundamental of X-ray imaging, it reflects the ratio between the radiated (Â)
photons by the X-ray tube and the attenuated (Ä) X-ray photons by the object of
interest. The attenuation coefficient is closely related to the material density, i.e.,
the denser the material, the higher the attenuation coefficient. Moreover, part
of the photons is deflected in arbitrary directions by the atoms of the object of
interest, leading to scattered radiation. Hence, an anti-scatter grid (Å) is placed
before the detector to preserve the direct X-rays from tube to detector and filter
out scattered rays.

By detecting the attenuated photons after passing through the patient and
anti-scatter grid, an X-ray image is obtained. The detection of X-ray has devel-
oped from the traditional “wet” process, similar to the development of photo-
graphic film, to a fully digitized image. The detection of digital X-ray images
contains two steps, first a scintillation layer (Æ) is passed that converts the X-
ray photons to visible light. Second the visible light is detected and converted
to electronic signals by photo-diodes in the detector (Ç).

Where early medical applications typically aimed at the visualization of high-
density structures, e.g., bone-structures, modern techniques such as 3D rota-
tional Angiography (3DRA) aim at the visualization of the vascular system as
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well by means of contrast fluids. By injecting the patient with a contrast fluid
that has a high attenuation coefficient, irregularities or blockages of the vascu-
lar system can be visualized. XperCT is the interventional equivalent of CT,
where slices of the object of interest are visualized, with the main focus on the
visualization of “soft” tissue without the use of contrast fluids. Traditional CT
systems enable a full circular revolution of the X-ray detector and source, where
XperCT is limited to a semi-circular motion range.

Nowadays, medical imaging has developed towards high-definition digital im-
ages and three-dimensional (3D) reconstructions. With the introduction of the
Radon transform [4], the fundamentals for state-of-the-art computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) are laid. The projection of a
single X-ray is representing the attenuation of the object, i.e., the ratio between
the radiated and detected amount of X-ray. By the acquisition of multiple X-
rays simultaneously, a two-dimensional (2D) image is obtained. When multiple
2D images are obtained from various positions and orientations over a sufficient
range, typically a (semi-)circular trajectory, the intersections of the individual
line integrals represents a value for a point in 3D space. Hence, a 3D reconstruc-
tion is obtained, see [5, Sec. 5.11], [3, Chap. 3], and [6] for more details.

1.1.2 Image-guided interventions

Over the past decades, an increased interest of the medical society to make
surgical procedures faster, safer and more efficient, in combination with modern
technological advances, has led to a significant increase of minimally invasive and
image-guided interventions. In sharp contrast to traditional surgical procedures,
these “interventions” allow for minimal collateral damage to the patient during
surgery, e.g., only small incisions, leading to less postoperative complications and
faster patient recovery times. Using specialized surgical instruments, treatments
are performed inside the patient guided by real-time imaging.

The natural pathways of the vascular system are more and more exploited
to reach the location of interest with surgical instruments, e.g., by progressing
through the femoral artery to reach the coronary vessels. Catheter placement,
which is used for a variety of purposes, e.g., fluid drainage and delivery, but
also cauterization of selected locations of the hearth muscle (cardiac ablation),
is often performed through the vascular system. Other applications are the
placements of a stent, which essentially are hollow flexible tubes, that expand
after placement to keep vessels open and prevent bleeding. To navigate such
a device in the interior of the human body without direct visual contact, 2D
images often do not provide sufficient information. By overlaying an X-ray
fluoroscopy image, which is a low-dose continuous imaging mode, over a pre-
generated 3D reconstruction, a more complete visualization of the situation is
provided to the user. Such an overlay procedure is typically referred to as 3D
roadmapping [7], [8].
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In addition, early detection and surgery/interventions on aneurysms requires
high definition 3D reconstructions. An aneurysm is a local weakness of the
vascular system that, depending on the location, potentially is life threatening.
Typically catheters are used to place custom made endografts designed to relieve
pressure. Alternatively, the aneurysm is filled with thin coils to cause blood
coagulation (cerebral aneurysms). For these procedures, 3D information can
provide insight in the complexity of the aneurysm and surrounding systems,
which is crucial for successful interventions [9].

Alternative currently existing imaging methods such as ultrasound, MRI,
and CT, have several advantages from an imaging perspective, e.g., higher con-
trast due to larger pixel sizes. However, overall they do not provide the image
resolution, speed and flexibility for the same cost as can be achieved using in-
terventional X-ray imaging.

1.1.3 Influence of system imperfections

A vast amount of calibrations is performed on medical X-ray systems to ensure
an optimal reconstruction and image quality. Calibration of the image acquisi-
tion components, e.g., detector calibration to compensate for nonlinearity and
non-uniformity and calibrations related to polychromaticity (wavelength distur-
bances) of X-rays are indispensable to obtain images of high quality with a
minimum dose exposure. Moreover, geometric calibrations, which are the main
focus in this thesis are performed. Since any physical system suffers from (me-
chanical) imperfections, the true (motion) behavior will deviate from the design
specifications.

For medical imaging purposes, the pose of the image acquisition components
with respect to the patient are key. The detection surface is assumed a rigid
surface of known dimensions and is fully defined in 3D space by six degrees-of-
freedom, i.e., three translations and three orientations, both defined with respect
to a fixed reference. The X-ray source, typically assumed a point source [10], [11],
is defined by three translational degrees of freedom only, bringing the total to
nine degrees-of-freedom, in this thesis referred to as geometric parameters. Note
that this is the case regardless of the mechanical configuration of the system,
e.g., various types of interventional X-ray systems or CT systems.

Focusing on interventional X-ray systems, typical configurations exist of a
chain of interconnected kinematic links, ending in the detector and X-ray source.
Note that the structure is similar to many designs in industrial robotics where
positioning of the end effector is essential for performance. Typical effects that
lead to deviations from the user-defined (ideal) trajectory are given by, but not
limited to,

• system imperfections due to limited production and assemblage accuracies,
e.g., offsets and misalignments,
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• finite stiffness’ of mechanical elements, e.g., finite construction stiffness
but also flexibilities in the drive-train components leading to quasi-static
(position-dependent) deformations and dynamical effects,

• external disturbances from, e.g., other systems or thermal variations, and

• slowly time-varying behavior due to wear of components.

As a result of mechanical imperfections of the system, leading to deviations from
the expected (ideal) poses of the image acquisition components, each individ-
ual 2D projection is shifted and rotated in an unknown manner. As argued in
Sec. 1.1.1, the reconstruction of a 3D object is based on the mapping of multiple
2D projections, i.e., the intersections of the line-integrals represent points in 3D
space. The problem of defining the true poses of the image acquisition compo-
nents, i.e., the aforementioned geometric parameters, when a specific reference
signal is applied, is referred to as geometric calibration. When the true trajec-
tory is identified, the 3D reconstruction procedure can be performed with high
accuracy.

Common practice for the considered class of systems is a geometric calibra-
tion where, using an off-line external measurement, the trajectory is calibrated,
see, e.g., [12, Sec. 2.11]. For the validity of the off-line calibration measure-
ments during normal operation of the system, a strict reproducibility condition
is imposed.

1.2 Next generation interventional imaging

Cost awareness in the development and production of medical systems has grown
over the last decades due to rising costs of health care in many countries all over
the world. With the development of minimally invasive procedures, increased
requirements in terms of image quality and reduced X-ray dose usage, limitations
of the currently used imaging systems and procedures are becoming apparent.
Moreover, from a mechatronic point-of-view on the design of next generation
interventional X-ray systems, the following developments are envisioned:

1. lightweight system design, and

2. extended scan possibilities.

Although these developments are desired in terms of usability and cost effec-
tiveness, a significant amount of new and increased mechatronic challenges are
introduced. In the remainder of this section, the advantages and consequences
of these developments on image quality and systems calibrations are explored.
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Lightweight system design

Lightweight system design has several advantages over the current systems. By
virtue of Newton’s law, F = ma, with F the required force to achieve an acceler-
ation a given a mass m, it is highlighted that by reducing the mass of the system
the required forces are reduced. Hence, less restrictive conditions are placed on
the actuators, gearboxes and guidings of the system. Moreover, transportation
costs can be reduced and ease and safety of installations can be increased. Since
interventional medical X-ray systems typically operate in a crowded environ-
ment, i.e., medical staff, the patient on the table, and equipment are present,
safety is crucial. Often current-based collision detection methods are exploited
where deviations from the predicted current with respect to the measured cur-
rent applied to the actuators indicate a collision. For lightweight systems, forces
required for acceleration and deceleration, but also impact forces are typically
smaller.

Besides advantages, lightweight system design imposes at least two main
challenges:

• a reduction of mass is often also resulting in a reduction of stiffness. How-
ever, the ratio between stiffness and mass typically does not remain the
same, often leading to a change of flexible modes to lower frequencies, and

• the relation between the input and non-collocated performance variables,
i.e., the nine degrees-of-freedom defined as the geometric parameters as
argued in Sec. 1.1.3, are described by geometric (kinematic) relations and
an increasing dynamical component. As a result of the combination of fixed
and changing (external) forces and a lower stiffness, dynamical deflections
increase.

Due to these effects, dynamics will play a significant role for future systems,
complicating the geometric calibration of the system. Moreover, the quality
of individual 2D images is endangered due to possible increased amplitudes of
system vibrations during a single exposure.

Extended scan possibilities

Due to a growing number of minimal invasive surgeries, and thus more crowded
clinical environments, there is an increasing demand from the medical commu-
nity on scan and positioning freedom of interventional imaging systems. See
Appendix A for an overview of the current systems. Allowing access to the
patient while obtaining accurate images is important and can be achieved by
over-actuation, i.e., by using multiple joints during a scan or even increasing the
number of joints of the system. An example of such an innovative development
is the Siemens Artis Zeego where a C-arc is mounted on an industrial robot with
7 degrees-of-freedom [13]. An increase in actuated motions leads to an increase
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in possible error sources, which complicates the geometric calibration of the sys-
tem. Also by increasing the number of scan options, the number of required
calibrations increases significantly.

1.3 Problem statement

Throughout this thesis, interventional X-ray systems are considered. However,
the proposed approaches can also be exploited to other configurations of X-
ray based imaging systems that exploit the imaging structure as depicted in
Fig. 1.1. Taking into account the expected future developments and the current
limitations in geometric calibrations, the general research goal of this thesis can
be summarized as follows:

Develop a framework to deal time-efficiently with (non)reproducible geo-
metric system imperfections to guarantee high-definition imaging, given the
current and expected (future) challenges in medical X-ray applications.

By exploiting developments in modeling, estimation, and control of mecha-
tronic systems, solutions are desired for multiple limiting factors in the system
design. The main limiting factors for the current geometric calibrations of med-
ical X-ray systems are given in I-IV.

I Geometric calibrations using external measurements or tools require time-
consuming experimentations [11]. For the current generation interventional
X-ray systems the semi-annual calibration times take up to four hours for
each individual system depending on the configuration and available op-
tions.

II Reproducibility of the system is crucial for successful application of existing
geometric calibration approaches. It is expected that future developments
lead to larger contributions of the dynamical behavior to the geometric
parameters, therefore the susceptibility to external disturbances and initial
operating conditions endanger the required reproducibility condition.

III Only predefined trajectories can be used for reconstruction purposes. The
true trajectory that the system follows is a result of a combination of the
systems kinematics, compliances, and dynamics where only the resulting
output is calibrated. Without additional system knowledge, the measured
output can not be extrapolated to other scan trajectories.

IV Geometric calibrations have to be repeated over fixed time-intervals, typi-
cally six months. Also, when the system mechanics are minimally changed,
e.g., due to a moderate collision or component replacement, the calibration
has to be repeated.
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Besides the imperative geometric calibrations, many calibrations are required
to guarantee a desired image quality, see [14] for a detailed overview. For the
results presented in this thesis, the following assumption should hold:

Assumption 1.1. It is assumed throughout this thesis that all calibrations, e.g.,
detector and source calibrations, are performed. Also, the detector and X-ray
source are assumed ideal, i.e.,

1. the detector is assumed a rigid body, perfectly aligned on a rectilinear grid,
and

2. the X-ray source can be described by a point-source from which the devia-
tions from the ideal position can be neglected.

In view of modern developments towards the next generation imaging sys-
tems, the following research questions are formulated.

Research Challenge I. Design a framework for geometric calibrations of in-
terventional X-ray systems, that overcomes the aforementioned limitations I to
IV.

Research Challenge II. Investigate whether additional sensors, smart sens-
ing technology, and (model-based) sensor fusion techniques can be used to render
periodic calibrations, as stated in limitation IV, unnecessary. Using these tech-
nologies, design a fully automated (data-driven) geometric calibration approach
that facilitates enhanced performance for the current and next-generation of X-
ray systems.

Research Challenge III. Investigate the influence of (feedback/feedforward)
control strategies on the geometric calibrations to limit the effects of increased
dynamics on the system behavior as stated in limitations II and III.

In the next section, existing geometric calibration approaches applied in med-
ical imaging applications are presented. The advantages and limitations with
respect to the problem statement are given and novel approaches are proposed.

1.4 Current geometric calibration approaches

As presented in the previous sections, due to inherent imperfections in the me-
chanical structure, geometric calibrations are imperative to avoid reconstruction
artifacts, see, e.g., [15], [16], and [17, Chap. 7] for a detailed analysis. Multiple
approaches to perform geometric calibrations on medical X-ray systems and in-
dustrial robotic systems are reported in literature. In this section, an overview
of some approaches is provided and a comparison in view of the general research
goal in Sec. 1.3 is given.
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Fig. 1.2. 2D image fluoroscopy image of a generally used phantom for
geometric calibrations

Phantom-based geometric calibration

In the medical imaging community, phantom-based calibrations are widely ap-
plied. By placing an object with accurately known size and shape within the line
of sight, i.e., within the exposure of an X-ray projection, the pose of the image
acquisition components is reconstructed. Each projection must contain suffi-
cient information to determine the geometric parameters, e.g., a homogeneous
sphere of known radius does not provide sufficient information to estimation all
parameters due to the rotational symmetry. Therefore, a (calibration) phantom
is typically used that consists of multiple bullets spread uniformly in 3D space.
A single projection of the phantom is shown in Fig. 1.2, where the dark bullets
show the markers. Early research in the use of calibration phantoms show that
8 bullets, positioned in the corners of a cube, in theory provides sufficient in-
formation. However, due to overlapping bullets in specific projections, typically
a significant larger amount of bullets is introduced in the phantom. The dis-
tribution of the bullets in 3D space is typically based on the corners of regular
polyhedra, which are three-dimensional objects bounded by identical and regu-
lar surfaces (polygons), with each edge shared by exactly two polygons. Based
on practical experience, the dodecahedron often is used, where 20 bullets are
distributed over the corners and an additional center bullet and two alignment
bullets are introduced, leading to accurate results even if several bullets are lost
due to overlaps. Moreover, a dodecahedron is relatively easy to produce with
high accuracy. Three layers of an X-ray opaque (low-density) material are used,
in which bullets of a high-density material, e.g., bronze, are pressed. Due to the
large difference in densities of the material, the contrast within X-ray images is
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large. See [18], [19], [20], and [21] for additional information on commonly used
bullet-patterns. After performing a bullet search, e.g., using the Hough trans-
formation [5, Chap. 10], the projected coordinates are mapped to the poses of
the system using a projection matrix (pinhole camera model), see [9, Sec. 4.3.1],
and [3, Chap. 1].

Depending on the type of system, the size of the calibration phantom may
vary. By placing the phantom on the patient table, a fixed (world) reference is
obtained from which the poses of the X-ray detector and source can be derived.
For accuracy, it is desired to spread the bullets as far as possible, however,
the phantom should remain within the projection. Hence, the size of the used
phantom is heavily depending on the detector size and distance from the X-ray
source.

Recovering the pose of the system based on a 2D projection leads to a highly
nonlinear optimization problem [22]. Assuming the system imperfections lead to
relatively small deviations from the ideal trajectory, initial estimates are avail-
able, however, practical results show that global convergence is not always guar-
anteed [23]. Approximative approaches, based on the estimation of parameters
of ellipsoids are presented in [10], which recasts the nonlinear estimation problem
in a linear least-squares problem, see also [11] and [24] for further developments.
The main drawback of these approaches is the required assumption that at least
one out-of-plane rotation of the detector is assumed to be zero. In practice this
results to small estimation errors, see, e.g., [25] for an analysis on the sensitivity
of image quality for variations of geometric parameters.

Even though accurate results are obtained using phantom-based calibrations,
the procedure has some major drawbacks.

1. The method is based on a single (off-line) measurement, i.e., after the cal-
ibration scan, reproducibility is assumed such that the obtained geometric
parameters can be used for future reconstructions. When the reproducibil-
ity condition is violated, there are no guarantees on the obtained recon-
struction qualities. For the current generations of interventional X-ray
systems, this implies that recalibration is required to deal with

• changes to the system behavior, e.g., (ex)change of components or
the effects of collisions, and

• to compensate for (slowly) time-varying behavior of the system.

2. The obtained geometric parameters are highly dependent on the pose and
the dynamical behavior of the system. No extrapolation of the data is
possible to other scan types, velocities, or positions. When purely static
calibrations are considered, geometric parameters are estimated over a
uniformly distributed grid while between the grid points the values are
obtained by interpolation, see e.g., the 3D roadmapping calibration [7].
Resulting from the large number of required calibrations, the calibration
times are significant.
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Image-based geometric calibration

To overcome the strict reproducibility condition imposed by phantom-based cal-
ibration approaches, research has focused on the use of the obtained images
during the actual performed (patient) scan. A possible approach is to place
markers within the exposure volume during patient imaging, e.g., by strategi-
cally placing the markers on the patient or in the patient table [26]. The main
drawback of such an approach is the loss of information within the projection
due to the possible occlusion of interesting anatomy by high-density, i.e., X-ray
absorbing, markers. After obtaining the 2D X-ray projections, interpolation
based reconstruction of the expected anatomy occluded by the marker can be
performed at the cost of a localized increase of noise within the image. Although
the signal-to-noise ratio (SNR) of an X-ray image can be increased by increasing
the X-ray dose, regulations concerned with X-ray exposure to the patient and
staff limit this option.

Alternative approaches, purely based on detection points within the anatomy
of the patient, e.g., specific predefined points of the human bone-structure, are
proposed in, e.g., [27], [28] with successful results. Although the geometric pa-
rameters can be estimated using these procedures, (involuntary) patient motions
pose a serious challenge for 3D reconstruction mappings, particularly when imag-
ing is required of the vascular system. In [29] an iterative restoration algorithm
is proposed that, based on entropy minimization optimizes the 3D reconstruc-
tion. Since the approach is purely based on the obtained images, patient motions
again introduce a significant uncertainty.

External measurements

Modern developments in imaging and computer vision enable fast processing of
camera images. By placing visual markers on the X-ray detector and source,
direct measurements are performed of the geometric parameters. Similar ap-
proaches are widely applied using both vision as well as laser trackers for geo-
metric calibrations of industrial robotic systems, see, e.g., [30], [31], and [32].

Although direct measurements do not require reproducibility of the system
it is challenging to guarantee a direct line-of-sight to the system at all times.
During surgery, intervention rooms are typically very crowded with medical staff,
screens, and additional required tools. In addition, the patient and table is
typically covered with sheets that (partly) covers the system. This issue can be
overcome by the addition of more cameras, or other measurement instruments,
leading to additional costs.
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Towards geometric calibration for next generation interven-
tional X-ray systems

Although the presented existing approaches lead to satisfactory results, the de-
sign of the next generation interventional X-ray systems is significantly limited,
both functional as well as financial, by the limitations I to IV presented in
Sec. 1.3. The importance of advanced solutions for fast and accurate geometric
calibration of (interventional) X-ray systems is underlined by the vast amount
of recent publications on the topic.

In sharp contrast to pre-existing approaches, in this thesis the geometric
calibration problem is evaluated from a mechatronic model-based point-of-view.
The (mechanical) causes and imperfections that lead to deviations of the ge-
ometric parameters from the user-defined trajectory are analyzed. Based on
developments in the field of industrial robotic systems, advanced modeling, esti-
mation, and control approaches are exploited to overcome the currently existing
limitations as presented in Sec. 1.3.

The proposed approaches in this thesis can be roughly divided in two main
directions.

1. Estimation-based approaches where the actual behavior of the system is
estimated.

2. Design and control based approaches where the actual behavior of the
system is modified such that the behavior approximates the ideal behavior
more closely.

For the current generation (interventional) X-ray systems, the time-consuming
geometric calibration and the predefined scan trajectories, as described in point
I and III in Sec. 1.3, are the main limiting factors. The phantom-based ap-
proaches are widely applied with satisfactory results in terms of 3D reconstruc-
tion qualities, at the cost of significant calibration times. This leads to the first
contribution of this thesis.

Contribution I. A new model-based framework for geometric calibrations for
interventional X-ray systems that recasts the extensive calibration problem in a
model parameter identification problem.

The main advantage of the proposed approach over existing methods is the
significant reduction in calibration times by exploiting the predictive properties
of a physics based model.

Although the model-based approach in contribution I has significant ad-
vantages over pre-existing methods, dynamical effects are not included in the
modeling approach. The dynamics of a robotic systems are often highly pose
dependent and can typically be approximated by a linear parameter varying
(LPV) model where the actuation angles are chosen as the scheduling parame-
ters [33]. The second contribution of this thesis is based on the identification of
local nonparametric frequency response functions (FRF) of an LPV system.
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Contribution II. A novel approach for the measurement of frequency response
functions for linear parameter varying systems is proposed. Based on the local
polynomial method (LPM) [34] and the local rational method (LRM) [35], which
are developed for linear time-invariant (LTI) systems, a new approach that uses
the smoothness over the scheduling parameter is proposed leading to significant
reduction in measurement times and enhanced estimation accuracy.

Accurate estimations of system behavior is typically obtained by sensor-
fusion techniques, e.g., Kalman or particle filters. Based on model-based pre-
dictions and measurements, accurate estimations of unmeasured states of the
system can be obtained. This leads to the third contribution in this work.

Contribution III. A fully data/model-driven geometric calibration approach is
proposed. Based on accurate dynamic and quasi-static modeling of the system,
in combination with additional sensors and advanced state-observer designs, ge-
ometric parameters are estimated. Due to the use of measured data, the imposed
reproducibility condition on the system, as described in point II in Sec. 1.3, can
be relaxed. Moreover, the proposed approach allows for adaptation of the model
parameters. leading to increased time-intervals between re-calibrations described
in point IV in Sec. 1.3.

The final aim of the geometric calibration is the estimation of geometric
parameters, which includes parameters of both the X-ray detector as well as
the tube. A relative displacement between the X-ray detector and tube directly
influences the projected image. The proposed approach in Contribution III leads
to independent estimations of the geometric parameters corresponding to the X-
ray detector and source. In Contribution IV a novel measurement approach is
proposed that extends the approach in Contribution III.

Contribution IV. A new image-based measurement technique is proposed that
uses the X-ray images obtained during a patient scan by virtue of a small mechan-
ical addition to the system. Relative displacements between the X-ray detector
and tube are directly measured and used within an observer to obtain an improved
accuracy in the estimation of the geometric parameters.

With this contribution, the estimation based approaches are concluded. An
alternative approach to ease or avoid the geometric calibration procedure is to
force the system to follow the ideal trajectory. For point-to-point motions, input-
shaping techniques lead to significant improvements for lightly-damped motion
systems. For the interventional X-ray system application, it is desired to track
the behavior during the scan, leading to the final contribution.

Contribution V. A novel design approach for time-delay filters is introduced
that enables tracking of dynamic references with lightly-damped motion systems.
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Using the proposed input-shaping approach, the dynamic excitation of the
system is reduced, increasing the reproducibility of the system, as described in
point II in Sec. 1.3.

1.5 Outline of the thesis

In this section, it is described how the research challenges formulated in Sec. 1.3
are related to the contributions and an outline is provided. The individual chap-
ters of this thesis are submitted for journal publication.

Chapter 2
Published as: R. van der Maas, B. de Jager, M. Steinbuch, and J. Dries, “Model-
based geometric calibration for medical X-ray systems”, Medical Physics, 42(11),
pp. 6170 - 6181, 2015.

Chapter 3
Submitted for journal publication as: R. van der Maas, A. van der Maas, J.
Dries, and B. de Jager, “Efficient Non-Parametric Identification of Multi-Axis
Medical X-ray Systems”.

Chapter 4
Submitted for journal publication as: R. van der Maas, A. van der Maas, R.
Voorhoeve, and T. Oomen, “Accurate FRF Identification of LPV Systems: nD
Local Parametric Modeling with Application to a Medical X-ray System”.

Chapter 5
Prepared for journal publication as: R. van der Maas, J. Dries, and B. de Jager,
“Data-Driven Geometric Calibration for Medical X-ray Systems”.

Chapter 6
Prepared for journal publication as: R. van der Maas, R. Gaasbeek, M. den Har-
tog, and B. de Jager, “Image-Based Pose Estimation using Mechanical Markers
for Enhanced Geometric 3D X-ray Calibrations”.

Chapter 7
Submitted for journal publication as: R. van der Maas, T. Singh, and M. Stein-
buch, “Periodic Signal Tracking for Lightly Damped Systems”.

Each of the chapters in this thesis is related to a specific research challenge
and a corresponding contribution. An overview of these relations is provided in
Fig. 1.3.
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1.6 Research results beyond this thesis

During the course of the PhD project that has led to the presented results in this
thesis, several lines of research have been explored that have not been included
in this work.

First, the geometric calibration problem has been analyzed from a mecha-
tronic perspective, resulting in renewed insights in the system. The effects of
(mechanical) imperfections, disturbances, and design choices on the obtained
reconstruction qualities has been thoroughly investigated.

Second, explorations towards image-based measurements led to new insights
on the application of filtering approaches. Dose control, which is considered
outside the scope of this thesis, is essential for accurate imaging. An average
gray value of an image is computed, and based on that value the dose in adjusted
for the next image. Large homogeneous objects of X-ray opaque material, e.g.,
surgical tools, lead to a significant disturbance in the measurement (average gray
value) and as such to a non-optimal X-ray dose exposure for the visualization
of the patients anatomy. An approach based on morphologic filtering has been
developed leading to significant improvements in image quality. The results has
been published as [36] and the approach is practically implemented as a software
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update.
Third, the use of advanced (feedback/feedforward) control approaches is in-

vestigated. The use of iterative learning control (ILC) to achieve enhanced
non-collocated tracking performance of the trajectories of the X-ray detector
and tube has been reported in [37].

Fourth, the image-based measurement approach is introduced for relative
pose measurements using a specifically designed marker. Additional results are
achieved by using the shutters located within the collimator of the system as a
reference. Relative X-ray detector and tube rotations are estimated with high
accuracy, without additional mechanical modifications. Ongoing research focuses
on increased usage of the images for various purposes.

Fifth, an approach to quantify 3D image quality is developed. Using active
contour models, reconstruction artifacts, i.e., systematic reconstruction errors
leading to shape errors in the reconstructed object, are quantified by evaluation
of a cross-section of a thin wire. Moreover, the quality of the reconstruction in
terms of contrast and sharpness is expressed using well established approaches,
which has a strong equivalence to linear system theory, available for 2D images.
The results has been reported in [38].

To conclude, as part of the PhD an experimental medical X-ray system has
been placed in the laboratory at the Eindhoven University of Technology to
facilitate future research on mechatronic challenges.



Chapter 2

Model-Based Geometric
Calibration

A model-based approach for geometric system calibrations of medical X-ray systems

is presented. Currently applied calibration approaches lead to satisfying 3D reconstruc-

tion qualities, however, the required calibration times are extensive. The aim of this

chapter is the introduction of a novel model-based approach for geometric system cal-

ibrations, leading to a significant reduction of calibration times. By exploiting the

predictive properties of a physics based model, the geometric calibration parameters can

be estimated. It is presented how physical model parameters, e.g., misalignments and

link lengths, can be estimated using phantom-based measurement data. Effectively, the

calibration procedure is recast to a parameter identification experiment. The poten-

tial of the proposed approach is illustrated by virtue of a benchmark object, successful

reconstruction of a clinical phantom, and comparisons to the current phantom-based

accuracies. Accurate (kinematic) models are required to achieve the desired accuracies.

Based on the results in this chapter, the approach seems to be feasible for practical

applications. However, the development of models with enhanced accuracies is required

to meet future specifications.

This chapter is based on the publication:
Rick van der Maas, Johan Dries, Bram de Jager, and Maarten Steinbuch, Model-Based Geo-
metric Calibration for Medical X-ray Systems, Medical Physics , vol. 42(11) pp. 6170 - 6181,
2015
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2.1 Introduction

Advancing techniques in the medical society increasingly rely on high quality
images of the interior of the human body. Minimal invasive surgery aims at
reduced collateral damage during surgery, leading to less postoperative compli-
cations and faster patient recovery times. Accurate imaging is key for successful
application of minimal invasive surgeries. X-ray Computed Tomography (CT)
and three-dimensional rotational angiography (3DRA) enable the generation of
high quality 3D reconstructions, based on a large number of 2D X-ray images
each taken from a different point-of-view with respect to the patient [39]. Beside
diagnostics, 3D reconstructions are typically used for 3D roadmapping where
real-time 2D fluoroscopy images are projected on a pregenerated 3D reconstruc-
tion [7, 8]. Interventional C-arm based X-ray systems, as indicated in Fig. 2.1,
are well suited for both described applications [24]. Due to the combination of
the open kinematic structure of the system and a finite stiffness of the systems’
mechanical components, the performance is significantly influenced by internal
and external disturbances, e.g., gravitational and Coriolis forces, leading to po-
sition dependent, quasi-static deformations and inherent multivariable dynamic
behavior [21].

Accurate calibrations are crucial to guarantee simultaneously a desired 3D
quality and a sufficiently accurate overlay of the 2D fluoroscopy image over the
3D reconstruction for roadmapping. Due to system imperfections, e.g., manu-
facturing and assembly tolerances and the effects of external influences, the true
geometry of the systems’ image acquisition components, the detector, and X-ray
source typically vary from the desired trajectory over the full scanning range.
Assuming reproducibility of the system, phantom-based calibration procedures
are widely applied in practice [10,11,18,22,40]. By performing a calibration scan
of a specifically designed object with accurately known size and shape (phan-
tom), the true behavior of the system is estimated using the obtained images.
The resulting values for each pose are stored in a database and can be used for
future reconstruction scans. The described procedure must be repeated for each
scan trajectory, type, and velocity, leading to significant calibration times. In ad-
dition, the reproducibility condition imposes strict limitations on the systems’
design from an engineering point-of-view. A relaxation of the reproducibility
condition can be obtained using the images of the actual 3D reconstructions, e.g.,
using markers positioned in the patient table [26], or more advanced (markerless)
techniques [27–29].

The 3D reconstructions are performed during system movements and are
considered dynamic calibrations, while calibrations for 3D roadmapping are per-
formed at static locations. Hence, independent measurements are required. Due
to the finite density of the roadmapping calibration grid, interpolations are re-
quired to match the calibration data with actual physical system poses.

In this chapter, a model-based approach is introduced for system calibra-
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Fig. 2.1. Philips Xper Allura FD20 with indication of the exposure
volume VE (green pyramid).

tions, with application to 3D reconstructions and 3D roadmapping. The main
contributions are

1. a model-based procedure that enables fast and reliable estimations of ge-
ometric parameters by exploiting the predictive properties of a physical
model and reducing the required amount of calibration scans, and

2. an improved overlay for roadmapping applications, by utilizing the same
model as used for the 3D reconstruction, which renders the additional
interpolations unnecessary.

The emphasis is on the potential of the introduced approach. Basic a priori
knowledge of the system is utilized and a parameter identification procedure
is provided that can be applied on a limited amount of data obtained using a
phantom-based approach.

This chapter is structured as follows, first, the fundamental relation between
the calibration values and system geometry is illustrated in Sec. 2.2 concluding
with a description of the proposed approach. Next, the modeling and identifica-
tion approach is introduced in Sec. 2.3 which leads to the experimental results
discussed in Sec. 2.4. The chapter concludes in Sec. 2.5 with the conclusions.
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2.2 Preliminaries and proposed procedure

A basic understanding of the theory behind 3D reconstructions and roadmapping
applications and the effects of the systems’ geometry on the resulting quality is
key for the design of a predictive model. Based on a pure vector notation, as is
typical for (industrial) robotic systems [12, Chap. 2], [41], the relation between
physical system parameters and the resulting 3D quality is illustrated. It should
be noted that other representations, e.g., using the pinhole camera model, can
be applied as well.

The results presented are based on a ceiling mounted Philips Xper Allura
FD20 system, however, the approach can be applied to any system with 3D
and/or roadmapping capabilities.

2.2.1 Influence of physical system parameters on
3D reconstruction quality

To illustrate the effect of mechanical imperfections and external influences on the
acquired 3D quality, the definition of a reconstruction volume VR is required. In
order to define VR, first, the definition of the exposure volume VE is introduced.
In Fig. 2.2 the exposure volume for a single 2D image is illustrated, which is
a detailed representation of the exposure volume depicted in green in Fig. 2.1.
The exposure volume is defined as the volume spanned by the X-ray source
and the detecting surface Ωd of the system. Under the assumption that the
detecting surface is of known shape and size, rigid, and the X-ray source being
a point source, the relative vector νds ∈ R3 is defined as in Fig. 2.2. The vector
νds describes the relative position of the X-ray source with respect to the origin
of the local coordinate system at the center of the detector, denoted by the
superscript d. As a result, νds and Ωd fully define the size and shape of the
exposure volume VE(k), for a specific image k, as defined in Definition 2.1. The
attenuation coefficients of the matter included in the exposure volume, which is
a measure of the rate of quanta absorption, directly lead to the projected 2D
image, see, e.g., [3].

Definition 2.1. (Exposure volume)
The exposure volume VE is defined as all points that are exposed to X-ray quanta
during a single exposure k and as such contribute to the acquired 2D image as
indicated in Fig. 2.1 and 2.2.

Radon [4] showed that it is possible to reconstruct a 2D slice from a set of 1D
projection images. This theory is generalized for 3D reconstructions based on a
mapping of multiple 2D images [3, 6]. Under the assumption that Tuy-Smith’s
condition is fulfilled by the trajectory [42], the reconstruction is generated ac-
curately for all points, or a subset, that are included in the intersection of all
exposure volumes, defined as the reconstruction volume VR in Definition 2.2. A
graphical interpretation is shown in the middle of Fig. 2.2 for two images.
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Fig. 2.2. Left: exposure volume VE (green); reconstruction volume VR
(blue), based on two images. Middle: ideal situation; right: result due to
the influence of deviations from the ideal trajectory (red dashed-dotted
line).

Definition 2.2. (Reconstruction volume)
The reconstruction volume VR, depicted in Fig. 2.2, is mathematically defined
by

VR =

N⋂

k=1

VE(k), (2.1)

with k a specific image and N the total number of images used for the generation
of the 3D reconstruction.

Note that points close to the reconstruction volume that are included in
almost all VE can theoretically also be used for reconstructions, however, the
quality degrades rapidly. In Fig. 2.2, both the ideal situation without any per-
turbations from the ideal reference trajectory and the perturbed situation are
indicated. A change in the geometry of the system directly leads to a different
size and shape of the reconstruction volume.

By virtue of the pinhole camera model, see, e.g., [3, Chap. 1], the acquisi-
tion geometry for flat-panel cone-beam systems can be described by a projection
matrix in combination with a rotation matrix and translation vector. The pro-
jection of an arbitrary point within the exposure volume is highly correlated to
the kinematic position and orientation of the detector, the position of the focal
spot, and the relative position of the object with respect to the image-acquisition
components. Hence, (mechanical) deviations from the ideal acquisition geometry
lead to perturbed projections resulting in artifacts for (quasi-static) determin-
istic offsets and blur for zero-mean dynamical effects as indicated in Fig. 2.3.
Hence, knowledge of the absolute exposure volumes with respect to each other
is crucial.

In order to achieve an absolute reference, a fixed coordinate frame is required.
This coordinate frame is typically chosen at the center of the phantom, however,
in theory can be chosen arbitrary. To fully describe the position of each exposure
volume, an additional vector, defined by νdph as depicted in Fig. 2.2, is required.
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Fig. 2.3. Cross section of a thin wire for introduced geometric errors; top:
simulated detector misalignment; bottom: dynamic offsets in calibration
parameter; from left to right an increasing offset amplitude.

Three additional angular parameters θw are required to describe the orientation
of the detection plane Ωd with respect to the fixed reference frame. This leads
to a total of nine parameters for each projection k,

ξ(k) =
[
νd

T

s (k) νd
T

ph (k) θTw(k)
]
, (2.2)

enabling the definition of the full cone-beam in the phantom coordinate system,
e.g., νphs = Rphd (θw)νds +νphd . The advantage of the use of a vector notation as in
(2.2), compared to, e.g., the pinhole camera model, is the direct relation toward
available modeling approaches for robotic systems as presented in Sec. 2.3. How-
ever, alternative representations of the system can be applied as well. The aim
of the calibration is to obtain the misalignments with respect to the parameters
in (2.2), described by offsets on the vectors and an additional rotation matrix
describing the rotational offsets.

Assuming knowledge of the deviations from the ideal trajectories, compensa-
tions are applied to the 2D images, e.g., shifts and rotations can be counteracted
at the cost of a small amount of image information loss at the edges of the pro-
jections.

The calibration parameters in (2.2) can be separated in a known reference
part ξ

r
(k) and an unknown (offset) part due to system imperfections and dis-

turbances ∆ξ(k), leading to

ξ(k) = ξ
r
(k) + ∆ξ(k). (2.3)

Typically, the ideal behavior ξ
r
(k) is known from the design specifications, how-

ever, calibrations are required to compensate for the unknown part ∆ξ(k). In
Sec. 2.2.2 and 2.2.3 the currently applied calibration procedure and a novel
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Fig. 2.4. Currently used calibration procedure for 3D reconstructions
and 3D roadmapping applications with Po indicating the true physical
system.

model-based calibration procedure are presented respectively. In the remainder
of this chapter, the term geometric calibration implies obtaining the geometric
parameters as described in (2.2) either by measurement or estimation.

2.2.2 Currently applied calibration procedure

To illustrate the currently applied procedure, a schematic representation is pro-
vided in Fig. 2.4. It should be noted that separate calibration procedures are
required for 3D reconstruction and 3D roadmapping applications. The use of a
calibration phantom is common for both approaches. In this section, both exist-
ing procedures for 3D calibration and roadmapping applications are explained
in detail.

Calibration for 3D reconstruction

A general relation between the accuracy of the obtained geometric calibration
parameters and the quality of the obtained 3D reconstructions or 3D roadmap-
ping applications is introduced in the previous section. The assumption is made
that artifacts uncorrelated to the mechanics of the system are relatively small
or already reduced in an image pre-processing step. A calibration phantom
consists of multiple markers, typically circular objects of a high density mate-
rial [10, 22]. Using a marker search algorithm, multiple marker positions of the
phantom, are found in each obtained image. The marker positions are denoted
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by ρ̃(ξ) = ρ(ξ) + v with ρ(ξ) the real position of the markers given the param-

eters ξ as defined in (2.2) and v ∈ N (0, σ2
v), indicating a zero-mean, normally

distributed measurement noise with (co)variance σ2
v . The reasons for the use of

more markers then minimally required are twofold. First, to guarantee a suf-
ficient number of markers within the line-of-sight while occlusions may occur.
Second, a large quantity of marker positions enables an averaging effect for the
computed geometric calibration. The cost function,

J = arg min
ξ̂
ph

‖ρ̃(ξ)− F (ξ̂
ph

)‖22, (2.4)

with F (ξ̂
ph

) an estimation of the marker positions based on the estimated pose

of the system ξ̂
ph

, is defined. The parameter ξ̂
ph

is an approximation, indicated

by ·̂, of the true system poses described in (2.3), where the subscript ph indi-
cates the estimation is obtained using a phantom-based approach. Note that
the optimal solution is ξ = ξ̂

ph
assuming the phantoms geometry is accurately

described by a (calibrated) phantom model F . The estimated calibration pa-

rameters ξ̂
ph

are used for compensation in the 3D reconstruction algorithm as

indicated in Fig. 2.4. Depending on the capabilities of the system, the number
of calibration scans increases significantly, e.g., if the system allows for a detec-
tor shift, all acquisition types and velocities have to be calibrated for all usable
detector positions to guarantee accurate 3D reconstruction. Hence, the total re-
quired calibration might take up to several hours for modern systems, including
3D roadmapping calibrations as presented in detail in the next section. Typi-
cally, the geometric calibrations are repeated every six months to compensate
for system variations over time, e.g., wear of bearings or actuators, and after
replacements or enhancements of (mechanical) components.

Accurate knowledge of the total of nine required calibration parameters in
(2.2) guarantees optimal reconstruction qualities. However, this often leads to
numerical difficulties imposed by non-convexity of the nonlinear optimization in
(2.4). A large amount of approximative approaches is available in literature,
see, e.g., [10], proposing a reduction of the number of estimated calibration
parameters while introducing minimal reduction of reconstruction qualities.

Based on the mechanical structure of the system, it is known that the domi-
nant structural flexibilities are located in joints, i.e., bearings and transmissions,
and the support (arm) of the system to the ceiling, while the C-arc can be as-
sumed rigid. Hence, the vector νds(k), describing the position of the source with
respect to the detector as presented in Sec. 2.2.1, is considered a constant, i.e.,
νds(k) = [0, 0, −SID]

T ∀ k, with SID (source image distance) the distance be-
tween the focal spot and the center of the detecting surface. It should be noted
that the remaining six estimated parameters include a small bias with respect
to the true poses of the system as in (2.2).
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Fig. 2.5. Philips Xper Allura FD20 with indication of the exposure
volume VE (yellow pyramid) and a possible roadmapping calibration grid
(black hemisphere).

Roadmapping calibration

A static 2D fluoroscopy provides only limited information to the user, however,
it can be obtained from various directions using a C-arm based system. Par-
ticularly for procedures where potentially harmful contrast media are required,
time-saving procedures are desired to minimize negative effects to the patients
health. The 3D roadmapping technique allows for the overlay of live obtained
2D images over a predefined 3D reconstruction, reducing the prolonged exposure
to contrast fluids while still visualizing the relevant part of the interior of the
patient. In order to achieve accurate overlay in combination with the freedom
of system positioning available to the user, an extensive calibration is required
to match the 2D fluoroscopy images to the predefined 3D reconstruction for the
full operating range of the system. As a result, a purely static calibration is
required over a large number of system poses, in practice performed on a prede-
fined grid as indicated in Fig. 2.5. The procedure to obtain ξ(k), ∀ k is equal to
the phantom-based approach described in the previous section. To emphasize
the difference between the 3D roadmapping and 3D calibration, the acquired
geometric parameters can be denoted by

ξ̂
ph

(k) = ξ̂
s
(k) + ξ̂

d
(k), (2.5)

with the subscripts s and d representing static and dynamic respectively. For the
3D roadmapping calibration ξ̂

d
(k) = 0, which is not the case for 3D calibrations.

When the system is used between calibrated points, an interpolation step
is required leading to the estimated geometric parameters ξ̃(k) as indicated in
Fig. 2.4.

2.2.3 Proposed model-based calibration estimation

Although the calibrations presented in the previous sections lead to accurate re-
sults, the large number of calibrations for 3D reconstructions and calibrated grid
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points for roadmapping applications lead to undesired long calibration times.
C-arm based X-ray systems represent a subclass of (industrial) robotic sys-

tems. Modern developments in modeling and control of (industrial) robotics
allow for reliable predictions of (dynamical) system behavior [43, 44]. Using a
model to obtain estimations of the systems’ behavior given a specific input sig-
nal, i.e., dynamic responses (3D reconstructions) or static responses for a given
motor angle (3D roadmapping), has the potential to reduce calibration times.
By a priori defining the mechanical structure, i.e., the kinematics leading to the
geometric parameters ξ(k), a finite set of physical parameters θ can be iden-
tified that describes the system up to a desired accuracy. The system should
satisfy the following two assumptions for the proposed model-based calibration
procedure.

Assumption 2.1. (Assumptions for Model-Based Calibration)

1. The system should allow for high repeatability in system motions.

2. A priori physical knowledge of the system is available.

Note that for successful application of the current phantom-based calibra-
tion approach, Assumption 1 should also be satisfied. Assumption 2 leads to a
trade-off between system knowledge and the requirement of performing a large
number of system calibrations. In Fig. 2.6 a graphical representation of the pro-
posed approach is given. An additional advantage of the proposed procedure is
the elimination of the interpolation step in the 3D roadmapping calibration. A
modeling approach often used for industrial robotic systems is suggested, how-
ever, any modeling approach leading to a prediction of the geometric parameters
suffices. Also, the presented Philips Allura C-arm system under consideration
is used in the upcoming sections to illustrate the potential of the proposed ap-
proach. However, the approach can be applied on any other system for which a
priori information is available on the kinematic structure.

2.3 Modeling and parameter identification

The Philips C-arm based X-ray system under investigation is a serial link robotic
system. The assumption that the movement of the source with respect to the
detector has a minimal effect as introduced in Sec. 2.2.2 is maintained in this
section, which allows for modeling of the detector position only.

Remark 2.1. Note that the proposed approach in Sec. 2.2.3 can be applied in
combination with any geometric parameter reduction approach. However, if the
bias with respect to the true system poses increases significantly, the physical
effects imposed by assumptions or estimations should be included in the model.
C
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Fig. 2.6. Proposed approach to combine 3D reconstruction and roadmap-
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The position and orientation of the detector are defined by three main con-
tributions,

ξ̂(k) = ξ̂
k
(k) + ξ̂

c
(k) + ξ̂

flex
(k) (2.6)

where ξ̂
k
(k) describes a kinematic contribution, ξ̂

c
(k) a joint compliance con-

tribution, and ξ̂
flex

(k) a contribution of flexible elements. First, the modeling

approach for the three contributions in (2.6) is discussed in Sec. 2.3.1 through
2.3.3, followed by a parameter identification procedure in Sec. 2.3.4.

2.3.1 Kinematic modeling

For robotic systems, often the Denavit-Hartenberg (DH) convention is used [12,
Sec. 2.8.2], [41, Sec. 3.2], which enables the description of kinematic poses of a
serial link system with a minimal number of parameters. Any other parametriza-
tion might be chosen, however the DH-convention provides a minimal realiza-
tion, which is beneficial for the identification of the parameters as is presented
in Sec. 2.3.4. Many practical applications of the DH-convention are available in
literature, see, e.g., [30,32,44]. The coordinate transformation, used to describe
the displacement of each link, is defined by four parameters, according to the
homogeneous transformation matrix

jT =




cos(θj) − sin(θj) cos(αj) sin(θj) sin(αj) aj cos(θj)
sin(θj) cos(θj) cos(αj) − cos(θj) sin(αj) aj sin(θj)

0 sin(αj) sin(αj) dj
0 0 0 1


 , (2.7)
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with j indicating the corresponding joint, aj , αj , dj and θj generally denoted
as the link length, link twist, link offset, and joint angle respectively [12,41]. An
extension of the original theory is applied where

θj = θδj + θ∗jβj , (2.8)

with θδj a constant joint offset, θ∗j the actuated joint angle, and βj an offset
in transmission ratio from the design specifications. The total homogeneous
transformation matrix T of a serial link system is given by

T = 1T 2T . . .NjT =

Nj∏

j=1

jT, (2.9)

with Nj the total number of links, facilitating the total kinematic description,

[
νdph
1

]
=

[
f(q)

1

]
= T

[
νw

1

]
, (2.10)

with f(q) a nonlinear expression in q = [a, θδ, α, d, β]T , a vector of physical
unknown parameters, and νw a vector expressing the center of the phantom,
expressed in the phantom coordinate system, i.e., νw = [0, 0, 0]T . Recall that
the estimated output νdph of the model contains three of the total of six required
geometric parameters as defined in (2.2). The remaining three parameters are
defined by the angles included in the rotational matrix defined as the upper left
3× 3 elements of T in (2.9), i.e.,

T =

[
R(θw) ∈ R3×3 νdph ∈ R3×1

0 ∈ R1×3 1 ∈ R1×1

]
. (2.11)

Hence, when the physical parameters q are known, estimations of all six required
geometric parameters as described in Sec. 2.2.1 are available.

Remark 2.2. The same procedure can also be applied for nine parameters, how-
ever, an additional model describing the source position with additional DH-
parameters should be derived. C

The definition of the DH-parameters and assignments of coordinate systems
is straightforward and thoroughly covered in literature with practical appli-
cations [12, 30, 32, 41, 44]. In Fig. 2.7 a graphical representation of the DH-
description of the system under investigation is given with the nominal param-
eters provided in Table 2.1. Note that in contrast to the standard definitions,
the detector coordinate frame is chosen as the first frame instead of a fixed
world frame, enabling a direct comparison to the measured calibration parame-
ters νdph, introduced in Sec. 2.2.1 and indicated in Fig. 2.2, which is also defined
in the local detector coordinate frame. Where for modeling of most robotic sys-
tems the main interest is on endpoint position, the orientation of the detector
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Fig. 2.7. Definition coordinate systems and DH-parameters of the Philips
Xper Allura FD20

Table 2.1. DH-parameters of the Philips Xper Allura FD20

a [mm] δθ [rad] α [rad] d [mm] β [-]

1 0 π/2 −π/2 −385 1
2 0 π/2 −π/2 0 1
3 0 π/2 −π/2 0 1
4 0 π 0 0 1

is not uniquely defined due to the limited number of parameters used in the
DH-convention. To compensate for this, two additional rotations of the detec-
tion plane and two additional rotations of the fixed phantom coordinate frame
are introduced. The detector plane can be uniquely described as indicated in
Fig. 2.7, for which ideally,

θf =
[
θdu θ

d
v θ

p
y θ

p
z

]T
=
[

0 0 0 0
]T

[rad], (2.12)

with the subscript u and v indicating the orthogonal detector coordinates in
the imaging plane as indicated in Fig. 2.7. In addition to the kinematic model,
joint compliance, e.g., limited transmission stiffness and bearing flexibilities, is
important in most robotic systems and is presented in Sec. 2.3.2.
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2.3.2 Modeling of joint compliance

The compliance contribution at the detector for each joint can be described
by [30,31]

ξ̂
c

=
∂f(q)

∂∆θc
∆θc = Jθ∆θc, (2.13)

with ∆θc a rotation of the joint axis due to an external load at the endpoint
of the kinematic chain and Jθ the Jacobian of the nonlinear expression f(q) as
given in (2.10). The effective joint torques due to the end-effector load are given
by [30]

τ = JTθ F . (2.14)

The compliance of a joint can be modeled by a linear torsion stiffness according
to

∆θc = Cθτ , (2.15)

with Cθ a diagonal matrix describing the individual torsion stiffness of each joint.
Combining (2.13), (2.14) and (2.15) leads to

ξ̂
c

= JθCθJ
T
θ F , (2.16)

which can be rewritten as a set of equations linear in the stiffness parameter
[45,46].

2.3.3 Flexible element modeling

Link flexibility of the support arm, connecting the system to the ceiling, and
the finite stiffness of the ceiling have a significant influence on the calibration
parameters and can as a result not be neglected. By defining flexible links based
on physical insight and first order flexible link models [47] of the dominant flexi-
ble elements, a model is defined. Small perturbations in the stiffness parameters
lead to small variation in the predicted output. Hence, the nominal design pa-
rameters can be used for modeling of the flexible elements without introducing
large errors. As a result, the flexible elements are excluded from the parameter
identification procedure introduced in the following section.

2.3.4 Parameter identification

The unknown physical system parameters q in the nonlinear expression f(q),
as defined below (2.10), are estimated in this section based on measured data.
Although the compliance and flexible contributions as described in Sec. 2.3.2
and Sec. 2.3.3 can be added to the set of unknown parameters, for improved
readability the procedure is shown for the kinematic parameters only.

For the identification of nonlinear parameters in the model, an iterative least-
square estimation is proposed. The least-square estimation is an intuitive ap-
proach for the identification of the parameters, it should however be noted that
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other parameter identification approaches are available. Accurate initial pa-
rameters are crucial for convergence since the optimization problem is typically
non-convex [12]. The first-order Taylor series expansion of f(q), leads to

∆ξ̂ =
∂f(q)

∂a
∆a+

∂f(q)

∂θδ
∆θδ +

∂f(q)

∂α
∆α . . . (2.17)

+
∂f(q)

∂d
∆d+

∂f(q)

∂β
∆β +

∂f(q)

∂θf
∆θf ,

with ∆ξ̂ = ξ̂
ph
− ξ̂

m
the difference between the model-based prediction ξ̂

m
and

the phantom-based acquired geometric parameters ξ̂
ph

. The set of equations,

∆ξ̂ =

[
df(q)

dq
df(q)
dθf

] [
∆q
∆θf

]
= J(q)

[
∆q
∆θf

]
, (2.18)

can be defined where J(q) denotes the Jacobian of f(q) with respect to the
parameters q and θf . By introducing multiple measurement points, the set of
equations,

∆ξ̄ =




∆ξ
1

...
∆ξ

Ni


 =



J(q)1

...
J(q)Ni



[

∆q
∆θf

]
= J̄(q)

[
∆q
∆θf

]
, (2.19)

with Ni indicating the number of acquired measurement points, can be defined.
Solving the set of equations in (2.19), assuming a zero-mean Gaussian distributed
measurement noise on

ξ(k) = ξ0(k) + η, (2.20)

with ξ0(k) the true set of parameters, ξ(k) the measured set and η ∈ N (0, Cξ)

with Cξ a covariance matrix describing the Gaussian distributed measurement
noise included in ξ(k), a least-squares estimation problem can be considered [48].
Assuming a global optimum of (2.19) is obtained, by increasing Ni the decreasing
of the covariance on the estimated parameters can be approximated by

Cq =
Cξ

Ni
. (2.21)

As an additional condition, the matrix J̄(q) should be full rank to enable the com-
putation of the least-square solution. This can be achieved by using a minimal
realization of the system, e.g., using the DH-convention, and using sufficiently
exciting reference signals during the identification experiment. By virtue of the
obtained values for ∆q, an updated nominal parameter set can be obtained by
q
l+1

= q
l
+ ∆q

l
for iteration l. The same holds for the parameters in ∆θf . By

using the updated parameters to define a new nominal model f(q
l+1

), a new

Jacobian can be computed using (2.17), resulting in an iterative procedure.
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2.4 Experimental results

The modeling and parameter identification procedure as described in Sec. 2.3 is
applied to a ceiling suspended Philips Xper Allura FD20 system, as depicted in
Fig. 2.5. The results are presented for

1. a 3D reconstruction, and

2. multiple benchmark positions for the 3D roadmapping calibration.

First, the parameter identification results are presented.

2.4.1 Parameter identification experiment

In order to identify all model-parameters, the excitation signal should be per-
sistently exciting, i.e., all actuation signals should be used while covering as
many positions as possible within the operating space of the system [49]. In

Fig. 2.8, the estimation errors are shown, as defined in (2.17), i.e., ∆ξ = ξ̂
ph
− ξ̂,

with ξ̂
ph

obtained from (2.4) and ξ̂ from (2.6). After five iterations, the result

has converged to the physical parameters as indicated in Table 2.2. Due to
safety limitations, simultaneous actuation of multiple joints is not possible on
the system under consideration, leading to the data set of geometric parameters
corresponding to a consecutive set of actuator movements. It should be noted
that as a result infeasible jumps are present that might, in some cases, lead
to identification difficulties, i.e., convergence issues. In addition, the systems’
movements are limited by the patient table supporting the calibration phantom,
possible other objects within the room, and the fact that the calibration phan-
tom should be within the light of sight for each image. Only slow movements
are used, reducing the dynamical contributions within the measurement set to
a minimum, which corresponds best to the used static model, i.e., ξ̂ ≈ ξ̂

s
.

Standard deviations of the estimation errors are shown to provide a quantita-
tive measure for each geometric parameter. Note that clear outliers are present
in the estimation errors. It should be noted that not all actuated motions are
directly relevant for 3D reconstruction scans. Some actuated motions are only
used to place the system in a specific pose, e.g., head- or nurse side, from which
a standardized reconstruction movement is started. Estimation errors, particu-
larly constant offsets in these motions, are often less critical for 3D reconstruction
qualities. Although, for 3D roadmapping all offsets are problematic, the same
model is used for the 3D reconstruction and the 3D roadmapping calibration,
resulting in the same translational and rotational offsets are present in the re-
construction and the overlay calibration. Hence, the overlay remains accurate.
The obtained physical parameters in Table 2.2 are feasible and within the given
systems production specifications.
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Table 2.2. Identified DH-parameters of the Philips Xper Allura FD20

a [mm] δθ [rad] α [rad] d [mm] β [-]

1 −0.6888 1.5789 −1.5668 −390.0287 0.9995
2 −0.8832 1.5786 −1.5769 −0.2988 0.9978
3 −0.3489 1.5655 −1.5774 −5.4242 0.9981
4 −3.7129 3.1908 −0.0129 −1.6914 0.9876

θf =
[

2e−4, 1.5e−4, 11e−4, 14e−4
]T

[rad]

As a final remark it should be noted that the identification measurement
contains 1200 images, acquired with a framerate of 7 fps., leading to a theoretical
measurement time of approximately 3 minutes. Including the time required to
set up the measurement and assuming predefined calibration movements, the
required time for the identification experiment remains significantly smaller then
the time required for all calibration motions for modern systems required by the
phantom-based geometric calibrations as indicated in Sec. 2.2.2.

2.4.2 3D Reconstruction validation

The definition of required estimation accuracies for 3D reconstructions is not
unique since it is highly dependent on the type of examined tissue, the de-
sired scan type, e.g., 3DRA (high resolution) or CT, and the preference of the
user. It can be stated that 3DRA scans, primarily used for high density imag-
ing, e.g., visualization of arteries and aneurysms, and high-resolution CT, e.g.,
used for imaging of the inner ear, require the most demanding accuracies, i.e.,
high spatial resolutions are desired. Recall that not all estimation errors lead
to a degraded 3D reconstruction quality, i.e., constant offsets in the geometric
parameters over all images typically lead to a shift of the total reconstruction
within the reconstruction volume without degrading the quality. Standard de-
viations are again used to quantify the estimation accuracy for each geometric
parameter. The resulting estimation errors for a high-speed 3DRA scan are
shown, in Fig. 2.9 indicating the difference between the model-based prediction
and a phantom-based calibration set. An additional (external) measurement is
performed using a NDI PRO CMM optical tracker which enables high-speed,
high-accuracy (20µm) validation measurements. In Fig. 2.9, a small difference
between the phantom-based approach and the external validation measurement
is visible. Hence, the assumption leading to the reduced number of estimated
geometric parameters in Sec. 2.2.2 is valid, since the modeling errors are domi-
nant.

After identification of the physical parameters of the system, the resulting
model-based predictions can be used for the reconstruction of benchmark ob-
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Fig. 2.10. 3D reconstruction results of a cross-wire; left: phantom-based
calibration; axis Ø1 mm, middle: model-based calibration; axis Ø1 mm,
right: model-based calibration; axis Ø0.2 mm

jects, consisting of multiple thin wires with diameters of ≈ 1 and ≈ 0.2 mm
respectively. In Fig. 2.10 a reconstruction of such a benchmark object is il-
lustrated for an ideal calibration and using the model-based calibrations. The
reconstruction quality is not optimal, however, the structure of the cross-wire
is clearly visible. Blur effects due to (unmodeled) dynamical effects can be ob-
served, although they are not dominant. In Fig. 2.11, the corresponding 2D
intensity profiles are shown where it can clearly be observed that reasonable
results are obtained for 2 directions, i.e., the axis in the X and Z directions. In
the Y direction, residual artifacts are visible, which is a clear indication that the
model is not sufficiently accurate. Finally, in Fig. 2.12, the reconstruction of a
clinically relevant phantom of an aneurysm is shown. The general structure of
the reconstruction is of a similar quality as the phantom-based approach. Only
for small veins, details are missing.

2.4.3 3D Roadmapping overlay validation

As indicated in (2.5), the geometric parameters consist of static- and dynamic
contributions. The 3D roadmapping calibration is a purely static calibration,
which is in line with the proposed quasi-static model. The overlay accuracy is
typically not constant over the full imaging plane, which leads to multiple mea-
sures; at the image center, 1/3 of the image and 2/3 of the image. A benchmark
data set, consisting of a random set of calibration positions, is used to validate
the approach. For these positions, the maximum error, the maximum error of
the best 90% estimated points, i.e., 10% outliers are discarded, and the average
error over all data are compared to average phantom-based results indicated in
Table 2.3. It should be mentioned that the maximum errors do not meet the
specified values. However, comparable results to the average phantom-based ap-
proach, which requires interpolations, are obtained after outlier removal. From
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X : Ø1 mm Y : Ø1 mm Z : Ø1 mm

X : Ø0.2 mm Y : Ø0.2 mm Z : Ø0.2 mm

Fig. 2.11. 2D intensity profiles of wire frame indicated in Fig. 2.10; from
left to right x, y, and z axis respectively; upper: Ø1 mm; lower: Ø0.2 mm.

Fig. 2.12. 3D reconstruction of an aneurysm (phantom); left: phantom-
based approach; right: model-based approach; in red square a detail zoom.
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these results, the conclusions can be drawn that the results are of sufficient
accuracy for practical usage.

Table 2.3. Overlay errors for (random) benchmark points; all values are
in mm.

max max 90% average phantom-based 90%
Image center 0.814 0.593 0.212 0.477
1/3 image 0.842 0.611 0.313 0.523
2/3 image 0.867 0.647 0.514 0.683

2.5 Conclusions

A model-based approach for system calibrations for medical X-ray systems is
proposed. A direct relation between the mechanical components of the system
and the obtained 3D reconstruction quality is illustrated by virtue of the geo-
metric parameters. The fundamentals behind the phantom-based calibration are
highlighted and it is proposed to use the phantom-based approach for model-
parameter identification experiments. By exploiting the predictive properties
of a model, the required time for a geometric calibration can be reduced sig-
nificantly with approximately a factor 10 to 15, which is the main goal in this
chapter. Since the time-interval between geometric calibrations is prescribed
by external circumstances, i.e., wear, collisions, or upgrades of the system, it is
infeasible that the proposed approach increases these time-intervals. However,
using state-of-the-art techniques available for robotic systems future extensions
include data-driven learning of the model-parameters, enabling an increase in
time-intervals between calibrations, possibly leading to automatic calibration.
A modeling approach for quasi-static behavior of the system is proposed based
on industrial robotic systems and a parameter identification approach is dis-
cussed followed by experimental results. The experimental results show that for
3D roadmapping applications, satisfying results can be obtained by the proposed
approach, however, for 3DRA calibrations, the results are not optimal yet, which
can be improved by using a more complete model, e.g., by extending the model
with dynamical behavior. It should be noted that a trade-off is made between
the model complexity and the accuracy of the estimations. More dynamical
effects can be modeled, however, more complex models are not always desired.
Investigations toward combinations with alternative existing approaches, e.g.,
markerless estimation of geometric parameters based on projection images [28],
are interesting due to the combination of reliable model-based estimations of pre-
dictable system effects and the estimation of unpredictable effects, e.g., patient
motions.

Driven by the desire for faster, more accurate measurements, and production-
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and transportation cost reductions, trends in modern design of high-tech mecha-
tronic systems and robotics emphasize lightweight system design. Lightweight
systems typically have an increased sensitivity for internal and external dis-
turbances which pressures the reproducibility condition which is key for the
currently applied phantom-based approaches. Using an extended model that
includes the dynamical behavior of a system, possibly in combination with addi-
tional sensors, the estimation of geometric parameters can be performed during
normal system operation. Developments in Micro-ElectroMechanical Systems
(MEMS) technology allow for relatively cheap, accurate measurements of linear
accelerations, and angular velocities directly located at the detector and X-ray
source. A vast amount of research for robotic applications that exploits these
developments can be applied on medical systems. The model-based approach
proposed in this chapter might be a first step in that direction.



Chapter 3

Nonparametric Identification of a
Medical X-ray System

.

The need for accurate knowledge of complex dynamical behavior for high-performance

mechatronic systems led to the development of a vast amount of nonparametric system

identification approaches over the recent years. The aim of this chapter is to compare

several proposed methods based on experiments on a physical complex mechanical system

to bridge the gap between identification theory and practical applications in industry,

where basic identification approaches are often the norm. Typical practical implica-

tions such as operation under closed-loop control, multivariable coupled behavior and

nonlinear effects are included in the analysis. Finally, a possible approach for fast and

reliable identification is illustrated based on measurement results of an interventional

medical X-ray system.

This chapter is based on:
Rick van der Maas, Annemiek van der Maas, Johan Dries, and Bram de Jager, Efficient
Nonparametric Identification of Multi-Axis Medical X-ray Systems, submitted for publication
in Control Engineering Practice
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3.1 Introduction

Modern mechatronic systems are subject to increasing demands in terms of
accuracy and throughput [50]. Model-based control design is a structured ap-
proach to deal with complex and multivariable dynamical systems, see [51], [52],
and [53]. Particularly for positioning- and robotic systems, the estimation of
unmeasured states, e.g., using Kalman filters, is increasingly important for ac-
curate control, [43], [54]. Obtaining accurate models is key for achieving optimal
results. Nonparametric identification is a well established intermediate step for
parametric modeling of dynamical systems [48], [55].

High performance systems which are produced in (relatively) large volumes,
e.g., (industrial) robotic systems such as interventional medical X-ray systems
[39], typically have to deal with a tradeoff between production costs and accu-
racies. Larger uncertainties and increasing demands on the system lead to the
desire for individual identification of each system. For many systems, like the
medical X-ray system example, the mounting location is typically a significant
factor in the relevant performance measures, i.e., identification experiments in
situ at the customers location are desired. Complex mechatronic systems, such as
robotic systems, typically exhibit highly coupled multivariable flexible behavior
including nonlinearities, e.g., friction, hysteresis, and parameter varying behav-
ior, see [44], [56], and [57]. For stability reasons, many systems operate only in
closed-loop settings. For multiple-input multiple-output (MIMO) systems, tra-
ditional methods require multiple experiments for accurate identification of the
frequency response matrix (FRM). For large volumes of produced systems, the
relative cost of parts increases, typically leading to a decreased signal to noise
ratio (SNR) due to imperfect sensors. As a result, undesirable long experiments
are necessary to enable sufficient averaging.

For identification of (linear) parameter varying systems, which is a generally
used approach to describe a specific class of nonlinear systems [33], two main ap-
proaches can be found in literature. On the one hand a global approach that aims
at the identification of an LPV model in one shot, [58], [59]. On the other hand,
local experiments, which is often referred to as using “frozen” parameters can be
performed, i.e., performing workpoint depending identification experiments [60].
On this local domain, linear time invariant (LTI) behavior is assumed, which
will be validated through an estimate of the nonlinear distortions as is presented
in Sec. 3.4. The local nonparametric models are typically used as a basis for
interpolation, leading to a parametric LPV model, see [33], [61] or for specific
applications on robotic systems [62].

A vast amount of post-processing methods is developed to obtain nonpara-
metric models. The best linear approximation (BLA) as introduced in [48] is
a well established approximation for systems that exhibit a limited amount of
nonlinear behavior. In [48, Chap. 3] it is argued that periodic excitation signals
have advantageous properties, e.g., making a distinction possible between vari-
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ances due to nonlinear contributions and to noise. Periodic multisine excitations
allow the user more freedom in the selection of excited frequencies which can be
exploited to optimize the SNR.

Local parametric approaches for non-periodic excitation signals, e.g., the
local polynomial method (LPM) [63] and the local rational method (LRM) [35],
[64], enable a simultaneous estimation of system dynamics and estimation of
transient (or leakage) effects, rendering the removal of data due to transient
effects unnecessary. As a result, the required measurement time can be reduced
for each system. The LPM is extended for multisine excitation signals in [48,
Sec. 7.3].

Although many approaches are available in literature, experimental results
on complex mechatronic and mechanical systems are scarce. First results of
the estimation of nonlinear distortions of complex robotic systems are presented
in [65] in a closed-loop element-wise MIMO setting. Full MIMO identification
in an open-loop setting is presented in [66].

In this chapter, the aim is to illustrate an approach for experiment design
which leads to efficient experiments for accurate and fast nonparametric identifi-
cation of a complex interventional medical X-ray system. The main contributions
in this chapter are,

1. an efficient procedure in terms of measurement times and accuracy for
obtaining frequency response functions of complex mechanical systems, by
exploiting a priori system knowledge to optimize the excitation signal,

2. the implementation of the local rational method as introduced in [35] and
the evaluation of the advantageous properties in closed-loop, for MIMO
systems, and for periodic, e.g., multisine excitation signals,

3. a quantitative comparison in terms of time-efficiency and accuracy of multi-
ple state-of-the-art nonparametric and local parametric identification ap-
proaches, based on experimental results from an interventional medical
X-ray system, and

4. an illustration of the exploitation of a robustly obtained BLA to verify the
LTI identification for each operating point.

Contribution 4. includes a check for both the LTI assumption and the quality
of the used excitation signal using the nonlinear variance on the BLA.

In Sec. 3.2 a system description of the interventional X-ray system is pro-
vided and the identification objective is presented. In Sec. 3.3, the experiment
design approach is described, including the design of the excitation signals. In
Sec. 3.4 the theory behind the compared post-processing approaches is presented.
The experimental results are presented in Sec. 3.5 followed by conclusions and
recommendations in Sec. 3.6.
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3.2 System description and identification objec-
tive

3.2.1 Interventional X-ray system

The interventional medical X-ray system in Fig. 2.1 is considered in this chapter.
The system consists of two main parts; the C-arc which can be actuated over
two orthogonal principal axis and the static, but flexible, support arm mounting
the system to the ceiling for which all joints are on a mechanical break. The

actuators are current driven electrical motors with inputs u(t) =
[
u1(t) u2(t)

]T
.

The measured and controlled outputs are collocated encoders, measuring the
angular rotations of both actuators. In addition, acceleration measurements are
available in 3 orthogonal directions at the X-ray detector, leading to the total

measurement vector y(t) =
[
ÿu(t) ÿv(t) ÿw(t) y1(t) y2(t)

]T
, where ÿ stands for

the second derivative of y and the subscripts u, v, and w indicate the principal
directions of the local coordinate system with the origin at the center of the
detector plane. It should be noted that the acceleration measurements typically
are used for estimation purposes and are not used for feedback control.

3.2.2 Measurement and identification objective

To stabilize a system or achieve a desired (tracking) performance, most systems
operate in closed-loop conditions as depicted in Fig. 3.1. The open-loop system
is denoted by Guy, which describes the mapping,

y0 = Guy ∗ u0 (3.1)

with ∗ indicating the convolution, the time-domain signal u0 ∈ Rnu the open-
loop unperturbed input of the system with nu inputs entering the plant and
y0 ∈ Rny the unperturbed output of dimension ny. The signal w ∈ Rnu is used
to apply a user-defined excitation signal to the system and r ∈ R2 is a reference
signal, which is typically used to enforce a jog mode, i.e., an additional motion
to overcome stick-slip friction in the system. The matrix Ty ∈ R2×ny is used to
select the feedback signals only, i.e.,

[
y1

y2

]
= Ty y. (3.2)

The DFT of a signal is defined by

X(k) =
1√
N

N−1∑

n=0

x(nTs)e
−i2πnk/N , (3.3)
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Fig. 3.1. Closed-Loop Measurement Setup

with N the number of samples, i the complex operator, Ts the sampling time,
and k the discrete time index. The time domain signal x(t) can be replaced by
either u(t) or y(t), leading to the DFTs U(k) and Y (k) respectively.

The measured signals, assuming r(t) = 0, are given by

U(k) = W (k)− CTy
(
Ys(k) + Vy(k)

)
+ Vu(k), (3.4)

Y (k) = Y0(k) + Ys(k) + Vy(k), (3.5)

where C is the controller, Vu and Vy are measurement noise of appropriate
dimensions, and Us(k) = CTyYs and Ys are stochastic nonlinear distortions. It
should be noted that the plant input U is correlated to the measurement noise
and nonlinear distortion on Y , as a result of the feedback structure.

The fundamental equation corresponding to the indirect method is given by

Z(k) = Gwz(Ωk)W (k) + Twz(k) + Zs(k) + Vz(k), (3.6)

see e.g., [48, Sec. 3.8], since for closed-loop settings, direct (open-loop) ap-
proaches lead to biased results [67]. The notation Ωk is adopted from [48] and
denotes a generalized transform variable evaluated at DFT frequency k, i.e., in
the Laplace domain Ωk = jωk and in the Z-domain Ωk = e−jωkTs , with Ts the
total sampling period. The indirect output equation in (3.6) is used throughout
this chapter, with

Z(k) =

[
Y (k)
U(k)

]
, (3.7)

the DFT of the measured input- and output signals, Gwz indicating the mapping

w 7→ z, i.e., Gwz =
[
Gwy Gwu

]T
, Twz represents a transient response or leakage

term, Zs a stochastic nonlinear distortion, and Vz the measurement noise on the
measured signals.

The objective for the identification experiment is to obtain an accurate non-
parametric estimation of Guy, and additionally obtain an estimation of the noise
variances and estimations of nonlinear distortions. The measurement time is de-
sired to be as short as possible, to enable measurements for each individual
system during in situ installation.
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3.3 Experiment design

The approaches in this chapter are based on periodic excitation signals. A
multisine signal is defined by

w(t) =

N∑

k=1

Ak sin(2πkt/N + φk), (3.8)

with N the number of samples in a single multisine period, Ak the amplitude
of excitation bin k, and φk is a uniformly distributed phase on [0, 2π) such that
E{eiφk} = 0. The interventional X-ray system, as described in Sec. 3.2, has
multiple inputs, which means MIMO identification experiments are required. A
full random orthogonal multisine input matrix is described by

W(k) = DW (k)TDφ(k), (3.9)

where DW (k) and Dφ(k) are both diagonal matrices containing the multisines
and additional phases for each excitation bin k respectively. The matrix T is
an orthogonal (Hadamard) matrix, see [48, Sec. 3.7] and [68]. By obtaining the
input matrix W(k) ∈ Rnu×nu , nu experiments can be performed on the system
where each column of W(k) is used as input for the corresponding experiment.
For purely linear systems, the orthogonality imposed by the matrix T is sufficient
to identify the system behavior. For systems that exhibit (weakly) nonlinear
behavior the additional randomness of the phases in Dφ(k) is desired for optimal
estimation of the covariances due to nonlinear distortions, as will be presented
in detail in Sec. 3.4. In addition, for the local parametric approaches presented
in Sec. 3.4.2 the additional phase randomness is even required to avoid singular
matrices during the least-squares estimations.

For MIMO systems, the frequency response matrix (FRM) describes a linear
approximation of the systems dynamics. Since any physical system exhibits
some measure of nonlinear behavior, the best linear approximation (BLA) of
the systems’ dynamics is desired [48]. Input characteristics, e.g., DC gains and
RMS values, heavily determine the resulting BLA for nonlinear systems due
to the power dependency of nonlinearities. Hence, the characteristics of the
input signal should be chosen as close to operating conditions of the system
as possible, to obtain a relevant BLA. Similar reasoning holds for multivariable
systems. If the system usually operates under single joint movements, full MIMO
identification may yield undesired coupled behavior, which does not correspond
to normal operating conditions, and the system should therefore be identified
using single-input multiple-output experiments.

Since the X-ray system typically moves in a single direction during operation,
the effect of stick-slip friction is limited to the begin and end of the trajectories.
Hence, a jog mode is chosen to reduce the effect of stick-slip behavior in the
nonlinear distortion estimation. By choosing a periodic jog mode such that an
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integer number of periods fits in a single multisine period without exceeding the
mechanical limits of the system, there are no additional leakage distortions.

The choice of the excitation signal heavily depends on the systems dynam-
ical behavior. Mechanical systems typically exhibit lightly-damped resonances,
which requires a dense excitation grid. The spectral distance ∆f linearly de-
pends on the measurement length by ∆f = fs/N , with fs the systems sampling
rate and N the number of samples within a single period. By increasing the spec-
tral density ∆f , measurement times increase rapidly. In addition, due to hard-
ware limitations, the total power of the excitation signal is typically bounded.
Hence, an increase of the number of harmonics in w(t) from (3.8) leads to a de-
creased SNR. To optimize the SNR, it might be desired to select the excitation
frequencies manually, e.g., a logarithmic distribution or the selection of a dense
grid around resonances, while reducing the number of excitations in other fre-
quency regions. The latter approach requires a priori knowledge on the system.
To optimize the experiment, a three step procedure is introduced,

1. perform a (long) measurement using multiple periods, multisine realiza-
tions, and experiments [48, Sec. 4.3.1] to estimate the system behavior,
preferably on multiple systems,

2. optimize the excitation signal such that a dense grid is selected in a noncon-
servative band around the resonances and/or other frequencies of interest,
and

3. perform in situ identification experiments on each individual system, using
the newly obtained excitation signal.

The following section introduces various approaches that enable nonparametric
identification of complex dynamical systems.

3.4 Nonparametric identification approaches us-
ing periodic excitations

Nonparametric estimation of the best linear approximation can be performed
fully based on data or using a local parametric estimation. Both approaches are
briefly introduced in the current section.

3.4.1 Best linear approximation by averaging

First the robust method is introduced, which is based on multiple realizations
of multisine signals, followed by a fast approach which only requires a single
realization. The methods assume the general experimentation structure in (3.6).
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Robust method

The robust method is based on averaging over various periods, realizations, and
experiments of the periodic signal.

By computing the DFT of (3.7) and averaging for each realization and ex-
periment over the periods,

Z̄ [m,e] =
1

P

P∑

p=1

Z [m,e,p](k), (3.10)

the effect of the noise term Vz(k) is reduced. Throughout this thesis, the realiza-
tions m, experiments e, and periods p are indicated by the superscript [m, e, p]
when they are individually evaluated, where the notation is adopted from [48].
Note that depending on the length of a single period and the dynamics of the sys-
tem, determined by the pole locations, a set of initial periods should be removed
for each realization and each experiment to reduce the transient and leakage
effects Twz(k), i.e., the remaining Twz(k) ≈ 0. In (3.10) it is assumed that p = 1
is the first period where the transient effects have faded out. The total number
of periods remaining after transient removal is denoted by P .
To quantify the uncertainties on the estimations, typically the sample covari-
ance over multiple DFT vectors is used, a more detailed explanation is given
in, [48, Chap. 16]. The noise covariance for the output is given by the sample
covariances over the periods,

n
Ĉ

[m,e]

Z̄
(k) =

1

P (P − 1)

P∑

p=1

eZ(k)eHZ (k), (3.11)

with
n
Ĉ

[m,e]

Z̄
the noise covariance, P the number of periods after the transient

effects have been removed, and eZ(k) = Z [m,e,p](k)− Z̄ [m,e](k) the deviation of
each period compared to its average. The output matrix for each realization is
obtained by stacking the data such that the measurement of each experiment
forms a single column according to

Z[m](k) =
[
Z̄ [m,1](k) . . . Z̄ [m,nu](k)

]
. (3.12)

For a meaningful averaging over the realizations, a correction for the random
phase is required. The input matrix W[m](k) can be written according to

W[m](k) = D
[m]
|W |(k)T

[m]
∠W (k), (3.13)

with D
[m]
|W |(k) a diagonal matrix including the amplitudes of the multisine signal,

i.e., the singular values of W(k), at frequency bin k, and T
[m]
∠W (k) a unitary

matrix that describes the orthogonality and phase of the multisine, i.e., T
[m]−1

∠W =
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T
[m]H

∠W , with the superscript H indicating the Hermitian transpose. Note that
the separation in (3.13) is different from the structure in (3.9). The matrix

T
[m]
∠W (k) can be obtained from (3.13), i.e., T

[m]
∠W (k) = D

[m]−1

|W | (k)W[m](k). After

computation of the orthogonal phase matrix, the output matrix can be corrected
for the random phases,

Z[m]
c (k) = Z[m](k)T

[m]H

∠W (k), (3.14)

enabling averaging over the realizations according to

Z̄c(k) =
1

M

M∑

m=1

Z[m]
c (k), (3.15)

with M the total number of realizations. Note that Z̄c(k) is still similar to (3.7),
with the phase corrected Ȳc and Ūc. The total output noise covariance can be
computed by averaging over the sample noise covariances (3.11),

n
ĈZ̄(k) =

1

nu

1

M2

nu∑

e=1

M∑

m=1

n
Ĉ

[m,e]

Z̄
(k), (3.16)

where the average sample covariance over the realizations is obtained, see Sec. C.1
for an explanation of the sample (co)variance. The sample mean is calculated
over the realizations, since only a finite set of realizations is measured. The
averaging over the experiments is a normal mean, since this is the full set of
experiments required for the estimation. The BLA can be computed by

Ĝuy(Ωk) =
(
Ȳc(k)D−1

|W |(k)
)(

Ūc(k)D−1
|W |(k)

)−1

= Ȳc(k)Ū−1
c (k), (3.17)

where it should be noted that the amplitude distribution is by design identical
for each realization. The noise covariance on the plant is obtained from [48,
Sec. 2.7.2] modified according to [48, Sec. 7.3.3.3],

n
ĈG(k) =

(
Ūc(k)ŪH

c (k)
)−1
⊗
(
Q(k)

n
ĈZ̄(k)QH(k)

)
(3.18)

with ⊗ indicating the Kronecker product, Q(k) =
[
Iny −Ĝuy

]
to map the

covariance on Z̄ to Ȳ, where Iny is an identity matrix of dimension ny×ny, and

where Ĝuy follows from (3.17).
The total covariance, e.g., due to noise, nonlinearities, and residual transient

or leakage effects, is given by

ĈZ̄(k) =
1

nu

nu∑

e=1

Ĉ
[e]

Z̄
(k), (3.19)
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where Ĉ
[e]

Z̄
(k) follows from a similar computation as in (3.11), calculating the

sample mean over M and defining eZ(k) = Z̄
[m,e]
c (k) − Z̄ [e]

c (k). The obtained
result in (3.19) can be mapped to the plant estimation using (3.18), resulting
in ĈG(k). The final step is the computation of the stochastic nonlinear distor-
tions, which can be defined element-wise for each frequency and input-output
combination by

s
ĈG(k) =

{
ĈG(k)− n

ĈG(k) if ĈG(k) ≥ n
ĈG(k)

0 if ĈG(k) <
n
ĈG(k)

(3.20)

indicating that the stochastic nonlinear distortions are only defined when the
total covariance exceeds the noise covariance. In [48, Chap. 4.3], the BLA by
averaging is described in detail. The nonlinear analysis of the method relies
on the principle that a periodic input signal results in a periodic output signal
(PISPO), including all nonlinear effects in the system. This assumption results in
the separation between the nonlinearities in the measurement and the measure-
ment noise and hence enables Eq. (3.20). Besides that, only information about
nonlinear contributions acting on frequencies that are excited are distinguish-
able. The BLA of a system is an approximation of the systems dynamics given
a certain input signal. A different input signal will typically result in a different
BLA of the system and consequently a different covariance due to the stochastic
nonlinearities. It is crucial for the usability of the identified plant dynamics that
the identification experiment is performed with an input signal as close to the
true application as possible. The effects of the stochastic nonlinearities to the
BLA can be minimized by increasing the number of realizations.

Fast method

The fast method to obtain the BLA is based on multiple measured periods and
experiments of a single realization. Estimations on the stochastic nonlinear dis-
tortion are obtained by evaluation of the non-excited frequencies. To achieve
good results, the selection of sufficient detection lines, i.e., unexcited harmonics,
typically chosen 1 in 2, 3, or 4 consecutive excited frequencies, [48, Sec. 4.3.2], is
key for accurate estimations of stochastic nonlinear distortions. The plant esti-
mation is recovered from the robust method by evaluation of a single realization,
however, performing nu experiments is still required for MIMO systems. Both
the input and output signals are averaged over the periods, similar to (3.10), to
reduce the influence of noise, resulting in the output matrix as in (3.12). Since
only a single realization is used, there is no need for the mapping of the phase
of W since this is identical for Y and U and would be undone in the plant esti-
mation. The plant estimation is obtained similar to (3.17). The key difference
with the robust method from the previous section is in the computation of the
total covariance. The computation of the noise covariance is done equivalent
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to (3.11), (3.16), and (3.18). Note that for closed-loop settings, an additional
correction step is required to compensate for correlation on the detection lines
with the measured output of the system, i.e.,

Ȳcl(kdet) = Ȳ(kdet)− Ĝuy(Ωkdet)Ū(kdet), (3.21)

with kdet indicating the detection frequency bin and Ĝuy(Ωkdet) obtained from a
linear interpolation between the excited frequency bins kex around the evaluated
detection bin, i.e.,

Ĝuy(Ωkdet
) =

(k2 − kdet)Ĝuy(Ωk1) + (kdet − k1)Ĝuy(Ωk2)

k2 − k1
, (3.22)

with k1 < kdet < k2, where k1 and k2 are the neighboring excited frequencies of
kdet. The covariance on the output is computed by

ĈȲcl
(kex) = |Ȳcl(kdet)Ȳ

H
cl (kdet)|. (3.23)

This covariance estimation requires an additional interpolation to compute (3.23)
at kex. Using (3.18), the output covariance is mapped to the plant, however,
it should be noted that Q(k) is equal to an identity matrix since the output
covariance is already known for Ȳ. Obtaining the covariance due to stochastic
nonlinearities is performed using (3.20).

3.4.2 Local parametric approach

Besides the robust and fast approach for the computation of the BLA presented
in Sec. 3.4.1, local parametric approaches are available. The LPM for arbi-
trary (non-periodic) excitation signals is presented in [63]. Current developments
tend to local approximations using rational function, leading to the LRM, see,
e.g., [35], [64]. A robust and fast implementation of the LPM for periodic exci-
tation signals is described in [48, Sec. 7.3] and [69]. In the current section the
derivation is provided for both a robust and fast implementation of the LRM
using periodic excitation signals. It should be noted that the LPM is recovered
by replacing the rational functions by polynomials. The main advantage of the
local parametric approaches over the approaches in Sec. 3.4.1 is the estimation
of transient effects which renders the removal of acquired measurement data
unnecessary. Hence, no measurement time is lost which is desired to achieve
the objective described in Sec. 3.2.2, i.e., short measurement times to enable
individual identification of each system. The local parametric approaches using
periodic excitation signals are performed in two steps. First, the transient is es-
timated and the measured in- and output DFT are corrected. Second, the plant
is estimated using averaging over multiple realizations in the robust method, or
using a second local parametric estimation step for the fast method.
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Robust method

In the first step, in contrast to the approach in Sec. 3.4.1, the aim is to estimate
the transient based on non-excited frequency bins. Where in the previous section
the DFT is computed over a single period, here the DFT is computed over the
full measurement, resulting in P times as many frequency bins in the signals,
which results in P − 1 non-excited lines between every excited frequency for a
full multisine signal. This approach is similar to [48, Sec. 7.3], assuming similar
periodicity for nonlinear contributions as the system behavior. See also Fig. 3.2
for a graphical interpretation.

The rational function describing the local estimation of the transient is given
by

Twz(Ωk) = D−1(r)M(r), (3.24)

D(r) = Inz +D1r +D2r
2 + . . .+DNdr

Nd ∈Cnz×nz , (3.25)

M(r) = M0 +M1r +M2r
2 + . . .+MNmr

Nm ∈Cnz×1, (3.26)

where r is defined in (3.29). Nm and Nd are user-defined orders of the numerator
and denominator polynomials respectively. Twz(Ωk) represents the full frequency
response matrix of the transient. The individual matrices Di and Mi contain
all unknown parameters to describe the local approximation. It should be noted
that the constant term in the denominator polynomial is enforced D0 = Inz ,
with nz = ny+nu the number of closed-loop outputs. By enforcing the constant
denominator matrix to be non-singular, the matrix D(r) will be non-singular and
additionally, the parametric identification will not result in a trivial solution.

The general equation in (3.6) reduces for the non-excited frequency bins to

Z [m,e](αP + r) = T [m,e]
wz (αP + r) + V [m,e]

z (αP + r). (3.27)

After substitution of (3.24), neglecting the noise contribution, and rewriting
(3.27) results in,

Z [m,e](αP + r) =M [m,e]
z (r)− D̃[m,e]

z (r)Z [m,e](αP + r), (3.28)

where D
[m,e]
z (r) = Inz + D̃

[m,e]
z (r) in (3.24),

r =
[
−(P − 1) . . . −1 1 . . . (P − 1)

]
, (3.29)

and αP the excited frequency bin as indicated in Fig. 3.2. Note that r can be
extended to a larger frequency window, however, it should be guaranteed that
no excited frequency bins are included, i.e., αP 6∈ r ∀ α ∈ Z.

Given the measurements Z [m,e], a by design overdetermined set of linear
equations is defined by

Z [m,e](αP + r) = Θ[m,e](αP )K [m,e](αP + r), (3.30)
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αP

Fig. 3.2. Indication of excited frequency bin αP and non-excited fre-
quency bins αP + r indicated by the red arrows; local estimation of tran-
sient indicated in blue; example for P = 3. Assuming the system is PISPO,
the non-excited frequency bins only contain noise and transient effects.

with,
Θ[m,e](αP ) =

[
M0 M1 . . . MNm D1 . . . DNd

]
, (3.31)

where M0 = T
[m,e]
wz (ΩαP ). It should be noted that the definition of the output

equation (3.30) is enabled by the choice of D0 = Inz . If none of the unknown
parameters would be constraint Θ̂ = 0 is a trivial solution. The solution can be
computed by minimizing,

Θ̂ = arg min
Θ
‖Z(αP + r)−Θ(αP )K(αP + r)‖2F , (3.32)

with subscript F indicating the Frobenius norm, see [48, Chap. 15]. After mini-
mization, the residual term,

R[m,e](αP ) = Z(αP + r)− Θ̂(αP )K(αP + r), (3.33)

is obtained. Based on the residuals, the noise covariance on Z [m,e](αP ) is esti-
mated according to

n
Ĉ

[m,e]

Z̄
(αP ) = γR[m,e](αP )R[m,e]H (αP ), (3.34)

with a scaling factor,

γ =
1 + ‖Σ−1VH[1,:]‖22

2(P − 1)− (Nm + 1 + (nu + ny)Nd)
. (3.35)

By exploiting the singular value decomposition, i.e., KH = UΣVH , the required
term Σ−1VH[1,:] is obtained, where the subscript [1, :] indicates the first row. Using

the result of (3.34), the total noise covariance on the plant is estimated according
to (3.16) and (3.18). Note that γ ≥ 0 is ensured by the overdetermined least-
squares problem, i.e., 2(P − 1) ≥ Nm + 1 + nzNd.

After estimation of the transient effect T̂
[m,e]
wz (αP ), the measured signals can

be compensated,

Z̄ [m,e](αP ) = Z [m,e](αP )− T̂ [m,e]
wz (αP ), (3.36)
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with T̂
[m,e]
wz (αP ) =

[
T̂

[m,e]
wy (αP ) T̂

[m,e]
wu (αP )

]T
. Computation of the plant can

be performed using averaging over the realizations, similar to (3.15), followed by
the computation of the BLA as in (3.17) evaluated at all excited frequency bins
αP .

The estimation of the total covariance is defined similar to (3.11), followed
by the mapping to the plant as in (3.18), which follows the approach in [48,
Sec. 7.3.6]. The stochastic nonlinear distortions are defined as in (3.20).

Fast method

The robust method in the previous section exploits multiple realizations to es-
timate the plant similar to the robust method presented in Sec. 3.4.1. In this
section a fast method is presented, based on a measurement of multiple periods
of a single multisine realization in a single experiment for both SISO and MIMO
systems. The first part of the fast approach is identical to transient estimation
for the robust method presented in the previous section. After the correction
of the closed-loop output signal Z(αP ) for the transient behavior in (3.36), the
general output equation is given by

Z̄(αP ) = Gwz(ΩαP )W (αP ) + δZ(αP ), (3.37)

where δZ represents all unmodeled effects, e.g., nonlinearities, noise and esti-
mation errors of the transient resulting from (3.32). For the estimation of the
open-loop plant, only the excited lines are considered, selected by αP . Similar
to (3.24), a rational function is given for the plant by

Gwz(Ω(α+ψ)P ) = D−1(ψ)N(ψ), (3.38)

with D(ψ) defined as in (3.25),

N(ψ) = N0 +N1ψ +N2ψ
2 + . . .+NNnψ

Nn ∈ Cnz×nu , (3.39)

with Nn the order of the plant polynomials, and

ψ =
[
−nE . . . 0 . . . nE

]
, (3.40)

with nE a user defined value nE > 0, and chosen such that the least-squares
problem is overdetermined. After substitution of (3.38), (3.37) is rewritten to

Z̄((α+ψ)P ) = N((α+ψ)P )W ((α+ψ)P )− D̃((α+ψ)P )Z̄((α+ψ)P ). (3.41)

The order Nd is chosen equal to the transient in (3.24), which can be explained
by the fact that the poles of the system typically determine the transient. Similar
to (3.32), a minimization problem is defined to estimate the system behavior,

Ψ̂ = arg min
Ψ

∥∥Z̄ ((α+ ψ)P )−Ψ(αP )L(α+ ψ)
∥∥2

F
, (3.42)
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where all signals are evaluated at frequency bin (α + ψ)P . The matrix Ψ is
defined by

Ψ(kP ) =
[
N0 N1 . . . NNn D1 . . . DNd

]
, (3.43)

with N0 = Gwz(αP ). Computation of the plant is performed according to the
indirect method,

Ĝuy(αP ) = Ĝwy(αP )Ĝ−1
wu(αP ), (3.44)

which is similar to (3.17).
The noise covariance on the output as in (3.34) is available for only a single

experiment. Hence, the mapping to the plant according to (3.18) suffers from a

singular term
(
Ūc(k)ŪH

c (k)
)−1

. In [48, Sec. 7.3.7.4] an alternative approach is
proposed for the LPM, which can also be employed for the LRM. The mapping
from total output to plant covariance is given by

n
ĈG(αP ) = G̃

(
SHS ⊗ n

ĈZ̄(kP )
)
G̃H , (3.45)

where,

G̃ = Ĝ−Twu ⊗
[
Iny −Ĝuy

]
, (3.46)

S = LH
(
LLH

)−1
[
Inu
0

]
, (3.47)

where Iny and Inu are identity matrices of dimensions ny×ny and nu×nu respec-
tively. The total covariance is again based on the residuals of the minimization
in (3.42), equivalent to (3.33) and (3.34), where γ is defined as,

γ =
1

2nE + 1− nu(Nn + 1)− nzNd
. (3.48)

The mapping of the total covariance to the plant can be done using (3.45),
resulting in ĈG(αP ). Similar to the previous methods, the covariance due to
stochastic nonlinear distortions is computed element-wise according to (3.20).

Remark 3.1. Note that by replacing the rational functions in (3.24) and (3.38)
by polynomial functions, i.e., Nd = 0, the robust and fast methods for the LPM
are recovered as described in [48, Sec. 7.3.2.2]. See also Chap. 4 for an open-loop
description of the LPM. C

3.5 Experimental results

Based on the theoretical methods presented in Sec. 3.4, experiments are per-
formed on the closed-loop setup of the Philips Allura FD20 as illustrated in
Fig. 3.1. The steps 1) - 3) presented in Sec. 3.3 are illustrated in Sec. 3.5.1 to
3.5.3 respectively.
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3.5.1 Initial experiment

The initial experiment is analysed using the Robust method as presented in
Sec. 3.4.1, using P = 10, M = 7 and N = 10fs, with fs = 256 Hz, resulting in
∆f = 0.1 Hz. The main advantage of this approach is that no user-defined esti-
mation errors, e.g., mismatches in order selections, are introduced, which could
be the case using local parametric approaches, at the cost of typically longer ex-
perimental times. The excited frequencies are non-uniformly distributed over the
frequency range, i.e., a priori information from finite element simulations and
previous nonparametric identification experiments are exploited to distribute
the excited frequencies. Note that ∆f = 0.1 Hz still holds, however, Ak can
be chosen zero for a selection of harmonics in (3.8). The applied distribution of
excited frequencies can be recognized by the distribution of the noise covariances
in Fig. 3.3 indicated by the red dots. In [70] is argued that frequencies up to
approximately 40 Hz are relevant for imaging applications, see also [9] for a more
detailed analysis. Experiments are performed for a total of 13 frozen parameters
equally distributed over a full scan range of the system, i.e., the system is identi-
fied around selected angles ranging from −90 degrees to 90 degrees with intervals
of 15 degrees. The jog mode is applied as a sinusoidal signal with an amplitude
of 2 degrees and frequency 0.05Hz. A single FRM is illustrated in Fig. 3.3 by the
blue line, where upper- and lower limits on the variations of the obtained BLAs
are indicated by the gray area. The system can be characterized as a parameter
varying system, as can be seen in the right column. The estimated stochastic
nonlinear distortions are significantly lower then the plant estimation, leading
to the conclusion that using the frozen parameters the LTI condition for each
operating point can be assumed. A violation of the LTI condition would result
in a positive bias on the estimated variance due to stochastic nonlinearities. The
amplitudes of the excitation signal is chosen maximal for good SNR, however,
such that actuator saturations are avoided.

3.5.2 Excitation signal optimization

Based on the results obtained in the previous section, an optimization of the
excitation signal can be performed. Recall that the previous excitation signal is
obtained using a priori system information. Results in Fig. 3.3 allow the opti-
mization of the excitation signal even further. It can be observed, particularly for
the element P31, that the resonance around 14 Hz does not change over frequen-
cies for different operating points, which allows for a local dense grid selection.
A closer observation of the resonance around 8 Hz shows a shift in frequency,
which requires a more conservative excitation grid around this frequency to be
able to include the true lightly damped behavior. Note that for local parametric
approaches, a minimum amount of excited frequencies within a certain magni-
tude band is required to guarantee maximum bounded errors on the estimation,
see [71]. Using an optimal excitation signal, the SNR at the excited frequencies
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Fig. 3.3. Results using the robust method from Sec. 3.4.1; BLA (blue),
variance on BLA due to noise (red-dotted), variance on BLA due to non-
linear distortions (yellow-dotted); Grey area indicates the set of all LTI
models, i.e., the angle of system described by offset on u1 as described in
Sec. 3.2; For clarity only the mapping [u1, u2]T 7→ [ÿv, y2]T is illustrated,
which are indicated by Pxz with x the corresponding output, i.e., the 3-rd
and 5-th output respectively, and z indicating the corresponding input.
A 3D representation of the parameter varying behavior of the diagonal
terms of the considered mapping are depicted in the right column.
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can be increased without loosing crucial information. Based on the estimations
of the covariances due to stochastic nonlinear distortions it can be concluded
that LTI conditions are satisfied for each operating point. Hence, an optimal
excitation signal can be made for only a single realization with a larger number
of periods.

3.5.3 Final experimental results

Using an optimized excitation signal, based on the conclusions drawn in Sec. 3.5.2,
new experiments are performed. The fast method and parametric estimation
approaches, as presented in Sec. 3.4.1 and 3.4.2 respectively, are used to post-
process the data, where the results shown in Sec. 3.5.1 are used for comparison.
In Fig. 3.4, the comparison is shown. The local parametric robust methods are
processed using P = 10 periods, M = 7 realizations, and nu = 2 experiments. In
sharp contrast, the fast local parametric methods are based on a single experi-
ment and realization and 10 periods, leading to a reduction in measurement time
by a factor 14. Comparing the estimation results, it can be observed that the
global and most dominant behavior is captured accurately, however, the overall
estimation error is larger for the fast methods compared to the robust BLA. The
overall estimations of the system dynamics are similar for the LPM and LRM,
however, the covariance estimation due to stochastic nonlinearities for the LPM
tends to be an underestimation compared to the robust BLA. The numerator
polynomials for both the LPM and LRM for plant and transient estimations
have been chosen Nn = Nm = 2, while the denominator for the LRM has been
chosen Nd = 1. The quality of the estimated plants using the local parametric
approaches depends on the chosen orders for the polynomials. Rules-of-thumb
are available in literature, see e.g., [48, Chap. 7], [64], however, some optimization
might be required for optimal results. Using the initial, extensive measurements,
a guideline is available to tune the parameters. For the individual C-arc X-ray
systems, the orders can be chosen similar, since the overall dynamical behaviour
will be comparable.

3.6 Conclusion

In this chapter, multiple state-of-the-art post-processing approaches for non-
parametric identification are evaluated. The main objective is to obtain insight
in the dynamical behavior, which can be used for parametric modeling of an
interventional medical X-ray system. Since the mounting conditions of the sys-
tem are crucial for the system dynamics, resulting in the first flexible mode, fast
identification experiments are desired, such that it can be performed in hospitals.
Local parametric approaches, such as the local polynomial and rational methods,
have the advantage that transient behavior is estimated, which enables compen-
sation without the need to neglect data. Hence, all measured data is effectively
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Fig. 3.4. Results for a single operating point (u1 ≈ 30) after optimizing
of the excitation signal; estimation BLA robust method (blue); estimation
of alternative post-processing methods (black-dashed); variance on BLA
due to noise (red-dotted); variance on BLA due to nonlinear distortions
(yellow-dotted); for clarity only the mapping u1 7→ ÿv is illustrated.

used for obtaining a nonparametric estimation. Periodic excitation signals have
specific advantages, e.g., covariances due to stochastic nonlinear distortions can
be estimated and the user can focus the energy of the excitations signals over
specific frequencies of interest. The local parametric approaches in combination
with measurements performed on a physical system are presented, where the
main (theoretical) focus is on the LRM. A three step procedure is presented,
which includes extensive pre-testing of the system, or multiple systems, to ob-
tain a priori insight of the system behavior, optimization of the excitation signal,
and performing dedicated in situ experiments. The result show that the local
parametric approaches are able to estimate the system behavior. The results
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of the fast methods do not achieve the same accuracies as the robust methods,
however, they allow for a significant measurement time reduction since only a
single realization and experiment is required. By increasing the number of mea-
sured periods, the quality of the fast methods increases significantly due to an
increased noise averaging.



Chapter 4

Nonparametric Identification of
Parameter Varying Systems

Linear parameter varying (LPV) controller synthesis is a systematic approach for

designing gain-scheduled controllers. The advances in LPV controller have spurred the

development of system identification techniques that deliver the required models. The

aim of this chapter is to present an accurate and fast frequency response function (FRF)

identification methodology for LPV systems. A local parametric modeling approach is

developed that exploits smoothness over frequencies and scheduling parameters. By

exploiting the smoothness over frequency as well as over the scheduling parameters,

increased time efficiency in experimentation time and accuracy of the FRF is obtained.

Traditional approaches, i.e., the local polynomial method (LPM)/local rational method

(LRM), are recovered as a special case of the proposed approach. The application

potential is illustrated by a simulation example as well as real-life experiments on a

medical X-ray system.

The content of this chapter is based on:
Rick van der Maas, Annemiek van der Maas, Robbert Voorhoeve, and Tom Oomen, Accurate
FRF Identification of LPV Systems: nD-LPM with Application to a Medical X-Ray System,
submitted for publication in IEEE Transactions on Control Systems Technology.
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4.1 Introduction

Controller synthesis for linear parameter varying (LPV) systems is a systematic
design approach for gain-scheduled control of nonlinear systems [72], [73]. Gain
scheduled controllers are currently one of the most commonly applied and pop-
ular design methodologies for nonlinear systems such that a guaranteed global
performance is obtained. Examples of LPV systems can be found in many ap-
plication areas, ranging from mechanical positioning systems where a change
of position lead to varying dynamics, see, e.g., [61], [74] for industrial appli-
cations, to electromagnetic actuators [75], shape memory alloy actuators [76],
diesel engines [77], and wind turbine control [78].

The development of LPV control design methodologies has spurred the re-
search of system identification techniques that produce the required models,
see [58], [79] for early results, and [33], [80], and [81] for an extensive overview of
the present state of the art. The developments are roughly divided into two ap-
proaches. On the one hand, global approaches are used to identify an LPV model
using a single global experiment. Examples of global LPV modeling approaches
include [58], [59], and [82]. On the other hand, local approaches are based on the
identification of a set of “frozen” parameters followed by interpolation leading
to an LPV model [33]. Examples of local LPV modeling include [74], [83], [84],
and [85].

For both global or local LPV identification approaches, well-designed prelim-
inary tests are extremely valuable when attempting to present real-life systems
as parametric LPV models. Real-life systems are typically nonlinear and time-
varying to a certain extend. The additional complexity and modeling costs
that are associated with modeling a system as LPV have to be justified from
the accuracy requirements that originate from the modeling goal. A typical
approach for pre-testing in LPV systems is to estimate nonparametric LTI sys-
tems for certain frozen operating conditions, where the frozen parameters are
the ones that are expected to induce the parameter dependent behavior. Note
that preliminary pre-testing is quite standard in applications of system identifi-
cation [86, Chap. 10].

The identification of frequency response functions (FRF) has been signifi-
cantly advanced over the recent years, see [48] for a recent overview of the state-
of-the-art methods. For LTI systems, local parametric modeling approaches and
extensions have recently been an important aspect in the developments of non-
parametric identification approaches, see [34] for the local polynomial method
(LPM) and [35] for the local rational method (LRM), see also [48, Chap. 7],
and [87]. These methods exploit the smoothness of the FRF to reduce the vari-
ance and bias errors compared to alternative methods.

Although both LPV and nonparametric identification have been significantly
developed individually, the LPV behavior is not yet exploited during nonpara-
metric FRF modeling. The aim of this chapter is to develop an accurate and
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fast approach for the identification of nonparametric frozen LTI models of LPV
systems. The main idea to exploit the fact that the behavior of an LPV system
is typically a smooth function of the frequency as well as the scheduling variable.
Direct application of the method include pre-testing and local LPV modeling.

The main contribution of this chapter is a new framework for nonparamet-
ric LPV modeling of systems with m scheduling parameters. Both open-loop
and closed-loop operating conditions are described and multiple-input, multiple-
output (MIMO) systems are considered. The approach is validated on a simu-
lation example and the application potential is demonstrated on a real-life high
performance medical X-ray system. This chapter aims to develop non-parametric
identification techniques tailored for LPV systems, where the proposed approach
has several advantages over pre-existing methods, including the following.

• The approach has an increased time efficiency in experimentation time and
accuracy of the frequency response functions.

• The proposed method incorporates the advantage of LPM/LRM methods
to use transient responses, i.e., in addition to data measured after the sys-
tem achieved steady-state conditions, the transient response is used for the
estimation of the FRF. Particularly for LPV systems, this property might
lead to significant experimentation time reductions, since the scheduling
variable has to be changed for each frozen frozen LTI measurement. For
MIMO systems, local parametric approaches enable the estimation of the
frequency response matrix (FRM) by virtue of a single experiment [88].
Hence, for multivariable systems, significant experimental time reductions
are obtained.

• The approach is applicable to both multisine and noise excitation signals
and a local quantification of the errors imposed by the frozen parameter
compared to a true local LTI representation can be obtained via the best
linear approximation (BLA).

Finally, it is pointed out that several related identification techniques have been
developed in literature. The first step in obtaining a FRF is the conversion
of data to the frequency domain by virtue of the Fourier transformation. In
the proposed approach, the Fourier transform is taken for each data set sepa-
rately, and subsequently processed using the proposed approach. An alterna-
tive approach is to extend the Fourier transform as in [89], [90] where higher-
dimensional Fourier transforms are applied to reconstruct spatial acoustic fields
in mechanical systems. Although higher order Fourier transforms potentially en-
able the direct global identification of the FRF, the proposed frozen parameter
approach avoid issues arising from dynamic scheduling. Second, in the line of
research [91], [92], [93], time-varying systems are investigated using related prob-
lems. Essentially, this relates to the LPV case by taking only time as scheduling
variable, see [94, Sec. 1]. As a result, the extrapolation properties of the model
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are much more restrictive, and the resulting model is not directly suitable for
LPV controller synthesis algorithms.

This chapter is organized as follows. In Sec. 4.2 the considered class of
systems is introduced and a problem description is presented. In Sec. 4.3 the
traditional local polynomial method and the novel nD-LPM approach are pre-
sented. In Sec. 4.4, the proposed method is extended towards the local rational
method (LRM) and in Sec. 4.5 application using arbitrary excitation signals is
presented. In Sec. 4.7 and 4.8 simulation and experimental results of a medi-
cal X-ray system are presented respectively. In Sec. 4.9, the conclusions of this
chapter are discussed.

4.2 Problem description

4.2.1 Linear parameter varying systems

Many systems exhibit, to a certain extent, parameter dependent behavior on
non-stationary parameters, e.g., position or temperature. These systems fit into
the LPV framework. Consider the MIMO parameter dependent state-space for-
mulation [94, Chap. 1],

ẋ(t) = A(θ1, θ2, . . . , θm)x(t) +B(θ1, θ2, . . . , θm)u(t)
y(t) = C(θ1, θ2, . . . , θm)x(t) +D(θ1, θ2, . . . , θm)u(t)

, (4.1)

with nu inputs and ny outputs, x(t) ∈ Rnx the state vector, u(t) ∈ Rnu and
y(t) ∈ Rny the input and output vector respectively, and A ∈ Rnx×nx , B ∈
Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu the system matrices which depend on
the m scheduling parameters θ1, . . . , θm. For a given set of scheduling parameters
θ, which is assumed to be frozen, the transfer function is given by

G(s,θ) = C(θ)(sI −A(θ))−1B(θ) +D(θ), (4.2)

where the short notation G(s,θ) is defined by

G(s,θ) := G(s, θ1, θ2, . . . , θm) (4.3)

The trajectory of (a subset of) the scheduling parameters can also be a function
of the states of the system, e.g., θ = f(x(t)), which directly implies that LPV
systems can be used to represent a class of nonlinear systems. Throughout, it is
assumed that the scheduling parameters can be frozen during the experiment,
i.e., θ = θ∗, resulting in local LTI behavior of the system, which is a standard
assumption in many local LPV approaches, including [61], [74], and [83]. In this
case, for all possible θ, the description in (4.1) generates an infinite family of
LTI models, where for each LTI model, Assumption 4.1 holds.

Assumption 4.1. The FRF of the LTI dynamical behavior can be approximated
locally by a polynomial of finite order.
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This assumption enforces smoothness of the approximation over frequencies,
as in detail analyzed in [71]. The physical implementation of Assumption 4.2 is a
restricted range of the scheduling parameters, i.e., θmin ≤ θ ≤ θmax. By limiting
the rate of variation, i.e., θ̇min ≤ θ̇ ≤ θ̇max, second-order dynamics due to fast
variations of the scheduling parameter are limited [33], [83]. Hence, smoothness
over the scheduling parameter is imposed, as described in Assumption 4.2.

Assumption 4.2. Smoothness over the scheduling degree-of-freedom is assumed.

This assumption enables a smooth approximation of the dynamical behavior
using finite order polynomial functions in multiple dimensions, as is in detail
presented in Sec. 4.3.

4.2.2 Problem definition

The goal of this chapter is to obtain accurate local frequency response func-
tions, using multiple LTI experiments, that approximate the true behavior of
the LPV system. Parametric modeling of LPV systems, leading to parametric
state-space descriptions as in (4.1), are typically obtained by the identification of
multiple parametric LTI models followed by an interpolation step. Nonparamet-
ric identification often is an intermediate step in obtaining parametric models.
Traditional approaches, e.g., the local polynomial method (LPM) or the local
rational method (LRM), enable a combined estimation of dynamical system be-
havior and transient effects. Hence, measured data during a transient can be
exploited for the estimation of the plant, enabling fast measurements for LTI
systems. The current fast methods for the LPM and LRM address the shorter
measurements by exploiting the transient period of a measurement and smoothen
the dynamical behavior over the frequency direction, however, no smoothness
between several LTI models is considered. By exploiting this smoothness, as
described in (4.1), a more efficient and accurate method for the nonparametric
identification of an LPV system is achieved.

4.3 nD-LPM for periodic excitation signals

In Sec. 4.3.1, the basis definitions and concepts are introduced, followed by the
proposed nD-LPM approach for open-loop MIMO systems in Sec. 4.3.2. In
Sec. 4.3.3, the proposed approach is extended for systems operating in closed-
loop. In Sec. 4.4 an nD-LRM approach is presented. This section concludes with
implementation aspects, including numerical conditioning and boundary effects
over both the frequency direction as well as scheduling degrees-of-freedom.
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4.3.1 Local polynomial method

The proposed local parametric approach exploits the LPM for LTI systems, e.g.,
θ = θ∗ as developed for arbitrary excitation signals in [63] and for periodic
excitation signals in [48, Sec. 7.3] and [88]. The focus in this chapter is on
periodic excitations signals due to the associated advantages, see [55, Sec. 2.6].
The approach can be directly extended towards arbitrary excitation signals, see
[95] and Sec. 4.5. The LPM is based on a local approximation of the dynamical
systems behavior as well as the transient effects using a polynomial function of
finite order.

The discrete Fourier transform (DFT) is defined as

X(k,θ∗) =
1√
PN

PN−1∑

n=0

x(nTs,θ
∗)e−i2πnk/PN , (4.4)

with P the number of measured periods of a periodic excitation signal, N the
number of samples per period, and Ts the sampling rate in seconds. For periodic
signals without external disturbances, X(k 6= αP,θ∗) = 0 ∀ α = 1, . . . , N/2.
Note that nonlinear contributions are assumed periodical and therefore are not
present on the intermediate frequencies. All intermediate frequencies, i.e., k =
αP + r, with

r = −(P − 1), −(P − 2), . . . , −1, 1, . . . , (P − 2), (P − 1), (4.5)

which satisfy X(k = αP+r,θ∗) = 0, see also [96] for an analysis of this property.
At the excited frequencies k = αP , the open-loop output spectrum is given

by
Y (αP ) = G(ΩαP )U(αP ) + Ty(ΩαP ) + V (αP ), (4.6)

with V (αP ) a band-limited zeros-mean measurement noise, U(αP ) and Y (αP )
the input and output DFT spectra respectively, G(ΩαP ) the local dynamical
behavior of the system, and Ty(ΩαP ) the local transient effects. This notation
is in line with [48, Sec. 7.3] and Sec. 3.4.2. The input signal is a full random
orthogonal multisine signal with random phase, see [48, Sec. 3.7] for a more
detailed description. For MIMO systems it is crucial that all inputs are excited
with independent multisine signals, which is guaranteed by the aforementioned
class of input signals. Exploiting the properties of periodic excitation signals,
i.e, U(αP + r) = 0, it follows that,

Y (αP + r) = Ty(ΩαP+r) + V (αP + r). (4.7)

Based on the difference between (4.6) and (4.7), a two step procedure is generally
persued and discussed extensively in [48, Sec. 7.3]. First, based on (4.7) the
leakage effects are estimated. Second, the leakage effects are compensated for in
(4.6) enabling a more accurate estimation of G(ΩαP ).
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Step 1

In the LPM, the leakage effects Ty(ΩαP+r) are approximated by a Taylor series
expansion around the frequencies αP , i.e.,

Ty(ΩαP+r) = Ty(ΩαP ) +

Nm∑

x=1

1

x!

∂xTy(ΩαP )

∂Ωx
rx,

= Ty(ΩαP ) +

Nm∑

x=1

txr
x, (4.8)

with Nm a design variable that specifies the order of the polynomial and tx the
complex coefficients to be estimated. Substitution of (4.8) in (4.7) results in the
linear system,

Y (αP + r) = Ty(ΩαP ) +

Nm∑

x=1

txr
x + V (αP + r),

= ΘtKt(r) + V (αP + r), (4.9)

with,
Θt =

[
Ty(ΩαP ) t1 . . . tNm

]
∈ Cny×(Nm+1), (4.10)

and,

Kt(r) =




1
r
...
rNm


 ∈ R(Nm+1)×2(P−1). (4.11)

unknown in the parameters included in Θt. By defining the cost function,

J = arg min
Θ̂t

‖Y (αP + r)− Θ̂tKt(r)‖2F , (4.12)

solving of the unknown parameters in (4.9) is recast in a least-squares problem
which can be solved accurately.

Step 2

After obtaining the estimated T̂y(ΩαP ), the output spectrum at the excited
frequency bins given in (4.6) is compensated according to

Yc(αP ) = Y (αP )− T̂y(ΩαP ), (4.13)

resulting in,
Yc(αP ) = G(ΩαP )U(αP ) + V (αP ). (4.14)
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The estimation of Ĝ(ΩαP ) is obtained by a similar procedure. By defining a new
frequency window,

ψ = [−n, −(n− 1), . . . , 0, . . . , (n− 1), n], (4.15)

with n a user-defined number of frequencies, a window of excited frequencies is
selected by G(Ω(α+ψ)P ). The Taylor series expansion of the plant is given by

G(Ω(α+ψ)P ) = G(ΩαP ) +

Nn∑

x=1

1

x!

∂xG(ΩαP )

∂Ωx
ψx,

= G(ΩαP ) +

Nn∑

x=1

gxψ
x, (4.16)

with Nn again a design variable that specifies the order of the polynomial. Sub-
stitution of (4.16) in (4.14) results in,

Yc((α+ ψ)P ) =

(
G(ΩαP ) +

Nn∑

x=1

gxψ
x

)
U((α+ ψ)P ) + V ((α+ ψ)P ),

= ΘgKg(ψ) + V ((α+ ψ)P ), (4.17)

with,
Θg =

[
G(ΩαP ) g1 . . . gNn

]
∈ Cny×nu(Nn+1), (4.18)

where gx ∀ x are defined as tx in step 1, and

Kg(ψ,U) =




1
ψ
. . .
ψNn


⊗ U ((α+ ψ)P ) , (4.19)

with Kg(ψ,U) ∈ Cnu(Nn+1)×(2n+1) and ⊗ indicating the Kronecker product,
which is recast in a least-squares problem similar to (4.12), [96].

The above two-step procedure can be followed to identify frozen frequency re-
sponse functions of LPV systems. In the next section, a more efficient procedure
is developed that exploits the scheduling directions in addition to smoothness
over the frequencies.

4.3.2 nD local parameteric approach for LPV systems

An intuitive approach to identify LPV systems is using the local LPV modeling
techniques. In the local LPV approaches, several LTI experiments are performed
and the system is identified independently for each of these poses. This approach
is graphically indicated in Fig. 4.1a, in which it is observed that there is no
relation between the individual models.
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The main contribution in this chapter is the identification approach for LPV
systems using higher-dimensional functions that extends local parametric meth-
ods to exploit smoothness in the scheduling variables. The proposed method is
to exploit a combination of Assumptions 4.1 and 4.2, i.e., smoothness over both
the frequency as well as the scheduling degree of freedom. In Fig. 4.1b, a graph-
ical interpretation of the idea is presented for a single scheduling parameter. A
smooth surface is used rather than individual functions to identify the behav-
ior of the plant as a smooth function of both the frequency and the scheduling
parameter.

Exploiting the LPM as presented in Sec. 4.3.1 with higher-dimensional func-
tions, local estimations over multiple LTI measurements can be obtained. A
typical approximation of a smooth function is a Taylor series expansion. The
Taylor series expansion of a higher-dimensional function is used in this chapter to
describe the systems’ dynamics, resulting in a linear least-squares optimization
to obtain a local parametrization of an LPV system.

The output spectrum at the non-excited frequency bins k = αP + r of the
full LPV system is given by

Y (αP + r,θβ) = Ty(ΩαP+r,θβ) + V (αP + r,θβ). (4.20)

For each frozen set of scheduling parameters, i.e., each LTI measurement, step
1 from Sec. 4.3.1 is repeated to estimate the leakage effects. Since it typically
cannot be guaranteed that the initial states of the system are the same for each
individual LTI experiment, it is assumed that there is no correlation between the
transient effects of the individual LTI experiments. Hence, leakage is considered
a frequency effect only.

The proposed approach follows the local frequency window as defined in
(4.15) from step 2 in Sec. 4.3.1. Furthermore, additional local windows are
employed over the scheduling directions, which are spanned by the vectors of
dimensions 2pi + 1,

zi = [−pi, −(pi − 1), . . . , 0, . . . , (pi − 1), pi] , (4.21)

∀i = 1, 2, . . . , m, which can be user-defined independently for each schedul-
ing parameter. Similar to the short notation in (4.3), a local frequency and
scheduling domain is denoted by

G(Ω(α+ψ)P ,θβ + z) := G(Ω(α+ψ)P , θ1 + z1, . . . , θm + zm), (4.22)

where the subscript β indicates a specific frozen set of scheduling parameters
and z the local window for all scheduling parameters, defined similar to θ. The
pink plane in Fig. 4.1b spans the domain (α+ ψ)P and θβ + z.

The corresponding nD-Taylor series expansion for multiple variables, each
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(a) The LPM on several LTI poses
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(b) The 2D-LPM over several LTI poses

Fig. 4.1. Graphical interpretation of the approaches. In blue, the per-
turbed plant is shown; in pink, the estimated models; in black dots, the
estimated plant dynamics is indicated.

with a user-defined order, is given by [97],

G(Ω(α+ψ)P ,θβ + z) = (4.23)

Nn∑

i1=0

Qz1−i1∑

i2=0

. . .

Qzm−
m∑
x=1

ix
∑

in=0



ψi1

m∏
x=1

z
ix+1
x

n∏
x=1

ix!

∂

n∑
x=1

ix
G(ΩαP ,θβ)

∂Ωi1
m∏
x=1

∂θ
ix+1
x


 ,

with Nn and Qzi ∀i = 1, 2, . . .m indicating user-defined variables that en-
ables the order selection over frequencies and each scheduling parameter respec-
tively. Note that the approximation orders as indicated in (4.23) should satisfy
Nn ≤ Qz1 ≤ . . . ≤ Qzm . The inequality constraint on the orders is flexible up
to an interchange of the summations, resulting in an arbitrary choice for each
scheduling parameter and the frequency axis. The only hard constraint is the
fact that the upper limit of each of the summations should remain positive.

Substitution of the desired approximation order from (4.23) into the compen-
sated output spectrum at the excited frequency lines as given in (4.14), results
again in a linear set of equations. Note that the order selection is not neces-
sarily identical over the frequencies or over the various scheduling directions.
Furthermore, if no scheduling parameters are included, i.e., θ is again chosen as
a single frozen set of scheduling parameters, the LPM as presented in Sec. 4.3.1
is recovered.
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Fig. 4.2. Simplified feedback interconnection.

4.3.3 Closed-loop operating conditions

Many systems are operating in closed-loop as indicated in Fig. 4.2 for stabiliza-
tion or to achieve an increased performance. The closed-loop output can again
be defined as, [48, Sec. 7.3],

Z(k,θ) =

[
Y (k,θ)
U(k,θ)

]
∈ Cnu+ny , (4.24)

with Y (k,θ) and U(k,θ) the DFT of the measured plant input and output, in
line with Chap. 3. The output spectra for the closed-loop are given by

Z(k,θ) = Gwz(Ωk,θ)W (k,θ) + Twz(Ωk,θ) + Vz(k,θ), (4.25)

with W (k,θ) a user-defined excitation signal, and Vz(k,θ) a noise term. The
transfer function Gwz(Ωk) is given by the mapping,

Gwz : w 7→ z :=

[
Gwy
Gwu

]
=

[
G
I

]
(I + CG)−1. (4.26)

Similarly, Twz(Ωk) in (4.25) is the transient corresponding to the mapping w 7→
z.

The closed-loop output spectrum in (4.25) is, after substitution of Y (s) by
Z(s), directly applicable for the LPM as described in Sec. 4.3.1 for each frozen
scheduling set or the proposed nD-LPM approach in Sec. 4.3.2. After obtain-
ing an estimation for Gwz, the open-loop plant estimation is obtained by [48,
Sec. 2.6],

Ĝ(Ωk) = Ĝwy(Ωk)Ĝ−1
wu(Ωk). (4.27)

for all Ωk for which Gwu is nonsingular.

4.3.4 Covariance analysis

To quantify the quality of the obtained frequency response measurement, a vari-
ance analysis is presented in the current section for the closed-loop situation.
The open-loop covariance is obtained by replacing the closed-loop output sig-
nals Z, (4.25), by the open-loop output signals Y , (4.6). The use of periodic
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excitation signals enables a distinction between external noise disturbances and
(periodic) nonlinear distortions within the system. The estimation of the co-
variance as a result of noise is fully based on the estimation of the transient,
i.e., on the non-excited frequency bins only a combination of leakage effects as
well as external disturbances is present, see also [48] for details. By defining the
residuals of the least-squares problem by

Rt = Z(αP + r,θβ)− Θ̂tKt(r), (4.28)

the variance due to measurement noise is given by

nĈz(αP,θβ) =
µ

q
RtRHt , (4.29)

with µ = 1 + ‖ΣVH[1,:]‖2F , as is defined in [48, Sec. 7.3.2.2], where Σ and V are

obtained from the singular value decompositionKH
t = UΣVH , with the subscript

[1, :] indicating the first row, and

q = 2(P − 1)− rank(Kt). (4.30)

After the correction of the output signal for the transient effects, the remaining
disturbance sources are measurement noise and (periodic) nonlinear distortions,
[48]. The residuals of the plant estimations are therefore used for the estimation
of the total covariance on the output signal. The total covariance is defined by

tĈz(αP,θβ) =
1

q
RgRHg , (4.31)

where the residual Rg is defined as,

Rg = Zc((α+ ψ)P,θβ + z)− Θ̂gKg(ψ, z, U,θβ), (4.32)

which follows from (4.17) and the nD result as presented in Sec. 4.3.2 for the
open-loop situation, i.e., Zc = Yc, or the closed-loop equivalent with Zc, and

q = (2n+ 1)

m∏

x=1

(2pi + 1)− rank(Kg). (4.33)

The covariances related to the output spectra, i.e., nĈz as well as tĈz, are
mapped to a covariance on the estimated closed-loop plant dynamics according
to

ĈGwz (ΩαP ,θβ) = ¯SHS ⊗ Ĉz(αP,θβ), (4.34)

with ⊗ the kronecker product, and

S = KH(KKH)−1

[
Inu

Odim(K,1)−nu×nu

]
, (4.35)
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where Inu is a square identity matrix of dimensions nu and Odim(K,1)−nu×nu a
zero matrix where dim(K, 1) indicates the number of rows of the K matrix. A
final mapping from the covariances of the closed-loop transfer functions included
in Gwz to the open-loop plant G is done according to [48, Sec. 7.2.7],

ĈG = (Ĝwu ⊗ [Iny , −Ĝ])ĈGwz (Ĝwu ⊗ [Iny , −Ĝ])H . (4.36)

Note that for the open-loop case the computation of the covariances is equiva-
lent, however, the final mapping in (4.36), which corresponds to (4.27), is not
required since Gqz = G for open-loop systems. By computation of the difference
between the total covariance, (4.31), and the noise covariance, (4.29), an esti-
mation for the stochastic nonlinear distortions is obtained. A detailed analysis
of the covariances for the LPM can be found in [48, Sec. 7.3.7] and [88]. Exten-
sive literature is available on the analysis of covariances on FRF measurements.
BLA analysis as discussed in [48, Sec. 4.3] can be used to validate the obtained
covariances on, however, this requires extensive experiment times.

4.3.5 Implementation aspects

Border effects

For both the transient estimation as well as the plant estimation, described in
step 1 and 2 of Sec. 4.3.1 respectively, border effects at the edges of the fre-
quency grid are present. Recall that for the transient estimation, only unexcited
frequencies are evaluated. The DC-term of a periodic excitation signal is typi-
cally chosen zero, allowing for a full definition of the local frequency window r
as defined in (4.5) for the lower frequency range. However, typically the Nyquist
frequency is excited, leading to a degenerate local window for k ≥ (N/2)P . For
the plant estimation, only the excited frequencies are evaluated, leading to a
degenerate local window ψ as in (4.15) for k ≤ nP and k ≥ (N/2− n)P .

To deal with the edges of the frequency grid, the use of an asymmetric window
around the evaluated frequency k is presented in [63]. An alternative approach
that exploits the periodicity of the DFT over the frequency is presented in [35].

A similar phenomenon is encountered when local windows over the scheduling
parameters are evaluated. The edges of the scheduling domain, i.e., θi ≤ θmin

i +pi
and θi ≥ θmax

i − pi, lead also to a degenerate local window. In addition to
the asymmetric window and exploiting the periodicity of the DFT, an adaptive
window size in the scheduling domain can be implemented such that at θi = θmin

i

or θi = θmax
i the LPM for LTI systems is recovered, i.e., pi = 0. Depending on

the system properties and the users preference, a suitable approach is selected.

Numerical stability

If the least-squares problems are poorly conditioned, numerical difficulties may
arise. In [63] is an approach presented for enhanced conditioning, which can
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be applied in both step 1 and 2 as presented in Sec. 4.3.1 as well as for the
alternative step 2 exploiting the proposed nD-LPM. In particular, let

K̃ = D−1K, (4.37)

with,

D(i, i) =

{
‖K(i, :)‖2 if ‖K(i, :)‖2 6= 0

1 if ‖K(i, :)‖2 = 0
, (4.38)

where : indicates all items in row i, and scale the least-squares solution as Θ̂ =
Θ̃D−1.

4.4 nD-LRM for periodic excitation signals

Modern developments in local parametric approaches for the identification of
frequency response functions tend toward the use of rational functions, leading
to the local rational method (LRM), see, e.g., [35]. In [64] it is presented that
the LRM is a powerful approach for systems with lightly damped poles. Given
the closed-loop output spectrum as in (4.25), the transfer functions Gwz and
Twz are replaced by

Gwz(Ω(α+ψ)P ,θβ + z) = D−1(ψ, z)N(ψ, z), and, (4.39)

Twz(ΩαP+r,θβ + z) = D−1(r, z)M(r, 0), (4.40)

respectively with,

N(ψ, z) = n0 + n1ψ + n2z + n3ψz + . . . , (4.41)

M(r, 0) = m0 +m1r +m2r
2 . . . , (4.42)

from which the unknown parameters ni and mi,∀i = 0, 1, 2, . . . follow from the
nD Taylor series expansion in (4.23) and r is defined in (4.5) and ψ in (4.15).
The definition of D(r, z) also follows from (4.23), however, the parameters are
scaled such that d0 is unity [35], i.e.,

D(r, z) = 1 + d1r + d2z + d3rz + . . . := 1 + D̃(r, z), (4.43)

Recall that the transient typically is dominated by the poles of the system.
Hence, the local estimation of the poles of the transient is equal to the estimation
of the plant while the numerator is exploited to compensate for errors due to
varying initial conditions over different frozen experiments.

Remark 4.1. Note that it is not strictly required scale D0 in (4.43) to unity.
Other choices can be made as well, however, D0 is an intuitive choice since the
estimations for G(αP,θβ) and T (αP,θβ) are directly obtained by the parameters
n0 and m0 respectively. The selection of a normalized parameter in (4.43) is
required to enforce a nontrivial solution of the least-squares as in (4.12), i.e.,
Θ 6= 0. C
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Substitution of (4.39) and (4.40) in the closed-loop output spectra and eval-
uation of the unexcited frequencies results in,

(
1 + D̃(r, z)

)
Z(αP + r,θβ) = M(r, 0) +D(r, z)V (αP + r,θβ), (4.44)

which can be stacked according to

Z(αP + r,θβ) =
[
M(r, 0) D̃(r, z)

] [ I
−Z(αP + r,θβ)

]
+D(r, z)V (αP + r,θβ),

= ΘtKt(r, Z) +D(r, z)V (αP + r,θβ), (4.45)

for which estimations can be obtained using the least-squares cost function in
(4.12).

After obtaining an estimation for the transient, the output spectrum at the
excited frequencies can be compensated as in (4.14). Substitution of (4.39) in
the compensated output spectrum results in,

(
1 + D̃(ψ, z)

)
Z((α+ ψ)P,θβ + z) =N(ψ, z)W ((α+ ψ)P,θβ + z)+

D(ψ, z)V ((α+ ψ)P,θβ + z), (4.46)

which can again be rewritten according to

Z((α+ ψ)P,θβ + z) =
[
N(ψ, z) D̃(ψ, z)

] [ W ((α+ ψ)P,θβ + z)
−Z((α+ ψ)P,θβ + z)

]

+D(ψ, z)V ((α+ ψ)P,θβ + z),

= ΘgKg(ψ, z, Z) +D(ψ, z)V ((α+ ψ)P,θβ + z), (4.47)

for which again a least-squares solution can be obtained. Note that when the
orders of all directions of the Taylor expansions of D in (4.43) are chosen 0,
the nD-LPM as in Sec. 4.3.2 is recovered. The 2D-LRM is in detail presented
including application results on a medical X-ray system in [98].

Remark 4.2. Note that the measurement noises V for both estimations are
weighted by the denominator. In [99] and [100] a detailed analysis is provided
on the effects of noise and the effectiveness of both the LPM and LRM. C

4.5 Arbitrary excitation signals

The local parametric methods can also be exploited in combination with arbi-
trary excitation signals, see e.g., [35], [63]. The DFT of arbitrary, non-periodic
excitation signals, e.g., a (zero-mean) band-limited white noise signal, contain
system dynamics as well as transient effects over all frequency bins. Hence,
the output spectrum in (4.25) is defined ∀k. In sharp contrast to the periodic
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excitation signal situation, the system dynamics and the transient effects are
estimated simultaneously.

The Taylor series expansion of the transient term is given by (4.8) by replac-
ing αP with k, i.e.,

Ty(Ωk+ψ,θβ + z) = Ty(Ωk,θβ + z) +

Nm∑

x=1

txψ
x. (4.48)

For the system dynamics, the Taylor series expansion in (4.23) is exploited, again
by replacing αP with k, leading to

G(Ωk+ψ,θβ + z) = G(Ωk,θβ) + g1ψ + g2z + g3ψz + g4ψ
2 . . . , (4.49)

with ψ defined as in (4.15). Similar to Sec. 4.4, the system dynamics and tran-
sient are described using rational functions as defined in (4.39) and (4.40) re-
spectively.

The closed-loop output spectrum is given by

(
1 + D̃(ψ, z)

)
Z(k + ψ,θβ + z) =N(ψ, z)W (k + ψ,θβ + z) +M(ψ, 0)+

D(ψ, z)V (k + ψ,θβ + z), (4.50)

which leads to

Z(k + ψ,θβ + z) =
[
N(ψ, z) M(ψ, 0) D̃(ψ, z)

]


W (k + ψ,θβ + z)

I
−Z(k + ψ,θβ + z)




+D(ψ, z)V (k + ψ,θβ + z),

= ΘK(ψ, z, Z) +D(ψ, z)V (k + ψ,θβ + z), (4.51)

for which again a least-squares solution can be obtained.
In [95] the results of the LPM for arbitrary excitation signals is presented

for a 2D situation based on a simulation example of a wafer stage model. Note
that similar to the periodic excitation case, the LPM is recovered by selecting
the order of the denominator of the rational functions equal to zero. Also note
that the LPM for arbitrary excitation signals is essentially a special case of the
periodic excitation signals, where the number of periods P = 1.

4.6 System description: medical X-ray system

To illustrate the potential of the proposed approach, a simulation example and
real-life experiments are performed on an interventional C-arc based medical X-
ray system as indicated in Fig. 4.4. Interventional X-ray systems are typically
used to obtain high-definition 3D reconstructions of the interior of the human
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Fig. 4.3. Simplified feedback interconnection; y indicates the total output
of the system, with ye = [θ1, θ2]T indicating the encoder measurements
and ya = [ẍ, ÿ, z̈]T indicating the acceleration measurements.

body and enable imaging during minimal invasive procedures. The system has
two actively controlled motion axis, indicated by the input currents u1 and u2

corresponding to the angles θ1 and θ2 in Fig. 4.5 respectively. The motions of
the system are measured using collocated incremental encoders on the motor
axis, indicated by ye = [ θ1 θ2 ]T , which are also used for feedback purposes.
For imaging purposes, the system is equipped with acceleration sensors located
at the X-ray detector, measuring three orthogonal local degrees of freedom,
indicated by ya = [ ẍ ÿ z̈ ]T . These measurements are not exploited in the
feedback/control loop as indicated in Fig. 4.3.

The system under consideration exhibits inherent linear parameter varying
behavior. A changing pose of the system, of which an example is indicated
in Fig. 4.5, results in different stiffness and damping properties between the
actuator and the measured position. Additionally, the center of gravity of the
system is not located in the center of rotation, resulting in position depending
dynamics, even in the collocated measurements.

To enhance readability, only a single scheduling parameter is evaluated in this
chapter, which is a semi-circular motion of θ2 ranging from −90 to 90 degrees as
indicated in Fig. 4.5. Due to the geometric change of the system, the dynamical
behavior is a direct function of the angle θ2. Hence, the system exhibits typical
LPV behavior due to changing mass distributions, hence due to pole variations.
Additionally, the non-collocated positioning of the acceleration sensors, results
in additional varying zero locations.

Input u1 corresponding to θ1 is only used to apply periodic excitation signals
to the system, but is considered frozen as a scheduling parameter.

The goal of the measurement is to identify the plant G indicated in Fig. 4.3.
Note that a subset of the outputs is used for feedback, hence the closed-loop
approach as presented in Sec. 4.3.3 is adopted. By defining y(t) = [ya(t), ye(t)]

T ,
the situation in Fig. 4.2 is recovered, i.e., the closed-loop transfer function

Gwy : w 7→ y :=

[
Gya
Gye

]
(I + CGye)

−1 = G(I + CGye)
−1 (4.52)
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Fig. 4.4. Philips Allura Centron interventional X-ray system.

enables a direct computation of the plant G by post-multiplication with G−1
wu as

in (4.27) where Gwu : w 7→ u := (I + CGye)
−1.

Finally, note that the dynamical behavior of the system is symmetric when
the scheduling range for θ1 is extended, i.e., −90 ≥ θ1 ≥ 90 degrees, as a result
of the semi-circular motion. Hence, also over the scheduling direction symmetry
can be exploited to deal with the border effects.

Since only a single scheduling parameter is considered, a 2D-LPM approach
is obtained. The nD Taylor series expansion of the plant in (4.23) reduces to

G(Ω(α+ψ)P , θ1 + z) = G(ΩαP , θ1) +

Qz∑

i1=1

Nn−i1∑

i2=1

gi1,i2ψ
i2zi1 , (4.53)

where,

gi1,i2 =
∂i1+i2G(ΩαP , θ1)

∂ψi2zi1
, (4.54)

with Nn and Qz user-defined variables to select the order of the approximation
over the frequency and scheduling direction respectively.

4.7 Simulation results

In this section, the potential of the proposed approach is illustrated using a
simulation model of a medical X-ray system in Sec. 4.6.

The main goal of the simulation example is to present a comparison between
the LPM and the nD-LPM in terms of bias and variance. It should be noted
that the system is MIMO, even though only a single scheduling parameter is
exploited, in the sense of a single degree of freedom of the system. A simplified
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Fig. 4.5. Schematic representation of geometrical effect of scheduling
variable θ2.

model with input u = [u1, u2]T and output y = [ya,1, ye,2]T = [ẍ, θ2]T is used
for the simulations.

Numerical experiments are performed using a multisine excitation signal with
a period length of 10 seconds leading to a spectral distance of 0.1 Hz. The ex-
periments have identical excitation frequencies and a flat spectrum. Each period
is repeated 6 times leading to a measurement time of 60 seconds for each of the
frozen scheduling parameter sets. Over the full scheduling domain, 25 frozen
positions are defined, leading to a total measurement time of 25 minutes. An
additive measurement noise is included such that the SNR for the acceleration
and encoder measurement are 30dB and 20dB respectively. The simulated mea-
surements, obtained in a closed-loop situation as in Sec. 4.3.3, are processed
using the standard approach as in Sec. 4.3.1 and using the proposed nD-LPM
approach as presented in Sec. 4.3.2, where for the single scheduling parameter
the Taylor series expansion as in (4.53) is used.

The resulting plant estimations are shown in Fig. 4.8 for the LPM and the
2D-LPM where the parameters indicated in Table 4.1 are used. It is observed by

Table 4.1. Local estimation parameters

Tuning parameters Nn Nm Qz n pi
LPM 3 2 − 8 −
2D-LPM 3 2 1 8 2

comparing 4.6a to 4.7a, 4.6b to 4.7b, etc., that the plant estimations from the
proposed 2D approach appear less noisy and take the underlying dynamical be-
havior into account better compared to the LPM. Looking at the diagonal terms
of the systems dynamics, i.e., G11 and G22, the overall behavior over the entire
frequency-scheduling domain appear smoother using the 2D approach. Looking
at G12, the systems dynamics remain relatively noisy using both approaches,
however, the anti-resonance using the 2D-LPM approach is more clearly than
using the LPM. The effects of measurement noise on the estimations has been
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(a) LPM: G11 := u1 7→ ẍ
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(b) LPM: G21 := u1 7→ θ2
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(c) LPM: G12 := u2 7→ ẍ

3 [deg]

50

0

-50

20
Frequency [Hz]

15105

-80

-60

-40

A
m

pl
itu

de
 [d

B
]

(d) LPM: G22 := u2 7→ θ2

Fig. 4.6. Simulation results. Estimated using the LPM on each LTI
position as in Fig. 4.1a.
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(a) 2D-LPM: G11 := u1 7→ ẍ
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(b) 2D-LPM: G21 := u1 7→
θ2
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(c) 2D-LPM: G12 := u2 7→ ẍ
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(d) 2D-LPM: G22 := u2 7→
θ2

Fig. 4.7. Simulation results. Estimated using the 2D-LPM as in
Fig. 4.1b.
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Fig. 4.8. Indication of the performance of the method. The actual
plant, averaged over the scheduling parameters (black) is compared to the
total covariance (top figures) and the absolute estimation error (bottom
figures). The LPM (blue) and the 2D-LPM (red-dashed) are compared in
these figures.
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reduced significantly.

To enable a quantitative comparison, the estimation bias and variance are
evaluated. Since an estimation bias is only available when the true system is
known, the simulation model is exploited for this analysis. For each frozen
scheduling parameter set, the LTI plant is determined. In Fig. 4.8, a qualitative
measure for the performance of the two methods is shown. The LPV plant
dynamics are averaged over the scheduling parameters per frequency such that
the global performance can be observed. The absolute estimation errors, defined
by,

e =
1

nθ

nθ∑

i=1

(G−Gx)(G−Gx)H , (4.55)

with nθ the total number of scheduling parameters, G the true system, Gx rep-
resents any estimated system, with G2DLPM the plant dynamics obtained using
the 2D-LPM approach and GLPM the plant dynamics from the LPM approach
per LTI. The total variance follows from (4.31) after mapping to the plant using
(4.34). Note that the estimation error is not a general quality measure, since for
physical systems, the true system dynamics underlying the identification exper-
iment are unknown. The estimation error is similar for both approaches, while
the variance of the proposed approach is significantly lower for all frequencies.
This leads to the conclusion that the nD-LPM approach enables an accurate
and efficient estimation of the plant dynamics without necessarily introducing
additional estimation errors.

4.8 Experimental results

Next, the proposed approach is applied to the experimental medical X-ray sys-
tem in Fig. 4.4. Similar experiments are performed as described in Sec. 4.7.
However, due to the presence of significant nonlinear effects as a result of fric-
tion, the measurement time is increased. The friction in the system leads to
significant nonlinearities, making the non-parametric identification a challeng-
ing task. By increasing the measurement times with a sufficiently exciting input
signal, promising results can be obtained despite the effects of the friction. A
multisine excitation signal is used using a period length of 30 seconds. The exci-
tation signal is repeated 10 times, leading to a total measurement time for each
frozen scheduling parameter of 5 minutes. A total of 13 LTI measurements is
performed, leading to a total measurement time of 65 minutes.

The resulting plant estimations for the diagonal elements are illustrated for
the LPM and the nD-LPM approach in Fig. 4.9. The parameter varying dynam-
ics of the system are clearly visible in the obtained FRFs, resulting in shifting
resonance and antiresonance frequencies and changing damping coefficients for
the different measurements. It is observed that the plant estimation using the
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(a) G11: traditional LPM approach
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(b) G11: proposed 2D-LPM approach
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(c) G22: traditional LPM approach
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(d) G22: proposed 2D-LPM approach

Fig. 4.9. Experimentation results. On te left, the diagonal plant elements
G11 and G22 are shown using the traditional approach. On the right, the
same elements are shown using the proposed 2D-LPM approach.

proposed approach is smoother than using the LPM. In Fig. 4.10, the correspond-
ing variances and estimation of stochastic nonlinearities are shown. Similar to
the approach in Sec. 4.7, the results are averaged over the scheduling parame-
ters. The variances as a result of the noise contributions are again significantly
lower using the 2D-LPM than using the LPM, since more closely neighboring
frequencies are exploited to estimate the smooth function on. The difference in
the estimation of the variance due to stochastic nonlinearities is explained by the
definition of the best linear approximation (BLA) [48]. It can be seen that over
the entire frequency range, the variance of the 2D-LPM is significantly lower
than using the LPM for each LTI position. This result has been obtained using
the exact same measured data.

The selection of the multisine signal is critical. For large excitation mag-
nitudes, dynamical behavior in the neighborhood of the desired local LTI is
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included in the measurement due to the inherently larger output signal. Hence,
a local averaged LTI estimation is obtained. As a result, the estimation of the
stochastic nonlinear distortions is increasing. Depending on the rate of variation
of the dynamical behavior as a function of the scheduling parameter, the ampli-
tude of the multisine should be chosen sufficiently small to approximate the LTI
behavior with the BLA accurately. The stochastic nonlinearities give an indi-
cation if the frozen operating condition is satisfied throughout the experiment.
In Fig. 4.10 it is shown that the estimation of the stochastic nonlinearities is
significantly smaller than the estimated plant amplitude, leading to confidence
in the chosen multisine amplitude, i.e., the estimation is not dominated by non-
linearities.

Looking at the FRF of the system, obtained using the LPM and the 2D-LPM
approach, it can be concluded that the obtained results appear significantly more
smooth using the proposed approach. Additionally, the obtained covariances
corresponding to the identified systems dynamics show a significant desirable
reduction of approximately 20 dB for all frequencies.

The result in Fig. 4.9 show shifts of (anti)resonances and a change of gain
over the scheduling domain which can be directly related to the physics of the
system. The dominant frequency at approximately 14 Hz is directly related to
a natural frequency induced by the non-rigid connection of the detector to the
C-arc, which is constant over the scheduling domain. However, other frequencies
are typically related to changes in relative stiffness’ as a result of a change in
the mechanical structure as indicated in Fig. 4.5. The obtained nonparametric
frequency response functions can directly be applied for local LPV modeling and
controller analysis.

4.9 Conclusions

In this chapter, an nD-LPM approach for nonparametric frequency response
functions modeling of LPV systems is presented. Based on recent advances in
local parametric approaches for FRF identification, an approach that exploits
smoothness over the scheduling parameter is introduced. The theory is developed
and the potential of the approach is illustrated on a simulation example and
experiments on a medical X-ray system.

Based on the simulation and real-life experimental results, it is shown that
the proposed approach has several advantages over existing local parametric
methods. Due to the use of local parametric approximations, all data, includ-
ing the data obtained before reaching steady-state, is used. This is a signif-
icant improvement, particularly for LPV systems where multiple experiments
over multiple scheduling parameter sets are required in a local approach. Local
parametric approaches only require a single realization and experiment reducing
the required measurement time significantly compared to classical methods with
multiple experiments for MIMO systems, [48, Sec. 3.7]. Finally, the proposed ap-
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(b) G22 := u2 7→ θ2

Fig. 4.10. Variance as a result of nonlinearities and measurement noise.
For comparison, the plant dynamics are included in black. Top figures:
noise variance; bottom figures: variance due to nonlinearities. Left figures:
mapping u1 7→ ẍ; right figures: mapping u2 7→ θ2. The variances on the
LPM are indicated in blue, the 2D-LPM in red.

proach exploits smoothness over the scheduling parameters, leading to enhanced
averaging of noise effects. Hence, shorter measurements can be performed for
similar accuracy in terms of variance.





Chapter 5

Data-Driven Geometric
Calibration

Currently applied calibration approaches for medical X-ray systems lead to satisfy-

ing 3D roadmapping overlay and 3D reconstruction accuracies, however, the required

calibration times are extensive and the approaches are limited to systems that exhibit

reproducible behavior. The aim of this chapter is to introduce a novel data-driven ap-

proach for geometric system calibrations aiming at overcoming the strict reproducibility

conditions and leading to reduced calibration times. By using a physical model in com-

bination with additional measurements and observer techniques, e.g., Kalman filters,

geometric calibration parameters are estimated based on measured data during normal

system operation. This is in sharp contrast to existing approaches where a calibration

measurement is performed, which is used for future compensations, without a patient

present. The proposed approach is demonstrated using a simplified simulation model

and additional experimental results on an real interventional X-ray system, where the

estimated calibration parameters are compared to both phantom and model-based cali-

bration approaches. By combining accurate models, additional measurements and state-

of-the-art state-estimation techniques, estimations of the geometric parameters required

for imaging applications with high accuracy are obtained.

This chapter is based on the publication:
Rick van der Maas, Johan Dries, and Bram de Jager, Data-Driven Geometric Calibration for
Medical X-ray Systems, submitted for publication in Medical Physics
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5.1 Introduction

Developments in the medical society increasingly rely on high quality imaging
of the interior of the human body. Interventional X-ray systems are important
to enable modern minimal invasive surgeries, where the aim is to minimize col-
lateral damage during surgery, leading to less postoperative complications and
faster patient recovery times. X-ray computed tomography (CT) and three-
dimensional rotational angiography (3DRA) enable the generation of high qual-
ity 3D reconstructions, based on a large number of two-dimensional (2D) X-ray
images each taken from a different point-of-view with respect to the patient [39].
Beside diagnostics, 3D reconstructions are typically used for roadmapping appli-
cations where real-time 2D fluoroscopy images are projected on a pregenerated
3D reconstruction [7], [8].

C-arc based X-ray systems enable relatively free access to the patient, which
is desired during minimal invasive surgeries. Due to the combination of the open-
kinematic structure of the system and a finite stiffness of the systems’ mechanical
components, the performance is significantly influenced by internal and external
disturbances, e.g., gravitational forces. For C-arc based X-ray systems, which
can be compared to industrial robotic systems, the behavior is subject to quasi-
static deformations and inherent multivariable dynamic behavior [21].

Independent of the type of imaging system, geometric calibrations are im-
portant for successful imaging, see e.g., [101] for calibrations of magnetic res-
onance imaging (MRI) systems and [24] for interventional C-arc based X-ray
systems. Phantom-based calibration approaches are widely applied in practice,
see e.g., [10,11,18,22,40]. For each obtained 2D image, the geometric calibration
parameters are given by the pose of the system, i.e., six degrees of freedom and
three degrees of freedom describing the position and orientation of the detection
plane and the position of the X-ray source respectively. By performing a cal-
ibration scan of a specifically designed object with accurately known size and
shape (phantom), the geometric calibration parameters are reconstructed. The
procedure is repeated for each possible variation on the scan, leading to signif-
icant calibration times. In [102], a model-based approach where the systems
imperfections are characterized is introduced, leading to significant reductions
in calibration times.

Although the aforementioned calibration approaches lead to the desired re-
construction qualities, a reproducibility condition is imposed on the system be-
havior. Regular recalibration is typically required to maintain the desired output
over longer periods of time as a result of time-varying system behavior, e.g., wear
of the system or (mechanical) changes as a result of accidental collisions. The
reproducibility requirement typically translates to heavy systems, which is un-
desired from a cost and safety point-of-view. Motivated by Newtons law, the de-
sign of high-performance mechatronic systems is typically tending to lightweight
system design. At the cost of an increased sensitivity to internal and external
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(dynamical) disturbances, faster movements, reduced costs, and enhanced safety
is achieved.

The aim of this chapter is to present a novel approach that exploits obtained
measurements of the system, e.g., incremental encoder data and acceleration
measurements, to estimate the desired geometric calibration parameters. The
proposed approach has several advantages over existing approaches.

1. Using measured data during reconstruction scans of the patient to estimate
the geometric parameters, increased estimation qualities are obtained, i.e.,
variances due to non-reproducible dynamical behavior are compensated to
a certain extent. Hence, the proposed approach enables a relaxation of the
reproducibility condition.

2. Phantom-based and model-based calibration approaches require regular
recalibration to compensate for time-varying system behavior. By consid-
ering the model parameters, e.g., damping ratios, natural frequencies or
masses/inertias, in the considered models as variable states, (slowly) time-
varying system parameters are updated by using algorithms as introduced
in Sec. 5.2.4. Hence, the intervals between recalibration can be increased
significantly.

3. The proposed approach enables a fully automated, data-driven calibration.
Hence, no extensive (time-consuming) manual calibration procedures have
to be performed.

The main contribution of this chapter is the development of a flexible data-driven
approach that exploits a priori system knowledge in models in combination
with obtained measurements from the system to estimate geometric calibration
parameters. The potential of the proposed approach is illustrated on a real-life
medical X-ray system.

In this chapter the emphasis is on dynamical (scan) motions, e.g., 3D recon-
struction scans. However, it should be noted that the approach can be extended
to other types of systems and motions as well. In literature, alternative ap-
proaches are available that lead to a reduced reproducibility condition on the
system. In [26] it is proposed to add markers in the patient table to provide a
fixed reference to the patient. The main drawback of the approach is the pos-
sible occlusion of relevant anatomy and localized increased disturbance levels in
the obtained X-ray images. In [29], an approach is presented that evaluates the
image entropy to characterize the amount of artifacts induced due to geomet-
ric imperfections leading to improvement reconstruction qualities. However, the
approach requires significant computation power and is sensitive to disturbances
that have similar effects in the obtained images as geometric imperfections, e.g.,
patient motions. Based on the acquired images, image-based approaches are
proposed in [27], [28] that uses features of the human anatomy to estimate the
geometric parameters.
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Fig. 5.1. Projection of an object with perfect alignment (right); and
misaligned detector in orientations and translations (left).

This chapter is structured as follows, first, the existing fundamental ap-
proaches are highlighted and a problem description is provided in Sec. 5.2. In
Sec. 5.3 the required theory on observer design is explained, followed by a pro-
posed modeling and parameter estimation procedure in Sec. 5.4 that leads to the
required models for Kalman filter based state estimations [103], which is in more
detail introduced in Sec. 5.2.4. The potential of the proposed approach is illus-
trated on a real-life experimental X-ray system from which the results are shown
in Sec. 5.5. This chapter concludes with conclusions and recommendations for
future extensions in Sec. 5.6.

5.2 Preliminaries and proposed approach

5.2.1 Geometric calibration and parameters

By virtue of the pinhole camera model, see, e.g., [3, Chap. 1], the acquisition ge-
ometry for flat-panel cone-beam systems can be described by a projection matrix
in combination with a rotation matrix and a translation vector. The projection
of an arbitrary point within the X-ray exposed volume is highly correlated to
the kinematic position and orientation of the detector, the position of the focal
spot (X-ray source), and the relative position of the object with respect to the
image-acquisition components [11].

An X-ray image is created by measuring the projected X-ray dose, which is
a measure of quanta absorption by the material [3], of all matter included in
a direct trajectory from the X-ray source to the detector. The mathematical
description often used to model the projection for the R3-space to the R2-space,
which is the projected image on the detector, is referred to as projective geometry
[104].

In literature on geometric calibrations, typically the X-ray source is assumed
a point source, [11], [40]. As a consequence, the projective space is formed by
the intersection of all lines from the origin of R3, i.e., the X-ray source, to the
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detection plane, as indicated in Fig. 5.1. Hence, every (projected) point on the
detection plane corresponds to a line in R3 [104], [105]. Homogeneous transfor-
mation matrices are widely used in vision applications to describe projections of
points in 3D space to 2D planes, i.e., the pinhole camera model.

For each acquired image nine degrees of freedom or “geometric parameters”
are estimated, i.e., three translations and three orientations of the detector and
three translational offsets only due to the point source assumption of the X-ray
source. The geometric parameters are typically only known by approximation.
For the ideal situation, design parameters can be used. However, any system
in practice suffers from mechanical imperfections and (unknown) external dis-
turbances. In practice widely applied phantom-based geometric calibration ap-
proaches focus on the measurement of the effects of these imperfections, i.e.,
the resulting actual trajectory of the detector and X-ray source. Since (a sub-
set of) the geometric parameters appears in the argument of the homogeneous
transformation matrices, the estimation of the actual parameters is a mathemat-
ically challenging nonlinear, non-convex optimization problem. A vast amount
of approaches is proposed in literature, where in general a nonlinear optimiza-
tion is performed on an approximative description (model) with enhanced global
convergence properties, and/or where a reduction of the number of estimated
parameters is proposed, see, e.g., [10], [11], and [106].

Typically, quasi-static offsets, as a result of (mechanical) misalignments or
deterministic offsets in the system, lead to artifacts in reconstructions while
zero-mean dynamical behavior result in blurring effects [102].

5.2.2 Model-based geometric calibration

An alternative calibration approach for C-arc based X-ray systems is presented
in [102] where the underlying mechanical effects are modeled that lead to offsets
of the geometric parameters with respect to the ideal situation. By exploiting the
predictive properties of a physics based model, only a limited set of experiments
is performed for the identification of physical parameters, leading to significant
calibration time reductions with similar reconstruction qualities.

Based on modern modeling and parameter identification approaches widely
used in the field of (industrial) robotic systems, [12, 31, 32, 44], quasi-static be-
havior is described as a function of a finite set of physical system parameters,
e.g., misalignment (rotational or translational) offsets, deviations in gear ratios,
and production imperfections leading to varying link lengths and masses, which
is a significantly different approach then the estimation of geometric parameters
directly. A typical mathematical modeling approach for robotic systems uses
the Denavit-Hartenberg (DH) convention [12, Sec. 2.8.2], which describes the
end-point position, e.g., X-ray source or detector, in terms of a minimal number
of physical system parameters in combination with homogeneous transformation
matrices, similar to the geometric calibration problem, see [102] for a detailed
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implementation of the presented approach.
By performing a predefined identification measurement using a calibration

phantom, the physical system parameters are estimated. Since the estimation
problem remains nonlinear, a minimal realization is desired, which can be ob-
tained using the DH-convention. Accurate initial parameter estimations, which
is typically the case since the deviations are small with respect to the design pa-
rameters, are key for convergence of iterative parameter search approaches, e.g.,
by virtue of a Gauss-Newton algorithm. Under the strict assumption that the
system behavior is reproducible, the calibration problem is recast in an param-
eter identification problem, which enables a significant reduction of calibration
times.

5.2.3 Problem description

The key assumption for the phantom and model-based calibration approaches
in Secs. 5.2.1 and 5.2.2 is reproducibility of the system, typically enforced by
the mechanical design of the system, e.g., by heavy constructions with large
stiffness’ approximating rigid body behavior. Lightweight systems have multiple
advantages over the current state-of-the-art designs.

• The system design can be more cost-efficient, e.g., less material costs,
smaller actuators and gear-boxes, lower transportation costs, and less strict
conditions on the supporting ceiling or floor base.

• Enhanced safety, e.g., faster (emergency) brake times and reduced (acci-
dental) collision forces due to the lowered inertias.

• Quick and simplified in field installation.

The main disadvantage of lightweight system design is the increased sensitivity to
internal, e.g., motion induced, and external disturbances, leading to a decreased
reproducibility of the geometric parameters. Similar observations can be made
when the scan velocities of the current generation of systems increase, i.e., higher
accelerations. The dynamics of the system are significantly more excited while
the initial states of the system are typically not guaranteed to be the same for
each scan due to a wide variety of (external) situations.

Unrelated to lightweight system design, an alternative non-reproducible ef-
fect that can be observed is changing system behavior due to usage over time.
Typically, geometric calibrations are repeated with time-intervals of six months
for various reasons, e.g., wear of the system or small changes due to accidental
collisions.

The proposed approach in this chapter enables a relaxation of the repro-
ducibility condition imposed on the current generation of systems by exploiting
accurate models in combination with measured data during actual patient scans.
A general description is presented in Sec. 5.2.4 and the remainder of the chapter



5.2 Preliminaries and proposed approach 91

deals with the technical details concluding with experimental results illustrating
the potential of the proposed approach.

5.2.4 Proposed data-driven geometric calibration approach

To recap, the aim of this section is to introduce a data-driven approach that
exploits available measurements to predict the system behavior during an actual
patient scan. In the current section, the fundamental idea behind the proposed
data-driven approach is explained.

The reconstruction algorithm is considered a given process,

I3D = fR(I2D, ξ
geo

), (5.1)

where I3D denotes the obtained 3D reconstruction, I2D a set of 2D images ob-
tained during a full scan, and ξ

geo
a set of geometric parameters that correspond

to each 2D image. It should be noted that the quality of the individual 2D images
is also influenced by the (lightweight) system design, however, this is considered
out of the scope of this work. The objective is to obtain accurate estimations
of ξ

geo
such that the reconstruction process can be obtained with satisfying 3D

results.
The (measured) output of a system can be roughly divided in two parts;

a quasi-static, and a dynamical contribution. Dynamical models are often ex-
pressed in multi-input-multi-output (MIMO) discrete-time state-space formula-
tions,

xk+1 = f(xk, uk),
yk = h(xk, uk),

(5.2)

with xk ∈ Rnx the state vector of length nx, k the discrete-time index, and
u ∈ Rnu and y ∈ Rny the input and output vector respectively with nu inputs
and ny outputs. The functions f(xk, uk) and h(xk, uk) are describing the state-
equation and output-equation respectively. The state-equation is a dynamical
description, while the output equation relates the states, that are not necessarily
physically meaningful, to the measured outputs. In this work, the quasi-static
components are included in the output equation, i.e.,

yk = hd(xk, uk) + hqs(xk) := h(xk, uk), (5.3)

where hd(xk, uk) denotes the dynamic contributions and hqs(xk) the quasi-static
contributions. It should be noted that the quasi-static output is a function of
the current state, e.g., absolute angular rotations of the actuators define the
quasi-static offsets.

The output vector yk can be a combination of measured outputs, such as in-
cremental encoder measurements or acceleration and absolute velocity measure-
ments. With the development of micro-electro-mechanical systems (MEMS),
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Fig. 5.2. Schematic representation of the proposed data-driven geometric
calibration approach.

relatively cheap, accurate measurements of linear accelerations and angular ve-
locities can be obtained, directly located at the positions of interest, i.e., the
image acquisition components. The input vector is assumed user-defined, e.g., a
predefined scan trajectory. State-estimators or observers aim at the estimation
of the system states xk which are typically not directly measured [103], [43].

To estimate the geometric parameters that do have a physical interpretation
in terms of orientations and translations of the image acquisition components but
are typically unmeasured, a model should be available to enable the derivation of
the geometric parameters from the estimated states. A schematic representation
of the proposed procedure is provided in Fig. 5.2.

The remainder of this work shows how observers can be exploited to obtain
accurate estimations of the states of the system. It also presents how a modal
state-space representation can be obtained from a standard Euler-Lagrange for-
mulation that is the result of many modeling approaches, which has specific
advantageous properties for the data-driven approach as well as in-field instal-
lation which will be presented in detail in Sec. 5.4. In addition, it is shown
how the method can be exploited for the identification of the physical system
parameters denoted by ξ

par
included in the quasi-static model as presented in

Sec. 5.2.2, rendering the identification procedure proposed in [102] unnecessary.
As an additional advantage, an adaptive approach is obtained that is able to
compensate for slowly time-varying behavior of the system.

In the remainder of this chapter, two approaches are presented.

1. A linear model of the system is available and the model parameters are
assumed known and fixed. A linear Kalman filter is exploited to estimate
the model states, i.e., the geometric parameters.

2. A model as in (5.2) is used where the model parameters are chosen as
additional states in the observer design. Due to the typically nonlinear
structure of the model, extended and unscented Kalman filters are ex-
ploited [107].
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5.3 Observer design

A vast amount of observer design approaches is available in literature, e.g., the
Kalman filter (KF) for linear systems [103], the Extended Kalman filter (EKF)
for nonlinear systems [107], and the Unscented Kalman filter (UKF) [108], [109].
The principle of the discrete time Kalman filters, which forms the basis for the
proposed approach in this chapter, is presented in the current section for three
different filters, which each unique advantageous properties. In the following
section (Sec. 5.4) more details are provided on how the underlying (non)linear
models can be obtained.

5.3.1 Kalman filter

The Kalman Filter is optimal for linear systems, where the multivariable, discrete
time, linear state-space approximative model of the true system P0 is given by

P̂ :
xk+1 = Fkxk +Gkuk + Vkvk,
zk = Hkxk +Dkuk +Wkwk,

(5.4)

with vk ∈ N (0, Qk) and wk ∈ N (0, Rk) zero-mean Gaussian noises with covari-
ances Q and R respectively. Note that the system matrices Fk, Gk, Hk, Dk,
Vk, and Wk might be time/parameter varying. The model output variable zk
represents a realization of the measured outputs of the system, which does not
necessarily includes the geometric parameters.

Kalman filtering is a recursive procedure that is performed for each obtained
discrete-time step. Given a (model-based) predicted state and covariance, the
Kalman filter is performing a measurement and covariance P update according
to

x̂k|k = x̂k|k−1 +Kk(zk − ẑk), (5.5)

Pk|k = (I −KkHk)Pk|k−1, (5.6)

where the notation is adopted from [110] with the subscript x̂k|k−1 denoting the
estimation of x at time instant k given an estimation at time instant k− 1, and
zk the measurement vector at k. The predicted states and outputs before update
(5.5) are given by

x̂k|k−1 = Fk−1x̂k−1|k−1 +Gk−1uk−1, (5.7)

ẑk = Hkx̂k|k−1 +Dkuk. (5.8)

The corresponding predicted covariance matrix is given by

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Vk−1Qk−1V

T
k−1. (5.9)

The predicted states and covariance matrices in (5.7) and (5.9) respectively
are fully model based predictions and heavily rely on the updated states and
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covariances from the previous step. The Kalman gain Kk in (5.5) and (5.6) is
selected such that an optimal balance between the measurements and model-
based predictions in terms of a minimization of the covariance is obtained. For
linear systems, the solution is given by the discrete algebraic Riccati equation
(DARE) [110], see also Sec. C.2 for a discrete-time derivation, resulting in,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +WkRkW

T
k )−1. (5.10)

Typically estimation errors are characterized by a bias term and a covariance.
The covariance is minimized by obtaining a Kalman gain according to (5.10),
where the bias term is dominated by modeling errors which follow from (5.5),
see also [110, Sec. 7.2.4]. Note that the zero-mean distributed noise assumption
is key for the state and output prediction, i.e., E{vk} = E{wk} = 0. If the signal
is not Gaussian, e.g., when there is a coloring of the noise, the system should be
expanded with an appropriate exogenous model, see, e.g., [111] for more details
on this so-called internal model principle. Typically, for an offset an additional
integrator is required leading to an expanded Fk and corresponding state-vector
xk. The noise terms vk and wk remain assumed zeros-mean Gaussian distributed
white noises, while the matrices Vk and Wk provide the intensity scaling. To
minimize the estimation errors, accurate modeling is key. Since any system is
nonlinear to a certain degree and when model parameters are considered addi-
tional states, the estimation problem becomes nonlinear. Hence, observers are
desired that are able to deal with nonlinear models.

5.3.2 Extended Kalman filter

The EKF is based on local linearizations of a nonlinear system description and
strongly related to the linear KF. Given a nonlinear model of the real system
P0,

P̂ :
xk+1 = f(xk, uk, vk),
zk = h(xk, uk, wk),

(5.11)

where in contrast to (5.2) only the measured outputs zk are selected, with the
state equation f(xk, uk, vk) and the output equation h(xk, uk, wk). The state
prediction and output prediction as in (5.7) and (5.8) respectively are obtained
by direct evaluation of the nonlinear equations in (5.11). However, the remaining
steps require a linearization of the nonlinear expressions at each time step, i.e.,

F̄k =
∂f(xk, uk, vk)

∂x

∣∣∣∣
x=x̂k|k

, H̄k =
∂h(xk, uk, wk)

∂x

∣∣∣∣
x=x̂k|k

, (5.12)

and,

V̄k =
∂f(xk, uk, vk)

∂v

∣∣∣∣
x=x̂k|k

, W̄k =
∂h(xk, uk, wk)

∂w

∣∣∣∣
x=x̂k|k

. (5.13)
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are required. By substitution of the linearized matrices F̄k, H̄k, V̄k, and W̄k, the
procedure in Sec. 5.3.1 can be followed.

The main drawback of the Extended Kalman filter is that there are no guar-
antees on global convergence as a result of the local linearizations. However, in
practical applications the ease of implementation in combination with in general
satisfying results make the EKF a widely applied approach, [43,112–114].

Remark 5.1. For the estimation of (a subset of) the states, observability of
these states is required. A widely applied approach to test observability of a
(linearized) system, the following should hold [55, Sec. 10.6],

rank







H̄k

H̄kF̄k
...

H̄kF̄
nx−1
k





 = nx, (5.14)

with nx the number of states and rank indicating the column rank. C

5.3.3 Unscented Kalman filter

An approach that is purely based on the evaluation of the nonlinear model as in
(5.11) is the unscented Kalman filter, first introduced in [108], see also [109] for
more details.

The UKF is based on the evaluation of the system by a limited number of
data-points, which is in sharp contrast to the evaluation of the system using a
single updated state estimation as in the (E)KF. The UKF is based on a similar
principle as Monte-Carlo simulations, however, by making a specific selection
of the data-points a reduced number of evaluations is required. Hence, the
computation time is significantly smaller for the UKF then for Monte-Carlo
based approaches. The data-points define the covariance region and are often
referred to as sigma-points, denoted by

χ0
k−1|k−1 = x̂k−1|k−1, (5.15)

χik−1|k−1 = x̂k−1|k−1 ±
√

(nx + κ)Pk−1|k−1

∣∣∣
[i]
, (5.16)

with
√

(nx + κ)Pk−1|k−1 defining the principle axis of the covariance region and
the subscript [i] indicating the selection of the column of the principle axis matrix
corresponding to the ith data-point. Note that each column of the principle axis
matrix is used for the computation of two data-points according to the ± sign.
The variable nx represents the number of states of the model, κ a scaling factor
and the index i = 1, 2, . . . , 2nx. The integer κ is typically used as an additional
degree of freedom, e.g., typically chosen nx + κ = 3 for Gaussian distributions.



96 Chapter 5. Data-Driven Geometric Calibration

Note that negative values for κ can be obtained [113]. All sigma-points are
evaluated using the nonlinear state equation, resulting in,

χ̂jk|k−1 = f(χjk−1|k−1, uk−1), (5.17)

with j = 0, 1, . . . , 2nx. By computation of the weighted average,

x̂k|k−1 =

2nx∑

j=0

γjxχ̂
j
k|k−1, (5.18)

with γx a weighting function, a state prediction is obtained, equivalent to (5.7)
for the linear situation. Similarly, the weighted average over the covariances is
computed according to

Pk|k−1 =

2nx∑

j=0

γjpcov(χ̂jk|k−1), (5.19)

leading to a prediction of the covariance for which the linear equivalent is given
in (5.9).

Many proposals for the definition of the weighting factors γp are available in
literature, see, e.g., [115], [116], and [109]. Virtually, any choice can be made,
however,

2nx∑

j=0

γjp = 1, (5.20)

should always hold, to provide an unbiased estimate. In [117] an alternative
approach for improved estimation accuracy is proposed, in particular for systems
with a large number of states, using additional sigma points.

After the computation of the state and covariance estimations, the weighted
output estimation is given by

Zjk = h(χ̂jk|k−1, uk), (5.21)

ẑk =

2nx∑

j=0

γjxZjk, (5.22)

from which the (cross-)covariance of the state and output estimations are com-
puted by

Pxz =

2nx∑

j=0

γjpcov(χ̂jk|k−1,Z
j
k), (5.23)

Pzz =

2nx∑

j=0

γjpcov(Zjk). (5.24)
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The Kalman gain is computed by

Kk = Pxz(Pzz +WRWT )−1, (5.25)

which is again used to update the state similar to (5.5). Note that as a result
of the direct estimation of the covariance due to the evaluation of the nonlin-
ear function with the sigma-points, no information on the state-covariance is
required. The update on the predicted covariance is given by

Pk|k = Pk|k−1 −Kk(Pzz +WRWT )KT
k , (5.26)

concluding the update step.
Due to the evaluation of the nonlinear equations, there are no linearization

errors introduced which is the case for the EKF. As a result, the exploited model
in the observer is close to the true system behavior, leading to a reduced esti-
mation bias. Moreover, it is not required to provide a process noise covariance,
i.e., Q from (5.4). The process noise is usually difficult to estimate, leading to
an additional tuning parameter for (E)KF implementations. The UKF does not
require the term due to a direct estimation of the state covariance by virtue of
the sigma-points.

In Sec. 5.4, a possible modeling approach is proposed to obtain the underlying
(non)linear models required for the estimation steps in the (E/U)KF, based on
the nonparametric modeling methods as introduced in Chaps. 3 and 4.

5.4 Parametric modeling for state-estimations

5.4.1 Parametric modeling

A dynamical system can be denoted using a set of coupled differential equations,
[118],

Mq̈ +Dq̇ +Kq = B0u
y = C0q +Mqs(q)

, (5.27)

withM , D, andK the mass, viscous damping, and stiffness matrices respectively,
C0 an output matrix, B0 an input matrix, with q̈ and q̇ indicating a double and
single time-derivative of q respectively. The term Mqs(q) indicates quasi-static
and rigid body motions as obtained in Chap. 2. The mass matrix is positive
definite and the stiffness matrix semi-positive definite. The vector q ∈ Rns
represents the displacement of the nodes of the lumped parameter system where
ns represents the number of masses.

Typical for robotic systems is the parameter dependency of the dynamical
behavior, e.g., due to changing link lengths or geometric poses the system com-
pliances change, making the systems inherently nonlinear. In this thesis, Coriolis
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and centrifugal forces are neglected since these only have a limited influence on
the systems behavior. As a result, often complicated (parameter varying) dy-
namic models are obtained, which will be in more detail described in Sec. 5.4.2,
resulting in M(θ), D(θ), K(θ), B0(θ), and C0(θ). In the current section a sin-
gle LTI model is assumed for notational convenience, i.e., a single workpoint is
considered θ = θ∗. As presented in Sec. 5.2.4, the system parameters are con-
sidered estimated variables by the observer. Hence, in this section a parametric
modeling approach is introduced that 1) leads to a reduced number of estimated
parameters for dynamic modeling, and 2) leads to physical parameters that have
direct physical interpretations such that initial estimations can be obtained with
relative ease, as will be presented in detail in Sec. 5.4.3. It is shown how an alter-
native parameterization is obtained which has equivalent input/output behavior
as (5.27). To incorporate the geometric nonlinearity in the model, an approach
based on model estimations for varying poses of the system is introduced in
Sec. 5.4.2. By obtaining multiple LTI models for different workpoints, which are
connection by virtue of an additional step interconnecting various system poses,
a linear parameter varying (LPV) model is obtained.

In literature, several approaches are available to transform an LTI model in
a state-space representation. In [74], a control canonical form is proposed as a
state-space representation for SISO systems. Alternative canonical state-space
representations are presented in [119], [120], and [121]. In [122], an approach
based on balanced realizations of LTI models is suggested. In this chapter, a
modal approach [118], [123] is applied. The main advantage of the approach
is the limited number of required parameters and the direct relation to the
mechanics/physics of the system in terms of natural frequencies and damping
coefficients.

The first step in obtaining the modal form starting from (5.27) is solving the
generalized eigenvalue problem [123],

Kφ = ω2
nMφ, φ 6= 0, (5.28)

resulting in the natural frequencies ωn and the mode shapes φ, see also [118].
By defining the modal matrix Φ = [φ1, φ2, . . . , φns ], in which each column
spans the direction of the mode shapes, the equations of motion in (5.27) can
be expressed as,

Mmη̈ +Dmη̇ +Kmη = ΦTB0u
y = C0Φη

, (5.29)

with the diagonal matrices Mm = ΦTMΦ and Km = ΦTKΦ. The matrix Dm =
ΦTDΦ is diagonal for specific damping types, e.g., proportional or Rayleigh
damping, where it is assumed that Dm = αMm+βKm with α and β nonnegative
scalars [124]. Typically, lightly damped systems are modeled using damping
models that lead to a diagonal form of Dm [118]. Hence, in the remainder of
this work, Dm is considered diagonal. Pre-multiplication of (5.29) with M−1

m
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results in,

η̈ + 2ZΩη̇ + Ω2η = Bmu
y = Cmη

, (5.30)

with the diagonal matrices Ω2 = M−1
m Km, Z = diag{ζi}, i = 1, 2, . . . , ns, and

Cm = C0Φ, and Bm = M−1
m ΦTB0. As a result of the diagonal structure of the

matrices, there is no coupling between the independent natural frequencies In
addition, input/output related scalings are defined using the matrices Bm and
Cm. The corresponding state-space realization is given by

ν̇ =

[
0 1
−Ω2 −2ZΩ

]
ν +

[
0
Bm

]
u,

y = Cmν,
(5.31)

with ν = [η, η̇]T . The poles of the system are independent of the measure-
ment locations. By selecting a sufficient number of modes, e.g., modes that lie
in a frequency range and have a large enough magnitude to disturb the 3D re-
constructions, the dynamical behavior over multiple degrees of freedom can be
obtained by proper selection and scaling of the Bm and Cm matrices, and the
damping constants in Z.

When acceleration sensors are included, i.e., y = Caη̈, the acceleration signal
is expressed as a linear combination of the position and velocity components in
ν that follows directly from (5.31), i.e.,

y =

[
Cm

−Ca
[

Ω2 2ZΩ
]
]
ν +

[
0

CaBm

]
u. (5.32)

Note that the feed-through term CaBm is proportional to the output and is zero
when the accelerometer location matrix Ca and Bm are orthogonal. Typically
this is for the modal form the case when the acceleration sensor and the excitation
forces are not collocated [118]. A physical interpretation of this property is that
there are always dynamics present in the non-collocated situation between the
excitation and measurement. Hence, a change in the input has a filtered effect
on the output. Note that this modeling approach is limited to (strictly) proper
systems.

Here it is shown that a model satisfying the formulation in (5.27) can be re-
cast in the modal state-space form in (5.31). Due to the diagonal structure of the
model parameters included in Ω2 and 2ZΩ, which directly relate to the natural
frequencies and the damping of the system, initial estimations can be obtained
according to multiple approaches, e.g., modal analysis or more informative fre-
quency response measurements, which is further emphasized in Sec. 5.4.3.
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5.4.2 Modeling geometric nonlinearities

For the description of the dynamics of open-chain robotic systems, often the
Euler-Lagrange formulation used, see, e.g., [125,126], and [12],

M(q, q̇)q̈︸ ︷︷ ︸
inertia

+ C(q, q̇)q̇︸ ︷︷ ︸
centrifugal + coriolis

+ Pg(q)︸ ︷︷ ︸
gravity

= fn︸︷︷︸
actuation

, (5.33)

with fn the actuation forces. The system can also be described as a system
with linear parameter varying (LPV) behavior, as for which a nonparametric
identification approach has been proposed in Chap. 4. Typically, nonparametric
identification is an intermediate step for parametric modeling. Hence, increased
accuracy of the nonparametric model leads to improved parametric modeling
leading to improved estimation accuracies and robustness using model-based
observers. Besides parametric modeling accuracy, variations over various sys-
tems can lead to the need of obtaining models for each system individually,
which lead to the need for time-efficient approaches to obtain (non)parametric
models. Many systems exhibit to a certain extent parameter dependent behav-
ior on non-stationary parameters, e.g., position or temperature. This typically
nonlinear behavior is often recast into the LPV framework [94], for which the
formulation in (5.27) becomes,

M(θ)q̈ +D(θ)q̇ +K(θ)q = B0(θ)u
y = C0(θ)q

, (5.34)

with θ indicating the parameters on which the formulation is depending. It
should be noted that the formulation of (5.34) is used to obtain a linear approxi-
mation of (5.33). The modal state-space formulation, based on (5.34), is derived
as presented in Sec. 5.4.1, and is given by

ν̇ =

[
0 1

−Ω2(θ) −2Z(θ)Ω(θ)

]
ν +

[
0

Bm(θ)

]
u,

y = Cm(θ)ν,
(5.35)

which indicates the natural frequencies and damping constants of the system are
depending on θ. For a “frozen” set of scheduling parameters, i.e., θ = θβ with
the subscript β indicating a specific pose of the system, a linear time-invariant
representation of the dynamics of the system is obtained.

For most mechanical systems, the variations in the dynamics can be described
as a smooth function of θ with static parameters, e.g., Ω2(θ) = f(θ), and Z(θ) =
g(θ). By performing experiments for various system poses, i.e., various frozen
θβ , (basis)functions f(θ) can be defined describing the variations in dynamical
behavior. Note that physical interpretations of the model parameters in (5.31)
enable a smoothness assumption over θ without the requirement for additional
(matrix) transformations.
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5.4.3 Initial parameter estimation

When a physical model is available, the model can be derived and used in the
state-observer. When there is no physical model available, the modal (state-
space) form can be used, however the model parameters should be obtained
such that the system dynamics are approximated. For the situation where the
model parameters are considered fixed, the modeling errors are desired to be as
small as possible. For the situation where the model parameters are considered
additional states to the observer, accurate initial estimations are important to
obtain convergence of the estimations. Note that alternative adaptive approaches
are available. However, since a state-observer is already required to estimate
the unmeasured geometric parameters, an extension with the parameters is an
intuitive approach.

The discrete Fourier transform (DFT) of a measured time-domain signal x
is given by

X(k) =
1√
N

N−1∑

n=0

x(nTs)e
−i2πnk/N , (5.36)

with N the measured number of samples, Ts the sample time, and k an index
indicating the frequency bin. By computation of the DFT for both the excita-
tion and measured output signal, a nonparametric frequency response functions
(FRF) can be obtained, which is typically an intermediate step on which the
model parameters of the models presented in Sec. 5.4.1 can be fitted.

The identification of nonparametric models, in particular frequency response
functions, has been significantly advanced over the recent years, see [48] for an
overview of the state-of-the-art methods. Typically, the actuator inputs are ex-
cited using a predefined signal with a desired spectrum, e.g., a band-limited
white noise signal or a periodic signal where the frequency spectrum is chosen
such that the frequencies where dynamics are crucial are excited. By comput-
ing the DFT of both the input and output spectra, again the transfer function
can be obtained. See also chapters 3 and 4. These nonparametric models typ-
ically are considered an intermediate step in obtaining parametric models such
as (5.35). By estimating the model parameters of (5.35) such that the error
between the nonparametric and parametric model are minimized for fixed work-
points, individual LTI models are obtained. Using a priori system knowledge or
basis functions, continues functions describing the change of the parameters as
a function of θ are modelled.

5.5 Experimental results

The potential of the proposed approach for geometric calibrations is illustrated
in this section based on experimental results on a real imaging system.
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Fig. 5.3. Schematic representation of the simulation setup. The actua-
tor dynamics, indicated by Act are neglected and convert the controller
output, i.e., typically a current, to forces acting on the first inertia.

The system is operating in closed-loop as indicated in Fig. 5.3 where the
measured outputs of P0 are indicated in Fig. 5.4. Moreover, quasi-static effects
can not be neglected as argued in Chap. 2, leading to the model,

P̂ :
xk+1 = A(xk)xk +B(xk)uk,
yk = C(xk)xk +Mqs(xk),

(5.37)

where the term Mqs(xk) represents the quasi-static and kinematic model which
depends on the states xk. In Fig. 5.5 the measured frequency response function
is shown for the dynamical mappings at a single workpoint,

P̂ : u 7→



θ2

ÿd

yd


 , (5.38)

where θ2 represents the collocated encoder measurement, ÿd the non-collocated
acceleration measurement of the y-direction of the detector, yd the non-collocated
position measurement of the detector as indicated in Fig. 5.4, and u the input
of the plant. Information on y is only available off-line. Hence, the aim is to
estimate the y-displacement of the detector during a scan where θ2 is ranging
from −90 to 90 degrees as indicated in Fig. 5.4.

Due to the availability of accurate nonparametric models for the test setup,
the parametric model is assumed sufficiently close to the true system dynamics,
i.e., adaptation of the parameters is not required. The parameters of the quasi-
static model Mqs(xk) which is following the structure as presented in [102], are
obtained by two approaches,

1. the parameters are obtained by computation by virtue of Gauss-Newton
iterations, or any other desired optimization procedure, as proposed in
[102], and

2. the quasi-static and kinematic model parameters are included in the ob-
server as additional estimated states.

The resulting FRFs of the relevant signal mappings indicated in (5.38) are
shown in Fig. 5.5 for a single workpoint, including a parametric fit based on
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Fig. 5.4. Philips Allura Xper FD20: illustration of scan range.

Table 5.1. Identified DH-parameters of the Philips Xper Allura FD20 -
Model-Based

a [mm] δθ [rad] α [rad] d [mm] β [-]

1 −0.2314 1.5588 −1.5599 −389.0137 0.9991
2 −0.6612 1.5826 −1.5769 −0.1308 0.9964
3 −0.1258 1.5620 −1.5713 −6.1345 0.9910
4 −2.1233 3.1889 −0.0110 −1.8001 0.9867

θf =
[

3.2e−4, 0.2e−4, 9e−4, 12.1e−4
]T

[rad]

Table 5.2. Identified DH-parameters of the Philips Xper Allura FD20 -
Data-Driven

a [mm] δθ [rad] α [rad] d [mm] β [-]

1 −0.2322 1.5612 −1.5713 −389.009 0.9989
2 −0.6701 1.5789 −1.5822 −0.1288 0.9933
3 −0.1131 1.5703 −1.5689 −6.1443 0.9931
4 −2.1100 3.1912 −0.0201 −1.8764 0.9901

θf =
[

3.1e−4, −0.4e−4, 9.1e−4, 12.4e−4
]T

[rad]
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Fig. 5.5. Frequency domain representation of experimental setup: FRF
(blue); parametric model (red-dashed).

the modeling structure presented in Sec. 5.4. The results of the model-based
calibration approach from [102] applied on the measured data are illustrated in
Table 5.1. In Table 5.2, the results of the Unscented Kalman filter approach
applied on (5.37) are shown. It should be noted that the order of magnitude
of the obtained DH-parameters is similar for both approaches. Note that the
same initial states are obtained for both approaches. The data-driven approach
however is able to estimate additional dynamical contributions, although for the
currently available experimental systems these contributions are small.

In Fig. 5.6, the obtained geometric parameters using the phantom-based and
the data-driven approach are shown. Since quasi-static (DH) parameter are es-
timated, pure acceleration measurements do not provide sufficient information.
Particularly for low frequencies, acceleration sensors are subject to poor signal-
to-noise ratios. For convergence of the quasi-static parameters, the phantom-
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Fig. 5.6. Calibration results including absolute (phantom) measure-
ments: phantom-based (blue); data-driven (red-dashed).
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Fig. 5.7. Calibration results using accurate initial state estimations:
phantom-based (blue); data-driven (red-dashed).
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Fig. 5.8. Convergence of first four DH-parameters, indicated in Ta-
ble 5.2, based on 15 consecutive measurements; mean (blue); variance
(gray-shaded)

based measurements are included as additional measured output in the model
(5.37), used in the observer. The images provide absolute position informa-
tion, which enables the estimation of quasi-static parameters. The envisioned
advantage of the proposed approach is mainly in the adaptation of the dynam-
ical parameters, which avoids extensive experimentations to obtain parametric
dynamical models with high accuracy. In sharp contrast, the identification of
quasi-static parameters typically can be done using limited amounts of data
as described in Chap. 2. It should be noted that after approximately 20 im-
ages the parameters are converged, see also Fig. 5.8 for the convergence of four
DH-parameters indicated in Table 5.2. After the parameters are converged, the
quasi-static model Mqs(xk) imposes a closer resemblance to the true system be-
havior. As a result, an improved estimation result is obtained, i.e., the geometric
parameters are recovered more accurately. In Fig. 5.7, the initial states of the
model are replaced with the obtained parameters in Table 5.2, and only encoder
and acceleration measurements are used for estimation purposes. It should be
noted that the initial estimation error is significantly smaller with respect to the
results in Fig. 5.6. However, due to the use of relative measurements only, a
small amount of drift can be observed.
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5.6 Conclusions and recommendations

Geometric calibrations are crucial for accurate 3D reconstructions of the inte-
rior of the human body. A model-based approach to reduce required calibration
times is proposed in [102] which forms the starting point for the results in this
chapter. A method based on state-observers that combine measurements, e.g.,
encoders, acceleration sensors, and gyroscopes, with a quasi-static and dynamic
model, is proposed. Due to the use of data actually measured during a scan
on the patient, it is demonstrated that potentially a significant relaxation on
the reproducibility condition can be obtained. In addition, it is shown that
the approach can be exploited to estimate physical parameters in the models,
enabling to fine-tune the parameters. Hence, slowly time-varying behavior can
potentially be compensated, extending the recalibration time intervals. Typi-
cally the sample rates of the sensors are significantly higher then the imaging
frame rate. Hence, an increased amount of information can be obtained, e.g., on
higher frequency content.

In Sec. 5.4 dynamical models in modal form are presented that enable mod-
eling of the system behavior. However, the proposed approach is not limited
to these models. In fact, other desired modeling approach can be pursued. For
the specific application on interventional X-ray systems, external flexibilities,
e.g., finite stiffness in floors and ceilings on which the system is mounted, domi-
nantly determine the quasi-static and dynamical behavior. The proposed modal
form allows for an intuitive approach to obtain initial parameters on which the
observer can fine-tune to obtain a global optimum.

Additional research towards improved convergence properties for the static
parameters and robustness of the proposed approach is required before clinical
implementations become feasible. Also, the method has the potential to com-
pensate for non-reproducible behavior due to the use of measured data during
actual operation. Although more tuning freedom is obtained by the introducing
of additional states describing model parameters, experimental validation on a
non-reproducible system is required.

Computational power is generally not a problem since for geometric cali-
bration purposes the estimations are not required to be available in real-time.
However, if the estimations are required for feedback purposes, deterministic ob-
servers, see, e.g., [127], can be used. For enhanced accuracy and for systems with
strongly nonlinear behavior, e.g., discontinuities, particle filters [110, Chap. 9]
might prove to be useful at the cost of a higher required computational power.





Chapter 6

Image-Based Measurements for
Geometric Calibration

Geometric calibrations of medical imaging systems are crucial to allow for advanced

(X-ray) imaging techniques. Developments in medical procedures, lightweight system

design and the growing costs of health-care, lead to the desire for simpler and faster

calibration approaches. The aim of this chapter is to present a novel measurement

approach to enhance system calibrations for a wide range of imaging applications. The

method is based on the introduction of small markers within the projection line-of-sight,

by virtue of a minimal mechanical adjustment to the system. By detecting markers in

the X-ray images, displacements between the systems’ X-ray detector and source are in

situ measured. Additionally, the approach can be used in combination with model-based

and data-driven calibration approaches.

Early results are published in Rolf Gaasbeek, Rick van der Maas, Mark den Hartog, and
Bram de Jager, Image-Based Estimation and Nonparametric Modeling: Towards Enhanced
Geometric Calibration of an X-ray System, Proc. IEEE Multiconference on Systems and
Control , pp. 21 - 23, 2015
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6.1 Introduction

Developments in the medical society increasingly rely on high-quality images
of the interior of the human body. Minimal invasive surgeries aim at minimal
collateral damage during surgery, leading to less postoperative complications
and faster patient recovery times. Accurate imaging applications, e.g., high-
quality three-dimensional rotational angiography (3DRA), computed tomogra-
phy (CT) [5], [8], and three-dimensional (3D) roadmapping techniques [7], are
critical for minimal invasive surgeries. Also, the reduction of the required X-ray
and contrast fluid dose is beneficial for both the patient as well as the attending
medical staff.

Interventional X-ray systems are widely applied for minimal invasive surg-
eries. Due to the open-kinematic structure [18], similar to robotic systems, these
systems allow for easy access to the patient by the medical staff, while the system
is in position to acquire images. In contrast to closed-kinematic structures, e.g.,
traditional CT and MRI systems, the system is relatively sensitive to external
disturbances, mechanical imperfections, and inherent flexibilities. As a result,
the image acquisition components, i.e., the X-ray detector and assumed point-
source, do not follow the ideally described semi-circular trajectory. To avoid
severe artifacts in the obtained reconstructions, deviations on the ideal trajec-
tory imposed by the system are compensated in the reconstruction algorithm [4],
which is referred to as geometric calibration [10], [21]. Hence, an ideal geomet-
ric calibration describes, for each acquired two-dimensional (2D) projection, all
degrees-of-freedom (dof) of the cone-beam.

Currently available C-arc systems are typically highly reproducible, enabling
an off-line calibration procedure which has to be repeated twice a year in clin-
ical environments [128]. Typical approaches presented in literature are based
on a scan of a calibration phantom of known geometry [10], [25], [19], and [40].
Various procedures are presented that enable a reduction of the number of esti-
mated calibration parameters, see, e.g., [129] where specific degrees of freedom
are neglected without significant influences on the obtained imaging qualities.
Since movements of the X-ray source with respect to the detector only lead
to second-order effects on the errors, a widely used assumption is that the X-
ray source is fixed relative to the detector, see [102] and Sec. 2.2.2. For the
current generation of X-ray systems, this assumption leads to relatively small
estimation errors in the calibration parameters, i.e., a small degradation of the
reconstruction quality or overlay errors. However, the numerical conditioning of
the geometric calibration problem is improved leading to more reliable solutions.

The need for faster, more accurate in terms of positioning of the image acqui-
sition components, and cheaper systems leads to lightweight system design. Due
to changing ratios between inherently limited system flexibilities and masses,
dynamical resonances change to lower frequencies as a result of typically de-
creased mechanical stiffness. For an decreased stiffness, the amplitude of the
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second-order effects increases such that the influence of the neglected parameters
becomes visible to the human eye in the acquired 3D reconstruction. Further-
more, the reproducibility condition required for the phantom-based geometric
calibrations imposes a direct limitation on the mechanical design. Research to-
wards online calibration approaches, i.e., performed during normal operation in
a clinical environment, is often based on markers included in the patient ta-
ble [26], leading to possible occlusions of relevant parts of the anatomy. More
advanced approaches based on optimization of 3D reconstructions are presented
in [29], [27]. Clinical results show that these approaches are sensitive to patient
movements.

Model-based and data-driven calibration approaches, as proposed in Chap-
ters 2 and 5 respectively, exploit models of the mechanics of the system in
combination with available measurements, e.g., encoder signals and accelera-
tion sensors. By using measured data from the actual performed motion, the
reproducibility condition can be relaxed.

Although the model-based and data-driven approaches show promising re-
sults, the information contained within the obtained images is not fully exploited.
The aim of this chapter is to present a novel measurement approach that enables
a direct measurement of the relative displacements between the X-ray detector
and source. In contrast to [26], where fixed markers are placed at the patient
table, it is proposed to fix the markers at a predefined position with respect to
the X-ray source. Thereby, it is guaranteed that the markers are never visible
in the region of interest, e.g., small detection points at the edges of acquired
images. The main contributions in this chapter are:

1. a novel measurement approach, based on online acquired X-ray images,
enabling a measurement of the X-ray source position with respect to the
detector for the low frequency region, and

2. a framework relating the image-based measurements to the data-driven
approach as presented in Chap. 5.

Besides application for 3D reconstructions, the approach can also be exploited
for static and 3D roadmapping applications. Errors introduced by a rotation of
the detector, e.g., from portrait to landscape mode, are measured directly by
the in this chapter proposed approach, which can directly be used for (overlay)
calibration. Moreover, some restriction on the design of next-generation X-ray
systems, particularly the rigid connection between the X-ray detector and source,
are relaxed.

This chapter is structured as follows. In Sec. 6.2 the problem description and
proposed approach are presented. In Sec. 6.3 some fundamentals are presented
that are required for accurate marker detection within (X-ray) images. Possible
(future) applications of the method are presented in Sec. 6.4, followed by exper-
imental results based on a real X-ray system in Sec. 6.5. This chapter concludes
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in Sec. 6.6 with conclusions and recommendations on future use of the proposed
measurement approach.

6.2 Problem description and proposed approach

6.2.1 Problem statement

In the previous chapters, a model-based and a data-driven approach are pro-
posed to obtain the geometric parameters defined in Sec. 2.2. By introducing
additional sensors, e.g., accelerometers or gyroscopes, close to the X-ray detector
and tube, information is available on the system behavior close to the perfor-
mance locations, i.e., the image acquisition components. Since 3D reconstruc-
tions are based on a mapping of multiple 2D images, an intuitive choice would
be to investigate whether information included within the obtained images can
be used for geometric calibration purposes.

In Chap. 5 a model was introduced with the following nonlinear state-space
description

P0 :
ẋ = f(x, u)
y = h(x, u)

, (6.1)

where the states x are a combination of dynamical states, e.g., positions and
velocities, and states describing model parameters of the dynamic and quasi-
static model, see Sec. 5.2.4. Observer based approaches are used to estimate the
states, followed by a (model-based) prediction of the geometric parameters, with

z = hz(x, u). (6.2)

It is well known that the excitation signals for (non)parameteric identification
should be as close as possible to the true operating conditions due to nonlinear
effects as presented in Chap. 3. A similar assumption holds for the proposed
data-driven approach in Chap. 5. For enhanced state-estimation, measured sig-
nals should resemble the desired performance variables as close as possible to
avoid propagation errors through the model.

Additional measurements can be exploited to enhance estimation qualities.
Since the aim of the system is to obtain high-definition X-ray images of the
object of interest, an intuitive choice is to make use of information available
within the acquired images. The currently widely used phantom-based calibra-
tion approaches are a typical example of this see, e.g., [10], [11], and [39], but
also approaches using markers within the line-of-sight, see also [29] and [26].

In this chapter, the objective is to enhance the model-based and data-driven
approaches using images by extending the output equation in (6.1) using image-
based measurements.
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Fig. 6.1. Schematic representation of the X-ray imaging process, where
À: X-ray point source, Á: fixed marker, Â: projection beam, Ã: (mis-
aligned) X-ray detector.

6.2.2 Proposed approach

In this chapter, image-based relative displacement measurements are proposed.
By introducing a mechanical marker element, i.e., a specifically designed X-ray
opaque object that can be recognized in the projected 2D images, relative dis-
placements between the X-ray source and detector are measured. In Fig. 6.1,
the proposed setup is illustrated. The relative displacements between the X-ray
source and detector can be used as additional geometric parameters. As intro-
duced in Chap. 2, the relative source displacement with respect to the detector is
in current approaches often neglected. In view of modern developments towards
lightweight system design, the assumption that the effects of relative detector-
source displacements is small, does not hold anymore. The resulting effects are
at least two-fold:

1. the effect on the geometric parameters required for 3D reconstructions and
3D roadmapping overlay, see Sec. 2.2.2, will increase, leading to increased
reconstruction artifacts/blur and overlay errors from 2D projections over
3D reconstructions, and

2. due to expected increasing dynamical disturbances, relative displacements
become larger during the exposure time of a single X-ray image. As a
result, the 2D image quality will degrade, resulting in blurred images.

Two possible cases are introduced for which the proposed measurement ap-
proach can be directly applied for (medical) imaging applications:
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I direct measurement of the relative geometric parameters, and

II making use of detected marker points in the 2D projections as additional
measurements within an observer, as introduced in Chap. 5. Hence, the
output equation in (6.1) is extended.

Both cases will be presented throughout the current chapter.

6.3 Image-based marker detection

To enable accurate image-based measurements, a fundamental understanding
on projective geometry is required as presented in Sec. 6.3.1. An accurate de-
scription of the projective geometry directly leads to a model that enables the
estimation of the geometric parameters describing the relative detector-source
displacements given an X-ray image. The design of possible markers and the
detection of marker points based on line intersections is presented in sections
6.3.2 and 6.3.3.

6.3.1 Modeling approach: projective geometry

The projection of a point from 3D to 2D, i.e., the patient (3D) to a projected
X-ray image (2D), is highly dependent on the image acquisition components as
indicated in Fig. 6.2. An elegant framework often used to describe the projection
relations is projective geometry, initially introduced in computer vision applica-
tions, see [104] for an extensive overview. Given a Euclidean representation of a
point, e.g., [x, y, z], then the point can be written in projective space P using
so-called homogeneous coordinates by [λx, λy, λz, λ], where λ 6= 0 is a free
scaling parameter. The extension of the Euclidean space by the parameter λ al-
lows for linear representations of projective relations, as will be further presented
throughout this section. It should be noted that the Euclidean coordinates are
recovered from P by dividing by the last coordinate.

The pinhole camera model is one of the simplest but widely used models to
describe the projection of a 3D object on a 2D plane. In a true pinhole camera
light passes through a small aperture and creates an inverted image on the image
plane as indicated in Fig. 6.3a. For X-ray systems, the image is formed based on
the attenuation of X-ray photons, instead of the reflection of light. An equivalent
pinhole camera representation corresponding to Fig. 6.3b is required.

The camera center, which is a well known virtual spot in projection theory,
see, e.g, [104, Chap. 6], has a physical interpretation for X-ray system, namely
the focal spot. The image-plane coincides with the detector plane, while the
principle point, i.e., the point indicated by the central X-ray, lies typically in
the center of the detection plane. A typical effect of mechanical inaccuracies,
vibrations, and focal spot variations is a displacement of the principle point.
In addition, the shape of the projection is varying. It should be noted that
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Fig. 6.2. Graphical representation of effect misalignments on projection,
where À: (misaligned) X-ray point source, Á: fixed marker, Â: projection
beam, Ã: (misaligned) X-ray detector.
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(a) Standard camera pinhole model.
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(b) Equivalent pinhole camera model for
X-ray imaging.

Fig. 6.3. Graphical representation of the pinhole camera model for stan-
dard cameras and X-ray imaging with Z̄ the focal distance and Z the
source-object distance.

imaging protocols also can have an effect on the principle point due to varying
(dynamical) behavior of the X-ray source. The fundamental difference between
normal imaging and X-ray imaging is the position of the detection plane with
respect to the object of interest, leading to a magnification as a result of Z̄ > Z
in Fig. 6.3b.

An arbitrary point in 3D space within the exposure volume, expressed in a
coordinate system located at the focal spot position, is described by the vector
vfs = [xfs, yfs, zfs]T . The projected point is typically described in the local de-
tector coordinate system, where vdp = [ud, vd]T . When an ideal situation is con-
sidered, i.e., no translational or rotational offsets of the detection plane with re-
spect to the X-ray source, it can be derived by standard geometry that the projec-
tion of the point [xfs, yfs, zfs]T is given by [x, y]T = [(xfs/zfs)Z̄, (yfs/zfs)Z̄]T
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with Z̄ the focal length. By representing the same points in P the division, which
is a nonlinear operation, is avoided,

λ



ud

vd

1


 =



Z̄ 0 0 0
0 Z̄ 0 0
0 0 1 0







xfs

yfs

zfs

1


 , (6.3)

where [λu, λv, λ]T is the projected point in homogeneous coordinates. Multiple
assumptions should hold for the pinhole model to be valid [9, Sec. 4.3]:

1. the image coordinates [u, v]T are defined with reference to the center of
the detection plane,

2. the optical center, defined as indicated in Fig. 6.3b, is projected exactly at
the image center, and

3. the x and y axis of the image should be aligned with the projected x and
y axis of the focal spot coordinate system.

Common extensions of the model to compensate the aforementioned effects are
described in detail in, [9, Sec. 4.3], leading to the model,
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P




xfs
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 , (6.4)

where τ and η define the scaling for non-square and skewed pixels, and fx and
fy the deviations of the optical point from the center of the image. Moreover,
the offsets ox and oy are introduced to compensate for the offset between the
image center and the top left of the image in which image coordinates are usually
defined. Note that ox and oy are based on detector specifications and usually
known. Note that fx and fy are directly influenced by the mechanical properties
of the system, e.g., relative vibrations and deformations. For the remainder of
this chapter, the parameters corresponding to pure image offsets and non-square
and skewed pixel sizes are neglected for clarity and not used for the presented
results in this chapter.

The marker design is in detail presented in Sec. 6.3.2, however in the current
section we assume that the marker includes i marker-points, i.e., recognizable
elements within the projection. The marker-points are indicated by the known
and static vectors vmi = [xmi , y

m
i , z

m
i ]T , ∀i = 1, 2, . . . , nm for nm the number

of markers-points, and the superscript m indicates the local marker coordinate
system.
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Fig. 6.4. Graphical illustration of marker projection.

The marker is placed at a known position with respect to the X-ray source as
indicated in Fig. 6.4. The location of the marker-points in the source coordinate
system, indicated by the superscript s, can be computed according to

[
vsi
1

]
=

[
R T
0T3 1

] [
vmi
1

]
= Hs

m

[
vmi
1

]
, (6.5)

where R is a 3× 3 rotation matrix, see, e.g., [12] and Chap. 2. The vector T of
dimensions 3×1 describes the translations and 03 is column of zeros of dimensions
3×1. A fundamental assumption for the validity of the pinhole camera model is
the alignment of the coordinate system located at the focal spot with the detector
coordinate system. Hence, an additional rotation is introduced, describing the
angular alignment, i.e., pure rotation of the source coordinate system s to the
coordinate system fs,

[
vfsi
1

]
=

[
R(θx, θy, θz) 03

0T3 1

] [
vsi
1

]
= Hfs

s

[
vsi
1

]
, (6.6)

where the angles θx, θy, and θz are typically unknown. The projected marker
points on the detector are given by the projection matrix in (6.4), for each marker
point i,

λ



udi
vdi
1


 = P (Z̄, fx, fy)

[
vfsi
1

]
. (6.7)

The total projection from the marker-points defined in the marker coordinate
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system is given by

[
ui
vi

]
=

1

λ
P (Z̄, fx, fy)Hfs

s (θx, θy, θz)H
s
m



xmi + δxm

ymi + δym

0


 , (6.8)

which can be described as set of typically non-convex nonlinear functions,


ui
vi
1


 = hI(Z̄, fx, fy, θx, θy, θz, δx

m, δym) (6.9)

where additional offsets δxm and δym are introduced to describe imperfections
in the marker placement. Given the measurement of a marker point, a nonlinear
solver is required to estimate the unknown parameters. By increasing the number
of marker-points, nonlinear least-squares approaches can be exploited to average
the effects of noise.

Finally, it should be noted that the parameters fx, fy, and Z̄ directly relate to
the geometric parameters describing the relative detector-source displacement,
as in detail presented in Sec. 2.2.1.

6.3.2 Marker design

Many constraints are imposed on marker designs for the use in X-ray applica-
tions. The marker should be made of a material which is X-ray opaque such
that sufficient contrast is visible at the detector with respect to the anatomy
of interest. Hence, the chosen material should have an high attenuation coef-
ficient. Also, since the aim is to use the approach for online measurements,
the marker should not compromise the region of interest, i.e., no occlusions of
possible relevant tissue or anatomy may occur.

In order to contribute to geometric calibrations, the image-based measure-
ment should provide measurements that have an accuracy of the order of mag-
nitude of 0.1mm, however, this is highly depending on the type of imaging
applications, e.g., the scan velocity and the image resolution which is directly
correlated to the imaging frame rate. In order to achieve the desired measure-
ment accuracy, subpixel accuracy is required due to scaling effects [14], e.g.,
if the X-ray source is moving away from the detector, the marker shift within
the image is given by ∆ud, vd = tan(α)∆z, with α the fan angle (angle of the
cone-beam) [39].

Moreover, the placement of the marker with respect to the X-ray source
heavily determines the measurement accuracy. Placement of the marker close to
the X-ray source guarantees relatively large displacements of (the projection of)
the markers in the detection plane. Although this is desired to achieve subpixel
accuracy, X-ray specific (stochastic) disturbances heavily influence the quality of
the projection. The dominant terms leading to artifacts and blurring effects are
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due to X-ray scattering, Poisson noise due to the conversion of X-ray photons
to detectable light within the scintillator layer of the detector, and blurring
effects due to the fact that the X-ray source is in practice not a perfect point
source [14]. As a result, the projection image of the markers is less disturbed
when the marker is positioned close to the detector. Hence, a tradeoff between
measurement accuracy and image degradations is inevitable.

The accuracy of the measurement of a single marker-point is limited by the
spatial resolution of the system [5], [14, Chap. 6]. The latter being dependent on,
but not limited to, the actual size of the focal spot, the source-to-image distance,
used scintillator material, and the pixel pitch. It is well known that the accuracy
of a measurement can be improved by multiple independent measurements [130].
By using multiple marker-points, distributed over the acquired image, an accu-
rate relative displacement can be computed by averaging, resulting in a variance
that decreases with the number of marker-points.

Two markers designs are proposed in this section. First an experimental
marker that distributes marker-points on a rectilinear grid over the full image,
which is an X-ray equivalent of a checkerboard that is often used in vision appli-
cations [104], to illustrate the potential of the approach. Second, a marker that
can be used in a clinical environment is introduced, i.e., a marker with minimal
disturbance to the visualization of the patients anatomy.

Experimental marker

In Fig. 6.5, the design of an experimental marker is shown. Homogeneous trans-
formations as introduced in Sec. 6.3.1 enable the preservation of certain proper-
ties, e.g., collinearity (a line remains a line after any homogeneous transforma-
tion), intersections, and tangency [104]. These properties are exploited within
the marker design. The actual marker-points are defined as the intersections of
lines as indicated in Fig. 6.5.

Edges are characterized in an X-ray image by a rapid variation of the mea-
sured intensity over a limited amount of pixels. When a pixel line perpendicular
to the expected edge is evaluated, it is difficult to obtain an unbiased estimation
of the exact location of this “step” in measured intensity for images subject to
significant noise and blur effects.

In Fig. 6.6, an photo and acquired X-ray representation of the proposed
marker are depicted. The marker is produced by etching lines in a 2mm thick
stainless steel alloy. The disturbing effects due to the placement close to the
X-ray source are clearly visible in Fig. 6.6b. In Fig. 6.6a it can be seen that
the lines are approximately symmetric in the physical marker, which is not the
case for the projected X-ray image. Moreover, clear intensity variations are
visible over the areas with a homogeneous material thickness and the projection
is asymmetric. A typical property of X-ray scatter is that the disturbances are
significantly higher around edges [70].
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Fig. 6.5. Design experimental marker; all units are in mm.

(a) Photo (b) X-ray projection

Fig. 6.6. A photographic and X-ray representation of the proposed ex-
perimental marker.



6.3 Image-based marker detection 121

(a) Photo (b) X-ray projection

Fig. 6.7. A photographic and X-ray representation of the proposed clin-
ical marker.

Design for clinical use

An alternative design, well suited for clinical usage, is depicted in Fig. 6.7. Again,
the design is based on lines, where the intersections are defined as marker-points.
The center of the marker is open, such that no occlusions of anatomy occur.

A photographic representation and an X-ray projection of the designed marker
are given in Fig. 6.7 where again the X-ray image is significantly disturbed by
scatter and noise effects. Inaccuracies in the production process of the marker,
visible in 6.7a, however are hardly visible in 6.7b.

Due to imperfections in the detector and an increased effect of scatter at the
edges of the detection plane, accurate estimations based on the clinical design are
significantly more challenging, which is presented in more detail in the following
sections.

6.3.3 Image processing: line and point detection

The fundamental step in the accurate estimation of 2D marker-points is the
detection approach. Standard edge detection algorithms are characterized by
the detection of the location of a discontinuity (step) in the measured intensity
function (pixel values) of an image. In general, edge detection algorithms are
based on the computation of local maxima in the gradient of the pixel values.
Specific applications require the use of additional zero-crossings of the Laplacian,
which is a second-order differential operator, see, e.g., [131] for an overview.

Edge estimation for X-ray images has additional challenges, mainly due to
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the asymmetry within the projections and the effects of scatter. In the remain-
der of this section, three consecutive steps are presented that enable accurate
automated detection of lines within the marker designs introduced in Sec. 6.3.2.

Prefiltering

The Canny edge detector, as introduced in [132], is a computationally cheap and
widely used edge detector [131]. The Canny edge detector uses a convolution
filter, shaped as the derivative of a Gaussian, which is optimal in the sense that
it simultaneously maximizes the signal-to-noise ratio around the edge locations
and minimizes the distance between the peak and the true edge [5] for Gaussian
noise distributions. Although the edge preserving qualities of the Canny edge
detector are desired, the presence of Poisson noise and salt-and-pepper noise
(random pixel variations), [5, Sec. 5.2], and X-ray scatter degrades the perfor-
mance significantly. Other edge detection algorithms are available, see, e.g., [131]
and [5] for an overview. However, only for the Canny edge detector optimality
in terms of edge preservation in the case of pure Gaussian noise is proven [132].

In X-ray images, the effects of X-ray scatter, Poisson, and salt-and-pepper
noises can not be neglected. A typically used approach to deal with these random
pixel variations in imaging applications is the use of mean or median filters, see,
e.g., [5, Sec. 5.3] or morphological filters [36], [5, Chap. 9]. Mean filters replace
the evaluated pixel value for the weighted average of the neighborhood of a pixel.
In contrast, median filters do not compute averages but rank the values in the
neighborhood of the pixel from low to high and select the median to be the new
pixel value [133]. Median filters are popular in X-ray imaging applications for
the excellent noise-reduction capabilities with considerably less blurring than
linear smoothing filters [5, Sec. 5.3.2]. As a result, these filters have better edge
preservation capabilities, which is important for the desired edge detection of
the marker. The hybrid median filter (HMF), is a nonlinear filter that computes
three median values based on multiple directions, i.e., a horizontal pixel line,
a vertical pixel line, and a diagonal pixel line [134], [135], resulting in reduced
blurring effects with respect to traditional median filters. Therefore, the HMF
is used for this application. The kernel size, i.e., the evaluated pixel range,
is a tuning parameter and highly depends on the amount of scatter, and the
(projected) shape of the marker.

After pre-filtering the images with an HMF, the Canny edge detector can
be exploited to obtain initial estimations of the edges, resulting in Fig. 6.8a.
It should be noted that especially around the line intersections the corners are
considerably rounded. Moreover, some residual detected edges are visible, that
actually do not correspond to true edges. Hence, the true pixels corresponding
to edges of the marker are detected using the linear Hough transform.



6.3 Image-based marker detection 123

(a) Result prefiltering. (b) Line estimations based on Hough
Transformation indicated in green; 64
estimated marker positions indicated by
red circles.

Fig. 6.8. Initial estimation results.

r

u

v

θ

Fig. 6.9. Graphical representation of line parametrization in (6.10).

Linear Hough transform

The Hough transform allows for a grouping of detected edge points, i.e., high
pixel values in Fig. 6.8a, into relatively simple objects as lines, circles or ellipsoids
[5, Sec. 10.2]. Since we are looking for straight lines within the projected marker
image, which can be horzontal or vertical, a line parameterization is given by

r = u cos(θ) + v sin(θ), (6.10)

where as a function of the image coordinates (u, v) the parameter r defines the
shortest distance from the origin, (u, v) = (0, 0), to the straight line, and θ is
the angle between the x-axis and the line defined by r, as indicated in Fig. 6.9.
It can be noted that there is a close resemblance between the Hough transform
and the Radon transform introduced in Chap. 2, [136].
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Fig. 6.10. Definition of local area used for least-squares estimation.

For each evaluated point within the image, the parameters (r, θ) which are
on a discrete grid are found that correspond to the maximum number crossings
with high intensity points, i.e., detected edges. By accumulating all parameters
(r, θ) that corresponds to the highest number of crossings with detected edges,
the parameters with the highest probability of corresponding to a true straight
edge are selected. In Fig. 6.8b the resulting estimations based on the detected
edges in Fig. 6.8a are shown. Based on these results, initial estimations can be
made of the marker points, indicated by the circles.

Although the initial estimation describes the general shape of the marker,
the desired estimation accuracy of the marker-points is not obtained yet. Due
to the discrete nature of the Hough transform, only a limited accuracy can be
achieved. Therefore, based on the initial estimations, a final estimation step
based on a least-squares problem is proposed.

Least-Squares estimation

Based on the initial marker point estimations and a priori knowledge about the
design of the marker, a local area is defined where the results of the Canny
edge detection are considered reliable. X-ray scatter has the property to lead to
increased disturbances at edges [14], leading to the rounding effects around the
line intersections. By defining a relatively small area based on the estimated line
based on the Hough transform and with a sufficiently large distance from the
estimated marker points as indicated in Fig. 6.10, inaccurate edge estimations
are excluded. By selecting only detected edges corresponding to a single line, a
least-squares problem can be defined based on,

yi =
[
xi 1

] [ a
b

]
, (6.11)

where the parameters a and b are unknown.
In Fig. 6.11 the resulting estimations for the lines and marker-points are

shown. It can be seen that the estimated lines and marker-points have an im-
proved accuracy over the results in Fig. 6.8b. Based on the obtained coordinates
[ui, vi]

T describing the location of marker-point i in the image, corresponding
to the output of the nonlinear model (6.9) in Sec. 6.3.1. Note that similar re-
sults can be obtained for the clinical marker design, based on the straight lines
indicated in Fig. 6.7.
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Fig. 6.11. Final result of marker point detection based on least-squares
estimations

The similar approach can be applied on the clinical marker. Application of
the estimated marker-points for medical imaging purposes are presented in the
following section.

6.4 Application for medical imaging

The image-based measurement approach uses a marker mounted at a fixed lo-
cation with respect to the X-ray source. Two possible approaches are proposed
for direct application for geometric calibrations for both 3D reconstructions as
well as 3D roadmapping applications.

6.4.1 Case I: direct measurement of geometric parameters

Given the nonlinear function (6.9), and the measurement of all marker-points, a
nonlinear least-squares estimation problem has been formulated. The problem
can be solved based on relatively simple Gauss-Newton iterations, as described
in Sec. 2.3.4, however any other approach can be pursued. When the rotational
errors are assumed small and can be neglected, the problem in (6.8), which is
nonlinear in the unknown parameters, becomes linear in the parameters. Hence,
linear least-squares approaches can be exploited from which preliminary results
are available in [105].
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As presented in Chap. 2, the existing approaches allow for the estimation
of six out of nine parameters, where the relative displacement of the X-ray
detector with respect to the X-ray source typically is neglected. The proposed
measurement approach in this section provides a direct estimation of the true
relative displacements. Therefore, by virtue of a minimal mechanical change,
i.e., the addition of a small marker, the proposed approach has the potential to
lead to enhanced reconstruction qualities. Since the currently used phantom-
based calibration approaches typically are biased due to the reduced number
of estimated geometric parameters, additional compensations are required in
the parameter estimation process before the marker-based approach is clinically
feasible.

6.4.2 Case II: proposed image-based observer

In Chap. 5, a data-driven calibration approach is proposed. Based on mea-
surements using, e.g., encoders, accelerometers, and gyroscopes, in combination
with accurate models, predictions can be obtained from the actual scan trajec-
tories, i.e., the geometric parameters. By extending the measurements with the
resulting equation in (6.8), i.e.,

P̂ :

ẋ = f(x, u)

y
ui
vi


 =

[
h(x, u)
hI(x)

]
.

(6.12)

leading to increased measurements for the observer. The state vector x should
in this case either be extended such that the additional geometric parameters
are included, or the geometric parameters describing the relative X-ray detector
and source displacement should be written as a combination of the model states.
A typical example is the approach where additional sensors are located at both
at the X-ray detector as well as the source. Independent model-based or data-
driven estimations of the position can be used to describe the full nine geometric
parameters. However, by introducing the additional image-based measurements,
a relation between the independent models is obtained.

6.4.3 Alternative applications

The assumption that the X-ray source is located at a fixed position is widely
used in medical X-ray applications. In practice however, this is not completely
true due to, e.g., mechanical imperfections and heating of the filament. By
activating the exposure while keeping the system at a fixed position, the source
displacement can be characterized, which is an important system specification.

The accuracy of alternative geometric calibration approaches where the pa-
tient, or markers placed on the patient, are used as reference, see, e.g., [29]
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Fig. 6.12. Schematic representation of roll-scan where θ2 ∈ [−90, 90]
degrees, θ1 = 0.

and [27], degrades rapidly as a function of patient movements. The accuracy
of the approach proposed in this chapter is not influenced by patient motion.
However, when patient measurements are performed using the clinical marker as
presented in Sec. 6.3.2, accurate detection of lines becomes more involved due to
additional random disturbances introduced by, e.g., the patients anatomy, the
patient table, and possibly surgical tools. Modern developments in computer
vision and image processing techniques shown promising results and potentially
feasible improvements of the proposed filtering approaches in this chapter, see,
e.g., [5] and [9] for an overview of state-of-the-art techniques.

6.5 Experimental results

First, the relative displacements between the X-ray detector and source are mea-
sured for a standard roll-scan as indicated in Fig. 6.12. The results are shown for
the x, y, and z displacement in Fig. 6.13. Since only relative measurements are
performed, a reference position should be chosen, which is chosen to be the first
image of the scan. The displacement during the scan in x-direction is relatively
small, since this is the axis of rotation as illustrated in Fig. 6.12. The asymmetry
in the y and z directions can be explained by the considerable difference in mass
between the X-ray detector and source.

Note that all measurements are expressed in a local coordinate system, fixed
at the center of the detector. Therefore, for an ideal system without mechani-
cal imperfections and compliance, all values are expected to be zero during the
full scan. The maximum variation can be observed in the y-direction, which is
approximately 4mm. The variance on the estimations has a maximum value of
approximately 0.1mm, which is in the same order of magnitude of the specifica-
tions.
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(a) x (b) y

(c) z

Fig. 6.13. Estimation results geometric parameters for a roll scan with a
maximum velocity of 30 deg/s; average over 10 consecutive scans (blue);
variance (gray area).

In Fig. 6.14, the results for a propeller-scan, i.e., θ1 ∈ [−120, 120] degrees and
θ2 = 0, are shown for two velocities. Again the first image is used as reference
for the following measurements. Since the system mechanics are symmetric
over the propeller angle, the resulting measurements are also symmetric. For
the high-speed scan, which requires higher accelerations, an overshoot is clearly
visible.

Finally, in Fig. 6.15 the displacement of the focal spot (FS), defined as the
virtual spot where the X-ray originates within the tube, as a function of time is
shown. By keeping the system in a static position while projecting images, the
only introduced variable is heating of the filament. The exposure time during a
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Fig. 6.14. Estimated displacement in the y direction of the detector for
a propeller scan, i.e., θ1 ∈ [−120, 120] degrees, θ2 = 0; result for a slow
scan of 30 deg/s (left); result for a high-speed scan of 55 deg/s (right).
The gray area indicates the variance based on ten repetitions.

Fig. 6.15. Displacement of the focal spot (FS) in the z-direction

typical reconstruction scan is in the order of magnitude of 4 to 8 seconds, which
leads to a variation of approximately 10µm, however, with a significant variance.
By computing the discrete Fourier transformation of the measured signal, peri-
odicities can be identified which correspond to the rotational frequency of the
source.

6.6 Conclusions and recommendations

A novel measurement approach is presented in this chapter, allowing for direct
measurements between the X-ray detector and source. The approach is directly
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based on obtained X-ray images and makes use of a relatively small mechanical
modification of the system, i.e., the placement of a small mechanical marker.
Two experimental marker designs are proposed; an experimental marker which
is used to obtain the results in this chapter and a marker for clinical use which
does not compromise the region of interest within the X-ray projection. By
detecting multiple markers in the X-ray projection, varying disturbances over
the full image, e.g., asymmetry, blur, and noises, are averaged.

Based on projective geometry, the projection of marker elements is mod-
eled, leading to a direct relation between a subset of the geometric parameters
presented in Chap. 2 and the projected marker elements. The potential of the
measurements is shown based on experiments on a real X-ray system.

Although the approach seems promising and the desired estimation accu-
racies are achieved, various aspects required further investigation. First, the
placement of the marker with respect to the X-ray source highly influences the
acquired image quality, i.e., when the marker is placed close to the X-ray source
accurate measurements can be obtained as a result of the magnification factor
of the cone-beam at the cost of increased blur effects. Investigation towards an
optimal tradeoff between increased blur and measurement accuracy might lead
to improved results.

Second, the results in this work are based on a nonlinear least-squares solu-
tion of the problem as described in 6.4.1. The approach proposed in Sec. 6.4.2
requires implementation and validation.

Third, preliminary results with a clinical marker are presented in [105]. Due
to X-ray scatter and increased nonlinearities of the detector near the edges of
the detection surface, the image quality is degraded near the edges. As a result,
further investigation is required towards clinical implementations, i.e., the me-
chanical marker design and advanced image processing approaches. Also, the
effects of objects, e.g., a patient or surgical tools, within the line-of-sight should
be investigated in more detail.



Chapter 7

Vibration Reduction Using
Time-Delay Filtering

The focus of this chapter is on the development of time-delay filters to accomplish

tracking of periodic signals with zero phase errors. The class of problems addressed

include systems whose dynamics are characterized by lightly damped modes. A gen-

eral approach for the zero phase tracking of periodic inputs is presented followed by

an illustration of single harmonic tracking of under-damped second order systems with

relative degree two. A general formulation of the approach is then posed for higher-

order-systems and systems including zeros. The chapter concludes with the illustration

of enforcing constraints to desensitize the time-delay filter to uncertainties in the loca-

tion of the poles of the system and forcing frequencies. A numerical practical design

case based on a medical X-ray system is used to illustrate the potential of the proposed

technique.

This chapter is based on:
Rick van der Maas, Tarunraj Singh, and Maarten Steinbuch, Periodic Signal Tracking for
Lightly Damped Systems, submitted for publication in ASME Journal of Dynamic Systems,
Measurement, and Control
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7.1 Introduction

Modern trends in mechatronic positioning systems require faster movements
and increased accuracy. Lightweight system design is motivated by the desire to
achieve higher accelerations, but this is at the cost of a shift of flexible dynamical
behavior to a lower frequency region. Dealing with the imposed contradiction
between increased accuracy, faster movements and inherent dynamical behavior
requires advanced control strategies.

To prevent motion induced residual vibrations, many control strategies are
available. High performance feedback control [51], repetitive control [137] or
adaptive feedback control [138] are always limited by past measurements. Feed-
forward based techniques, such as iterative learning control (ILC), do not suffer
from the limitations imposed by feedback. However the complexity of the ap-
proaches increases significantly when robustness for, e.g., initial conditions or
trajectory variations is required. When there is no direct measurement at the
performance position that can be used for feedback or ILC, model-based ap-
proaches are required such as inferential control [139] or inferential ILC [140].
Input shaping or time-delay filtering (TDF) is a (practical) well established ap-
proach to reduce the dynamical effects of (lightly-damped) poles of the system
by shaping the reference signal [141,142]. The approach is particularly attractive
due to the ease of implementation. Most applications of TDF consider systems
with point-to-point motion [143–145], with additional modifications proposed
in literature such as desensitizations for model parameter variations [146] and
effects of zeros in the plant [147].

In this chapter, a design approach for time-delay filters applied to systems
subject to periodic motions is introduced. An example of a high-performance
system subject to periodic motions is an medical X-ray system. Decreasing the
residual vibrations during periodic scan motions of interventional X-ray systems
directly leads to improved 3D reconstruction and/or imaging qualities [39]. Al-
ternative applications can be found among others in periodic scan motions of
wafer stages [143], printing tasks [140], repetitive robotic tasks [148] or raster
grid searches of atomic force microscopes [149]. Pre-filtering of reference signals
has no feedback related limitations, is easy to implement and leads to significant
performance improvements.

The main contribution in this work is a harmonic time-delay filter (hTDF)
design approach for systems subject to periodic motions. Additional contribu-
tions are 1) the generalization for higher-order systems and 2) a desensitization
for uncertainties in model parameters as well as forcing frequency variations.

This chapter is structured as follows, first the basic design approach is illus-
trated in Sec. 7.2, which includes a closed form solution for a second order system
and a numerical approach reducing the computational load for higher-order-
systems. Extensions for systems with (non-minimum phase) zeros, systems with
real-valued poles, e.g., first-order systems, desensitizations for modelling errors,
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R(s) U(s) Y (s)
A0 +A1e

−sT +A2e
−2sT
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s2 + 2ζωns+ ω2
n

Gh(s) P (s)

Fig. 7.1. Time-delay controlled open-loop structure of a second-order
system

and non-differentiable signals are provided in Sec. 7.3. A numerical example,
based on a medical X-ray system, illustrating the potential of the proposed de-
sign approach is presented in Sec. 7.4. Finally, the work is concluded with a
summary and conclusions in Sec. 7.5.

7.2 Time-delay filtering for periodic movements

To illustrate the proposed design approach for time-delay filters that enable zero-
phase tracking of a periodic signal, the general idea of the approach is presented
in Sec. 7.2.1. Closed-form solutions are available for second-order systems and a
motivating example is provided. A generalized approach for higher-order systems
is described in Sec. 7.2.2. A design approach for higher-order systems, avoiding
nonlinear non-convex optimizations, is provided in Sec. 7.2.3.

7.2.1 Second-order systems

A closed-form solution for tracking of a single sinusoidal reference signal using
a second-order systems is derived in this section. Consider the stable lightly
damped second order system,

P (s) =
ω2
n

s2 + 2ζωns+ ω2
n

, (7.1)

with poles p1,2 = −ζωn±iωn
√

1− ζ2. For traditional point-to-point (ptp) input
shapers, the standard parametrization is given by [142],

Gptp(s) =
A

A+ 1
+

1

A+ 1
e−sT , (7.2)

with,

T =
π

ωn
√

1− ζ2
, A = exp

(
ζπ√

1− ζ2

)
. (7.3)

For periodic excitation signals, the following harmonic time-delay filter (hTDF)
parametrization is proposed,

Gh(s) = A0 +A1e
−sT +A2e

−2sT . (7.4)
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Substitution of the poles of the system in the proposed hTDF parametrization
in (7.4), using Eulers formula and equating the real and imaginary parts to zero,
leads to the constraints

L∑

k=0

Ake
kζωnT cos(kωn

√
1− ζ2 T ) = 0, (7.5)

−
L∑

k=0

Ake
kζωnT sin(kωn

√
1− ζ2 T ) = 0, (7.6)

with L = 2. From (7.6) follows the closed-form solution

T =
nπ

ωn
√

1− ζ2
, n = 1, 2, . . . ,∞, (7.7)

which after substitution in (7.5) and rewriting leads to the simplification

A0 = −(−1)nA1e
ζωnT −A2e

2ζωnT . (7.8)

Given Fig. 7.1 it is desired to obtain a phase shift between the input and the
output of the system of 0 or a full period pi, i.e.,

(∠Gh(s) + ∠P (s))|s=iω̂k =

{
0 if ω̂k < ωn
π if ω̂k > ωn

,∀ω̂k, (7.9)

with ω̂k the frequency of the reference signal and ωn the eigenfrequency. After
the substitution of s = iω̂k for ω̂ < ωn, this phase constraint can be written as,

−∑2
k=1Ak sin(kω̂T )

∑2
k=0Ak cos(kω̂T )

− 2ζωnω̂

−ω̂2 + ω2
n

= 0. (7.10)

Note that similar expression can be found for ω̂k > ωn. Substitution of (7.8) in
(7.10) and rewriting leads to

A1 = − sin(2ω̂T )(ω2
n − ω̂2) + 2ζωnω̂(cos(2ω̂T )− e2ζωnT )

sin(ω̂T )(ω2
n − ω̂2) + 2ζωnω̂(cos(ω̂T )− (−1)neζωnT )︸ ︷︷ ︸

Φ1

A2. (7.11)

Substitution of (7.11) in (7.8) leads to

A0 = (−(−1)nΦ1e
ζωnT − e2ζωnT )︸ ︷︷ ︸
Φ0

A2. (7.12)

Finally, substitution of (7.11) and (7.12) in the magnitude constraint,

(
‖Gh(s)‖ − ‖P (s)‖−1

)∣∣
s=iω̂k

= 0,∀ω̂k, (7.13)
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leads to

A2
2 =

(ω2
n − ω̂2)2 + (2ζωnω̂)2

ω4
n(1 + Φ2

0 + Φ2
1 + 2Φ0Φ1 cos(ω̂T ) + 2Φ0 cos(2ω̂T ) + 2Φ1 cos(ω̂T )

,

(7.14)
which finalizes the closed-form solution.

Note that (7.14) leads to A2 = Φ2 ∀ ω̂ < ωn and A2 = −Φ2 ∀ ω̂ > ωn.
When the additional nπ from (7.4) is introduced, an additional phase delay of
nπ is obtained, enabling a transient reduction for periodic signals, however a
gain compensation is required, i.e., A2 = −Φ2 ∀ ω̂ < ωn and A2 = Φ2 ∀ ω̂ > ωn.

Example 7.1. To illustrate the results of the proposed technique, the plant in
(7.1) is considered with ζ = 0.02 and ωn =

√
2, leading to the lightly damped

transfer function,

P (s) =
2

s2 + 0.0566s+ 2
, (7.15)

with unity DC-gain. A possible solution for the traditional (point-to-point opti-
mized) time-delay filter of (7.2) is,

Gptp(s) = 0.5157 + 0.4843e−s2.2219 (7.16)

and for the proposed harmonic time-delay filter using a forcing frequency (ω̂ =
0.7) < (ωn =

√
2) rad/s,

Gh(s) = 0.3970− 0.0087e−s2.2219 − 0.3583e−2s2.2219. (7.17)

Note that the delay time T for both filters is crucial for the pole cancellation
and therefore results in the same value. In Fig. 7.2 the results of both filters are
shown. It can be observed that both filters cancel the dynamical effects of the
lightly damped poles of the plant. The point-to-point time delay filter is not able
to achieve zero-phase tracking and leads to a delayed response with respect to
the desired reference and an additional gain difference. The hTDF on the other
hand is able to achieve zero-phase tracking after a transient of 2T ≈ 4.4 seconds.
Note that the inverse is also true, the point-to-point time delay filter will achieve
better tracking results than the hTDF for a point-to-point motion. In Fig. 7.3,
the filtered inputs are illustrated for both filters, i.e., the input signals u(t) to the
plant. It can be observed that both inputs differ significantly from the reference
signal. The point-to-point TDF has only a single action at delay time T , while
the hTDF also acts at delay time 2T which is the point where perfect tracking is
obtained as shown in Fig. 7.2. In addition, both signals have a limited amplitude,
which enables a practical implementation of the proposed filters.

Finally in Fig. 7.4, the frequency domain interpretations of both filters and
the resulting open-loop transfer functions are illustrated. Again it can clearly be
observed that the lightly damped resonance peak is compensated by both filters.
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Fig. 7.2. Upper: resulting responses; reference signal (black), unshaped
(plant only) (blue), point-to-point shaper (black dashed-dotted) and har-
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Fig. 7.5. Controller parameters: A0 (blue), A1 (red) and A2 (black)

An additional compensation for the gain and phase for the forcing frequency
ω̂ = 0.7 rad/s can be observed for the hTDF.

Fig. 7.5 shows the variation of the gains A0, A1 and A2 of the hTDF as
a function of the forcing frequency ω̂. It can be observed that the solution is
singular for ω̂ = nωn with n = 1, 3, . . . ,∞, which is a direct result of the place-
ment of the zeros. By cancellation of the poles using the zeros of the hTDF, the
filtered input signal for the plant as depicted in Fig. 7.3 contains only a small
contribution at frequency ωn. When choosing ω̂ = ωn, infinite gains are required
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Fig. 7.6. Upper: resulting responses; reference signal (black), unshaped
(plant only) (blue) and harmonic shaper (red dashed). Lower: resulting
errors.

for undamped systems and large gains for lightly damped systems. C

Example 7.2. Also the case where ω̂ > ωn can be considered. Although it is not
required, an additional angle π can be included as introduced in (7.9) to reduce
transient time. Note that a change of sign for the filter gains is required. In
Fig. 7.6 the results are depicted for the same plant as introduced in (7.15) with
(ω̂ = 3) > (ωn =

√
2) rad/s. Note that the unshaped response of the plant is

in antiphase with the reference signal as a result of the π radians phase rotation
introduced by the natural frequency of the system. By compensating for this
rotation, perfect tracking is again achieved.

C

7.2.2 General approach

A general description of a stable, possibly non-minimum phase, lightly damped
system given by

P (s) =
Y (s)

U(s)
=

∑m
i=0 ais

i

sNp +
∑Np−1
l=0 blsl

=
Ns(s)Nu(s)

D(s)
, (7.18)

with Np the total number of poles of the system. The polynomials Ns(s) and
Nu(s) describe the minimum- and non-minimum phase zeros respectively. The



7.2 Time-delay filtering for periodic movements 139

fundamental idea behind input-shaping/time-delay filtering is the cancellation
of the systems poles by exploiting the zeros of a prefilter G(s) in an open-loop
setting, such that,

G(s = pj) = 0, ∀pj = roots


sNp +

Np−1∑

l=0

bls
l


 ,

= αj ± iβj . (7.19)

In addition, for time-delay filters designed for point-to-point motion, the addi-
tional constraint on the DC gain,

|Gptp(s = 0)| = |P (s = 0)|−1, (7.20)

should be satisfied. For systems subjected to periodic reference signals modifi-
cations are required and additional constraints should be satisfied. According
to the Fourier series [150], any periodic signal can be denoted by

r(t) =

Nω̂k∑

k=1

ak sin(ω̂kt+ ϕk), (7.21)

with Nω̂k the total number of harmonics included in the signal and ϕk a phase-
shift. By using, e.g., a notch-filter as inverse of the plant dynamics, cancellation
of residual vibrations can be achieved, however, perfect tracking for a specific
forcing frequency is not achieved, i.e., additional constraints on the gain and
phase at the forcing frequency are required. Perfect tracking for periodic signals
can be obtained by designing a prefilter that satisfies the constraints listed in
Design Requirement 1.

Design Requirement 1. Zero phase error tracking of periodic reference signals
using a prefilter Gh in a noise and disturbance free situation, as illustrated in
Fig. 7.1, can be achieved if,

Gh(s = pj) = 0, ∀pj , (7.22)

with pj the poles of the system as defined in (7.19), and in addition,

|Gh(s = iω̂k)| = |P (s = iω̂k)|−1
, (7.23)

∠Gh(s = iω̂k) + ∠P (s = iω̂k) =

{
0 if ω̂k < ωn
π if ω̂k > ωn

, (7.24)

are satisfied ∀ω̂k. Note that the equality to π in (7.24) leads to a reduced tran-
sient, see Sec. 7.2.1 for more details.
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The proposed parametrization of the hTDF filter used throughout this chap-
ter is given by

Gh(s) =

L∑

k=0

Ake
−skT , (7.25)

with,
L = Np + 2Nω̂k − 2, (7.26)

leading to an equal number of optimization parameters as constraints in Design
Requirement 1. Note that when ω̂k = ωn, i.e., the forcing frequency is coincident
with the natural frequency of the system, i.e., ω̂k = ωn, the hTDF is undefined
as a result of simultaneously satisfying (7.22) on the one hand and (7.23), (7.24)
on the other hand. A nonlinear, non-convex, optimization problem leading to
the shortest possible delay time T can be posed to determine the parameters of
the hTDF as given in Eq. (7.27) to (7.30).

min
Ak∀k

T (7.27)

subject to

L=Np+2Nω̂−2∑

k=0

Ake
−skT

∣∣∣∣∣∣
s=pj

= 0, ∀pj (7.28)

(
|Gh(s)| − |P (s)|−1

)∣∣∣
s=iω̂k

= 0, ∀ω̂k (7.29)

(∠Gh(s) + ∠P (s))|s=iω̂k =

{
0 if ω̂k < ωn
π if ω̂k > ωn

, ∀ω̂k (7.30)

Solving the non-linear, non-convex optimization problem in (7.27) will lead to
the desired hTDF. Furthermore, it should be noted that the minimization of T
in (7.27) is desired to minimize the initial transient.

In the following sections closed-form solutions for second-order systems and
a sub-optimal approach for higher-order systems is presented.

7.2.3 Higher-order systems

For second-order systems, the closed-form solution can be computed as indicated
in Sec. 7.2.1, however for higher-order systems an analytical solution is often
hard or even impossible to find. Numerical optimization techniques can be
used to optimize the parameters in the non-convex optimization problem in
(7.27), provided that an accurate initial guess is available. Brute force methods
such as genetic algorithms or particle-swarm optimizations [151] might lead to
sufficiently accurate initial guesses for more structured numerical optimization
methods.
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By extending the parametrization of the hTDF in (7.25) with an additional
delay-time, i.e., replacing (7.26) with L = Np + 2Nω̂k − 1, the delay-time T can
be chosen freely while the number of unknown parameters remains equal to the
amount of equations. The new pole cancellation constraints for second-order
systems are equivalent to (7.5) and (7.6). The constraints on the phase and
amplitude of the filter for all ω̂ can be written as,

(
Re {Gh(s = iω̂)} =

3∑

k=0

Ak cos(kω̂ T )

)
, (7.31)

(
Im {Gh(s = iω̂)} = −

3∑

k=1

Ak sin(kω̂ T )

)
, (7.32)

with Re and Im representing the real and imaginary part respectively. Note
that all four constraints are linear in the unknown delay-gains, which enables
fast and reliable computations. By stacking constraints for multiple forcing
frequencies and pole cancellations, the approach can be extended to higher-order
systems and multiple forcing frequencies without the need for costly non-convex
optimization at the cost of an increased duration of the transient with a single
delay T .

Since practical implementations typically require discrete time solutions, the
obtained delay-time T should correspond to an integer number of the sample-
time. solving the general nonlinear optimization problem or closed-form, as
described in Sec. 7.2.2 and Sec. 7.2.1, typically results in a T which is a non-
integer number of samples. Hence, the selection of T improves the practical
feasibility of the approach as is also argued in [147].

7.3 Extensions and special cases

The fundamentals of a TDF design for periodic reference signals is presented
in the previous section. In the current section, additional extensions towards
systems with (non-minimum) phase zeros, first-order systems, robustness, and
dealing with non-differentiable signals are presented.

7.3.1 Systems with zeros

In [147], point-to-point input shapers are discussed where, in addition to pole
cancelations, the zeros of the system are canceled, leading to enhanced track-
ing behavior. A similar approach holds for harmonic input shapers. Consider
the system in (7.18), with both minimum and non-minimum phase zeros. The
proposed extended parametrization for the hTDF filter is given by

Gh(s) =

L−2∑

k=0

Ake
−skT +

AL−1

Ns(s)N∗u(s)
e−s(L−1)T , (7.33)
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with Ns(s) the polynomial describing the minimum phase zeros in (7.18) and
N∗u(s) a stable approximation of Nu(s). Note that the parametrization from
(7.25) is recovered for Ns(s = 0) and Nu(s = 0). Recall that the proposed
time-delay design according to Design Requirement 1 and (7.27), results in an
approximation of the polynomial D(s) in (7.18). For non-minimum phase sys-
tems, i.e., Nu(s) is a polynomial leading to zeros of the plant in the right-half
complex plane, multiple stable approximations can be applied. The most trivial
stable solution is given by compensation of the DC-gain of the non-minimum
phase part only, i.e.,

N∗u(s) = Nu(s)|s=0. (7.34)

Other approximations, such as the well known zero-phase/magnitude error track-
ing control (ZPETC or ZMETC) [152] can be applied as stable approximation
of N∗u(s), see, e.g., [153] for a detailed comparison of multiple methods for con-
tinuous time plant inverses.

7.3.2 First-order systems

First-order systems can be considered a special case since they have only a single
real-valued pole. No pronounced dynamical behavior will be visible at the output
of the system. The necessity of pole cancellation for this class of systems might
be questioned. Using the reasoning introduced in Sec. 7.2.1, two filters can
be designed, 1) including cancellation of the pole, and 2) only gain and phase
compensation for ω̂. In Fig. 7.7 the frequency domain results are shown. In
Fig. 7.8, the resulting tracking errors for variations of ω̂ are shown, indicating
that the solution including the cancellation of the pole is more robust. This can
directly be observed by the rate of change of the open-loop in Fig. 7.7. In
conclusion, by adding pole compensation, enhanced robustness is achieved. In
Sec. 7.3.3 a detailed analysis on robustness for general systems is presented.

7.3.3 Robustness

Since the proposed approach heavily relies on the compensation of system poles
using zeros of the hTDF (pole/zero cancellation), robustness is a key issue. Com-
pensation of modeling errors, resulting in perturbations on the pole locations,
are proposed in, e.g., [146]. By satisfying additional constraints,

d
dωn

(∑L
k=0Ake

−αjkT cos(kβjT )
)

= 0,

− d
dωn

(∑L
k=0Ake

−αjkT sin(kβjT )
)

= 0,
∀j = 1, . . . , Np (7.35)

the sensitivity for pole location variations is decreased, which is consistent with
the approach for repetitive control [137].
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Fig. 7.7. Frequency domain representations; left: plant P (s) (blue),
Gnp(s) (red dashed) and Hnp(s) = Gnp(s)P (s) (black dashed-dotted);
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(black dashed-dotted)
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Fig. 7.8. Steady-state-errors: Gh(s) (blue) and Gnp(s) (red dashed).

For robustness with respect to variations of the forcing frequencies ω̂k, the
additional constraints

dH(s)

dω̂k

∣∣∣∣
s=iω̂k

=

(
dP (s)

dω̂k
G(s) +

dG(s)

dω̂k
P (s)

)∣∣∣∣
s=iω̂k

= 0, ∀ω̂k, (7.36)

should be satisfied. The order of the hTDF parametrization in (7.4), enforced
by L parameters, should be extended with additional variables. As a result,
L = Np+4Nω̂−2 for robustness with respect to variations in forcing frequencies
only, Gω̂(s), and L = 2Np + 4Nω̂ − 2 for both forcing frequency variations and
desensitization for pole position variations, GR(s). In Fig. 7.9, the tracking errors
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Fig. 7.9. Absolute errors due to uncertainties: Gh(s) (black), Gω(s) (red
dashed-dotted), Gω̂(s) (green dash-circles) and GR(s) (blue dashed); left:
variations in ω̂; right: variations in model parameter.

as a function of variations in ωn and ω̂ are illustrated for three parametrizations
applied on the second order model (7.1).

7.3.4 Non-differentiable reference signals

According to the Fourier Series, any periodic signal can be written as a sum of
N sinusoids as in (7.21). For non-differentiable signals, N = ∞, which makes
the design of a perfect hTDF with a finite number of delay terms infeasible.
However, by designing a hTDF, according to the minimization problem given by
(7.27) using a limited set of harmonics, a significant tracking improvement can
be achieved as demonstrated in the following numerical example.

Example 7.3. Consider the lightly damped second order system as described in
Example 1, subject to a triangular wave and block wave input signal that can be
described by

rT (t) =
8

π2

∞∑

k=0

(−1)k
sin ((2k + 1)t)

(2k + 1)2
(7.37)

and

rB(t) =
4

π

∞∑

k=1

sin ((2k − 1)t)

2k − 1
(7.38)

respectively, where ω̂k = 2k ± 1. By choosing a selected number of forcing fre-
quencies, i.e., ω̂1 = 1, ω̂2 = 3, ω̂3 = 5, ω̂4 = 7, and ω̂5 = 11, a hTDF can
be designed according to the structure given by Eq. (7.25) with L = 10 and the
parameters as given in Table 7.1. The resulting time domain responses for both
signals are given in Fig. 7.10a and 7.10b, showing a significant improvement of
the tracking result after an initial transient.

In the upcoming section, a practical design case is introduced showing the
potential of the proposed theory. C
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Table 7.1. Controller parameters.

A0 −0.1774 A4 −3.4102 A8 −2.1592
A1 −1.8344 A5 −2.8815 A9 −2.2547
A2 −1.1593 A6 −3.0575 A10 −0.7430
A3 −1.7812 A7 −2.4794 T 1.0910
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Fig. 7.10. Upper: resulting responses; reference signal (black), unshaped
(plant only) (blue) and harmonic shaper (red dashed). Lower: resulting
tracking errors.

7.4 Practical design case

The stable, underdamped sixth-order system model,

Tz(s) = (s2 + αs+ β)

3∏

k=1

ω2
k

s2 + 2ζkωks+ ω2
k

(7.39)

with ω1 =
√

2, ω2 = 3, ω3 = 4 [rad/s], ζ1 = 0.02, ζ2 = 0.05, ζ3 = 0.03, α = 5e−4

and β = 1.7, is an approximation of the closed-loop behavior of a C-arc based X-
ray system, depicted in Fig. 7.11. A graphical frequency domain representation
is given in Fig. 7.14. The design goal for the filter Gh(s) is to achieve z(t) = r(t)
where,

r(t) = sin(ω̂1t)− 1.2 sin(ω̂2t) + 1.9 sin(ω̂3t), (7.40)

with ω̂1 = 0.7, ω̂2 = 1.7 and ω̂3 = 2.2 [rad/s]. It should be noted that ω1 <
ω̂3 < ω2, which implies a phase correction is desired. The parametrization for
the hTDF in (7.33) in combination with the linear computational approach for
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Fig. 7.11. Control setup of Philips Xper Allura FD20 system and im-
plemented control scheme.

higher-order systems as described in Sec. 7.2.3 are used to derive the hTDF. The
poles of the filter are chosen as Ns(s) = ω2

1ω
2
2ω

2
3(s2+αs+β), with N∗u(s) = 1, i.e.,

there are no non-minimum phase zeros. The order of the parametrization is given
by L = 12, leading to a transient of LT seconds as indicated at the left two figures
in Fig. 7.13. A second controller GR(s) is designed where the superscript R
indicates robustness for pole variations in ω2 and forcing frequency variations in
ω̂3. The computed filter gains for various delay times are illustrated in Fig. 7.12,
from which a delay-time of 0.75 s is chosen as a feasible solution, i.e., all filter
gains have feasible values for the normal and robust hTDF implementation. In
Table 7.2 the corresponding filter gains are given for both the normal and the
robust parametrization as introduced in Sec. 7.3.3 with L = 16.

Table 7.2. Controller parameters A for T = 0.75 s.

i Ai ARi i Ai ARi i Ai ARi
0 0.202 0.687 6 0.384 6.999 12 - 1.536
1 −0.175 −0.976 7 −0.513 −6.608 13 - −0.470
2 0.377 2.623 8 0.238 6.494 14 - 0.235
3 −0.486 −3.442 9 −0.187 −4.838 15 - −0.004
4 0.469 5.328 10 0.099 4.113
5 −0.627 −5.967 11 1.008 −2.194

In Fig. 7.13, the resulting time-domain responses are shown for the signal
in (7.40). It can be observed that for the ideal plant, both filters are able to
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achieve perfect tracking. However, for a 10% variation of both ω2 and ω̂3, the
worst case error, indicated by the grey area, is reduced significantly for the
robust implementation at the cost of a larger absolute error and duration of the
transient. In Fig. 7.14, the frequency domain representations are given for the
plant and H(s) = Gh(s)Tz(s) for both the normal and robust hTDF. The rate of
change of the openloop H(s) as a function of ω̂3 is clearly smaller for the robust
design, leading to a decreased sensitivity in forcing frequency variations while
the gain of H(s) around ω2 is significantly smaller.

7.5 Conclusions

Time-delay control of lightly damped systems subject to periodic reference sig-
nals is considered. The theory is applicable to higher-order systems, systems
with (non)minimum phase zeros and desensitization approaches for modeling
errors leading to shifts in pole locations as well as variations in forcing frequen-
cies are addressed. The filter enables zero-phase tracking of periodic reference
signals. The proposed technique is illustrated in a practical design example of
a sixth-order approximation of a medical X-ray system. More detailed analysis
on the effect of choice for approximation methods to deal with non-minimum
phase zeros should be performed to improve the tracking behavior during the
transient. Advantages of the proposed approach with respect to, e.g., adaptive
feedback control or ILC, are mainly in the ease of implementation and the fact
that no online measurements or estimations at the performance locations are
required.
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Ongoing research focuses on improved tracking behavior during the transient
period, on which no constraints are imposed in the results in this chapter. More-
over, the use of time-delay filters for alternative (non-periodic) reference signals
is investigated.





Chapter 8

Conclusions and
Recommendations

8.1 Conclusions

In this thesis, the geometric calibration problem for medical imaging systems
is considered. The main contributions in this work are based on modeling and
estimation approaches, overcoming imposed limitations by existing methods. A
novel, model-based calibration approach for system imperfections that leads to
quasi-static offsets from the ideal pose of the image acquisition components is
proposed, which forms the fundamental of this thesis. For the next-generation
interventional X-ray systems, it is expected that dynamical effects become sig-
nificant, as is presented in Chap. 1. To deal with (increased) system dynamics,
two approaches are followed. First dynamic models are obtained, which are
used in a data-driven approach for geometric systems calibrations. By extend-
ing the quasi-static model with a dynamic model and using additional measured
data during the patient scan itself, the true reconstruction scan is identified.
In addition to the novel data-driven calibration approach, where measurements
are used close to the performance locations, i.e., the X-ray detector and source,
an image-based measurement approach is proposed that enables relative mea-
surements directly at the desired performance locations. Second, the dynamical
effects on the image quality can be reduced by exploitation of advanced motion
control strategies. In addition to the proposed reference shaping technique, ad-
vanced adaptive control strategies are feasible for the reduction of the vibrations
in the system. In fact, learning control strategies might enable a relaxation of the
reproducibility condition and allow for the compensation of slowly time-varying
behavior, e.g., wear of the system. The feasibility of the proposed approaches in
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this work is demonstrated extensively through experiments on real-life interven-
tional medical X-ray systems. The conclusions in this chapter are aligned with
the research challenges as formulated in Chap. 1.

Research Challenge I
Chapter 2 forms the foundation of the thesis. The current generation of inter-
ventional X-ray systems require twice a year recalibration to deal with (time-
varying) structural imperfections. These calibrations are typically time-consuming
and, depending on the available options, can take up to four hours for each sys-
tem. The novel model-based approach exploits the predictive properties of a
physical model to extrapolate information within a limited set of measurements,
to the full system operating space. Essentially, the calibration problem is recast
in a parameter identification problem leading to a reduction of calibration times
with a factor 10 to 15. The proposed approach is validated experimentally for
the reconstruction of high-definition 3D objects using dynamic scans and static
operation for 3D roadmapping applications. The results in Chap. 2 lead to Con-
tribution I.

Research Challenge II
An intuitive extension of the quasi-static model-based approach presented in
Chap. 2 is the extension towards the inclusion of dynamic models. The deriva-
tion of a physical model for complex high-performance motion systems is a chal-
lenging tasks. For high-performance motion systems, parametric models are
often obtained based on measured data. A typical intermediate step is the mea-
surement of nonparametric frequency response functions. In Chap. 3 a number
of the current state-of-the-art nonparametric approaches is applied on an inter-
ventional medical X-ray system. The main difficulties are imposed by strong
(geometric) nonlinearities, e.g., gravitational influences, friction, and play. Ad-
ditionally, many motion systems show time or parameter varying behavior to a
certain extend. The geometric nonlinearities of the X-ray systems can be ap-
proximated by linear parameter varying models. In Chap. 4, local parametric
approaches are exploited for accurate and fast identification of LPV systems.
Experimental validations of the approaches are available. The results in Chap. 3
and 4 lead to Contribution II.

Modern developments in industrial robotic systems exploit high-quality mod-
els in combination with sensor fusion techniques, e.g., Kalman and particle filters,
to estimate dynamical behavior at unmeasured performance locations. For medi-
cal X-ray applications, which operate typically in crowded clinical environments,
absolute (external) measurements, e.g., cameras or lasers, are infeasible. Using
acceleration measurements, located at the X-ray detector and source, in com-
bination with extended models and (nonlinear) Kalman-based filter techniques,
a data-driven geometric calibration approach is proposed in Chap. 5. Due to
the use of real-time measured data, the reproducibility condition imposed by
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existing phantom-based approaches and the model-based approach presented in
Chap. 1 can be relaxed. In addition, the proposed filters are exploited to enable
fine-tuning of the model parameters, which potentially allows for an online com-
pensation of slowly time-varying behavior of the system, e.g., wear of bearing
and guidings. The results in Chap. 5 lead to Contribution III.

Image-quality is an important performance measure for medical X-ray sys-
tems. In Chap. 6, an image-based measurement approach is presented. By virtue
of a minimal mechanical adjustment to the system, direct measurements of three
(out of nine) geometric parameters can be performed. These additional mea-
surements can be used to increase the calibration quality for existing approaches
where they are typically neglected. Alternatively, it is shown how future develop-
ments might exploit these measurements to achieve enhanced state-estimations
as presented in Chap. 5. The results in Chap. 6 lead to Contribution IV.

Research Challenge III
Finally, an input-shaping approach is presented in Chap. 7 to deal with mo-
tion induced vibrations. The main goal is to minimize the dynamical (motion
induced) disturbances on the image acquisition components, enabling higher-
accelerations and faster motions. This is in sharp contrast to the approach
proposed in Chap. 5 where the dynamics are estimated. To design an effec-
tive input-shaper, knowledge about the system dynamics obtained in Chap. 3
and 4 is crucial. The main focus in Chap. 7 is on the design of input-shapers
that enable tracking of periodic excitation signals. The results in Chap. 7 are a
first step towards the use of advanced feedback/feedforward techniques, leading
to Contribution V. Moreover, preliminary research results are presented in [37]
where the use of iterative learning control (ILC) is proposed.

To conclude, in line with the general research goal defined in Chap. 1, a
framework is developed based on modeling, estimation, and control approaches
that allow for time-efficient geometric system calibrations. The proposed ap-
proaches are validated using experimental results.

8.2 Recommendations for ongoing research

The developments in this thesis show the potential of modeling, estimation, and
control approaches to deal with geometric system calibration. Based on the
obtained results, new insights are developed, leading to recommendations for
ongoing research.

Parametrization and order selection for nD-LPM/LRM
Although the presented nD local polynomial method (LPM) and local ratio-
nal method (LRM) approaches in Chap. 4 show promising results, alternative
parameterizations leading to a close resemblance of the true system behavior
for the local models should be investigated. Moreover, order-selection for the lo-
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cal parameterizations remains a challenge. Automated order selections would be
valuable for both the standard LPM/LRM approaches as for the nD-LPM/LRM.
Preliminary results on advanced local parameterizations and automated order
selections are reported in [154] for the LPM/LRM applied on LTI systems.

Parametric models for data-driven calibration
The results in Chap. 5 are based on a model in the modal form representation.
Although this form is insightful, alternative, more efficient models are available
in literature for LPV systems, see, e.g., [83] for an overview. A further investiga-
tion of more efficient models, particularly in MIMO situations, is recommended.

Parameter convergence
The results in Chap. 5 show that (adaptive) parameter convergence is achieved,
however, no monotonic convergence is obtained. Although the feasibility of the
data-driven approach in terms of accuracy is demonstrated, global (monotonic)
convergence of the parameters is not guaranteed. The use of alternative adap-
tive approaches and a thorough robustness analysis are required before clinical
application.

Using images in observer
In Chap. 6 it is proposed to use the detected marker-points as additional mea-
surements in the observer proposed in Chap. 5. By using additional data,
enhanced state-estimations might be obtained. Practical implementations of
this proposal require additional experimentation. In addition, the filtering ap-
proaches required to obtain accurate marker-point detection impose a significant
computational load. For the use in geometric calibrations for 3D reconstructions,
additional research is required towards enhanced image-processing tools in terms
of computation time.

Effects dynamics on 2D projections
In Chap. 6, marker-point detections are proposed within images. The image
quality highly influences the variance on these estimations. Based on the ex-
pected developments towards lightweight systems and faster motions, the image
quality is degrading. Ongoing research focuses on the use of obtained images,
to determine the effects of dynamics on the obtained 2D projections in terms of
variances. Note that reduced quality in 2D projections propagates to a reduced
3D reconstruction quality. The variances on the marker-point estimations based
on the mechanical (clinical) markers as proposed in Chap. 6 can be exploited for
online image-quality monitoring.

Tunable mass-damper elements Research towards vibration reduction using
tunable mass-damper systems shows promising results, see, e.g., [155]. Input-
shaping techniques as presented in Chap. 7 enable a reduction of motion induced
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vibrations. However, due to nonlinear internal effects, e.g., play and friction,
additional disturbances exciting the system are present. Tunable mass-damper
systems might be exploited to minimize these effects. In [155] it is shown how a
broadband reduction of lightly damped resonances can be achieved, which is a
good start for future research for the application on medical X-ray systems.





Appendix A

Overview: Philips Allura X-ray
Systems

In this appendix, a graphical overview of the systems under consideration in this
work is provided. In Fig. A.1, the main components are indicated. In Figs. A.2
and A.3 the propellor and roll motions are indicated respectively. Finally, in
Fig. A.4 is a floor based system shown.

Á
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À

Fig. A.1. Philips Xper Allura FD20 ceiling mounted; À ceiling mounted
support rail, Á support arm, Â C-arc, and Ã guidence sleeve.
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Fig. A.2. Philips Xper Allura FD20; Propeller motion
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Fig. A.4. Philips Allura Centron FD15; Roll motion



Appendix B

3D Reconstruction Theory:
Radon Transformation

As a starting point for the discussion on 3D image reconstruction, some funda-
mental calculations are discussed for 2D image reconstructions, based on filtered
backprojections. These equations will be extended for the 3D reconstruction in a

θ1

θ2

f(x, y)

x

y

Fig. B.1. 2D Projection with parallel X-ray beam

similar fashion. To simplify the problem, some assumptions are made. The main
assumption is that the X-ray beam is considered to be parallel as depicted in
Figure B.1. In practice however, the source of the beam is better approximated
by a spot that radiates in all directions. Furthermore, it is considered that the
optimal radiation level is used and that the receiving area remains constant over
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time and can be considered ideal, e.g., no (external) electronic or magnetic dis-
turbances.

A schematic representation of a 2D image reconstruction is shown in Figure
B.1. Consider a 2D function, f(x, y), that bounds a surface that is desired to
be reconstructed. The surface should be positioned within the circle that can
be described by the detector and source, which means each point of the recon-
structed object should be visible for the system from each position.
Next, a vector is defined that describes the perpendicular distance between the
origin, defined as the center or rotation of the system and a single radiation
beam, given a rotation, θk,

ρj =

[
x
y

]T [
cos(θk)
sin(θk)

]
, (B.1)

as shown in Figure B.2. The projection on the detecting surface for a beam,
L(ρj , θk), can be given by the 2D Radon transform, see e.g., [4], which is defined
as a line integral over L(ρj , θk),

p(ρj , θk) =

∞∫

−∞

g(ρj , θk) dy. (B.2)

with,

g(ρj , θk) =
∞∫

−∞

f(x, y)δ

(
ρj −

[
x
y

]T [
cos(θk)
sin(θk)

])
dx, (B.3)

where δ is a so called dirac function, which is infinite for argument zero. By
definition, the integral of a dirac function is equal to one. The complete projec-
tion for a fixed angle is given by p(θk, ρ) and for all angles it can be generalized
to p(θ, ρ). Several definitions of the Radon transform exists, but the currently
stated version is widely used in imaging applications. A similar, identical widely
used expression, is given by,

p(ρj , θk) =

∞∫

−∞

f(ρj cos(θk)− aj sin(θk), . . .

. . . ρj sin(θk) + aj cos(θk)) daj , (B.4)

and is called the backprojection, where aj is the vector perpendicular to ρj and
together span the vector from the origin to the function value f(x, y), inter-
sected by L(ρj , θk), as shown in Figure B.2. As a result, the detected value on
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the detection line increases when the beam detects a thick part of the object,
under the assumption that the object is made of a homogeneous material. A
linear continuation coefficient can be defined, see, e.g., [5], that describes the
permeability of the material. Depending on this coefficient, the detected value
changes. Given the previously described procedures, the question still remains;

θk

f(x, y)

x

y

a ρj

L(ρj , θk)

Fig. B.2. Vector definitions with L(ρj , θk) denoting a single X-ray beam.

how to reconstruct an actual object. By integrating the results of the Radon
transform, over the angle θ, the so-called backprojection is obtained,

f(x, y) =

π∫

0

p(ρ, θ)dθ. (B.5)

Note that only half the rotation is required for the reconstruction due to redun-
dant information, which is obtained for θ > π. Practical limitations result in a
finite number of angles that can be evaluated,

f(x, y) =

n∑

k=1

p(ρ, θk), (B.6)

which is equal to (B.5) for n = ∞. Due to the limitation on the number of
evaluated 2D images (n ≈ 100 − 150 for a normal reconstruction, n ≈ 600 for
a high resolution reconstruction), imperfections in the reconstructions are in-
evitable, which should be corrected by a filtering operation, the so called filtered
backprojection.

The filtered backprojection (or sometimes in literature referred to as backsmear-
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ing, [156]), of the projections are represented by,

f(x, y) =

π∫

0

∞∫

−∞

p(τ, θ)h(ρ− τ)dτdθ, (B.7)

=

π∫

0

p(ρ, θ) ∗ h(ρ)dθ, (B.8)

with ρ defined as in (B.1), which is used to reconstruct f(x, y). Note that the
inner integral represents a convolution. The filter is added to improve the image
quality. A more complete discussion on the convolution is given in, e.g., [157],
and the filter selection with applications in medical imaging is discussed in
e.g., [158].

Solving a convolution is computationally very expensive and can easily be solved
by transforming the Radon transform and the filter to the spatial frequency do-
main using the Fourier transform. The Fourier transforms of the Radon trans-
form and the filter are given as,

P (ω, θ) =

∞∫

−∞

p(ρ, θ)e−j2πωρdρ, (B.9)

H(ω) =

∞∫

−∞

h(ρ)e−j2πωρdρ (B.10)

which reduces (B.7) to,

f(x, y) =

π∫

0

∞∫

−∞

P (ω, θ)H(ω)ej2πωρdωdθ,

=

π∫

0

F−1 [P (ω, θ)H(ω)] dθ, (B.11)

with F−1 defined as the inverse Fourier transform. For imaging purposes, the
filter is typically defined as a ramp filter, H(ω) = |ω|. Using this result, the
function f(x, y) can be reconstructed using the filtered backprojections p(ρ, θ).
Crucial for this relation is the parallel beam assumption for (B.2). Unfortunately,
X-ray sources produce typically a (nearly) point-size source. This implies that
a correction is required on (B.11) to compensate for non-parallel rays on a flat
detection surface, see e.g., [6]. The theory discussed up to this point is necessary
for an understanding of the relevance of calibration. However, for completeness,
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a summary of the non-parallel beam situation is added.

It is assumed that the source and detector are rigidly connected, and both rotate
around a fixed center, (x0, y0) = (0, 0), where the source trajectory is described
by (xs, ys) = (s cos(θ), s sin(θ)), with s denoting the distance from the source to
the origin.

In Figure B.3 is shown how the projection line on the virtual projection plane

θk

f(x, y)

x

y

s

ρj

ρ′j

VPP

r

ϕ

ψ

L(ρj , θk)

Fig. B.3. Non-parallel X-ray beam projection in a cartesian and polar
coordinate system, f(x, y) = f(r, ϕ).

(VPP), defined in (B.1), differs in a situation where the beams are not parallel.
An additional vector ρ′ is defined. Observe that,

ϕ = θ + ψ, (B.12)

and,
pj = s sin(ψ), (B.13)

where s is the distance from the origin to the source. Note that, without loss
of generality, the focus is bounded within a circular area of radius, ρmax around
the origin. Then, p(ρ, θ) = 0, ∀ |ρ| > ρmax, which reduces (B.7) to the
form,

f(x, y) =
1

2

π∫

0

ρmax∫

−ρmax

p(ρ, θ) . . .

. . . h(x cos(θ) + y sin(θ)− ρ)dρdθ, (B.14)
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with h(x cos(θ) + y sin(θ) − ρ) the result of the inverse Fourier transform of
H(ω) = |ω|. Also note that the fact is used that projections with angle π apart
are mirror images of each other.

In the case of non-parallel beams, an interesting result is found after integration
of (B.14) with respect to θ and ψ. To facilitate this operation, the system is
first translated to a poler coordinate representation, (r, ϕ), with x = r cos(ϕ)
and y = r sin(ϕ). This results in,

f(r, ϕ) =
1

2

2π∫

0

ρmax∫

−ρmax

p(θ, ρ) . . .

. . . h(r cos(θ − ϕ)− ρ)dρdθ, (B.15)

where,

r cos(θ − ϕ) = r cos(ϕ) cos(θ) + r sin(ϕ) sin(θ),

= x cos(θ) + y sin(θ). (B.16)

After translation to the polar coordinate system, an additional coordinate trans-
formation is required to enable the integration over the variables θ and ψ using
(B.12) and (B.13). After various simplification steps, which are not within the
scope of this thesis, see e.g., [5, p. 383 - 385], the final expression,

f(t, ϕ) =

2π∫

0

1

R2




ψm∫

−ψm

p(ψ, θ)s cos(ψ)h(ψ′ − ψ)dψ


dθ, (B.17)

is obtained, with,

R =
√
s2 + r2, (B.18)

and,

h(ψ) =
1

2

(
ψ

sin(ψ)

)2

s(ψ). (B.19)

So far, a 2D reconstruction can be obtained using the projections of various
angles. The equations introduced in the previous part can be extended such
that 3D reconstructions for semicircular orbits can be generated. For an exact
reconstruction of a 3D volume, a full sphere should be described by the detec-
tion surface. However, for most medical imaging systems, mechanical limitations
impose that only a semicircular orbit can be described. This results in inexact-
ness of the reconstruction which should compensated for, see, e.g., [3] for more
information.



Appendix C

Various Notations and
Clarifications

C.1 Sample variance

The (co)variance of a signal is defined in Definition C.1.

Definition C.1. The covariance over the P periods of the signal x(k) ∈ Cnx ,
with nx the number of measured signals, is defined by,

Cx(k) = cov{x(k)} = E
(
(x[p](k)− x̄(k))(x[p](k)− x̄(k))H

)
, (C.1)

with x[p] indicating a single period, k the evaluated frequency bin, x̄ indicating
the mean of the signal over the periods and the superscript H indicating the
Hermitian transpose. The variance is defined by

σ2
x(k) = diag{Cx(k)}. (C.2)

When only a finite number of periods is measured, the sample covariance is
considered, as defined in the Definition C.2.

Definition C.2. The sample covariance is defined by,

Ĉx(k) =
1

P − 1

P∑

p=1

(x[p](k)− x̄(k))(x[p](k)− x̄(k))H . (C.3)

The covariance on an averaged signal x̄(k) is given by,

Ĉx̄(k) = cov

{
1

P

P∑

p=1

x[p](k)

}
. (C.4)
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According to [159], the covariance of a summation is equal to the summation of
the covariance, i.e.,

Ĉx̄(k) = cov

{
1
P

P∑
p=1

x[p](k)

}
= 1

P cov{x(k)} = 1
P Ĉx(k),

= 1
P (P−1)

P∑
p=1

(x[p](k)− x̄(k))(x[p](k)− x̄(k))H
(C.5)

with Ĉx(k) as in Definition C.2.

C.2 Derivation Kalman gain

The covariance of the estimated state is defined by,

Pk|k = cov(xk − x̂k|k), (C.6)

where the state estimation is given by,

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1). (C.7)

Assuming no modeling errors, the measurement can be described by, zk =
Hkxk + vk, leading to,

Pk|k = cov
(
(I −KkHk)(xk − ˆxk|k−1)−Kkvk

)
, (C.8)

which, since the measurement noise is uncorrelated to the state estimation errors,
can be written as,

Pk|k = cov
(
(I −KkHk)(xk − ˆxk|k−1)

)
+ cov (Kkvk) , (C.9)

= (I −KkHk)cov
(
(xk − ˆxk|k−1)

)
(I −KkHk)T +Kkcov (vk)KT

k , (C.10)

= (I −KkHk)Pk|k−1(I −KkHk)T +KkRkK
T
k . (C.11)

The aim of the Kalman gain is the minimization of the state-estimation error,
i.e.,

E
{
‖xk − x̂k|k‖2

}
, (C.12)

which is equivalent to the minimization of the trace of the state-covariance ma-
trix Pk|k as described in (C.11), which can be rewritten as,

Pk|k = Pk|k−1 −KkHkPk|k−1 − Pk|k−1H
T
k K

T
k +KkSkK

T
k . (C.13)

with Sk = HkPk|k−1H
T
k +Rk. The trace of Pk|k is minimized when the derivative

of the Tr(Pk|k) with respect to Kk is equated to zero,

dTr(Pk|k)

dKk
= −2(HkPk|k−1)T + 2KkSk = 0. (C.14)
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By exploiting the symmetry of Pk|k−1,

KkSk = (HkPk|k−1)T = Pk|k−1H
T
k , (C.15)

leading to the Kalman gain,

Kk = Pk|k−1H
T
k S
−1
k . (C.16)
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son, “Observer-Based ILC Applied to the Gantry-Tau Parallel Kinematic
Robot - Modelling, Design and Experiments,” in IFAC Trenniel World
Congress, Milano, Italy, 2010, pp. 992 – 998.



174 Bibliography

[55] L. Ljung, System Identification: Theory for the User, 2nd ed. Upper
Saddle River, New Jersey: Prentice Hall Inc., 1999.
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[87] P. Hägg, H. Hjalmarsson, and B. Wahlberg, “A least squares approach to
direct frequency response estimation,” IEEE Conference on Decision and
Control and European Control Conference, vol. 1, pp. 2160–2165, 2011.

[88] R. Pintelon, G. Vandersteen, J. Schoukens, and Y. Rolain, “Improved
(non-)parametric identification of dynamic systems excited by periodic sig-
nals - The multivariate case,” Mechanical Systems and Signal Processing,
vol. 25, no. 8, pp. 2892–2922, 2011.



Bibliography 177

[89] A. J. Fleming and S. O. Reza Moheimani, “Spatial System Identification
of a Simply Supported Beam and a Trapezoidal Cantilever Plate,” IEEE
Trans. on Control Systems Technology, vol. 11, no. 5, pp. 726–736, 2003.

[90] R. Scholte, I. Lopez Arteaga, N. Roozen, and H. Nijmeijer, “Truncated
Aperture Extrapolation for Fourier-Based Near-Field Acoustic Holography
by Means of Border-Padding,” J. of the Acoustical Society of America, vol.
125, no. 6, pp. 3844–3854, 2009.

[91] J. Lataire, R. Pintelon, and E. Louarroudi, “Non-parametric estimate of
the system function of a time-varying system,” Automatica, vol. 48, no. 4,
pp. 666–672, 2012.

[92] R. Pintelon, E. Louarroudi, and J. Lataire, “Nonparametric time-variant
frequency response function estimates using arbitrary excitations,” Auto-
matica, vol. 51, pp. 308–317, 2015.

[93] P. Z. Csurcsia, J. Schoukens, I. Kollár, and J. Lataire, “Nonparametric
Time-Domain Identification of Linear Slowly Time-Variant Systems Using
B-Splines,” IEEE Trans. on Instrumentation and Measurement, vol. 64,
no. 1, pp. 252–262, 2015.

[94] J. Mohammadpour and C. W. Scherer, Control of Linear Parameter Vary-
ing Systems with Applications. New York, NY, USA: Springer, 2012.

[95] R. van der Maas, A. van der Maas, and T. Oomen, “Accurate Frequency
Response Function Identification of LPV Systems : A 2D Local Paramet-
ric Modeling Approach,” in IEEE Conference on Decision and Control,
Osaka, Japan, 2015, pp. –.
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[159] M. Loève, “Probability Theory I,” in Elementary Probability Theory. New
York, NY, USA: Springer-Verlag, 1977, pp. 1 – 52.



Societal Summary

With the discovery of X-ray by Wilhelm Conrad Röntgen in 1895, the medi-
cal society has undergone fundamental changes. From the evaluation of bone-
structures, medical imaging has emerged to an indispensable tool for modern
advances in healthcare. Modern (interventional) X-ray systems are capable to
generate digital high-definition 2D images and 3D reconstructions of the interior
of the human body, enabling progress in virtually every medical discipline.

With the rise of minimal invasive surgeries, the amount of post-operative
complications and patient recovery times has been reduced significantly. In con-
trast to traditional computed tomography (CT) and magnetic resonance (MR)
systems, interventional X-ray systems are specifically designed for use while pro-
viding access to the patient for the physician. In the near future, a rise of minimal
invasive surgeries is envisioned in combination with new imaging applications.

The generation of high-definition 3D reconstruction is technologically a chal-
lenging task. The system has to move with a high velocity in a semicircu-
lar motion around the patient, while the positions for each exposure should be
known with high accuracy. Due to the large mass of the system, imperfections in
the manufacturing process and external disturbances, extensive time-consuming,
(geometric) system calibrations are required. In addition, due to the close prox-
imity of the patient, physician, and supporting staff, safety is critical.

New developments in high-performance mechatronic systems, such as medical
X-ray systems, tend to lightweight system design leading to a tradeoff between
increased scan velocities, enhanced safety, and reduced costs against typically
decreased imaging qualities. In this research, advanced modeling, estimation,
and control techniques are presented to meet (future) technological and societal
demands. Advanced modeling techniques are employed to reduce the consumed
time for geometric calibrations, enabling a significant cost reduction. Estimation
and control approaches are used to overcome the limitations imposed by future
lightweight systems. The theoretical and experimental results in this thesis are
a first step forward to a new generation of future X-ray systems.





Summary

Advanced Geometric Calibration and Control
for Medical X-ray Systems

Advancing techniques in the medical society increasingly rely on high qual-
ity images of the interior of the human body. Developments in minimal invasive
surgery that aim at reduced collateral damage during interventions, leading to
less postoperative complications and faster patient recovery times, are typically
demanding from an imaging perspective. Hence, accurate imaging is key for
minimal invasive surgery. X-ray Computed Tomography (CT) and 3D Rotional
Angiography (3DRA) enable the generation of high quality 3D reconstructions
based on a large number of 2D X-ray images, each taken from a different perspec-
tive with respect to the patient. In addition, clinical interest in 3D roadmap-
ping applications, where real-time 2D fluoroscopy images are projected on a
pre-generated 3D reconstruction, is increasing.

Interventional C-arm based X-ray systems are well suited for the described
imaging applications. Due to the combination of the open kinematic structure
of the system and a finite stiffness of the systems mechanical components, the
performance is significantly influenced by internal and external disturbances,
e.g., gravitational and Coriolis forces, leading to position dependent, quasi-static
deformations and inherent (nonlinear) multivariable behavior. Assuming quasi-
reproducible (repetitive) behavior of the system, external geometric calibrations
have to be repeated every six months.

Although the currently applied calibration approaches lead to high quality
3D reconstructions for the present generation of X-ray systems, the procedure is
time-consuming and might take up to four hours, i.e., a further increase in cali-
bration times is not desired, limiting the addition of novel imaging options that
lead to additional geometric calibrations. Additionally, driven by cost reduc-
tions, construction limitations, e.g., limitations imposed by the floor or ceiling
on which the system will be mounted, and safety issues, the next generation X-
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ray systems are tending towards a lightweight design, resulting in an increased
sensitivity for internal and external disturbances. Hence, the reproducibility
condition cannot be guaranteed.

The key elements of this research are 1) to develop a geometric calibration
approach that leads to reduced calibration times, and 2) the development of
a calibration and/or control strategy that enables dealing with non-collocated
dynamical system behavior, i.e., enabling the use of (future) systems that violate
the reproducibility condition. In this thesis, multiple approaches are proposed
that enable fast calibrations and/or that can be used on systems that do not
satisfy the reproducibility condition.

The first main contribution, which forms a basis of the approaches proposed
in this thesis, is the model-based geometric calibration approach. The dominant
physical phenomena leading to the need for geometric calibrations, e.g., mis-
alignments and deformations due to finite stiffness of mechanical components,
are included in a quasi-static physical model of the system. Based on a single
identification experiment, where the system follows a predefined trajectory, the
physical model parameters are identified. By exploiting the predictive properties
of the model, the limited data obtained during the parameter identification ex-
periment can be extrapolated to other desired chosen scan types and velocities.
Hence, a significant reduction in calibration times is achieved for reproducible
systems. By extending the proposed quasi-static physical model with a model
that includes dynamical behavior, more complex system behavior can be esti-
mated, still assuming reproducibility of the system.

The second contribution is the acquisition of a nonparametric dynamical
model, which typically is an intermediate step in obtaining parametric models
that can be used for predictions of dynamical behavior. Various academic ap-
proaches are applied to a real system, enabling a comparison in terms of required
measurement times and obtained accuracies. Since the X-ray system shows a
close resemblance to (industrial) manipulators, the system exhibits strong posi-
tion dependent behavior. Local parametric approaches such as the Local Polyno-
mial Method (LPM) and Local Rational Method (LRM), based on a local Taylor
series expansion, are extended to parameter varying systems using an nD-Taylor
series expansion. Hence, a novel preprocessing framework leading to fast and
accurate nonparametric models of parameter varying systems is developed.

Although a (dynamical) model-based approach for the current generation of
X-ray systems might lead to a reduction in calibration times, an extensive mod-
eling procedure is required. The calibrations are typically repeated for each in-
dividual system every six months, leading to the third contribution; an observer-
based approach for geometric calibrations. Using additional absolute measure-
ments, e.g., acceleration measurements or gyroscopes, at the performance loca-
tion (detector and source), observers, e.g., Kalman filters, can be exploited to
estimate the true trajectory of the system, relaxing the reproducibility condition.

The fourth contribution is an image-based measurement approach that en-
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ables an additional measurement taken directly from the X-ray images with only
a minimal mechanical adjustment to the system. Relative positions and orien-
tations of the detector with respect to the X-ray source can be measured, that
can be used in the observer to achieve an increased estimation accuracy and
additional information on relative detector-source misalignments.

The fifth and final contribution is an input- or reference shaping approach
that reduces the effect of motion induced vibrations by a modification of the
reference signal. The main focus in this chapter is on point-to-point and periodic
motions, with the main aim to reduce disturbing effects leading to increased 2D
image and 3D reconstruction qualities.

The approaches and results introduced in this thesis are a definite step toward
the application of advanced modeling, identification, estimation and control for
medical imaging systems and other (industrial) manipulators. As such, this
thesis should be of interest to a broad readership, from an academic, medical
and engineering perspective.





Samenvatting

Advanced Geometric Calibration and Control
for Medical X-ray Systems

Vernieuwende technieken in de medische wereld vertrouwen in steeds grotere
mate op hoge kwaliteit beelden van het inwendige van het menselijk lichaam.
Ontwikkelingen in minimaal invasive procedures, die zich richten op het reduce-
ren van gevolg schade gedurende interventies wat leidt to minder post-operatieve
complicaties en kortere patient herstel tijden, leiden typisch tot hoge eisen aan de
beeldvorming. Daarom is het verkrijgen van accurate beelden cruciaal voor mi-
nimaal invasive operaties. X-ray Computed Tomography (CT) en 3D Rotational
Angiography (3DRA) maken het mogelijk om hoge kwaliteit 3D reconstructions
te genereren, gebaseerd op een groot aantal 2D röntgen projecties elk verkregen
vanuit een ander perspectief ten opzichte van de patient. Daarbij neemt ook de
klinische interesse in 3D roadmapping toepassingen verder toe, waarin real-time
2D fluoroscopie projecties worden geprojecteerd op een vooraf gegenereerde 3D
reconstructie.

Interventionele C-arm gebaseerde röntgen systemen zijn zeer geschikt voor de
hierboven beschreven beeldvormende toepassingen. Door de combinatie van de
open kinematische structuur van het systeem en de eindige stijfheid van de me-
chanische componenten, wordt de prestatie significant bëınvloed door interne en
externe verstoringen. Voorbeelden van dergelijke verstoringen zijn zwaartekracht
effecten en Coriolis krachten, welke leiden tot positie afhankelijke quasi-statische
deformaties en van nature (niet-lineare) multivariabel dynamisch gedrag. Wan-
neer wordt aangenomen dat het systeem zich quasi-reproduceerbaar (herhalend)
gedraagt worden er externe geometrische kalibraties uitgevoerd welke iedere zes
maanden herhaalt worden.

Ondanks dat de huidig toegepaste kalibratie procedures leiden tot hoge kwa-
liteit 3D reconstructies voor de huidige generatie röntgen systemen, kost de
procedure erg veel tijd en kan tot vier uur duren. Dientengevolge is het niet
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gewenst om de kalibratie tijden verder op te laten lopen wat typisch een limite-
rende factor is bij het toevoegen van nieuwe opties die kunnen leiden tot extra
kalibraties. Gedreven door kosten reducering, limitaties in het ontwerp opge-
legd door bijvoorbeeld de vloer of plafond aan welke het systeem bevestigd zal
worden, en veiligheids overwegingen, zullen de ontwikkelingen voor de volgende
generatie röntgen system richting lichtgewicht ontwerpen gaan. Dientengevolge
zullen de systemen in een toenemende mate gevoeligheid voor interne en externe
verstoringen vertonen. Hierdoor kan de reproduceerbaarheid van het systeem
niet meer gegarandeerd worden.

De kenmerkende elementen van dit onderzoek zijn 1) het ontwikkelen van
een geometrische kalibratie aanpak wat leidt tot gereduceerde kalibratie tijden,
en 2) het ontwikkelen van een kalibratie en/of control strategie die het mogelijk
maakt om te gaan met dynamisch systeem gedrag. Een voorbeeld van dit laatste
element het mogelijk maken om gebruik te maken van (toekomstige) systemen
die niet voldoen aan de reproduceerbaarheids eis. In dit proefschrift zijn meer-
dere aanpakken voorgesteld die het mogelijk maken om snelle kalibraties uit te
voeren en/of die gebruikt kunnen worden voor systemen met een gereduceerde
reproduceerbaarheid.

De eerste bijdrage in dit werk, welke een basis vormt voor de overige aan-
pakken die voorgesteld worden in dit proefschrift, is een model-gebaseerde geo-
metrische kalibratie aanpak. Het dominante fysische fenomeen wat leidt tot de
noodzaak tot geometrische kalibraties, bijvoorbeeld uitlijningsfouten en vervor-
mingen door de eindige stijfheid van de mechanische componenten, zijn toege-
voegd in een quasi-statisch fysisch model van het systeem. Gebaseerd op een
enkel identificatie experiment, waarbij het systeem een voorgeschreven traject
aflegt, worden de fysische model parameters bepaald. Door gebruik te maken
van de voorspellende eigenschappen van een model kan de gelimiteerde data set
verkregen uit het identificatie experiment geëxtrapoleerd worden naar andere
gewenste scan types en snelheden. Als gevolg is een significante reducering van
kalibratie tijden verwezenlijkt voor reproducerende systemen. Door het voorge-
stelde quasi-statische model uit te breiden met een model welke ook dynamisch
gedrag bevat kan meer complex system gedrag voorspeld worden, echter de re-
produceerbaarheid van het systeem blijft noodzakelijk.

De tweede bijdrage is het verkrijgen van een niet-parametrisch dynamisch
model, wat typisch een tussenstap is voor het verkrijgen van parametrische mo-
dellen welke gebruikt kunnen worden voor het voorspellen van het dynamisch
gedrag. Meerdere academische aanpakken zijn toegepast op een fysisch systeem,
waarmee een vergelijking mogelijk is gemaakt in termen van de benodigde meet-
tijden en verkregen nauwkeurigheden. De beschreven röntgen systemen sterk
gerelateerd zijn aan (industriële) manipulators, en laten dan ook vergelijkbaar
sterk positie afhankelijk gedrag zien. Lokale parametrische aanpakken zoals de
Local Polynomial Method (LPM) en Local Rational Method (LRM), gebaseerd
op een lokale Taylorreeks ontwikkeling, zijn uitgebreid voor parameter variërende
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systemen gebruik makend van een nD-Taylorreeks ontwikkeling. Hiermee is een
nieuwe voorbereidingsstrategie die leidt tot snelle en accurate niet-parametrische
modellen van parameter variërende systemen ontwikkeld.

Ondanks dat een (dynamisch) model gebaseerde aanpak voor de huidige gene-
ratie X-ray systemen leidt tot een reductie in kalibratie tijden, is een uitgebreide
modelerings procedure noodzakelijk, welke herhaald moet worden voor ieder in-
dividueel systeem, wat leidt tot de derde contributie, een observer gebaseerde
aanpak voor geometrische kalibraties. Gebruik makend van additionele absolute
metingen, bijvoorbeeld acceleratie metingen of gyroscopen op de lokatie waar
de presentatie behaald dient te worden (detector en röntgen bron), is het mo-
gelijk om middels algoritmes zoals Kalman filters schattingen te verkrijgen van
het werkelijk afgelegde trajectory. Als gevolg kan de reproduceerbaarheids eis
afgezwakt kan worden.

De vierde bijdrage is een op röntgen beelden gebaseerde methode die het
mogelijk maakt om additionele metingen te verkrijgen direct vanuit de beelden
met slechts een minimale mechanische aanpassing aan het systeem. Relatieve
posities en oriëtaties van de detector ten opzichte van de röntgen bron kunnen
op deze manier gemeten worden, wat vervolgens gebruikt kan worden in de data-
gebaseerde methode om de schattings nauwkeurigheid te verhogen.

De vijfde en laatste bijdrage is een ingangs- of referentie design aanpak wat
het effect van door bewegingen gëıntroduceerde dynamica reduceert middels een
aanpassing van het referentie traject. De voornaamste focus in dit hoofdstuk
is op punt-naar-punt bewegingen en periodieke bewegingen, waarbij het doel
is om verstoringen te reduceren wat leidt tot een verbeterde 2D beeld en 3D
reconstructie kwaliteit.

De aanpakken en resultaten die gëıntroduceerd zijn in dit proefschrift vormen
een duidelijke stap richting het toepassen van geavanceerde modellering, iden-
tificatie, schattingen en regeltechniek voor medische beeldvormende systemen,
maar ook andere (industriële) manipulatoren. Als zodanig, is dit proefschrift
van belang voor een breed publiek, vanuit een academisch, medisch en technisch
perspectief.
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