

End-to-end latency analysis of dataflow scenarios mapped
onto shared heterogeneous resources
Citation for published version (APA):
Siyoum, F., Geilen, M., & Corporaal, H. (2016). End-to-end latency analysis of dataflow scenarios mapped onto
shared heterogeneous resources. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(4), 535-548. Advance online publication. https://doi.org/10.1109/TCAD.2015.2472004

Document license:
Unspecified

DOI:
10.1109/TCAD.2015.2472004

Document status and date:
Published: 17/03/2016

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/TCAD.2015.2472004
https://doi.org/10.1109/TCAD.2015.2472004
https://research.tue.nl/en/publications/b5d660d3-0196-477c-9fc7-82d9afcbeab4

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 1

End-to-end Latency Analysis of Dataflow Scenarios
Mapped onto Shared Heterogeneous Resources

Firew Siyoum, Student Member, IEEE, Marc Geilen, Member, IEEE, and Henk Corporaal, Member, IEEE

Abstract—The design of embedded wireless and multimedia
applications requires temporal analysis to verify if real-time
constraints such as throughput and latency are met. This
paper presents a design-time analytical approach to derive a
conservative upper-bound to the maximum end-to-end latency
of a streaming application. Existing analytical approaches often
assume static application models, which cannot cope with the
data-dependent execution of dynamic streaming applications.
Consequently, they give overly pessimistic upper-bounds. In this
work, we use an expressively richer dataflow model of compu-
tation as an application model. The model supports adaptive
applications that change their graph structure, execution times
and data rates, depending on their mode of operation, or scenario.
We first formalize the latency analysis problem in the presence of
dynamically switching scenarios. We characterize each scenario
with a compact matrix in (max,+) algebra using a symbolic
execution of one graph iteration. The resulting matrices are then
composed to derive a bound to the end-to-end latency under a
periodic source. Aperiodic sources such as sporadic streams can
be analyzed by reduction to a periodic reference. We demon-
strate the applicability of the technique with dataflow models
from the wireless application domain. Moreover, the method is
illustrated with a trade-off analysis in resource reservation under
a throughput constraint. The evaluation shows that the approach
has a low run-time, which enables it to be effectively integrated
in multiprocessor design-flows of streaming applications.

Index Terms—end-to-end latency, synchronous dataflow, tem-
poral analysis, max-plus algebra, real-time, dynamism, embedded
streaming applications

I. INTRODUCTION

Contemporary embedded wireless and multimedia applica-
tions are typically implemented on a Multiprocessor Systems-
on-Chip (MPSoC) for power and performance reasons. The
MPSoC commonly comprises heterogeneous resources that are
shared between multiple applications under different schedul-
ing policies. These applications have strict real-time con-
straints such as worst-case throughput and maximum end-to-
end latency. It is crucial to guarantee that such constraints are
satisfied under all operating conditions. Simulation and mea-
surement based analysis techniques cannot guarantee temporal
bounds, since it is impractical, if not impossible, to cover
all possible system behaviors. Thus, analytical techniques
are often used to compute conservative temporal bounds.
Dataflow models of computation (MoCs), in particular, have
been widely used to model streaming applications and analyze
their worst-case temporal properties at design-time. In this
section, we skim through such dataflow analysis models and
highlight the analysis challenges. The section presents the
problem addressed in this work and outlines our approach.

Firew Siyoum, Marc Geilen and Henk Corporaal are with the Department
of Electrical Engineering, Eindhoven University of Technology, Den Dolech
2 5612 AZ Eindhoven, The Netherlands.
E-mail: {f.m.siyoum, m.c.w.geilen, h.corporaal}@tue.nl

x y z
1 1b 2 1c

12

da SDF g1
w

x

y

z
1

1

b

1

1c

1

2 1

2

e

12

a SDF g2

GPP

I/O

NI

DMEM

IMEM

p1

VP

NI

DMEM

IMEM

p2

VP

NI

DMEM

IMEM

p3

VP

NI

DMEM

IMEM

p4

Interconnect

Filters

Memory Controller

Shared
Memory

Fig. 1: Dataflow graphs mapped on a heterogeneous MPSoC

A. Dataflow Analysis Models

A dataflow model is a directed graph, where the nodes,
called actors, denote computation entities and the edges denote
FIFO buffer channels. Actors communicate by sending data
tokens through their ports. There are different variants of
dataflow models, which vary with their levels of expressive-
ness and analysability (cf. Section II). A prominent dataflow
model is Synchronous Dataflow (SDF) [1]. Figure 1 shows
two SDF graphs that are mapped onto a MPSoC. The black-
dots in the figure are initial tokens of channels. The numbers
on the edges indicate token production and consumption rates
of ports. The numbers inside the actors denote Worst-Case
Execution Times (WCETs). A firing of a SDF actor consumes
from each input port as many tokens as the input port rate.
After a timing delay, given by its WCET, it then produces at
each output port as many tokens as the output port rate.

B. Challenges to Dataflow-based Temporal Analysis

A challenge to dataflow-based analysis of present-day
streaming applications is their dynamic behavior. These ap-
plications change their graph structure, data rates and com-
putation loads, depending on their mode of operation. Take
for instance the 802.11a WLAN application. The WLAN
baseband packet decoding consists of 4 modes [2]. These
are Synchronization, Header decoding, Payload decoding and
Cyclic redundancy checking (CRC). Once a packet is detected,
mode 1 executes repeatedly until synchronization succeeds.
Then, the application switches to mode 2 to decode the packet
header. Mode 2 determines the size of the payload, which may

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 2

vary from 1 to 256 OFDM symbols, each with a length of 4µs.
After header decoding, mode 3 is executed as many times as
the number of symbols. The final mode performs CRC and
sends an acknowledgment if the packet is received in a good
order. Each mode may activate a different set of tasks and may
have a different computational load than others.

A conservative static dataflow model, such as Synchronous
Dataflow (SDF) [1], abstracts from such varying operating
modes for the sake of analysability. It models an application
with a static graph that captures the worst-case behavior across
all modes. However, the abstraction leads to overly pessimistic
temporal bounds. This further leads to unnecessarily large
budget reservation of resources such as processors and com-
munication interconnects to guarantee real-time latency and
throughput requirements. Thus, a refined temporal analysis
that considers the different operating scenarios is crucial to
compute tight real-time temporal bounds and, consequently,
avoid unnecessary over-allocation of scarce MPSoC resources.

C. Modeling Dynamic Applications using Scenarios
In this work, we use an expressively richer dataflow model,

called Scenario-aware Dataflow (SADF), as an application
model. SADF [3] has been proposed to model adaptive appli-
cations, which are characterized by dynamic mode switchings.
It splits the dynamic behavior of an application into a group
of static operating modes, called scenarios. Each scenario is
explicitly modeled by a SDF graph, which can have a different
graph structure as well as graph parameters than the other
scenarios. In a finite-state machine (FSM) based SADF, the
possible orders of execution of scenarios are specified by the
language of a FSM [3].

The intent of SADF is to improve the expressiveness of
SDF, while maintaining design-time analyzability. The worst-
case throughput analysis of SADF has been studied in [3]–
[5]. The techniques follow a compositional approach, where
each scenario is first analyzed separately. Then the results
are composed, making use of the possible scenario sequences
given by the FSM. Due to the refined analysis, SADF enables
a more accurate temporal analysis than approaches that do not
consider scenario sequences [6]. Nevertheless, the maximum
end-to-end latency, which is a key real-time requirement, has
never been studied in the presence of dynamically switching
scenarios. In WLAN, for instance, an acknowledgment packet
must be sent within 16µs of the reception of the last symbol
if the cyclic redundancy check is successful. This time guard
of 16µs, known as the Short Intra-Frame Spacing, is a latency
constraint that must be satisfied.

D. This work
In this paper, we present a design-time analytical approach

to compute the end-to-end latency of an adaptive streaming ap-
plication, which has a set of dynamically switching scenarios
modeled with a FSM-based SADF. We define latency in terms
of two causally related actor firings between a source and a
sink actor, in a source and a sink scenario, respectively. This
implies that the latency analysis of SADF requires computing
the temporal distance that separates two causally related events
across (possibly multiple) scenarios. This is unlike the latency
analysis of static SDF, which is only concerned with source
and sink actor firings within the same graph iteration [7], [8].

Application model
Section III.C

Application mapping
(Section III.E)

(3.1) Construct latency graphs
(Section V.A)

(3.2) matrix characterization
in (max,+) (Section IV)

(1) Valid latency
automaton exists?

(Section V.B)

(2) Construct condensed FSM
(Section V.C)

(3.3) (max,+) matrices
of state-sequences

(4) State-space or spectral
analysis (Section VI)

maximum end-to-
end latency

Abort

Yes

No

Fig. 2: Latency analysis framework for dynamic applications

Figure 2 outlines the steps in our latency analysis approach.
(1) It begins with asserting whether the FSM qualifies for

the latency analysis (cf. Section V-B latency automaton). This
is required because a bound to the maximum latency may not
exist for an arbitrary FSM, which has an unbounded length
scenario sequence, due to cyclic transitions, between the two
causally-related firings.

(2) If the FSM qualifies, all possible scenario sequences
between the source and sink scenarios are extracted from the
FSM. This results in a condensed FSM (cf. Section V-C), each
of whose states is labelled with a scenario sequence.

(3) Each scenario sequence is then characterized by a matrix
in (max,+) algebra [9] that captures its end-to-end timing
behavior. The input to the matrix characterization is a given
application mapping (cf. Section III-E), which specifies the re-
source allocations of each scenario on a shared heterogeneous
MPSoC platform. (3.1) First, the causality between source and
sink actors is enforced by constructing the latency graphs
(cf. Section V-A) of source and sink scenarios. (3.2) Then,
a (max,+) characterization matrix is constructed for each
scenario mapping through a symbolic execution of the scenario
for one complete iteration (cf. Section IV-B). (3.3) The matrix
of each scenario sequence is then constructed from the product
of the matrices of the constituent scenario mappings.

(4) The latency is finally derived in either of two different
ways: 1) from a state-space, constructed in a breadth-first-
search manner, by considering the possible transitions between
scenario sequences, and 2) from a spectral analysis of the
single-matrix characterization of all scenario sequences.

E. Contributions
This is the first work on the latency analysis of FSM-

based SADF application models. Previous works [3]–[5], [10]
on such applications are primarily concerned with the worst-
case throughput, which is in essence a Maximum Cycle Mean
(MCM) analysis on a certain throughput or state-space graph.
Unlike the MCM analysis, the knowledge of the possible exe-
cution cycles of the state-space is not relevant for the latency
analysis. The latency computation rather requires trailing all
possible finite length execution paths (scenario sequences) in
the state-space between two events, which correspond to the
firings of a source actor and a sink actor.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 3

The state-space has potentially many occurrences of such
events, following the repeated executions of source and sink
scenarios. This requires appropriate problem formulation to
track all pairs of causally-related source and sink actor firings.
In this work, we achieve this by systematically containing all
such causal relations within scenario-sequences, which end up
to be nodes/states in the state-space graph. As a result, the
latency analysis reduces to finding the state, which has the
event pair with the longest temporal distance.

As a relatively scalable alternative, we also present the
spectral analysis. It involves a recurrence execution (γk+1 =
M · γk) until the state-vector γ converges. Such recurrent
equations are used in [3], [9] for eigenvalue computation (and
hence for throughput). Because of our problem formulation
using condensed FSMs, we extended the algorithm in such
a way that each visited state-vector encodes a conservative
bound to a source-to-sink delay of a scenario sequence. As
such, the set of visited state-vectors form a conservative state-
space for the latency analysis, as opposed to the exact state-
space of the first approach.

We demonstrate the analysis technique with dataflow mod-
els from the wireless application domain. Moreover, we
present a trade-off analysis in resource reservation under a
throughput constraint, which is set by the source’s period.
Our analysis detects if the throughput constraint is not met,
which implies that the maximum latency cannot be bounded.
In this case, the analysis gives the minimum period the
application supports. The evaluation shows that the approach
has a low run-time that enables it to be effectively integrated
in multiprocessor design flows of streaming applications.

II. RELATED WORK

Exploiting classical uni-processor scheduling to multi-core
systems has been widely done to compute end-to-end latency
in distributed real-time systems. These works can be cate-
gorized as modular or holistic. SymTA/S [11] is a modular
approach where each system component is analyzed locally
with classical algorithms. Then, the local results are prop-
agated to other connected components through appropriate
event model interfaces. The analysis is completed successfully
if all event streams converge towards a fixed-point through
an iterative process. An end-to-end latency analysis based on
the SymTA/S approach has been studied in [12]. A related
approach that integrates dataflow MoCs in the SymTA/S
flow has also been presented in [13]. It allows a SymTA/S
component to be modeled as a single-rate SDF graph, also
called Homogeneous SDF (HSDF), which restricts all port-
rates to 1. Holistic approaches [14]–[16] extend classical
algorithms for specific combinations of task model, resource
sharing and communication policy. As such, they integrate
task and communication scheduling into a single analysis
framework. Thus, they may give tight performance bounds by
taking system-level correlations into account. However, they
are not modular and may require a completely new analysis
for a new combination of schedulers and task model [17].

Another modular latency analysis that supports arbitrary
event models, so-called arrival curves, has been presented
in [18]. The approach is based on real-time calculus [19],
which adopts concepts from network calculus to distributed
real-time applications. Real-time calculus employs service

curves to model the availability of resources. The approach
propagates the output service curves of local resource analysis
to connected components for a compositional performance
analysis. By using service curves, the approach supports a
wide range of scheduling policies.

Dataflow MoCs have also been widely used to analyze
streaming applications. In [8], maximum latency analysis for
HSDF graphs has been studied. The technique supports peri-
odic and sporadic sources, arbitrary cycles and delay tokens.
However, analysis of SDF requires conversion to an HSDF
equivalent. In [7], a technique has been presented to compute
the minimum achievable latency between a designated pair
of SDF actors. The approach does not require conversion to
HSDF and uses a state-space analysis, similar to [20], to find
an execution scheme for the minimum latency.

The aforementioned and similar methods assume applica-
tion models that are less suitable to model modal applications.
Even within a static mode, streaming applications require
a task graph that supports cyclic-dependencies, multi-input
tasks, multi-rate tasks and a natural way of handling back-
pressured buffer communication. The above approaches [8],
[12], [13], [16], [18] support only single-rate tasks. Conversion
from multi-rate to single-rate (HSDF) graphs is possible [21].
However, the conversion leads to an exponential growth in the
graph size, which hinders scalability [20].

The compositional analysis framework of [22] and multi-
mode real-time calculus [23] have shown considerable gains
by extending uni-modal real-time systems analysis to multi-
mode. [22] supports a compositional analysis of multiple
multi-modal components through an automaton-based re-
source interface, whose states map to valid combinations
of component modes. This improves the service guarantee
required to ensure schedulability compared to a uni-modal
analysis, which assumes pessimistic workload scenarios, such
as worst-case task combinations. Nevertheless, the analysis
framework is limited to a single resource shared by mul-
tiple components through a hierarchical scheduling policy.
[23], on the other hand, supports multiple resources, despite
its limitation to simpler multi-stage/sequential structures. It
extends the arrival/service curves of real-time calculus to
arrival/service automata, where each state is augmented with
the arrival/service curve of a certain mode. Each automaton
captures only local modal variations of a particular resource.
As a result, unlike our global finite-state machine, system-level
correlations between mode changes, across different resources,
are not taken into account. This possibly leads to pessimistic
workload assumptions and overallocation of resources.

Different dataflow models are also proposed that enhance
the expressiveness of SDF [4], [24]–[27]. The majority
of these dataflow models, however, are either not suffi-
ciently analysable or do not have known analysis techniques.
In expressively Turing-complete dataflow models, such as
DDF [24], HDF [28], KPN [29], BDF [25] and CFDF [26],
basic properties such as deadlock-freedom are undecidable.
On the other hand, FSM-SADF [4], which is the application
model used in this paper, improves the expressiveness of SDF
while still allowing for design-time analysability. Throughput
analysis techniques for FSM-SADF are presented in [3]–[5].
In this paper, we analyse the maximum latency of FSM-
SADF models. Unlike existing dataflow approaches [2], [30],
[31], we avoid constructing resource-aware dataflow models to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 4

analyze resource sharing. Instead, we use worst-case resource
availability curves to model resource sharing. As a result, we
keep the graph size intact and improve scalability.

III. PRELIMINARIES

This section recaps basic dataflow modeling concepts and
gives their formal definitions. Section III-A introduces notation
and Section III-B briefly introduce the (max,+) algebra,
which we use to characterize the execution of dataflow graphs
as linear systems. Sections III-C, III-D and III-E formally
define the application model, the MPSoC platform resource
model and the application-to-platform mapping, respectively.

A. Notation
We use upper-case letters (A,Θ) to denote sets and se-

quences, except for letters M and N that denote matrices.
We use lower-case Latin letters (a) for individual elements,
lower-case Greek letters (α : A → B) for functions, P(A)
for the power set of A and bar accents (γ̄) for vectors. We
use | · | to denote the cardinality of a set, the length of a
sequence or size of a vector. In addition, we use N,N0 and R
for natural numbers starting from 1, natural numbers starting
from 0 and real numbers, respectively. We denote the set of
real numbers extended with −∞ as Rmax = R∪ {−∞}. The
set of real numbers extended with +∞ and −∞ is denoted
as Rmax = R ∪ {+∞,−∞}.

B. (max,+) Algebra Notation
For elements a, b ∈ Rmax, (max,+) algebra defines

a⊕ b def
= max(a, b) and a⊗b def

= a+b. We use the standard max
and addition notation in this paper for better readability. For
a ∈ Rmax, by definition, max(−∞, a) = max(a,−∞) = a
and a + −∞ = −∞ + a = −∞. The algebra is extended to
vectors and matrices as follows.

For n ∈ N, define n def
= {1, 2, · · · , n}. An n dimensional

column vector is an element of the set Rnmax. For vector
γ̄ ∈ Rnmax, the entry at row i ∈ n is denoted as [γ̄]i. For
c ∈ Rmax, scalar to vector addition and multiplication are
given as [c+ γ]i = c+ [γ]i and [cγ]i = c[γ]i, respectively.
Vector addition, subtraction and max operation are element-
wise operations, i.e. for θ̄ ∈ Rnmax, [γ̄ ± θ̄]i = [γ̄]i ± [θ̄]i and
likewise [max(γ̄, θ̄)]i = max([γ̄]i, [θ̄]i). The norm of vec-
tor γ̄ is the maximum entry of the vector, denoted as
‖γ̄‖ = maxi[γ̄]i. For vector γ̄ with ‖γ̄‖ > −∞, the normal-
ized vector is denoted as ¯̄γ, where [¯̄γ]i = [γ̄]i − ‖γ̄‖. We
write γ̄ � θ̄ if ∀i ∈ n, [γ̄]i ≤ [θ̄]i. γ̄ � θ̄ if θ̄ � γ̄. Vector
dot-product is max of sums, which is analogous to sum of
products of standard algebra: I.e. γ̄ · θ̄ = maxi([γ̄]i + [θ̄]i).

The set of m×n matrices is denoted as Rm×nmax . Row i ∈ m
is denoted as [M]i: and column j ∈ n as [M]:j . An entry
at row i ∈ m and column j ∈ n is denoted as [M]ij . For
M,N ∈ Rn×nmax , we write M � N if ∀i, j ∈ n, [M]ij ≤ [N]ij .
Similarly, M � N if N � M . Given matrix M ∈ Rm×nmax

and matrix N ∈ Rn×omax , matrix multiplication is defined using
vector dot-products as [MN]ij = [M]i: · [N]:j . Matrix-vector
product is given as [Mγ̄]i = [M]i: · γ̄.

Two interesting properties of matrix multiplication are
linearity and monotonicity. Monotonicity says if γ̄ � θ̄,
then Mγ̄ � Mθ̄. From the linearity property, we
have the following two relations: M(c+ γ̄) = c+Mγ̄ and
M(max(γ̄, θ̄)) = max(Mγ̄,Mθ̄).

src sft snc mc

Scenario s1

src sft hdm hdc da1

mc

Scenario s2

src sft pdm pdc da2

mc da1

Scenario s3

da2 crc ack spd

shr

Scenario s4

q0 q1

q2q3

ε(q0) = s1

ε(q1) = s2

ε(q2) = s3

ε(q3) = s4

FSM

χ(src) = 4000
χ(sft) = 100
χ(snc) = 1200
χ(mc) = 1
χ(hdm) = 920
χ(hdc) = 920
χ(da1) = 0
χ(pdm) = 920
χ(pdc) = 920
χ(da2) = 0
χ(crc) = 1000
χ(ack) = 1200
χ(spd) = 1
χ(shr) = 1921

Fig. 3: FSM-SADF model of WLAN baseband processing

C. Application Model

We use the FSM-based Scenario-aware Dataflow
(SADF) [4] to model applications. SADF can model
adaptive streaming applications, which change their graph
structure, data rates and execution times depending on the
input workload. For design-time analysability, SADF splits an
adaptive application into a set of static modes of operation,
known as scenarios. Each scenario is modeled by a SDF
graph (SDFG). A SDFG g = (A,C, ι, χ, ρ) is a tuple,
comprising a set A of actors, a set C ⊆ A×A of channels,
number of initial tokens of channels ι : C → N0, the WCETs
of actors in some time-unit χ : A → N0 and the source and
destination port rates of channels ρ : C → N× N.

The execution of a SDFG is a timed simulation of the
executions of its actors. The set of actor firings that returns
the graph back to its initial tokens distribution is referred to
as iteration. The number of firings of each actor within an
iteration is expressed by the repetition vector of the graph.
E.g. the repetition vector of graph g1 of Figure 1 is [1, 1, 2]
for actors x, y and z, respectively.

An execution of an application is a sequence of executions
of the different scenarios, where each scenario is executed for
one iteration. The possible orders of scenario executions are
captured by the language of infinite words of a finite-state
machine (FSM). Given a set S of scenarios, a FSM f on S
is a tuple f = (Q, q0, T , ε). Q is a set of states, q0 ∈ Q
is an initial state, T ⊆ Q × Q is a transition relation and
ε : Q→ S is a scenario labeling. Hence, an adaptive streaming
application is given by the tuple (S, f).

Figure 3 shows the SADF model of WLAN 802.11a base-
band processing. This model is an adaptation to SADF from
the model in [2]. WLAN packets arrive sporadically and
the decoding consists of 4 scenarios, namely Synchronization
(s1), Header decoding (s2), Payload decoding (s3) and cyclic-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 5

(a)
tδ

ξ(tδ)

(b)
tδ

ξ(tδ)

(c)
tδ

ξ(tδ)

(d)
tδ

ξ(tδ)

Fig. 4: Example WCRCs: Appropriate service curves have been provided
from real-time calculus for different schedulers. (a) a fully available resource,
(b) a bounded delay resource that guarantees a certain service rate after a
bounded delay, (c) a periodic resource that periodically processes a request,
(d) a TDM resource that replenishes the allocated slice every frame.

redundancy checking (s4). Once a new packet is detected, sce-
nario s1 executes repeatedly until synchronization succeeds.
Then, scenario s2 decodes the packet header to determine
the size of the payload that may vary from 1 to 256 OFDM
symbols, each with a length of 4µs. After header decoding,
scenario s3 is executed as many times as the number of
OFDM symbols. The FSM approximates this conservatively
by allowing an arbitrary number of payload symbols. Finally,
scenario s4 performs cyclic redundancy check (CRC). If CRC
is successful, an acknowledgment packet must be sent within
16µs of the reception of the last OFDM symbol. This time
guard of 16µs, known as the Short Intra-Frame Spacing
(SIFS), specifies a latency requirement that must be satisfied.

D. Resource Model
The MPSoC platform comprises a set Π of heterogeneous

processor tiles. The interconnect is abstracted with a set Θ of
connections. The platform (Π,Θ) can be shared between mul-
tiple applications under different scheduling policies. Mapping
an application (S, f) to platform (Π,Θ) allocates resources
such as processor budgets. E.g. on a processor under TDM
scheduling, an application is allocated a slice (say 25%) of
the TDM frame. At run-time, the application is preempted by
other applications when it runs out of its allocated slice and
has to wait for the next TDM frame.

Following the same approach as our previous work [10],
we characterize the minimum share an application (S, f)
has on a platform (Π,Θ) with worst-case resource curves
(WCRCs). WCRCs are similar to lower-bound service curves
of RTC [19]. A WCRC ξ(tδ) (Definition 1) specifies the min-
imum amount of resource in service units that an application
is guaranteed to get in a given time interval tδ ∈ N. Figure 4
shows some examples of WCRCs. Service units can be, for
example, processor cycles or connection bandwidth in bytes.

Definition 1 (Worst-case Resource Curve - WCRC). A WCRC
ξ conservatively models a resource r if for any time interval
[u, v) : u, v ∈ N, u ≤ v, if r[u, v) denotes the amount of
service units that an application is guaranteed to get from the
resource over interval [u, v), then r[u, v) ≥ ξ(v − u).

E. Application Mapping
The application-to-platform mapping decides actor-to-

processor and channel-to-connection/tile bindings. It allocates
resources such as processor budgets and buffer-sizes. It also
constructs a static order (SO) schedule between actors that
are mapped on the same processor. The mapping may vary
from one scenario to another. Definitions 2 defines a scenario
mapping, where Ξ denotes the set of WCRC functions.

Definition 2 (Scenario mapping). Given a platform (Π,Θ), a
scenario mapping (g, τ, κ, π, θ, β, σ) is a 7-tuple, where g is
a scenario graph, τ : A → Π is actor-to-processor binding
and κ : C → Θ ∪ Π is channel binding. π : Π→ Ξ and
θ : Θ→ Ξ are the worst-case resource curves of processors
and connections, respectively. β : C → N is the allocated
buffer-sizes of channels. σ is a function that returns the SO
schedule σ(p) = 〈a1, a2, · · · , an〉 of actors ai ∈ A on
processor tile p ∈ Π.

An application mapping (S, f, µ) is a 3-tuple. S is a set of
scenarios, f is a FSM on S and µ is a function that gives the
scenario mapping µ(s) of s ∈ S.

TABLE I: A brief reference to frequently used symbols

Symbol Description Symbol Description
γ̄ time-stamp vector φ(x, k) finish time of kth firing of x

[γ̄]i ith entry of vector γ̄ ψ(x, k) buffer availability time of x
M (max,+) Matrix t̄i symbolic time-stamp of a token
χ(x) WCET of actor x ξ worst-case resource curve
ω(x) WCRT of actor x cxy channel from actor x to y
si example scenario φ̄i the input stream, ith element
qi example FSM state ψ̄i the output stream, ith element

IV. (max,+) MATRIX CHARACTERIZATION OF AN
APPLICATION MAPPING

In this section, we present a (max,+) matrix characteriza-
tion of an application mapping. The characterization constructs
a matrix in (max,+) algebra for each scenario mapping.
The resulting set of matrices are the basis for the latency
analysis presented later in Section VI. The matrix of a scenario
mapping is constructed through a symbolic execution of the
scenario for one complete iteration, as discussed next.

A. Execution of a Scenario Mapping
Given a scenario mapping, an actor is enabled for firing if

1) the actor is next in the static-order schedule, 2) all input
tokens have arrived and 3) there is sufficient output buffer
space. Thus, the enabling time of an actor is determined by
the last satisfied condition, i.e. the maximum of the enabling
times of the above three conditions. An upper-bound to the
completion time of an actor’s firing can be obtained by adding
its worst-case response time (WCRT) to its start time, as shown
in Equation 1. φ(x, k) denotes the upper-bound for the kth

firing of actor x, where ti, to, tp denote input token, output
buffer and processor availability times, respectively.

φ(x, k) = max(ti, to, tp) + ω(x) (1)

ω(x) denotes the WCRT of actor x. It depends on the
scheduling policy used to share the processor tile with other
applications. It is computed from the WCRC ξ of the tile, as
shown in Equation (2). Recall that χ(x) is the WCET of the
actor (cf. Section III-C).

ω(x) = inf{tδ ∈ N | ξ(tδ) ≥ χ(x)}. (2)

Equation (1) illustrates how the entire timing behavior of a
scenario mapping can be analyzed using (max,+) expres-
sions. The input data availability time ti is determined by
the last arriving token, i.e. the maximum of the production
times of all input tokens. The processor availability time tp

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 6

x y
p q

ι(cxy) = n

(a) cxy has n initial tokens

x y
1 1

ι(cxy) = n

qp

ι(cyx) = m− n

(b) cxy has a buffer-size of β(cyx) = m

Fig. 5: Modeling the allocated buffer-size of a channel in RAD

can be derived from the completion time of the last actor that
is executed on the processor. Output buffer availability time
to can be computed from the completion times of previous
actor firings. This is because we employ an acquire-release
FIFO management, where buffer spaces of input tokens are
conservatively released only after the actor firing is completed.
E.g. Figure 5a shows channel cxy from actor x to y with
n ∈ N0 initial tokens. The channel is allocated a buffer-size
of m ∈ N where m ≥ n. The availability times of free
buffer spaces on this channel can be derived by considering
how buffer spaces are modeled in RAD. Buffer spaces are
modeled in RAD by adding another channel in the reverse
direction with as many initial tokens as the number of free
buffer spaces [32], as shown in Figure 5b. The tokens on
the reverse channel cyx represent the free buffer spaces. The
output buffer availability time on channel cxy for the kth firing
of x is given by Equation (3). The availability time is obtained
from the completion time of a previous firing of actor y.

ψ(x, k, cxy) = φ

(
y,

⌈
p× k −m+ n

q

⌉)
(3)

The output buffer availability time to = ψ(x, k) of x for
the kth firing is then the latest buffer space availability time
among all outgoing channels of x, i.e. Cxy = {cxy ∈ C | y ∈
A, cxy = (x, y)}, as shown in Equation 4.

ψ(x, k) = max
cxy∈Cxy

ψ(x, k, cxy) (4)

Example: We show the execution of a scenario mapping of
graph g1 of Figure 1. Assume actor x is mapped on processor
tile p1 and actors y and z are mapped on p2. The allocated
buffer sizes of channels are β(cxy) = 1, β(cyz) = 3 and
β(czy) = 2. The buffers allow the SO schedules σ(p1) = 〈x〉
and σ(p2) = 〈z, y, z〉. We assume TDM scheduling on both
tiles with a TDM frame size of 4 and allocated TDM slice of
2 time-units for both p1 and p2, respectively. To simplify the
example, we assume delay-less interconnect. Accounting for
interconnect delays in the analysis is presented in [10].

An execution of one iteration comprises four actor firings
as given by the repetition vector [1, 1, 2]. Initially, the only
possible firing is actor z. Actor x cannot fire since it does
not have enough output buffer space and actor y is not
next in the SO schedule. When actor z fires, it consumes
token c and produces one token on channel czy . The firing
completes after its WCRT ω(z) = 3. It then produces one
token on channel czy , time-stamped with its production time
3. Then, actor y fires and completes its firing at φ(y, 1) =
max(ti, ψ(y, 1), tp)+ω(y) = max(3, 0, 3)+7 = 10. Note that
ψ(y, 1) = 0 since channel cyz had already 2 free buffer spaces
at the beginning of the iteration. This can also be derived from
Equation (4), which gives ψ(y, 1) = φ(z, 0) = 0. Similarly,

the remaining two firings complete at φ(x, 1) = 10 + 4 = 14
and φ(z, 2) = 10 + 3 = 13. The collection of the time-stamps
of the final tokens marks a bound to the end of the iteration.
This enables temporal analysis of a scenario mapping such as
throughput, which is given by iterations per time-unit [4].

B. (max,+) matrix of a scenario mapping
Next, we execute the above example using symbolic time-

stamps of tokens. By symbolic execution, as opposed to
concrete execution like the above example, we compute a
bound for any iteration, given the collection of time-stamps
that mark the start of the iteration [4]. This is given by a
recurrent relation γ̄k+1 = M ·γ̄k, where γ̄k ∈ Rnmax is a vector
of time-stamps that mark a bound to iteration k. M ∈ Rn×nmax is
a (max,+) characterization matrix of the scenario mapping.

Following [4], the production time of a token can be
expressed symbolically as t = maxi(ti + gi), where ti are
time-stamps of initial tokens and resource availability, and
gi are suitable constants. This can be written in a (max,+)
vector dot-product t̄.ḡ, where t̄ = [ta, tb, tc, td, tp1, tp2]T and
ḡ ∈ R6

max. The time-stamp vector has 6 entries: 4 for the
initial tokens (a, b, c and d) and 2 for processors p1 and p2.

Let the time-stamps t̄a, t̄b, t̄c and t̄d correspond to
the time-stamp vectors [0;−∞;−∞;−∞;−∞;−∞]T ,
[−∞; 0;−∞;−∞;−∞;−∞]T , [−∞;−∞; 0;−∞;−∞;−∞]T

and [−∞;−∞;−∞; 0;−∞;−∞]T , respectively. Similarly,
the time-stamps t̄p1 and t̄p2 encode processor availability
times. They correspond to [−∞;−∞;−∞;−∞; 0;−∞]T

and [−∞;−∞;−∞;−∞;−∞; 0]T . Using symbolic versions
of Equation (1) and (4), where all time-stamps are vectors,
the completion time of the first firing of actor z, φ̄(z, 1), is

φ̄(z, 1) = max(t̄c, ψ̄(z, 1), t̄p2) + ω(z)
= max(t̄c, t̄p2) + ω(z)
= [−∞;−∞; 0;−∞;−∞; 0] + 3
= [−∞;−∞; 3;−∞;−∞; 3].

(5)

Note that t̄c, ψ̄(z, 1) and t̄p2 are the input token, output
buffer and processor availability times, respectively. According
to Equation (4), ψ̄(z, 1) evaluates to φ̄(y, 0), which is the
completion time of actor y in the previous iteration on tile p2.
Hence, ψ̄(z, 1) occurs before the current availability time of
p2: i.e. ψ̄(z, 1) � t̄p2. This simplifies the evaluation as shown
in Equation (5). Equation (5) also updates t̄p2 to φ̄(z, 1). Sim-
ilarly, the completion times of the other firings are φ̄(y, 1) =
[−∞; 7; 10; 7;−∞; 10], φ̄(z, 2) = [−∞; 10; 13; 10;−∞; 13]
and φ̄(x, 1) = [4; 11; 14; 11; 4; 14]. At the end of the iteration,
the new four tokens have the time-stamps t̄′a = φ̄(x, 1),
t̄′b = φ̄(x, 1), t̄′c = φ̄(y, 1) and t̄′d = φ̄(z, 2). The time-
stamps of the two processors become t̄′p1 = φ̄(x, 1) and
t̄′p2 = φ̄(z, 2). Collecting the new symbolic time-stamps as
[t̄′a, t̄′b, t̄′c, t̄′d, t̄′p1, t̄′p2] gives Equation (6), which captures
the worst-case timing behavior of an iteration. The relation
enables to compute a bound for an iteration, given the start of
the iteration. I.e. γ̄k+1 = M · γ̄k.

t′a
t′b
t′c
t′d
t′p1
t′p2

 =

4 11 14 11 4 14
4 11 14 11 4 14
−∞ 7 10 7 −∞ 10
−∞ 10 13 10 −∞ 13

4 11 14 11 4 14
−∞ 10 13 10 −∞ 13

 ·

ta
tb
tc
td
tp1
tp2

 (6)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 7

An algorithm to construct the (max,+) matrix of a given
scenario mapping is presented in [10]. Once a matrix is
constructed for each scenario mapping, the resulting set of
matrices are used to derive a bound to the maximum end-to-
end latency, which is formulated next in Section V.

V. LATENCY ANALYSIS PROBLEM FORMULATION

A streaming application processes a sequence of input data
objects (packets, frames, etc). It then produces the correspond-
ing sequence of output data objects. We define a stream as
a sequence of arrival/production time-stamps of these data
objects, as defined in Definition 3.

Definition 3 (Stream). A stream φ̄ is an element of the set
RN

max such that for φ̄ = 〈φ̄1, φ̄2, · · · , φ̄n, · · · 〉 and n ∈ N,
φ̄n ∈ Rmax is the time-stamp of the nth element of the stream.

The time-stamp of the nth element of a stream denotes the
arrival time of the nth input or the production time of the
nth output. As further discussed in Section V-A, we construct
streams in such a way that there exists a one-to-one causal
relation between the elements of an input stream and its
corresponding output stream. Given an input stream and its
corresponding output stream, the maximum end-to-end latency
is determined by the longest timing separation between their
elements, as defined in Definition 4.

Definition 4 (Maximum latency). Given an input stream φ̄,
its corresponding output stream ψ̄ and a dependency distance
d ∈ N between corresponding input-output elements, the max-
imum latency l ∈ Rmax is defined as

l = max
i∈N

(
ψ̄i+d − φ̄i

)
(7)

where ψ̄i+d is the corresponding output element of input φ̄i.

In Definition 4, the dependency distance d ∈ N denotes
a delay where d output elements are produced even before
the first input arrives. This is due to the initial state of the
application. This section discusses the construction of input
and output streams from scenario graphs and the identification
of the causal relations between elements of the streams.

A. Causality in Input-Output Pairs and Dependency Distance
Given an application mapping (S, f, µ), the input stream φ̄

is constructed from the firings of a single source actor asrc and
the output stream ψ̄ is constructed from the firings of a single
sink actor asnk. We refer to a scenario that asrc belongs to as
a source scenario ssrc ∈ S. Likewise, we refer to a scenario
that asnk belongs to as a sink scenario ssnk ∈ S. There can
be multiple source and sink scenarios, since source and sink
actors may be active in multiple scenarios. A scenario can also
be at the same time a source and a sink scenario.

We require the source and sink actors to fire exactly once
per iteration to enable identification of causally-related source
and sink actor firings. Hence, the repetition factors of the
source and sink actors should be 1 in the repetition vectors of
their corresponding scenario graphs. Otherwise, new actors,
which serve as source and sink actors, can be introduced
with appropriate port-rates. The new actors ensure a repetition
factor of 1, as shown in Figure 6. In the figure, actors u and
v are introduced to record the firing times of actors x and z,
respectively. The original source and sink actors (i.e. x and
z) fire 6 and 2 times per iteration, respectively. The number of

u x y z
1 2 2 36

32

3

16 5

tsrc

(a) Source scenario. Actor u is the source actor.

w

x

y

z v
1

1 2

1

1

1 2

1

2

12 1 2

tsnk

(b) Sink scenario. Actor v is the sink actor.

Fig. 6: Example source and sink scenarios. Actors u and v
are added to construct input and output streams, through the
time-stamps of tokens tsrc and tsnk.

initial tokens on the channel cxu determines which one of the
6 firings of actor x is recorded by the production time of token
tsrc. In the example, this would be the first firing. A similar
approach also works for channel czv . The newly added actors
u and v become the source and sink actors, by replacing the
original source and sink actors x and z. The time-stamps of
token tsrc constitute the input stream φ̄. Similarly, the time-
stamps of token tsnk constitute the output stream ψ̄.

Dependency Distance: Consider the execution of a sequence
of scenarios 〈ssrc, s1, s2, · · · , ssnk〉 that begins with a source
scenario and ends with a sink scenario and no other source
or sink scenario in between. A firing of the source actor
eventually influences some firing of the sink actor. However,
the influence does not necessarily occur in a single execution
of the sequence. This is due to initial tokens that may exist in
the graph, which may cause the sink actor to fire, even before
the source actor fires. We refer to the number of iterations
of the sink scenario before a source firing influences the sink
actor as its dependency distance. E.g. assume Figure 6a is both
a source and a sink scenario, where x and z are source and sink
actors, respectively. z can fire twice and complete its firings
of an iteration before x fires. Token tsnk, which can have only
one time-stamp per iteration, records one of these two firings
of z. This results in a dependency distance of 1, where the
first firing of x influences only the second time-stamp of tsnk.
If there are multiple scenarios between a source and a sink,
the computation of the dependency distance becomes more
involved (cf. Section VII-C for further discussion).

B. Latency Automaton, State-sequence and Latency-sequence

We perform latency analysis by considering scenario se-
quences allowed by the FSM. However, the FSM can po-
tentially specify infinitely many and infinitely long scenario
sequences, due to cycles in the FSM. Scenario sequences
that indefinitely stay within cycles without reaching a sink
scenario may have no practical relevance. The latency of such
sequences is also unbounded. This section discusses a proper
latency automaton that suffices to guarantee a bounded latency.

A common property of FSMs of real-life streaming appli-
cations is a recurrent state qr ∈ Q. Streams are processed in
fragments of data such as packets and frames. Applications
often start processing a data fragment at a particular defined
state. Then, they go through a sequence of states to process the
data fragment and, eventually, return back to the recurrent state

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 8

q0 q1 q2 q3

q4

q5

q6

q7 q8

ssrc

ssnk

ssnk

ssrc

(a) A proper latency automaton

q0 q1

q2

q3

q4

q5

(b) A condensed FSM of Figure 7a

Fig. 7: A proper latency automaton and its condensed FSM

to process the next data fragment. However, the sequence of
states an application goes through may vary with the content,
size or type of the data fragment to be processed.

We define a state-sequence as a finite-length sequence
〈qr, q1, q2, · · · , qn〉 of states that starts with the recurrent state
qr. Section VI later presents the latency analysis of FSM-
SADF whose FSM specifies a finite number of state-sequences
with a common recurrent state. This requirement is formally
given in Definition 5. It defines a proper FSM for latency
analysis, which has a recurrent state qr such that for every
state q ∈ Q, any path starting from q must lead to qr (i.e. has
no infinitely long path, without revisiting qr).

Definition 5 (Latency Automaton). Given an application map-
ping (S, f, µ), a latency automaton of FSM f = (Q, q0,T ,ε) is
a tuple (f,Q↓) such that Q↓ ⊆ Q is a set of final states. We say
(f,Q↓) is proper for latency analysis if it recognizes the lan-
guage L = {q0T (qrP)∗ ∈ Q∗ | T, P ∈ Q∗ : |T |, |P | ≤ m},
where qr ∈ Q is a recurrent state, Q∗ is the set of strings over
Q and m ∈ N0.

According to Definition 5, a proper latency automaton spec-
ifies transient sequences of states (denoted by q0T), followed
by repetitive concatenation of state-sequences (denoted by
qrP). In the sequel, we use the term state-sequence to refer
to also transient sequences. Figure 7a shows an example of
a proper latency automaton. It has six state-sequences, where
q2 is the recurrent state: 〈q0, q1〉, 〈q2, q3, q4〉, 〈q2, q3, q5, q4〉,
〈q2, q3, q5, q6〉, 〈q2, q3, q5, q7, q6〉 and 〈q2, q3, q5, q7, q8, q4〉.
Among the six, q0q1 is the only transient sequence.

A state-sequence may contain source and sink scenarios
in different possible orders. We define a latency-sequence
recursively as a sub-sequence of a state-sequence such that
the first state is labeled with a source scenario, the last state
with a sink scenario and there is no other latency-sequence in
between. The first and the last states of a latency-sequence
can be conveniently referred to as source and sink states,
respectively. Some examples of latency-sequences of Figure 7
are q3q4, q3q5q4, q3q5q6 and q7q6.

· · · q2 q3 q4 q5 q6 q7 q8 q9

ssrc ssrc ssrc ssnk ssrc ssnk ssnk

traverse in the reverse direction starting from q9

Fig. 8: Identifying latency-sequences in a state-sequence

A state-sequence may have multiple latency-sequences.
These latency-sequences can be identified by associating or
pairing each sink state with a source state. To do the pairing,
we start from the last sink state and go in the reverse direction,
as shown by the example of Figure 8. The last sink state is
paired with the first source state that is encountered while
going in the reverse direction. In Figure 8, this gives the
pair (q9, q6), which defines the latency-sequence q6q7q8q9. By
moving further in the reverse direction, the next sink state is
paired with the first source state, which is not yet paired with
another sink state. This gives the pair (q8, q4), which defines
the latency-sequence q4q5q6q7q8. If the number of source and
sink states are not properly matched, some source or sink states
will be left unpaired (in front of the other source-sink pairs).
The implication of such unpaired states in the latency analysis
is discussed in Section VII-D.

C. Condensed FSM
A proper latency automaton has a condensed FSM represen-

tation, which is constructed by replacing each state-sequence
by a new FSM state. Figure 7b shows the condensed FSM
of the latency automaton of Figure 7a, which has 6 state-
sequences. Each of these state-sequences corresponds to a state
in the condensed FSM of Figure 7b, where q0 = 〈q0, q1〉,
q1 = 〈q2, q3, q4〉, q2 = 〈q2, q3, q5, q4〉, q3 = 〈q2, q3, q5, q6〉,
q4 = 〈q2, q3, q5, q7, q6〉 and q5 = 〈q2, q3, q5, q7, q8, q4〉. q0 is
a transient state. The other states are fully connected, which
implies that they may occur in any arbitrary order.

Algorithms 1 and 2 outline the construction of the states of
a condensed FSM. The algorithms do not consider transient
states for readability reasons. All transient states can be simply
found from paths that start with the initial state of the FSM
and end at the recurrent state qr. Algorithm 1 starts from
the recurrent state qr and searches for state-sequences in
every outgoing transition t (line 3). Each outgoing transition
potentially leads to a new state-sequence. Hence, a new state-
sequence is started for each outgoing transition (line 4) that
begins with qr (line 5). Then, the search for valid state-
sequences continues from the destination state of transition
t (line 6) using the recursive procedure of Algorithm 2.

Algorithm 2 recursively searches for state-sequences start-
ing from a given transition t of destination state qs (line
2). Every outgoing transition of state qs (line 12) potentially
starts a new state-sequence (line 13). The new state-sequence
basically contains all sequences that led upto, and including,
state qs (line 14) and (line 15). Then, the search continues
from each of the immediately reachable states of qs (line 16).
A state-sequence is found if a path reaches a recurrent state
qr (line 3-6). A path may also return to an already traversed
state before reaching the recurrent state (line 8). This indicates

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 9

Algorithm 1 Construct the states of a condensed FSM

1: CondensedFSMStates (f = (Q, q0, T , ε), qr)
2: Q← the set of state-sequences
3: for every outgoing transition t = (qr, qs) of qr do
4: qr := new state-sequence
5: push back qr to qr

6: findStateSequences(Q,qr, qr, t)
7: end for
8: return Q

Algorithm 2 Find state-sequences from a given transition t

1: findStateSequences (Q,q, qr, t)
2: qs := destination state of tranition t of FSM f
3: if qs equals qr then
4: Q := Q ∪ {q}
5: return terminate path //state-sequence found
6: end if
7: for every q′ in q do
8: if q′ equals qs then
9: return search fail //unbounded loop detected

10: end if
11: end for
12: for every outgoing transition t = (qs, qu) of qs do
13: qs := new state-sequence
14: copy q into qs

15: push back qs at the end of qs

16: findStateSequences(Q,qs, qr, t)
17: end for

a cycle that creates an infinitely long (or unbounded) state-
sequence. In this case, the algorithm terminates unsuccessfully
(line 9), as the input FSM is not a proper automaton.

If the algorithm succeeds, it returns a set of state-sequences.
Each state-sequence forms a state of the condensed FSM. Each
state of the condensed FSM is annotated with a matrix, which
is the matrix product of the state-sequence matrices. A state-
sequence 〈qr, q1, q2, · · · , qn〉 has a corresponding scenario
sequence 〈sr, s1, s2, · · · , sn〉, where sx = ε(qx) is the sce-
nario associated with state qx. The execution of this scenario
sequence from a time-stamp vector γ̄k−1 yields a new vector
γ̄k = Mn ·Mn−1 · · ·M1 ·Mr · γ̄k−1, where Mx is the matrix
of the scenario mapping of sx (cf. Section IV). Due to asso-
ciativity of (max,+) matrix multiplication, γ̄k = M · γ̄k−1,
where M is given as M = Mn ·Mn−1 · · ·M1 ·Mr. This way,
each state of the condensed FSM gets a matrix that relates the
end-to-end timing behavior of its scenario sequence.

Once a condensed FSM is constructed and its states are
annotated with matrices, a bound to the maximum end-to-
end latency is derived with respect to a given source actor
and a sink actor. Any actor, except the source actor, can be a
sink actor. However, the source actor is treated differently. A
source is an external entity from an application’s perspective.
The arrival of input data objects from a given source, such
as the RF frontend of a baseband modem, can be periodic or
aperiodic. Section VI next derives a bound to the maximum
latency under a periodic source. The analysis of aperiodic
sources is handled by reduction to a periodic reference source
using the approach of [8], as discussed in Section VII-A.

VI. ANALYSING LATENCY UNDER A PERIODIC SOURCE

This section analyses latency under a periodic source for the
basic case. The basic case assumes a dependency distance of 0
(cf. Section V-A) and a maximum of one latency-sequence per
state-sequence (cf. Section V-B). Section VII discusses later
the general case, where these assumptions do not hold.

A periodic source is characterized by a period p ∈ N
between consecutive firings. In dataflow graphs, a periodic
source can be modeled by a SDF actor, with a self-edge, as
shown by actor x of Figure 6. The period of the source is
the WCET of the actor; i.e. p = χ(x). Next, we present two
approaches to derive a bound to the maximum latency under
a periodic source: state-space analysis and spectral analysis.

A. State-Space Analysis
An execution of FSM-SADF is an execution of a sequence

of states allowed by the condensed FSM. The execution of
a state is given by the relation γ̄

k
= M · γ̄

k−1
, where M

is the (max,+) matrix of the state (cf. Section V-C). In the
basic case, there is at most one latency-sequence per state. If
a latency-sequence exists in a state, the source and sink actors
fire exactly once during the execution of the scenario sequence
of the state. The firing times of these two actors are then
recorded by the time-stamp tokens tsrc and tsnk, respectively.
We define the latency of a scenario sequence in isolation as the
relative timing distance between the time-stamps of the source
and the sink time-stamp tokens, i.e. tsrc and tsnk. These two
time-stamps form the ith input-output element pair, φ̄i and
ψ̄i (cf. Definition 4), since dependency distance d = 0 in the
basic case. The latency of the scenario sequence is given by
Equation (8). Note that [γ̄]t denotes the entry of token t in
vector γ̄, and ¯̄γ is a normalized vector.

li = ψ̄i − φ̄i (8)
= [γ̄

k
]tsnk − [γ̄

k
]tsrc

= [¯̄γ
k

+ ‖γ̄
k
‖]tsnk − [¯̄γ

k
+ ‖γ̄

k
‖]tsrc

= [¯̄γ
k
]tsnk − [¯̄γ

k
]tsrc

Equation (8) needs to be computed for all reachable time-
stamp vectors to find the maximum latency. The set of
all reachable time-stamp vectors can be found using state-
space exploration. The state-space is constructed in a breadth-
first-search manner from the condensed FSM, following the
approach of [4]. A state of the state-space consists of a state-
vector pair (q, γ̄

k−1
), where q is a state of the condensed

FSM, executed from a time-stamp vector γ̄k−1. Executing q
from vector γ̄

k−1
yields a new vector γ̄

k
. Since the FSM is

non-deterministic, there may be multiple outgoing transitions
from state q. This results in multiple state-vector pairs (q′, γ̄

k
),

where q′ is a directly reachable state from q. Continuing
the execution from each of these new pairs yields either new
or already-visited pairs. If there are no more new pairs, the
exploration is terminated and the set of reachable time-stamp
vectors are finite. The maximum latency is then derived from
the set Sγ of all reachable vectors γ̄k, as given by Equation (9).

l = max
γ̄k∈Sγ

([¯̄γ
k
]tsnk − [¯̄γ

k
]tsrc) (9)

Figure 9 shows the state-space of WLAN where the payload
is limited to 2 symbols. This gives three state-sequences:
〈q0, q1, q2, q2, q3〉, 〈q0, q1, q2, q3〉 and 〈q0〉. The initial state I
enables to execute all the three state-sequences starting from

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 10

InitialState
I

0
0
0
0

0
0

0
0
0
0
0

‖γ̄‖ = 0

A
〈q0, q1, q2, q2, q3〉

−10519
−10519
−4462
−10522

-4462
−2522

0
−1322
−1922
−1
0

‖γ̄‖ = 16000

B
〈q0, q1, q2, q3〉

−6520
−6520
−4462
−6522

-4462
−2522

0
−1322
−1922
−1
0

‖γ̄‖ = 15161

C
〈q0〉

0
0

−1301
−1301

-1301
−1301

-1301
−1301
−1301
−1301
−1301

‖γ̄‖ = 5301

D
〈q0, q1, q2, q2, q3〉

−3161
−3161
−4462
−10522

-4462
−2522

0
−1322
−1922
−1
0

‖γ̄‖ = 4000

E
〈q0, q1, q2, q2, q3〉

−3161
−3161
−4462
−6522

-4462
−2522

0
−1322
−1922
−1
0

‖γ̄‖ = 4000

Source time-stamp, tsrc

Sink time-stamp, tsnk

Fig. 9: State-space of WLAN with a max payload of 2 symbols

a zero vector. The execution results in three new vectors, A,
B and C. Further executions give two more new vectors D
and E. Additional executions do not lead to new vectors and,
as a result, the state-space terminates. For this state-space,
Equation (9) gives a latency bound of 4462µs.

B. Spectral Analysis
The state-space approach gives the exact worst-case latency.

However, it may suffer from state-space explosion [33], as
the number of states increases. As a relatively more scalable
alternative, we present the spectral analysis approach. The
basis of the analysis is the recurrent execution γ̄k = M · γ̄k−1,
where γ̄0 is the initial time-stamp vector. The execution of
the recurrence relation is terminated once the time-stamp
vector returns to a recurrent vector i.e. ¯̄γk = ¯̄γk−n for some
n ∈ N. This is because the execution enters a periodic phase
and the vectors will repeat themselves afterwards [9]. Such
recurrence equations are used in the literature [9] to compute
the eigenvalue of the matrix. In [4], the technique is applied to
analyse the worst-case throughput of scenarios under a fully-
connected FSM, since the eigenvalue gives the maximum cycle
mean, which determines the worst-case throughput. This is
achieved by constructing a single-matrix M representation,
applying the max operator on the matrices of the individual
scenarios. In this paper, we adopt the technique for latency
analysis. First, the single-matrix representation is constructed,
taking the maximum of the matrices of all scenario sequences
(or states of the condensed FSM). I.e. M = maxq∈QMq

where Mq is the matrix of state q and Q is the set of states
of the condensed FSM. Once such a matrix is constructed,
the latency analysis is carried out through the recurrence
equation. However, unlike throughput, the analysis is not
an eigenvalue computation. Instead, the maximum latency is
computed according to Equation (9), where Sγ is the set of
all encountered vectors until the periodic phase is reached.

VII. EXTENSIONS

In Section VI, the analysis is presented for a periodic source,
where the basic case is assumed (dependency distance of 0 and
at most one latency-sequence per state-sequence). This section
discusses the extension of the analysis for a more general case.
A. Aperiodic Sources

It is shown in [8] that the latency of aperiodic sources,
such as sporadic and bursty sources, can be analysed by
reduction to a periodic reference. The same approach can also
be applied to FSM-SADF models. In this section, we show
the analysis for the case of a sporadic source. A sporadic
source produces events at arbitrary moments, but with some
minimum inter-arrival time of d ∈ N, as shown in Figure 10.
The corresponding events of a reference periodic source are
also shown in dashed lines, whose period equals the minimum
inter-arrival time d.

time

d

Fig. 10: Sporadic events with minimum inter-arrival time of d

The linear timing property of FSM-SADF enables to anal-
yse latency under a sporadic source using a reference periodic
source, by applying the same technique as [8]. Linear timing
states that the production times of tokens cannot be delayed
by more than the delays in the availability of input tokens [2],
[31]. The linearity property of FSM-SADF can be seen from
the linearity of (max,+) matrices, as shown in Equation 10,
where δ̄ ∈ Rnmax is a delay vector, whose entries are all non-
negative; i.e. δ̄ � u[0].

M · (γ̄ + δ̄) �M · γ̄ + ‖δ̄‖ (10)

Equation 10 shows that FSM-SADF has linear timing prop-
erty, since M can also denote the matrix of a sequence of
scenarios. The maximum latency under a sporadic source is
then at most equal to the maximum latency computed for the
reference periodic source. If an input from a sporadic source
arrives later than its periodic reference by ‖δ̄‖ ≥ 0 time units,
the firing of the sink will be delayed in the worst-case by ‖δ̄‖,
due to linear timing. Thus, the relative maximum timing dis-
tance between the sink and the source time-stamp tokens does
not increase; i.e. (tsnk + ‖δ̄‖)− (tsrc + ‖δ̄‖) ≤ tsnk − tsrc.
B. Multiple latency-sequences per state-sequence

In this case, the computed latency from Equation 8 would
be based on only the last latency-sequence of the state-
sequence. The other latency-sequences would not be part of
the analysis, since the source and sink time-stamp tokens tsrc
and tsnk keep the record of the last firings of the source
and sink actors by overwriting previous firings. This may
lead to an underestimation of the latency. One solution to
handle such cases is to carry out the analysis in multiple
steps, by considering only one latency-sequence at a time.
For instance, Figure 8 shows an example of a state-sequence
that has three latency-sequences. In this case, the analysis is
carried out three times. First, only (q3 and q5) are labeled as
source and sink scenarios. In the second and the third analyses,
only (q4 and q8) and (q6 and q9) are labeled as source and sink
scenarios, respectively. The maximum latency is then obtained
from the maximum among these three possibilities.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 11

C. Non-zero dependency distance
If the dependency distance d > 0, the (i + d)th output

element ψ̄i+d is causally related to the ith input element φ̄i.
The first d sink firings do not have corresponding source firings
and, hence, latency cannot be defined for them. As a result,
the analysis can be reduced to the case where the dependency
distance is zero. This can be achieved by starting the analysis
from the state of the application where the first d sink firings
are completed. To realize this, each state-sequence needs to
be executed while blocking (not firing) the source actor until
the sequence deadlocks. The resulting scenario graphs get new
distributions of initial tokens, where the first sink firing has a
causal dependency with the first source firing.

D. Unpaired source and sink scenarios in a state-sequence
It is possible that some source (or sink) scenarios can be

left without being paired with sink (or source) scenarios. Such
unpaired scenarios are always in front of the other source-sink
pairs of a state-sequence. The analysis of Section VI permits
unpaired source scenarios. (A good example is the case of
WLAN, which is discussed in Section VIII-A.) This is because
all unpaired source scenarios are in front of the latency-
sequences of a state-sequence. As a result, the source time-
stamp token tsrc gets overwritten as these latency-sequences
are executed later in the sequence. Hence, the timing distance
between tsrc and tsnk eventually depends only on the latency-
sequences (i.e. the paired source-sink scenarios). However, it is
not possible for some sink scenarios to be left unpaired, since
this would imply a non-zero dependency distance, where a
sink actor can fire before the source fires.

VIII. EVALUATION

This section evaluates the presented analysis techniques.
Section VIII-A and VIII-B analyze the latencies of two
wireless applications: WLAN 802.11a and 3GPP’s LTE. Sec-
tion VIII-C binds these applications onto a multi-core platform
model and discusses trade-offs between resource allocation
and achievable temporal bounds. Section VIII-D evaluates run-
time and scalability. The techniques are implemented in a
publicly available dataflow analysis tool-set, SDF3 [30]. The
experiments are carried out in a 2.4GHz dual-core Linux PC.

A. WLAN 802.11a baseband processing
The payload size of a WLAN packet may vary from 1 to

256 OFDM symbols, each of which is 4µs long (cf. Figure 3).
Since packets arrive sporadically, the maximum latency is
equivalent to the case of a periodic source of period 4µs
(cf. Section VII-A). After these symbols are demodulated and
decoded, CRC is performed. If CRC is successful, an acknowl-
edgment must be sent within 16µs of the end of reception. This
defines a latency requirement between the reception of the last
symbol and the sending of the acknowledgement. Hence, the
source and sink actors are actors src and spd, where the source
scenario is s3 i.e. ε(q2) and the sink scenario is s4 i.e. ε(q3).
Scenario s3 is executed as many times as the number of OFDM
symbols. The FSM of Figure 3 conservatively approximates
this behavior by allowing an arbitrary number of payload
symbols, as indicated by the self-transition in state q2. As
a result of this self-transition, Algorithm 1 fails to construct
a valid condensed FSM. To address this issue, the analysis
is carried out on the original exact FSM, which has 256

src mem dem est adp cqi

dmp dec mc

Scenario s1

src mem dem est adp cqi

dmp dec dda
p6

Scenario s2, s3, s4, s5 p ∈ {1, 11, 12, 13}

q0

q1

q2

q5

q4

q3

ε(q0) = s1

ε(q1) = s2

ε(q2) = s2

ε(q3) = s3

ε(q4) = s4

ε(q5) = s5

(a) A dynamically changing graph structure of LTE

I q1 q2 q3

q1 = 〈q0, q3〉
q2 = 〈q0, q1, q4〉

q3 = 〈q0, q1, q2, q5〉

(b) condensed FSM

Fig. 11: FSM and condensed FSM of LTE

FSM states labeled with scenario s3. The 256 states have
the form qi2, where i runs from 0 upto 255. This results in
a condensed FSM that has 257 state-sequences. One state-
sequence is 〈q0〉, which captures the repeated execution of
scenario s1 until synchronization succeeds. The remaining
256 sequences have the form 〈q0, q1, q

0
2 , q

1
2 , · · · , qi2, q3〉, which

specifies the scenario sequence needed to decode a packet of
length i + 1 symbols. In these scenario sequences, only the
last source scenario at qi2 is paired with a sink scenario, while
the other source scenarios are unpaired. This is allowed by the
analysis as discussed in Section VII-D.

The latency of the model has been analysed with both the
state-space (SS) and the spectral analysis (SA) techniques.
The constructed state-space has 514 states (state-vector pairs).
The obtained maximum latency bound equals 4.46µs and the
analysis took 1200ms. In fact, all visited states, which have
a latency-sequence, have given the same latency bound as the
maximum latency. The SA also gives the same latency bound
in this case and its analysis run-time is only 84ms.

B. Long Term Evolution (LTE) baseband processing
LTE is a recent (pre-4G) standard in cellular wireless

communication. LTE’s downlink frame consists of 10 sub-
frames. Each sub-frame is 1000µs long and has 14 OFDM
symbols. Hence, the source fires periodically with a period
of 1000µs/14 = 71.4µs. The 14 symbols are allocated to
different data and control channels. The three possible channel
allocations are 1, 2 or 3 control channels, followed by 13,
12, or 11 data channels respectively. The FSM-based SADF
model of LTE comprises five scenarios s1−s5 [33]. A compact
version of this model is shown in Figure 11a.

Scenario s1 decodes a control format indicator channel that
is allocated to symbol 1. Scenario s2 decodes a control channel
that is allocated to symbols 2 and 3. Scenarios s3, s4 and s5

decode a data channel that is allocated from symbol 2 to 14, 3
to 14, and 4 to 14, respectively. Sub-frame processing always
starts at scenario s1 (i.e. source scenario) and terminates at
s3, s4 or s5 (i.e. sink scenarios). This results in three possible
state-sequences (one for each of the three possible sub-frame
types), as shown by the condensed FSM of Figure 11b.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 12

All the three state-sequences of LTE are unbounded for the
given source period. This means that the state-sequences are
slower than the rate of the source. As a result, the temporal
distance between the source and the sink diverges indefinitely
and the latency becomes unbounded. This requires speeding-
up critical actors to get the state-sequences bounded. A state-
sequence is bounded if and only if its matrix has a cycle-time
vector [5] whose entries are all the same. This indicates that
all actors have the same execution rate. For instance, if actor
dec is accelerated by a factor of 4, all state-sequences become
bounded for the source period of 71.4µs and the application
achieves the throughput constraint set by the source. In this
case, the derived latency bound is 1568µs, according to both
the SA and SS techniques. The state-space has 13 states and
the maximum latency is observed for the sequence 〈q0, q5〉.
The run-time is under 12ms for both techniques.

If critical actors, such as actor dec, are not accelerated, the
minimum period the graph can support is only 127µs. Any
period lower than this becomes too fast to be supported by the
application. When the application is run under this minimum
period, the latency bound is 3752µs, according to both SS and
SA techniques. The state-space has 157 states. The maximum
latency is observed for state-sequence 〈q0, q5〉 and the other
sequences have a lower latency. The analysis run-time is under
20ms for both techniques.

Conservativeness of the spectral analysis: The computed
latencies in the above cases are the same for both SS and SA
techniques. This holds in all cases where the condensed FSM
is fully connected and has no transient sequences. Otherwise,
the SS gives the exact worst-case latency, while the SA gives
only a conservative bound. Table II shows one such case.
The evaluation is based on the LTE model of Figure 11,
where the FSM is modified to make sequence 〈q0, q5〉 transient
and the other two sequences periodic. Moreover, actor dec
is accelerated to keep the latency bounded. The acceleration
factor is 1

4 ×χ(dec) in all scenarios except in scenario s5, for
which it is varied as shown in the first column.

TABLE II: Conservativeness of the spectral analysis

Acceleration factor
in Scenario s5

χ(dec)
Latency
SS (µs)

Latency
SA (µs)

Difference
(%)

1
1
× χ(dec) 970 - - -

5
6
× χ(dec) 808 2700 3212 18.9

4
5
× χ(dec) 776 2636 3084 16.9

3
4
× χ(dec) 727 2538 2888 13.7

2
3
× χ(dec) 646 2376 2564 7.9

1
2
× χ(dec) 485 2054 2054 0

1
4
× χ(dec) 242 1568 1568 0

C. Resource Reservation vs. Temporal Bound Trade-offs
This section demonstrates how the presented latency analy-

sis techniques can be used for a trade-off analysis between
resource reservation and achievable temporal bounds for a
software-defined radio (SDR) design using the same WLAN
and LTE FSM-SADF models. A SDR comprises a heteroge-
neous MPSoC platform that is shared between multiple wire-
less radio applications. For instance, the baseband processor
of high-feature phones is a MPSoC [34] that supports multiple
applications, such as WLAN for wireless connectivity and
WiMax and LTE for 3G/4G cellular connectivity.

TABLE III: Constructed actor-to-processor bindings

Appl. GPP1 VP1 VP2 VP3 WPA1 WPA2 GPP2
Binding-1

WLAN mc, dda1,
dda2, crc

shift, sync,
hdem, pdem - - hdec,

pdec - ack, spld,
shdr

LTE mc,dda,
mem, dem

est, adp,
cqi, dmp - - - dec -

Binding-2

WLAN mc, dda1,
dda2, crc shift, sync hdem pdem hdec,

pdec - ack, spld,
shdr

LTE mc,dda,
mem, dem est adp,

cqi dmp - dec -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3
x 10

−4

Allocated TDM Slice

 W
C

T
 (

ite
ra

tio
ns

/n
s)

WLAN Binding−1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

Allocated TDM Slice

 W
C

L
(µ

s)

WLAN Binding−1

100 500 103 3x103 104 TDM frame sizes

Fig. 12: Timing Analysis of WLAN Mapping

1) Platform: A typical SDR MPSoC (cf. Figure 1) com-
prises a general-purpose processor (GPP) (e.g. ARM) for
control and generic tasks, a set of vector processors (VPs) (e.g.
EVP [35]) for tasks such as synchronization and demodulation,
and a set of weakly-programmable hardware accelerators
(WPAs) for tasks such as Turbo decoding. Each processor tile
has a local data and instruction memory, but has no cache. It is
assumed these processors are connected through a predictable
interconnect [36] that uses a contention-free routing, based
on TDM switching. Hence, each connection has a guaranteed
bandwidth and maximum latency. For all connections, we
assume the same bounded delay WCRC (cf. Figure 4b).

2) Application mapping: We constructed two sets of
actor-to-processor bindings, where control-oriented tasks are
mapped on the GPP and signal processing tasks are mapped
on the VPs, as shown in Table III. A static-order schedule is
constructed per tile between actors of the same application.
The buffer-size of each channel is set to a fixed value, which
equals twice the total number of tokens produced on the
channel in one iteration. We set the buffer-sizes to fixed values
in order to control the effects of variable buffer-sizes on
the temporal analysis. Both applications are intended to run
together on the same platform, where TDM scheduling is used
to arbitrate the processor tiles between them.

3) Temporal Analysis: Figure 12 shows the worst-case
throughput (WCT) and the worst-case latency (WCL) of
WLAN Binding-1 for different TDM frame sizes and slice
allocations. The results for Binding-2 are similar to Binding-
1, as the serial dependencies from actor sft to hdem and
pdem limit potential gains from parallelization. The required
throughput is 2.5× 10−4 per ns. The figure on the left shows
that this throughput is not met until the slice allocation is
sufficiently large. A bound to the maximum latency does not
also exist if the throughput requirement is not met. E.g. for
a frame size of 100, TDM slices less than 0.5 make the
application unbounded. Once the throughput requirement is
met, increasing the slice allocation does not lead to a further
increase in throughput but helps only to reduce the latency.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 13

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1
x 10

−6

Allocated TDM Slice

 W
C

T
 (

ite
ra

tio
ns

/n
s)

LTE Binding−2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15
x 10

6

Allocated TDM Slice

LTE Binding−2

 W
C

L
(n

s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4
x 10

6

Allocated TDM Slice

 M
in

 S
up

po
rt

ed
 P

er
io

d
(n

s)

LTE Binding−2

103 104 5x104 105 106 TDM frame sizes

Fig. 13: Latency analysis of LTE mapping

0.5 1 2 4 5 6 10
0

1

2

3

4
x 10

5

Initial Tokens (x100)

R
un

−
tim

e
(m

s)

Run−time: #Initial tokens

1 2 3 4 5 6 7
0

0.5

1

1.5

2
x 10

5

State−sequences (x100)

Run−time: #State−sequences

0.2 0.4 0.6 0.8 1
0

1

2

x 10
5 Run−time: on a 16−core model

0 0.2 0.4 0.6 0.8 1

2

4

6

8
x 10

4

Allocated TDM Slice

W
C

L
(µ

s)

SA

SS

WCL

Fig. 14: Analysis run-time for large problem sizes

Figure 13 shows the timing analysis of the LTE processing
in Binding-2. This binding gives almost twice the performance
of Binding-1 (not shown) for a similar resource reservation.
The left-most figure shows that a TDM frame size of 104ns
gives the best performance. Shorter frame sizes have lower
performance due to extra overhead from frequent context
switching. Longer frame sizes (e.g. 106ns), on the other hand,
have lower performance due to longer response times. How-
ever, this frame size of 104ns gives a degraded performance
for WLAN if both applications are running together. As a
compromise, one may select a frame size of 103ns.

None of the resource reservations of the two LTE bindings
satisfies the throughput requirement, which is dictated by the
period of the source, 71.4µs. Thus, a bound to the maximum
latency also does not exist for this source period. The middle
and the right-most figures of Figure 13 show the maximum
latency and the minimum supported period, respectively, for
different frame sizes and TDM slice allocations. For instance,
for a TDM frame size of 103ns and allocated slice of 0.7, the
minimum supported period equals 238µs and a bound to the
maximum end-to-end latency equals 1982µs.
D. Scalability

Two key parameters that influence the run-time of the
analysis techniques are the number of state-sequences and the
size of the (max,+) matrices. The number of state-sequences
is the same as the number of states of the condensed FSM. The
size of the matrices (i.e. n×n) is determined by the total num-
ber n of initial tokens. The two left-most plots of Figure 14
show how the run-time of the analysis scales with increasing
number of initial tokens and state-sequences. The experiments
are conducted by randomly adding synthetic initial tokens and

FSM transitions in the LTE model of Figure 11. The right-
most plot of Figure 14 shows the run-times of the SS and
SA techniques for a synthetic binding, which is constructed
by duplicating LTE Binding-2 of Table III over a 16-core
MPSoC platform model, where the two instances of LTE are
sequentially connected, the source period is set to 2500µs and
the TDM frame size is 100µs.

The matrix of each scenario is constructed through a
symbolic execution of one graph iteration, as presented in
Section IV. Given these matrices, the analysis with the SA
technique involves three separate steps. The first step is
constructing the matrices of the state-sequences, which has
a complexity of O(l ·m · n3), where l is number of state-
sequences, m is length of state-sequences and O(n3) is the
complexity of matrix-to-matrix multiplication. The second step
is a max operation on these matrices, which is linear with
the number of state-sequences and the size of the matrices.
The third step is a spectral (eigenvalue) analysis of the final
matrix using Algorithm 3 of [3]. The algorithm is based on
the recurrent execution γk+1 = M · γk, until a periodic phase
is reached. Thus, it has a complexity of O(t · n2), where t is
the length of the transient phase and O(n2) is complexity of
matrix-to-vector multiplication.

The analysis with the state-space technique also first re-
quires constructing the matrices of the state-sequences. It
further requires a matrix-to-vector computation of complexity
O(s · n2), where s is the size of the state-space, which
is constructed through a breadth-first-search algorithm. As a
result, it has time complexity, which is polynomial with the
number of initial tokens, similar to the SA technique. However,
the size of the state-space may increase exponentially with the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXX 20XX 14

number of state-sequences. This is because the execution of a
FSM of l states gives at most l and ll new states, respectively,
after the first and second rounds of execution. Consequently,
the performance of the state-space technique may degrade with
increasing number of states. E.g. in the right-most plot of
Figure 14, the state-space has about 104 states). However, the
results show comparable run-time between the two techniques
for increasing number of initial tokens, as shown by the
left-most plot. This is justifiable since the number of state-
sequences in this experiment is as low as three state-sequences.

IX. CONCLUSION

We have presented a systematic analytical approach to
compute a conservative bound to the maximum end-to-end
latency of dataflow applications that are mapped onto a
shared heterogeneous platform. The approach targets dynamic
application graphs that may change their graph structure
as they switch between different modes. A latency bound
is derived with respect to a given periodic source, which
also sets a throughput constraint. The technique has time
complexity, which is polynomial with the number of initial
tokens. Thus, reducing the number of tokens becomes crucial
for a scalable analysis. To that end, the approach constructs
compact (max,+) matrices, which characterize the end-to-
end temporal behavior of scenario mappings over a graph
iteration. An upper-bound to the maximum latency is then
derived through a state-space exploration or spectral analysis
over the matrices of the possible scenario sequences. The
technique can be combined with existing throughput and
boundedness analysis methods for resource reservation under
real-time constraints. The evaluation results show that the
techniques can be effectively integrated in multiprocessor
design flows of streaming applications.

REFERENCES

[1] E. Lee and D. Messerschmitt, “Synchronous dataflow,” Proceedings of
IEEE, 1987.

[2] O. Moreira, “Temporal Analysis and Scheduling of Hard-Real Time
Radios on a Multi-processor,” Ph.D. dissertation, Eindhoven University
of Technology, 2011.

[3] M. Geilen, “Synchronous dataflow scenarios,” ACM Transactions on
Embedded Computing Systems, 2011.

[4] M. Geilen and S. Stuijk, “Worst-case performance analysis of syn-
chronous dataflow scenarios,” in CODES/ISSS, 2010.

[5] F. Siyoum et. al, “Worst-case throughput analysis of real-time dynamic
streaming applications,” in CODES+ISSS, 2012.

[6] S. Stuijk et al., “A predictable multiprocessor design flow for streaming
applications with dynamic behaviour,” in DSD, 2010.

[7] A. Ghamarian et. al, “Latency minimization for synchronous data flow
graphs,” in DSD, 2007.

[8] O. Moreira et al., “Scheduling multiple independent hard-real-time jobs
on a heterogeneous multiprocessor,” in Proc. EMSOFT, 2007.

[9] B. Heidergott et. al, Max Plus at Work: Modeling and Analysis of
Synchronized Systems. Princeton University Press, 2006.

[10] F. Siyoum, M. Geilen, and H. Corporaal, “Symbolic analysis of dataflow
applications mapped onto shared heterogeneous resources,” in DAC,
2014.

[11] R. Henia et. al, “System level performance analysis-the SymTA/S
approach,” Computers and Digital Techniques, IEEE Proc., 2005.

[12] S. Schliecker and R. Ernst, “A recursive approach to end-to-end
path latency computation in heterogeneous multiprocessor systems,” in
CODES+ISSS, 2009.

[13] S. Schliecker, S. Stein, and R. Ernst, “Performance analysis of complex
systems by integration of dataflow graphs and compositional perfor-
mance analysis,” in DATE, 2007.

[14] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocess. Microprogram., 1994.

[15] P. Pop, P. Eles, and Z. Peng, “Schedulability analysis and optimization
for the synthesis of multi-cluster distributed embedded systems,” in
DATE, 2003.

[16] J. Kim et. al, “A novel analytical method for worst case response time
estimation of distributed embedded systems,” in DAC, 2013.

[17] S. Perathoner et. al, “Influence of different system abstractions on the
performance analysis of distributed real-time systems,” in EMSOFT,
2007.

[18] L. Thiele and N. Stoimenov, “Modular performance analysis of cyclic
dataflow graphs,” ser. EMSOFT, 2009.

[19] S. Chakraborty et. al, “A general framework for analysing system
properties in embedded system designs,” in DATE, 2003.

[20] A. Ghamarian et. al, “Throughput analysis of synchronous data flow
graphs,” in ACSD, 2006.

[21] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Schedul-
ing and Synch., 2009.

[22] Phan, L.T.X. and Insup Lee and Sokolsky, O., “Compositional Analysis
of Multi-mode Systems,” in ECRTS, 2010.

[23] Phan, L.T.X. and Chakraborty, S. and Thiagarajan, P.S., “A Multi-mode
Real-Time Calculus,” in Real-Time Systems Symposium, 2008.

[24] J. Buck, “A dynamic dataflow model suitable for efficient mixed hard-
ware and software implementations of DSP applications,” in CODES,
1994.

[25] E. Lee, “Consistency in dataflow graphs,” IEEE Trans. on Parallel and
Distributed Systems, 1991.

[26] W. Plishker et. al, “Functional DIF for rapid prototyping,” in Interna-
tional Symposium on Rapid System Prototyping, 2008.

[27] P. Wauters et. al, “Cyclo-dynamic dataflow,” IEEE Transactions on
Signal Processing, 1996.

[28] A. Girault et. al, “Hierarchical finite state machines with multiple con-
currency models,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 1999.

[29] G. Khan, “The semantics of a simple language for parallel program-
ming,” in IFIP, 1974.

[30] S. Stuijk et. al, “SDF3: SDF For Free,” in ACSD, 2006.
[31] M. Wiggers, “Aperiodic multiprocessor scheduling for real-time stream

processing applications,” Ph.D. dissertation, 2009.
[32] P. Poplavko, “An accurate analysis for guaranteed performance of

multiprocessor streaming applications,” Ph.D. dissertation, Eindhoven
University of Technology, 2008.

[33] F. Siyoum et. al, “Analyzing Synchronous Dataflow Scenarios for
Dynamic Software-defined Radio Applications,” in SOC, 2011.

[34] F. Clermidy et. al, “A 477mW NoC-based digital baseband for MIMO
4G SDR,” in ISSCC, 2010.

[35] K. van Berkel et. al, “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP J. Appl. Signal Process.,
2005.

[36] K. Goossens et al., “The Æthereal network on chip: Concepts, architec-
tures, and implementations,” vol. 22, no. 5, 2005.

Firew Siyoum Firew Siyoum holds a Ph.D., in
the areas of model-based design of streaming appli-
cations, from Eindhoven University of Technology,
The Netherlands. He received his B.Sc. in Electrical
Engineering from Mekelle University, Ethiopia, and
his M.Sc. in Embedded Systems from Eindhoven
University of Technology. His research interests in-
clude model-based design, analysis and synthesis
of embedded systems and multiprocessor system-
on-chips, with a special focus on multimedia and
wireless application domains.
Marc Geilen Marc Geilen is an assistant professor
in the Department of Electrical Engineering at Eind-
hoven University of Technology. He holds an M.Sc.
in Information Technology and a Ph.D., in the areas
of formal verification, from Eindhoven University of
Technology. His research interests include modeling,
simulation and programming of multimedia systems,
multiprocessor systems-on-chip, networked embed-
ded systems and cyber-physical systems, and multi-
objective optimization and trade-off analysis.

Henk Corporaal Henk Corporaal is a professor in
Embedded System Architectures in the Department
of Electrical Engineering at Eindhoven University
of Technology. He holds an M.Sc. in Theoretical
Physics from University of Groningen, The Nether-
lands, and a Ph.D. in Electrical Engineering, in the
area of Computer Architecture, from Delft Univer-
sity of Technology, The Netherlands. His current
research interests are low-power single and multi-
processor architectures, their programmability, and
the predictable design of real-time systems.

