EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Real-time planar segmentation of depth images

Citation for published version (APA):

Javan Hemmat, H., Bondarau, E., & de With, P. H. N. (2015). Real-time planar segmentation of depth images:
from three-dimensional edges to segmented planes. Journal of Electronic Imaging, 24(5), 1-11. Article 051008.
https://doi.org/10.1117/1.JEI.24.5.051008

DOI:
10.1117/1.JE|.24.5.051008

Document status and date:
Published: 01/01/2015

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1117/1.JEI.24.5.051008
https://doi.org/10.1117/1.JEI.24.5.051008
https://research.tue.nl/en/publications/b394e8fb-d18c-4824-b9af-e52613244ba3

Journal ot

Electronic Imaging

JElectroniclmaging.org

Real-time planar segmentation of
depth images: from three-
dimensional edges to segmented
planes

Hani Javan Hemmat
Egor Bondarev
Peter H. N. de With

SI IE. imaging.org

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Journal of Electronic Imaging 24(5), 051008 (Sep/Oct 2015)

Real-time planar segmentation of depth images: from
three-dimensional edges to segmented planes

Hani Javan Hemmat,* Egor Bondarev, and Peter H. N. de With
Eindhoven University of Technology, Department of Electrical Engineering, Signal Processing Systems, Den Dolech 2, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

Abstract. Real-time execution of processing algorithms for handling depth images in a three-dimensional (3-D)
data framework is a major challenge. More specifically, considering depth images as point clouds and performing
planar segmentation requires heavy computation, because available planar segmentation algorithms are mostly
based on surface normals and/or curvatures, and, consequently, do not provide real-time performance. Aiming
at the reconstruction of indoor environments, the spaces mainly consist of planar surfaces, so that a possible 3-D
application would strongly benefit from a real-time algorithm. We introduce a real-time planar segmentation
method for depth images avoiding any surface normal calculation. First, we detect 3-D edges in a depth
image and generate line segments between the identified edges. Second, we fuse all the points on each
pair of intersecting line segments into a plane candidate. Third and finally, we implement a validation phase
to select planes from the candidates. Furthermore, various enhancements are applied to improve the segmen-
tation quality. The GPU implementation of the proposed algorithm segments depth images into planes at the rate
of 58 fps. Our pipeline-interleaving technique increases this rate up to 100 fps. With this throughput rate improve-
ment, the application benefit of our algorithm may be further exploited in terms of quality and enhancing the
localization. © 2015 SPIE and IS&T [DOI: 10.1117/1.JE1.24.5.051008]

Keywords: real-time planar segmentation; three-dimensional edge detection; depth images; three-dimensional reconstruction; GPU
implementation.

Paper 15379SSP received May 14, 2015; accepted for publication Sep. 23, 2015; published online Oct. 22, 2015.

1 Introduction

Multiple studies in three-dimensional (3-D) reconstruction
and perception have been recently triggered due to the
appearance of low-cost depth sensors capable of sensing
volumetric environments in real-time. Currently, a wide
range of applications in robotics, health care, and surveil-
lance are profiting from depth images enabled by such sen-
sors. Depth images along with their corresponding visual
data combined into RGB-D frames are exploited in 3-D
models of environments. With the emerging low-cost sensors
like the Xtion and Kinect, multiple 3-D reconstruction appli-
cations have been designed. However, reconstructing 3-D
indoor environments remains challenging due to cluttered
spaces, extensive variability, and the real-time constraints.
Besides this, understanding the geometry of surrounding
structures is becoming increasingly important for indoor
applications. Since, on the average, up to 95% of indoor
structures consist of planar surfaces,' fast and accurate detec-
tion of such geometry features is essential for quality and
functionality aspects of 3-D applications, e.g., interaction,
decreasing model size (decimation), enhancing localization,
mapping, and semantic 3-D reconstruction.

Multiple planar segmentation algorithms have been pro-
posed for point cloud datasets. Considering depth images as
point clouds and performing planar segmentation requires
heavy computation, because available planar segmentation
algorithms are mostly based on surface normals and/or
curvatures. More specifically, such algorithms utilize region

*Address all correspondence to: Hani Javan Hemmat, E-mail: h.javan.
hemmat@tue.nl

Journal of Electronic Imaging

051008-1

growing,”* 3-D Hough transform,* random sample consen-
sus (RANSAC), and a combination of Hough and RANSAC
for multiple resolutions® on the complete set of data,’ or on
preselected points using 3-D feature descriptors.” RANSAC
is utilized to detect planes with a reliable set of inliers.>” It is
applied iteratively to a depth image in order to detect multi-
ple planes,'® or applied region-wise to connect regions.''
However, points belonging to the same segment do not
always connect, and therefore, extensive postprocessing is
necessary to integrate undersegmented regions. In the 3-D
Hough transform method, each plane is typically described
in the object space along with a corresponding point in the
parameter space. Hough results are combined with a voting
mechanism of detection across the sequence of incoming
frames to increase the detection robustness.'> However, sim-
ilar to RANSAC, postprocessing steps are required for
Hough-based methods to merge neighboring segments of
which the Hough parameters do not considerably deviate.
Other popular segmentation techniques are based on surface
normals and/or curvatures extraction,'® linear fitting, and
Markov chain Monte Carlo.'* These algorithms are also
computationally expensive and challenging for real-time
performance. In such algorithms, a real-time segmentation
of planes is normally achieved by sacrificing the image
quality.’> Another segmentation technique is the region
growing method, which is an efficient technique to extract
planes from depth images. However, besides the already-
mentioned evaluation of surface normals and curvature
estimates,'® the chosen segmentation primitives and growth

1017-9909/2015/$25.00 © 2015 SPIE and IS&T

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

http://dx.doi.org/10.1117/1.JEI.24.5.051008
http://dx.doi.org/10.1117/1.JEI.24.5.051008
http://dx.doi.org/10.1117/1.JEI.24.5.051008
http://dx.doi.org/10.1117/1.JEI.24.5.051008
http://dx.doi.org/10.1117/1.JEI.24.5.051008
http://dx.doi.org/10.1117/1.JEI.24.5.051008
mailto:h.javan.hemmat@tue.nl
mailto:h.javan.hemmat@tue.nl
mailto:h.javan.hemmat@tue.nl
mailto:h.javan.hemmat@tue.nl
mailto:h.javan.hemmat@tue.nl

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

(a)
l_._’
i |
Depth point cloud
(b)

Normal
computations)

Planes

Fig. 1 Two alternative approaches to deal with depth images in order to perform planar segmentation:
(a) as point cloud and (b) as two-dimensional images containing three-dimensional (3-D) information.

criterion play a critical role for the algorithm complexity.
Introducing high-level features (line or curve blocks) as seg-
mentation primitives instead of individual pixels reduces the
amount of processed data'® but still does not deliver real-time
performance. Briefly, these techniques typically introduce
computationally expensive algorithms or they suffer robust-
ness. Although vanishing points and their roles in plane
detection of two-dimensional (2-D)/3-D color images have
been indicated in the literature,'”'® it is almost impossible
to utilize them for depth images due to the following reasons.
First of all, it is required to cover a relatively large area in an
image to detect vanishing points, which is not the case for
depth images targeted in this paper (e.g., urban scenes versus
the Kinect indoor depth images). Furthermore, we need to
detect lines to find vanishing points in a depth image. It
is very challenging due to noisy data involved in depth
images, especially on edges, that play a definitive role in line
detection. Besides this, occlusions occurring in indoor
scenes decrease the chance of having continuous lines in
a scene. Therefore, probability of finding parallel lines in
indoor images is very low.

As illustrated in Fig. 1, a straightforward way to extract
planes out of a depth image is to conventionally convert it to
a point cloud and then apply an appropriate algorithm. In this
paper, as an alternative to this approach, we propose a real-
time planar segmentation algorithm, which directly deploys
the depth images as 2-D frames containing 3-D information.
More specifically, the proposed algorithm involves high-
level region growing based on a geometrical proposition
stating that each pair of intersecting lines lies on a plane.
To this end, first, edge contours should be detected in
order to extract surfaces bounded between the 3-D
edges.'”?” Several algorithms for edge detection in intensity
images have been developed and extensively discussed in the
literature. However, edge detection algorithms, which are
designed for intensity images, have a poor performance
when applied to depth images due to several reasons. First,
an edge in intensity images is defined as a significant change
in gray-level value modeled as a jump edge, whereas in depth
images, corner and curved edges should also be extracted.?!
Second, in depth images, spatial distribution of range
data can be irregular, which requires operator adaptivity
with respect to shape and size of the objects’ in the
scene. Finally, traditional edge detection operators for inten-
sity images, such as Prewitt, Sobel, and Canny, are designed
for normal visual images with normal contrast and, therefore,
perform poorly in highly noisy and blurred edges of depth
images.” An edge detection algorithm specific for depth
images has been developed in an early study by detecting
residues of morphological operations.”* In a later work,
straight lines in 3-D space have been detected as depth edges
by using a (2 + 2)-D Hough space.”> Wani and Batchelor*®

Journal of Electronic Imaging

051008-2

have studied spatial curves to design edge masks for edge
detection. This methodology has been further investigated
based on the scan-line approximation technique.”” Another
line segmentation technique®’ has been proposed for range
images, which provides edge-strength measurements to cat-
egorize edge types.

We propose an algorithm where after detecting 3-D edges
of a depth image, it searches for line segments between the
opposite edges and then merges the detected line segments
into planes, thereby facilitating planar segmentation. The key
is that the algorithm is capable of extracting 3-D edges from
depth images in real-time, particularly the components for
corner and curved edges are enhanced in the execution
speed. This high speed is obtained by utilizing concurrency
and parallel structures to the highest extent. The interleaved
GPU-based implementation of the proposed algorithm is
capable of handling VGA-resolution depth images at a high
frame rate up to 100 fps.

This paper is structured as follows. Section 2 describes the
methods used in 3-D edge detection and plane extraction
components of the proposed algorithm in detail. Experimen-
tal results are presented and discussed in Secs. 3 and 4,
respectively. Finally, Sec. 5 concludes the paper.

2 Real-Time Planar Segmentation

The proposed planar segmentation algorithm for depth
images is based on two intrinsic properties of planes in a
3-D environment.

Property 1: Each planar surface inside a depth frame is
bounded between its surrounding 3-D edges.

Property 2: Based on a geometrical proposition, each
pair of lines crossing each other in a joint 3-D point
establishes a 3-D plane.

As indicated by property 1, we should search the areas in
between 3-D edges in order to find a planar surface in a depth
image. According to property 2, extracting the crossing line
segments in a depth image can lead us to identification of
planar surfaces.

The proposed algorithm segments planar surfaces, based
on the mentioned properties, in three principal steps. In the
first step, all 3-D edges in a depth image are extracted. In the
second step, the algorithm searches for the line segments
lying between each pair of opposite edges of the supposed
3-D planar region. In the final step, the identified line seg-
ments are merged to planar areas. The merged line segments
are divided into various groups according to their connectiv-
ity. Each group of crossing line segments is a planar surface
candidate. Furthermore, an extra validation step is performed
to verify each candidate as a planar surface. In the following

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

sections, we focus on the methods exploited in each step in
detail.

2.1 Step 1: Edge Detection

In order to detect 3-D edges in a depth image, the algorithm
scans the image in 1-pixel strings in four directions (verti-
cally, horizontally, left diagonally, and right diagonally) as
illustrated in Fig. 2(a). Note that the string may be part of
a curve in 3-D, while in 2-D, it still looks like a line.
Edge detection is performed based on changes of depth val-
ues in a string. At each scan, four different types of edges are
detected: jump, extremum, corner, and curved. The jump
edges result from occlusions or holes in depth images.
The extremum edges include the local minima or maxima
in a depth image. The corner edges emerge where two planes
meet each other, and the curved edges are resulting from
intersection of actual planar and nonplanar surfaces.
Figure 3 depicts the mentioned types of 3-D edges in the
imaginary depth images. Although these various types of
edges may have an overlap, we need to extract them all
to cover all possible 3-D edges in a depth image.

The following definitions formulate detection criterion for
each edge type.

Definition 2.1: Point P;(x, y, depth) is the i’th 3-D point
on the current 1-pixel-wide string of each scan direc-
tion in a given depth image. Actually, it is the pixel
located in column x and row y of the depth image
as illustrated in Fig. 2(b). In the remainder of this
paper, we use the abbreviated notation of P; instead
of P;(x,y,depth).

Definition 2.2: Parameter Th; determines a user-defined
value indicating a threshold for the feature f, which

® (4, after)

can be any of the features used in the definitions
(e.g., Thyjepe is the basis for comparison of line slopes).

Definition 2.3: Parameter @, (i,s) defines a set of n
neighbors on a (subset of) string located on side
s € {before, after} of point P; on the current 1-
pixel-wide string for any of the mentioned scan direc-
tions as depicted in Fig. 2(b). The set size n is a
user-defined value. We occasionally use ® to briefly
represent @, (i, s) in this paper, and similarly, ®p¢or
and @, instead of ®,(i,before) and @, (i, after),
respectively.

Definition 2.4: Parameter Sl(a, b) is the slope of the line
passing through points a and b in the 3-D space.

Definition 2.5: Parameter S1(®) is the average slope of the
lines passing through each pair of consecutive points
in ®.

Definition 2.6: Parameter I'[P;, ®(i,s)], as shown in
Fig. 2(c), represents the signed distance of P; to the
line passing through P;_, and P;,, in the 3-D space.
The unit for this parameter is consistent with the unit
utilized for depth images.

2.1.1 Jump edge
The 3-D points P; and P; are located on the opposite sides of
a jump edge if they meet the following condition:

|P;.depth — P;.depth| > Thyyy,. (1)

The term P;.depth represents only the depth value compo-
nent of 3-D pixel P;, which represents the distance to the
sensor plane. This equation describes two points located
on a jump edge if their depth difference is more than a

D (i, before),

NP, (2, y, depth)

Fig. 2 lllustration of the definitions: (a) a sample depth image with four randomly chosen 1-pixel-wide
strings in various directions, (b) a magnified region of a sample string, and (c) the distance of a point to
the line connecting two ends of its neighborhood in 3-D.

Fig. 3 Various types of 3-D edges in a depth image: (a) jump edges, where there is a gap between two
surfaces and/or in case of existence of a hole, (b) corner edges, where two planar surfaces meet each
other, (c) situations that planar surfaces join nonplanar ones and curved edges emerge, and finally
(d) extremum edges due to local maxima or minima. In all the images, vertical lines indicate distance
between surfaces and the depth sensor camera plane.

Journal of Electronic Imaging

051008-3

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'Ter msOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

user-defined threshold as illustrated in Fig. 3(a). The thresh-
old can have fixed setting or alternatively be a function that
returns a corresponding threshold value according to the
depth value of a point (distance-aware threshold***?). The
unit for Thy,y,, is consistent with the unit utilized for depth
images.

2.1.2 Comner edge

The corner edge, as shown in Fig. 3(b), is explained based on
the following definition.

Definition 2.7: Binary flag Fequaiope(P) determines
whether all the lines passing through each consecutive
pair of points in the neighborhood ® have the same slope
or not.

Equation (2) formulates this definition according to a
user-defined value of Thggp.. The binary “17” value for
the flag means that all the points of ® are located on a
line (and they may lie on a planar surface, accordingly).
Similar to the jump edge, the threshold here can be either
a fixed number or a distance-aware function, alternatively.
Equation (2) is specified by

1 V (P;,Pi)and(P;,P;y)|P;,Pi11,P;,Pjs; €D

Fequal—slope(q)) =
0 otherwise.

The term (P;, P;1;) in Eq. (2) indicates a pair of consecutive
points on a 1-pixel-wide string in either (P;, Pi.;) or
(Pi?Pi—l) forms.

A point P; is located on a corner edge if the following
conditions [Eqgs. (3) and (4)] are met:

{Fequal-slope [CD(i,before)] AND
Fequal—slope[(b(iy after)]} =1, 3)

SI[®(i, before)] — SI[®@(i, after)]| > Thyope-)

Equation (3) checks if both segments, before and after the
point P;, are line segments, and Eq. (4) ensures that each
of the line segments has a different slope (they are not located
on the same line).

2.1.3 Curved edge

The curved edge, depicted in Fig. 3(c), is specified according
to the following definition.

Definition 2.8: Binary flag F,ion (®) indicates whether
all points of the neighborhood ® are located on a straight
line or not.

This definition is formulated as Eq. (5) based on a user-
defined value of Thyign.- Similar to the previous edges, the
threshold here can either be a constant or a distance-aware
setting. The “1” value for Fyion(®) means that points
of @ are located on a line (and may lie on a planar surface,
accordingly). The difference between Eqgs. (2) and (5) is that
the former is more sensitive on boundaries between two pla-
nar surfaces, while the latter performs better in case a plane
meets a nonplanar surface. Equation (5) is specified by

v Pj € o: |F(P,i’ (I))‘ < Thstraight;
0 otherwise.

Fstraighl((b) = { (%)

Point P; is located on a curved edge if Eq. (6) is satisfied,
given by

{Fstraighl(q)before) XOR Fstraight(q)aﬂer)} =1 (6)

The XOR operation ensures that one and only one side is
a planar surface.

Journal of Electronic Imaging

ISI(P;, Piyy) — SI(P, Pjsy)| < Thygpe;

051008-4

(€3]

2.1.4 Extremum edge

As shown in Fig. 3(d), each point P;, which is a local mini-
mum or maximum in terms of its depth value, is located on
an extremum edge.

In order to formulate this definition, we utilize two flags,
as defined in Egs. (7) and (8), indicating if a point is a local
minimum or maximum in its neighborhood, respectively.
Equation (7) is given by

Fmin(Pi’q))
{ 1 V P;€®: P;.depth < P;.depth X Engyremums

0 otherwise.
(7
And Eq. (8) is specified by

Fmax(Pi’ (1))

_ 1 VP;€®: P.depth > P;.depth X Encyremums
0 otherwise.

®)

In the previous equations, the multiplicative parameter
Eneyyemum 18 @ coefficient to handle noise occurring in
depth images and can be either a constant or a distance-
aware function. Point P; is located on an extremum edge
if the following condition is satisfied:

{Fmin(Pi’q)) ORFmax(Pi’q))} =1 (9)

Evidently, only one of the flags can be true at the same time.

2.2 Line-Based Plane Detection

Extracting 3-D edges out of a depth image enables us to per-
form the second step of finding planes located in between the
edges as illustrated in Fig. 4. To perform the planar segmen-
tation, we first extract all the (1-pixel-wide) string segments
bounded in between the edges. This step commences with
scanning all the strings in all four directions (vertically,
horizontally, left diagonally, and right diagonally). Then,
for each of these string-segments, we evaluate whether it
is a line segment or not. Hence, after the test, we maintain

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

§
¥
£
¢

¢

Fig. 4 Planar segmentation of an example depth image from 3-D edges to planar surfaces: (a) 3-D edges
detected on a given depth image, (b) left diagonally detected line segments between the 3-D edges,
(c) right diagonally detected line segments added (the vertical and horizontal lines are not depicted
for the sake of clarity), (d) segmentation process that begins by individually labeling each line segment,
(e) to (g) merging process of intersecting line segments sharing the same label, (h) final outcome of the
planar segmentation process. (Note that involving the vertical and horizontal strings can improve the
result. Besides this, the proposed enhancement methods improving the final outcome have not been

applied here).

only line segments in each direction from the string segments
[Figs. 4(b) and 4(c)]. After finding all the line segments
[Fig. 4(d)], the algorithm attempts to merge the points on
each pair of intersecting lines into a plane candidate, accord-
ing to property 2. Figure 4, in particular, Figs. 4(e)-4(h),
illustrate the merging process. This step segments a depth
image into its plane candidates. However, the resulting can-
didates need validation, which is discussed in the following
section.

2.3 Plane Validation

In order to improve the segmentation outcome, we perform
several validation checks. First of all, we evaluate each plane
candidate in terms of its curvature in a 3-D space (for in-
stance, as a point cloud). Second, due to occlusions, a planar
surface can be detected as various disconnected planar seg-
ments. Therefore, a merging process is needed to coalesce
these separate segments into one actual plane. Finally, we
evaluate the resulting segments in terms of their size.
Based on different criteria, users may prefer to discard
any planar segment that has a relatively small number of
points. Hence, we process the detected planes further in
order to reject diminutive planes.

The three mentioned stages of validation are performed
based on the following definitions:

Definition 2.9: Eigenvalues for plane ¥ in a 3-D space are
defined by Ay, 4;, and 1,, where 1, < 4; < 4.

Definition 2.10: Parameter T, where k € {0,1} is the cur-
vature ratio for a plane, and it is defined as the ratios of
the eigenvalues of the plane, which equal 4,/4; for
both k =0 and k = 1.

The values Ty and T, for a plane represent the
ratios of the plane height to both its length and
width, respectively. A planar surface typically has
quite small ratio values in terms of these aspects.*
In other words, the smaller the values of T, and
T, are for a plane, the less curvature the surface
has (the flatter the surface is).

Journal of Electronic Imaging

051008-5

Definition 2.11: Parameter Theyaurwer, Where k € {0,1}
represents the threshold value for 7', in order to vali-
date a surface as a plane.

Definition 2.12: Vector n(¥) is the normal vector of plane
W, which equals to 25, which is the smallest eigenvec-
tor of the plane.

Definition 2.13: Vector 7(¥,, ¥;) is the vector connecting
the center of mass of plane ¥, to its corresponding
point of plane ¥,.

2.3.1 Curvature validation

Each plane candidate is converted to the corresponding point
cloud in order to evaluate its curvature metrics (7). The
eigenvalues for each candidate are calculated by means of
the principal component analysis method. A plane candidate
is considered a valid plane if both its curvature values T and
T, are less than the user-defined thresholds Th,yqureo and
Theyrvawre 1, T€Spectively. Equation (10) formulates the curva-
ture validation process as a condition that should be satisfied
by each valid plane, and it is specified by

[(TO < Thcurvature()) AND (Tl < Thcurvaturel)] =1 (10)

2.3.2 Merging separate segments

Due to holes and occlusions in a depth image, different seg-
ments of an actual plane may be detected as separate discon-
nected planes. In order to merge the separate segments, we
evaluate Eqgs. (11) and (12) for each pair of plane segments
¥, and ¥, given by

-

n(¥,) xn(¥,) ~0, (11)

A(,) 7%, %)~ 0 AND B(¥,)-7(¥,.¥,) ~ 0.
(12)

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

If the above conditions are met, the two separated segments
are merged into a single plane. If the condition represented
by Eq. (11) becomes true, it means that the separated planes
¥, and ¥}, are parallel to each other (their normal vectors are
parallel). Likewise, the condition described by Eq. (12) is
satisfied when both separated planes ¥, and ¥, lie on the
same planar surface. In other words, both normals are
perpendicular to the vector that connects the center of masses
of the planes, and this happens only if both segments lie on
the same planar surface.

2.3.3 Size validation

A valid plane is required to contain a certain minimum num-
ber of points according to user requirements. Performing this
test, the segmentation quality is improved, due to the
removal of the small segments that cannot be merged into
any other larger planes. The straightforward implementation
of this condition means that each valid plane ¥ should satisfy

W .size > Thye, (13)

where parameter W.size indicates the number of points
located on plane .

In addition to all these postprocessing enhancements, a
preprocessing step is also performed to improve segmenta-
tion results even further. After extracting all the 3-D edges of
a depth image, we apply a morphological closing filter (i.e.,
a dilation followed by an erosion) in order to obtain more
smooth and connected edges.

3 Evaluation Results

We have applied the proposed algorithm to a collection of
datasets, and this section reports the evaluation results in
detail. The dataset collection and the corresponding results
are publicly available in Ref. 31. Figure 5 depicts several
snapshots of the datasets and the corresponding results
for both the 3-D edge detection and planar segmentation
algorithms.

3.1 Datasets

In order to evaluate the proposed algorithm, we have pre-
pared a rich collection of datasets to cover all various sorts
of edges (jump, corner, curved, and extremum edges) in sev-
eral indoor scene situations. The depth images of all the data-
sets have been captured via Kinect as a depth sensor (XBox
360 Kinect, version 1.0, VGA-resolution 480 X 640 pixels).
Figure 5(a) shows color images of the five samples chosen
from the dataset collection. The color images at the top row
are depicted instead of the depth images, since they give a
better scene orientation.

3.2 Real-Time Implementation

The proposed algorithm has been initially designed to max-
imally benefit from parallel computing. Each component of
the algorithm has a minimum dependency on other compo-
nents (inter-component independence). Besides this, the
same approach is followed inside each component (intra-
component independence). This intrinsic independence of
the algorithm components has enabled us to implement it
to be best suited for multicore and many-core architectures.
The OpenMP has been utilized in order to implement the
multithreaded version running on multicore CPUs. Besides
this, we have used the Compute Unified Device Architecture
(CUDA) for the many-core implementation of the proposed
algorithm to be executed on GPU platforms. All the CPU-
related results reported in this section have been obtained
utilizing a PC with a CPU of Intel Xeon W3550 with
3.07 GHz (4 cores) and 20 GB of RAM for both single-
and multithreaded versions. A CUDA-enabled GeForce
GTX 480 VGA card with 480 cores and 1.5 GB of RAM
has been used for the GPU-related experiments. In order
to provide more precise timing information for GPU imple-
mentation, results for both the kernel and wrapper (kernel as
well as memory transfers) are reported.

3.3 Edge Detection Result

In this section, we present detailed results for the various
modules of the edge detector algorithm applied to depth

Fig. 5 Five examples of datasets containing various types of 3-D edges and the corresponding out-
comes: (a) color images of each scene, (b) extracted 3-D edges, and (c) planar surfaces. (Note that
the merging and size validation phases have not been incorporated in the visual results).

Journal of Electronic Imaging

051008-6

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

(1) Jump edge (2) Corner edge

(3) Curved edge (4) Extremum edge

(5) All edges (combined masks)

Fig. 6 Three sample scenes and the corresponding edge masks. Columns 1 to 4 show the independent
edge masks per edge type for each scene. The combined edges, as the final masks, are depicted in

column 5.

images. To detect all mentioned types of edges, we perform
the edge detector modules independently for each edge type.
These modules provide corresponding edge masks per edge
type. The final mask is generated by combining all the edge
masks together. Figure 6 shows three different scenes with
various types of edges, for which the resulting edge masks
and the corresponding final masks are depicted. For the sake
of better visual perception, only the color image of each
scene is provided. We have found that the optimal results
in terms of both quality and efficiency are obtained with
the following settings. For jump edges, Th;,n,, = 40, for cor-
ner edges, Thg,,. = 0.08 and n = 16, for curved edges,
Thgirigne = 4 and n = 4, and finally for the extremum edges,
Eneyyremum = 0.98 and n = 2.

Table 1 summarizes the average execution time for vari-
ous implementations of the proposed algorithm. The results
have been obtained according to the mentioned settings.
Besides this, Fig. 7 and Table 2 provide comparisons of
the different results obtained by the 3-D edge detection algo-
rithm (final mask) for different values of the number-of-
neighbors (n in ®,) parameter. Among the various 3-D
edge detectors, the corner- and curved edge detectors are
more sensitive to the number-of-neighbors parameter in

terms of both quality and timing, compared to the jump-
and extremum-edge detectors.

3.4 Planar Segmentation Result

This section presents evaluation of the planar segmentation
algorithm applied to the dataset collection. Figure 5(c) depicts
corresponding segmented planes for the sample scenes.
A summary of whole planar segmentation pipeline including
edge detection and plane detection is shown in Table 3.

4 Discussion

In this Sec. 3, we discuss the results reported in the previous
section in detail. First, we briefly assess the quality of the
extracted 3-D edges and planes. Then, we focus on detailed
quantitative aspects of the proposed algorithms. And finally,
we discuss the planar segmentation as a dual-layer pipeline,
consisting of the edge detection and plane extraction layers.

4.1 Qualitative Assessment

As shown in Table 4, the resulting images of 3-D edge detec-
tion and planar-segmentation algorithms are 97.3 and 97.8%
similar to the ground truth, respectively, based on the mean

Table 1 Execution time of the single-threaded, multithreaded, and GPU-based implementations of various types of three-dimensional (3-D) edge

detectors applying on 20 datasets of depth images.

CPU (ms) GPU (ms) GPU (ms)
3-D edge detector CPU (ms) single-threaded multithreaded Speedup wrapper Speedup kernel Speedup
Jump 3.27 1.24 2.64 1.07 3.06 0.08 421
Extremum 6.31 2.41 2.62 1.11 5.68 0.15 40.8
Corner 856 248 3.45 8.22 104 7.25 118
Curved 250 95.5 2.62 2.74 91.3 1.89 132
All 998 323 3.09 10.41 95.9 9.40 106
Journal of Electronic Imaging 051008-7 Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

Fig. 7 Effect of the setting value n (number of neighbors) on resulting 3-D edges (final mask): (a) n = 8,
(b) n=10, (c) n=12, (d) n=16, (e) n= 20, (f) n=24, (g) n =28, and (h) n = 32.

Table 2 Average execution time of the single-threaded, multithreaded, and GPU-based implementations of 3-D edge detector (final mask) for

different values assigned as number of neighbors.

CPU (ms) GPU (ms) GPU (ms)

Number of neighbors CPU (ms) single-threaded multithreaded Speedup wrapper Speedup kernel Speedup
32 2727 840 3.25 27.5 99 26.2 104
28 2424 835 2.90 26.9 90 25.0 97
24 2149 704 3.05 23.1 93 21.7 99
20 1831 592 3.09 20.0 91 18.8 98
16 1537 482 3.19 16.6 93 15.2 101
12 1208 410 2.95 12.8 95 11.6 105
10 969 344 2.82 10.9 89 9.7 100
8 802 295 2.72 9.0 89 7.9 102

Avg. 3.00 Avg. 92 Avg. 101

structural similarity metric. Besides this, 99.6% of ground
truth pixels are found and represented by the resulting
images of 3-D edge detection algorithm and 98.7% for planar
segmentation algorithm according to the data-to-model cov-
erage metric.

As depicted in Fig. 5, the proposed 3-D edge detector
algorithm is capable of extracting the 3-D edges in the pre-
sented scenes and segmenting the planar surfaces accordingly.

In the first row, five different scenes are depicted. The corre-
sponding edges are shown in the second row. And finally, the
third row contains the resulting planar surfaces for each scene.
There are various planes detected regardless of both their size
and their relative pose to the sensor.

As illustrated by Fig. 6, there is a considerable amount of
overlap between various kinds of 3-D edges. Among them,
the corner edge generates the most dominant part of the final

Table 3 Average execution time of planar segmentation pipeline for the single-threaded, multithreaded, and GPU-based implementations.

CPU (ms) GPU (ms) GPU (ms)
Algorithm CPU (ms) single-threaded multithreaded Speedup wrapper Speedup kernel Speedup
Edges 998 323 3.09 10.41 95.9 9.40 106
Planes 103 68.7 1.50 8.80 11.72 7.84 13.2
Full planar segmentation 1102 391 2.81 18.2 60 17.2 64
Journal of Electronic Imaging 051008-8 Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

Table 4 Comparing the obtained 3-D edges and planes to the cor-
responding ground truth data: average similarity based on structural
similarity (SSIM) and data-to-model coverage (D2MC) metrics. The
D2MC metric determines the amount of pixels in model image that
have been covered by data image.

Similarity metric 3-D edges Planes
mSSIM (%) 97.3 97.8
D2MC (%) 99.6 98.7

edge mask. Besides this, the jump edge also plays a promi-
nent role in generating the final edge mask. For all presented
cases, the extremum edge has a huge overlap with the jump
edge. This observation can be explained by the zero values
for any hole or gap in depth images, which turns the points
adjacent to holes into local maxima. And finally, the curved
edges have the smallest share in the final edge mask, which is
expected for indoor scenes, where most of the objects are
planar surfaces.! In all cases, we have filtered the depth val-
ues by a threshold of 2.5 m to reduce the effect of the Kinect-
sensor noise prior to supplying it to the 3-D edge detector.
This setting of this threshold is considerably influenced by
the Kinect-sensor noise pattern.s%’

4.2 Quantitative Assessment
4.2.1 Three-dimensional edge detection

According to Table 1, the amount of time needed to extract
3-D edges is varying and depending on the type of edges. It
varies from a few milliseconds for jump and extremum edges
to hundreds of milliseconds for corner and curved edges. For
the suggested settings, on the average, ~1 s is needed to
extract all the 3-D edges of a depth frame by a single-
threaded implementation. A multithreaded implementation
improves the execution time to 323 ms, while exploiting
a GPU-based many-threaded approach enables us to
reach over 100 fps (9.40 ms per frame). Although the
multithreaded implementation establishes approximately a
speedup factor of 3 for various edge types, the obtained

Speedup
140.0
120.0
100.0
80.0
60.0
40.0

20.0

o o o o o
All edges

0.0
Jump Extremum Corner Curved

(a) B CPU (multithreaded) GPU (kernel)

speedup is varying per edge type for GPU-based implemen-
tation. As illustrated in Fig. 8, the largest speedup factor
emerges for the curved edge case, namely 132 followed
by 118 for the corner-edge case. Despite the implementation
of both the curved and corner edges being very similar
(according to their definitions), there is a noticeable differ-
ence between their obtained speedups. This difference is due
to the proposed settings in which the value of n has been
differently assigned per edge type. Compared to the single-
threaded implementation, the GPU version of the jump and
extremum edges executes 42 and 41 times faster, respec-
tively. The complete pipeline of the 3-D edge detection is
able to achieve a speedup factor of more than 100.

The proposed 3-D edge detector output is generally sen-
sitive to the setting of parameter n, which represents the
number of neighbors. This sensitivity on the parameter n
is mostly visible in terms of both functionality and obtained
execution time. As shown in Table 2 and Fig. 9, there is a
linear relation between the value of n and the obtained exe-
cution time of the 3-D edge detector. Considering the result-
ing edges depicted in Fig. 7, there is an optimum value for n
(n = 16) in terms of both quality and speed. For any value
larger than this specific n, there is no edge added anymore
and only the current edges become undesirably thick at the
expense of a higher execution time. Moreover, the edge mask
does not cover all the edges for the values smaller than the
actual value of n. A reason for this observation originates
from the resolution of the applied depth sensor (Kinect) to
capture the dataset. The detector algorithm is expected to
have a different optimum »n for any other depth sensor.

4.2.2 Plane detection

Detecting planes based on 3-D edges needs less computation
compared to 3-D edge detection itself. As presented in
Table 3, on the average, 103 ms is needed to detect planes
of a depth image based on the extracted 3-D edges. By
exploiting multithreaded and many-threaded (GPU) imple-
mentations, speedup factors of 1.5 and 12 are achieved,
respectively.

Multithreaded implementation speedup

4.00
3.00
2.00
1.00

0.00

(b) ® 3-D edge detection M Plane extraction

GPU (many-threaded) implementaion speedup

100.0
80.0

ﬁ 60.0
= 40.0
20.0
0.0

Planes

(c) ™ 3-Dedge detection m Plane extraction

Fig. 8 Speedup gained via multithreaded and GPU-based implementations for edge detector and plane
extractor algorithms: (a) multithreaded versus GPU-based implementations, (b) and (c) comparing 3-D
edge detection to plane extraction for multithreaded and GPU-based implementations, respectively.

Journal of Electronic Imaging

051008-9

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

CPU (single-threaded) CPU (multithreaded) = GPU

I I
£ 3000 £ 1000 £ 30

2500]
9} o 800 £ 20
£ 2000 E w0 =]
=] =] =
g 1500 5 400 G 10
‘S 1000 =1 =
3 3 200 g ©°
g 500 o = 0 5 10 15 20 25 30 35
w 0 1] 0 .

o 5 10 15 20 25 30 35 o 5 10 2 25 30 35 Number of neighbours

Number of neighbours

Number of neighbours

—— GPU (wrapper) -+ GPU (kernel)

Fig. 9 Effect of the setting variable n on execution time of various implementations of the 3-D edge

detector algorithm.

CPU (single-threaded) CPU (multithreaded)

18%
46%

(2) m3-Dedgs " Planes (D) W3-Dedgs = Planes (C)m3-Dedgs = Planes

Fig. 10 Percentage of execution time required by each layer of
the complete planar segmentation pipeline for various implementa-
tions: (a) single-threaded, (b) multithreaded, and (c) GPU-based
implementations.

4.2.3 Planar segmentation as a pipeline

Planar segmentation of depth images is implemented as a
dual-layer pipeline, consisting of 3-D edge detection and
plane extraction. As shown in Table 3, on an average, it
takes 1102 ms to segment a depth image into its planes for
a single-threaded implementation. A multithreaded imple-
mentation decreases this execution time to 391 ms per
frame (speedup factor of ~ 3). And finally, this pipeline can
produce planar segments in 17 ms per depth image by
employing a GPU-based implementation (speedup factor
of >60). As illustrated in Fig. 10, the difference in execution
time between the two layers of the pipeline is too high for
both the single-threaded and multithreaded CPU-based
implementations to be interleaved by ratios of 1-to-10 and
1-to-4.5, respectively. However, for a GPU-based implemen-
tation, this imbalance in the ratio is close enough to a 1-to-1

CPU (single-threaded)

CPU (multithreaded)

ratio and enables us to still execute the interleaved pipeline,
on an average, resulting in an fps >100 (9.4 ms per inter-
leaved cycle).

Due to the different amount of dependencies inside each
layer of the pipeline, the level of concurrency differs between
the two layers. As shown in Figs. 8(b) and 8(c), the 3-D edge
detection algorithm reaches a higher speedup factor in both
multithreaded and GPU-based implementations by namely
2 and 8 times, respectively, when compared to the plane
extraction algorithm.

As depicted in Fig. 11, despite the parallel structure of the
proposed algorithms, both the 3-D edge detection and plane
extraction algorithms are content-dependent in terms of the
execution time. Although the execution time patterns are
similar between all implementations of each algorithm, the
variations in execution times are different for various data-
sets. For the 3-D edge detection algorithm, the difference
of execution time between some datasets varies up to
200% and 100% for the CPU- and GPU-based implementa-
tions, respectively. For the plane extraction algorithm, this
difference is up to 300 and 100% in some datasets for the
CPU- and GPU-based implementations, respectively.

5 Conclusion

In this paper, we have introduced a real-time planar segmen-
tation algorithm, which enables plane detection in depth
images avoiding any normal estimation calculation. First,
the proposed algorithm searches for 3-D edges in a depth
image and then finds the line segments located in between
these 3-D edges. Second, the algorithm merges all the points

GPU (wrapper)

__ 1400 __ 450 __ 1400
M @ M
£ 1200 g W £ 1200
T 1000 @ T 1000
£ g 300 E
S 800 B 250 S 8.0
| =4 [4 e
S 600 S 200 S 600
5 5 150 5
o 400 o o 4.00
e g 10 e
4o 200 S so 5 2.00
0 0 0.00
123456 7 8 910111213 14 15 16 17 18 19 20 123456 7 8 9 10111213 14 15 16 17 18 19 20 123456 7 8 91011121314 1516 17 18 19 20
(a) Dataset Dataset Dataset
CPU (single-threaded) CPU (multithreaded) GPU (wrapper)
180 120 12
w160 - =
£ o E 0 g
@ 120 v g v g
£ S £
B A0 2 60 6
c 80 < [
o o o
S 60 S 40 S 4
= 3 3
g Y 3 3
X 20 2 ® e a
w w w
0 0 0
123456 7 8 910111213 14 15 16 17 18 19 20 123456 7 8 9 10111213 14 15 16 17 18 19 20 12345 6 7 8 9 10111213 14 15 16 17 18 19 20
(b) Dataset Dataset Dataset

Fig. 11 Execution time per each benchmark of the dataset collection for various implementations: (a) 3-D

edge detector and (b) plane extractor.

Journal of Electronic Imaging

051008-10

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

Javan Hemmat, Bondarev, and de With: Real-time planar segmentation of depth images. ..

on each pair of intersecting line segments into a plane can-
didate. The developed 3-D edge detection algorithm consid-
ers four different types of edges: jump, corner, curved, and
extremum edges. For each of those edges, we have defined
the corresponding thresholds and a number-of-neighbors
parameter. For the planar segmentation algorithm, we
designed three quality-enhancing properties, i.e., curvature
and size validation and merging of separate segments.

Because of the two previous algorithms, i.e., the proposed
3-D edge detection and plane extraction, the implementation
of the complete system leads to a dual-layer execution archi-
tecture. This enables a fast execution of both algorithms in
parallel. By exploiting the GPU-based implementation, on an
average, 3-D edges are detected in 9.4 ms and planes are
extracted in 7.8 ms. Therefore, the planar segmentation pipe-
line is capable of segmenting planes in a depth image with a
rate of 58 fps. Utilizing pipeline-interleaving techniques for
the proposed implementation further increases the rate up to
100 fps.

Acknowledgments

This research has been performed within the PANORAMA
project, cofunded by grants from Belgium, Italy, France, the
Netherlands, the United Kingdom, and the ENIAC Joint
Undertaking.

References

1. R. B. Rusu, “Semantic 3D object maps for everyday manipulation in
human living environments,” PhD Thesis, Computer Science
Department, Technische Universitaet Muenchen, Germany (2009).

2. T. Rabbani, F. A. van den Heuvel, and G. Vosselman, “Segmentation of
point clouds using smoothness constraint,” in Proc. ISPRS Commission
V Symp. Image Engineering and Vision Metrology, pp. 248-253 (2006).

3. J.Xiao et al., “3D point cloud plane segmentation in both structured and
unstructured environments,” Rob. Auton. Syst. 61(12), 1641-1652
(2013).

4. D. Borrmann et al., “The 3D Hough transform for plane detection in
point clouds: a review and a new accumulator design,” 3D Res.
2(2), 1-13 (2011).

5. B. Oehler et al., “Efficient multi-resolution plane segmentation of 3D
point clouds,” Lec. Notes Comput. Sci. 7102, 145-156 (2011).

6. R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-
cloud shape detection,” Comput. Graph. Forum 26(2), 214-226 (2007).

7. R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3D registration,” in Proc. of IEEE Int. Conf. on Robotics
and Automation, pp. 3212-3217 (2009).

8. N. Silberman et al., “Indoor segmentation and support inference from
RGBD images,” Lec. Notes Comput. Sci. 7576, 746760 (2012).

9. T.-k. Lee et al., “Indoor mapping using planes extracted from noisy
RGB-D sensors,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 1727-1733 (2012).

10. K.-M. Lee, P. Meer, and R.-H. Park, “Robust adaptive segmentation of
range images,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 200-205
(1998).

11. L. Silva, O. Bellon, and P. Gotardo, “A global-to-local approach for
robust range image segmentation,” in Proc. of IEEE Int. Conf. on
Image Processing, pp. 773776 (2002).

12. R. Hulik et al., “Continuous plane detection in point-cloud data based
on 3D Hough transform,” J. Vis. Commun. Image Represent. 25(1),
86-97 (2013).

13. D. Holz and S. Behnke, “Fast range image segmentation and smoothing
using approximate surface reconstruction and region growing,” in Proc.
Int. Conf. on Intelligent Autonomous Systems, pp. 61-73 (2012).

14. C. Erdogan, M. Paluri, and F. Dellaert, “Planar segmentation of RGBD
images using fast linear fitting and Markov chain Monte Carlo,” in
Proc. of Conf. on Computer and Robot Vision, pp. 32-39, IEEE (2012).

15. D. Holz et al., “Real-time plane segmentation using RGB-D cameras,”
Lec. Notes Comput. Sci. 7416, 306-317 (2012).

16. X. Jiang, H. Bunke, and U. Meier, “High-level feature based range
image segmentation,” Image Vis. Comput. 18(10), 817-822 (2000).

17. F. A. Andal6, G. Taubin, and S. Goldenstein, “Vanishing point detection
by segment clustering on the projective space,” Lec. Notes Comput. Sci.
6554, 324-337 (2010).

Journal of Electronic Imaging

051008-11

18. J. C. Bazin et al., “An original approach for automatic plane extraction
by omnidirectional vision,” in IEEE/RSJ 2010 Int. Conf. on Intelligent
Robots and Systems, pp. 752-758 (2010).

19. A. Harati, S. Géchter, and R. Y. Siegwart, “Fast range image segmen-
tation for indoor 3D-SLAM,” in Proc. IFAC Symp. on Intelligent
Autonomous Vehicles, pp. 475-480 (2007).

20. R. Hulik et al., “Fast and accurate plane segmentation in depth maps for
indoor scenes,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 1665-1670 (2012).

21. S. A. Coleman, S. Suganthan, and B. W. Scotney, “Gradient operators
for feature extraction and characterisation in range images,” Pattern
Recognit. Lett. 31(9), 1028-1040 (2010).

22. S. Suganthan, S. A. Coleman, and B. W. Scotney, “Using dihedral
angles for edge extraction in range data,” J. Math. Imaging Vis.
38(2), 108-118 (2010).

23. A. Hoover et al., “An experimental comparison of range image segmen-
tation algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 673—
689 (1996).

24. R. Krishnapuram and S. Gupta, “Edge detection in range images
through morphological residue analysis,” in Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 630-632 (1992).

25. P. Bhattacharya et al., “Hough-transform detection of lines in 3-D
space,” Pattern Recognit. Lett. 21(9), 843-849 (2000).

26. M. A. Wani and B. G. Batchelor, “Edge-region-based segmentation of
range images,” IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 314-319
(1994).

27. X.Jiang and H. Bunke, “Edge detection in range images based on scan
line approximation,” Comput. Vis. Image Underst. 73(2), 183-199
(1999).

28. H. Javan Hemmat et al., “Improved ICP-based pose estimation by dis-
tance-aware 3D mapping,” in Proc. Int. Conf. on Computer Vision
Theory and Applications, pp. 360-367 (2014).

29. H. Javan Hemmat, E. Bondarev, and P. de With, “Exploring distance-
aware weighting strategies for accurate reconstruction of voxel-based
3D synthetic models,” in Proc. Int. Conf. on MultiMedia Modeling,
pp. 412423 (2014).

30. C. M. Brown, “Principal axes and best-fit planes with applications,”
Technical Report TR7, University of Rochester, Computer Science
Department (1976).

31. H. Javan Hemmat, E. Bondarev, and P. de With, “Demonstration: real-
time planar segmentation of depth images,” 2015, http://vca.ele.tue.nl/
demos/fpsdi/fpsdi.html (16 October 2015).

Hani Javan Hemmat received his BSc degree in computer engineer-
ing from Amirkabir University of Technology (Tehran Polytechnic) in
2002. In 2006, he received his MSc degree in computer architecture
from the Computer Engineering Department of the Sharif University of
Technology, Tehran, Iran. His research interests include three-dimen-
sional (3-D) reconstruction, robotics, parallel processing, hardware-
software co-design, and design of hardware/software architectures
for real-time implementation. Since 2012, he has researched multi-
modal fusion and 3-D reconstruction at Technical University of
Eindhoven.

Egor Bondarev received his MSc degree in robotics and informatics
from the State Polytechnic University, Belarus Republic, in 1997. In
2009, he obtained his PhD in computer science at Eindhoven Univer-
sity of Technology (TU/e), The Netherlands, in the domain of real-time
systems. Currently, he is an assistant professor at TU/e, focusing
on multimodal sensor fusion, photorealistic 3-D reconstruction and
SLAM systems. He is involved in several European research projects
and as the TU/e project leader in the PANORAMA and OMECA
projects.

Peter H. N. de With graduated in electrical engineering (MSc, ir.) from
TU/e and received his PhD from University of Technology Delft, The
Netherlands. He has had several positions in academia and industry:
in Philips Research Eindhoven working on video compression (1984—
1997), a full professor at the University of Mannheim, Germany
(1997-2000), in LogicaCMG in Eindhoven as a principal consultant
and also a part-time professor at TU/e (2000-2007), as VP video
(analysis) technology at CycloMedia Technology (2008—2010). Since
2011, he has been an assigned full professor at TU/e. He is a national
and international expert in video surveillance for safety and security
and has been involved in multiple EU projects. He is a board member
of DITSS and R&D advisor to multiple companies. He is a fellow of
IEEE and has co-authored over 300 papers. He is the co-recipient of
multiple papers awards.

Sep/Oct 2015 « Vol. 24(5)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 12/17/2015 Terms of Use: http://spiedigitallibrary.or g/ss/'TermsOfUse.aspx

http://dx.doi.org/10.1016/j.robot.2013.07.001
http://dx.doi.org/10.1007/3DRes.02(2011)3
http://dx.doi.org/10.1111/j.1467-8659.2007.01016.x
http://dx.doi.org/10.1109/34.659940
http://dx.doi.org/10.1016/j.jvcir.2013.04.001
http://dx.doi.org/10.1016/S0262-8856(99)00049-9
http://dx.doi.org/10.1016/j.patrec.2009.12.022
http://dx.doi.org/10.1016/j.patrec.2009.12.022
http://dx.doi.org/10.1007/s10851-010-0213-7
http://dx.doi.org/10.1109/34.506791
http://dx.doi.org/10.1016/S0167-8655(00)00044-1
http://dx.doi.org/10.1109/34.276131
http://dx.doi.org/10.1006/cviu.1998.0715
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html
http://vca.ele.tue.nl/demos/fpsdi/fpsdi.html

