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Abstract

Hybrid choice models have been developed as an extension of discrete choice models, particularly multinomial logit models, in 
an attempt to include attitudinal variables. The quintessence of hybrid choice models is that a model of attitude formation is
estimated and the estimated attitudes are added to the commonly used set of attributes in discrete choice models: attributes of the 
choice alternatives and socio-demographic variables. The most commonly applied model is based on linear specifications, both
for the attitude model and the utility function. In this review paper, we discuss the principles underlying the hybrid choice model, 
summarize the specifications used in previous applications of the model and then continue discussing recent progress that added 
social influence to the model specification and replaced the linear specification of the utility function with a nonlinear function.

© 2014 The Authors. Published by Elsevier B.V.
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Group.
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1. Introduction

Discrete choice analysis has become a standard approach for the analysis of activity-travel choice behaviours, 
such as travel mode, residential and activity locations, car ownership, and so forth1,2. Numerous authors have 
proposed alternative discrete choice models to represent a behaviourally more realistic choice process. However, it is 
not easy to completely understand and represent a decision-maker’s choice behaviour because a considerable 
number of difficult to measure factors, such as decision-makers’ latent attitudes, tastes, perceptions, beliefs, values,
etc. may influence the choice process. These unobservable factors and the causal relationships among them are 
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difficult to identify. The hybrid choice model (HCM) represents an attempt to identify such unobservable factors and 
include them into a discrete choice analysis.

In the present paper, we discuss the principles underlying the HCM. The paper serves two aims. First, we give an 
overview of the HCM framework, which should be helpful for readers new to the field in understanding the original 
HCM formulation. Second, we review several variations of the HCM, including the authors’ elaborations of its sub-
frameworks. These efforts allow different representations of choice behaviour. In particular, first, we focus on the 
model incorporating social influences. Social influence can be defined as the influence of choices of social network 
members. Second, we show how the model can accommodate a nonlinear utility function specification. Assuming 
nonlinear relationships is theoretically more appealing because it represents a more general approach to model 
specification.

This paper is organized as follows. The following section presents an overview of the original framework,
underlying the HCM, and commonly used formulations and estimation methods. In the third section, recent progress 
in accommodating social influence and nonlinear utility function are explained. The last section presents a 
discussion and conclusion.

2. Overview of the hybrid choice model

HCM can be viewed as an expanded discrete choice modeling framework, which integrates different types of 
models into a single structure that is estimated simultaneously3. Basically, HCMs incorporate a latent variable model 
into a discrete choice model in order to improve the explanatory power of the choice model by considering the 
effects of decision makers’ latent attitudes. The HCM framework is illustrated in Fig. 1. The ellipses represent 
unobservable variables, while the rectangles represent observable variables. Each of these sub-models comprises a 
structural component and a measurement component. Since the latent attitudes (i.e. latent variables) cannot be 
directly observed from revealed choices, they should be identified through a set of attitudinal indicators. The latent 
variable model permits identifying latent constructs as a function of the indicators, and capture the causal 
relationships between exogenous explanatory variables and the latent variables. By simultaneously integrating 
discrete choice and latent variable models, the latent variables can be treated as explanatory variables in the utility 
functions of choice alternatives. According to the models included, this structure has also been referred to as the 
integrated choice and latent variable (ICLV) model4.

Fig. 1. Framework for hybrid choice model: an integrated discrete choice and latent variable model (adapted from Ben-Akiva et al.5).
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Fig. 2. Framework for hybrid choice model: an expanded model integrating choice, latent variable and latent class models with flexible error 
structures (adapted from Ben-Akiva et al.3).

Earlier efforts to incorporate latent variables into discrete choice models included error-free attitudinal indicators 
directly in the utility functions6, using a factor analysis of the indicators7, and employing latent attributes without the 
indicators8. These early approaches, however, have some limitations. Including the indicators directly in the utility 
function can lead to inconsistent estimates because this approach ignores the fact that latent variables contain 
measurement error. In addition, there may be endogeneity bias caused by correlation between the indicators and the 
error of the utility. Unobserved factors can influence a respondent not only to choose an alternative but also to 
respond to indicator questions. Using a factor analysis can be an alternative approach to overcome these limitations, 
which is a sequential approach: a factor analysis is carried out to identify latent variables, and then the latent 
variables are included in the utility function. However, the estimated latent variables can be inefficient because the 
choice indicators (i.e. the actual choice behaviors of respondents) are not considered when estimating the latent 
variables. In the approach employing latent attributes without the indicators, choice indicators only measure both the 
latent attributes and the utility. Thus, the latent attributes are treated as alternative-specific and do not vary among 
individuals in a market segment. Ben-Akiva et al.5 and Daly et al.9 provide a review of these early approaches.

Alternatively, structural equation models (SEMs) have been used for simultaneously considering latent attitudes 
and choice behaviour. Golob10 gives a review of these models; Sakano and Benjamin11 describe an application. The 
SEM can simultaneously estimate the causal influence of exogenous variables on endogenous latent variables and 
the causal relationships among endogenous latent variables. At the same time, the latent variables can be identified 
through observed indicators. Thus, SEMs allow capturing the effects of latent attitudes on choice behaviour by 
treating the latent attitudes and the utilities of choice alternatives as endogenous latent variables and by employing 
choice indicators to identify the utilities. Although this framework is very similar to HCM, the SEMs have some 
limitations. Typically, SEMs have been developed based on linear-in-parameters multivariate statistical modeling 
techniques (i.e., linear regression techniques), mostly for continuous latent variables and continuous indicators. 
Therefore, when including discrete indicators, SEMs result in inconsistent estimates. Although some corrective 
procedures to allow various types of indicators have been suggested12, these approaches are limited to binary choice 
and ordered discrete indicators.

The HCM framework is methodologically more satisfactory than SEM because more diverse representations of 
choice behaviour can be incorporated into a mathematical model. HCMs can be expanded to deal with 
heterogeneities due to latent market segmentation and individual taste variation by introducing a latent class model 
and mixed logit model respectively13.
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Table 1. Overview of previous researches employing the HCMs to investigate travel choice behaviours
Authors Application Types of sub-frameworks2) Estimation 

approach3)Subject Type of preference1)

: Choice set
Latent variables Discrete 

choice
Latent 

variable
Walker and Ben-

Akiva13
Travel 

Mode
RP: (1) rail, (2) auto
SP: 5 scale ordered preference of 

rail

(1) comfort, (2) convenience Mixed Logit
(for TV &
PE)

MIMIC MSL

Temme et al.17 RP: (1) public transit, (2) car + 
public transit, (3) public transit 
only

(1) flexibility, (2) convenience and 
comfort, (3) safety, (4) power, (5) 
hedonism, (6) security

Logit MIMIC MSL4)

Kim et al.18 SP: (1) auto, (2) train, (3) water 
transit

(1) environmental preferences, (2) 
dislike of driving a car, (3) water 
transit preference

Logit MIMIC ML:
numerical 
integration

Atasoy et al.19 RP: (1) private motorized modes, 
(2) public transport, 
(3) soft modes

(1) pro-car, (2) environmental 
concern

Logit MIMIC ML (not 
specified)

Kamrgianni et al.20 RP: (1) walk, (2) bus, (3) car (1) walking-lover,  (2) parents’ 
walking-lover

Logit MIMIC MSL

Daziano and Bolduc21 Vehicle 
(fuel) 
type 

SP: (1) standard gas vehicle, (2) 
alternative fuel vehicle, (3) 
hybrid vehicle, (4) hydrogen 
fuel cell vehicle

(1) environmental concerns Logit MIMIC Bayesian 
approach

Glerum et al.22 SP: (1) Competitors-gasoline, (2) 
Renault-gasoline, (3) Renault-
electric

(1) pro-leasing attitude, (2) pro-
convenience attitude

Logit MIMIC ML: 
numerical 
integration

Jensen et al.23 SP: (1) conventional, (2) electric 
vehicle

(1) environmental attitude Mixed Logit
(for PE)

MIMIC MSL

Mabit et al.24 SP: (1) conventional vehicle, (2) 
hybrid non-plugin vehicle, (3) 
bio-diesel vehicle, (4) electric 
vehicle

(1) appreciation of car features Logit MIMIC ML: 
numerical 
integration

Soto et al.25 SP: (1) standard gasoline vehicle, 
(2) natural gas vehicle, (3) 
hybrid electric vehicle, (4) 
electric vehicle or diesel vehicle

(1) support transport policies, (2) 
environmental concern, (3) 
attitudes towards technology, (4) 
attitudes towards car

Mixed Logit
(for PE)

Ordered 
Logit

MSL

Prato et al.26 Travel 
route

RP: 2 ~ 19 alternative routes per 
observation (generated by the 
branch and bound algorithm)

(1) mnemonic ability,
(2) habit within the choice 

environment, (3) familiarity with 
the choice environment, (4) 
spatial ability, (5) time saving 
skill

Logit MIMIC MSL

Daly et al.9 Rail 
security 
system

SP: 4 options including “not to 
choose”

(1) increased concern, (2) reduced 
distrust

Mixed Logit
(for PE)

Ordered 
Probit

MSL

Silva et al.27 Tour type RP: (1) home-work/school-home 
(HWH), (2) HWH + other 
activities, (3) home-other-home 
(HOH), (4) HOH + other 
activities

(1) travel propensity Logit MIMIC ML: 
numerical 
integration

Dekker et al.14 Leisure 
activity

SP: (1) museum visit, (2) concert 
visit, (3) nature walk

(1)-(3) the needs satisfaction of 
museum visit, concert visit, and 
nature walk

Hybrid 
RUM-
RRM

(Mixed 
Logit for 
PE)

Ordered 
Probit

Bayesian 
approach

Note 1) RP: revealed preference, SP: stated preference
         2) TV: individual taste variation, PE: panel effect, MIMIC: multiple indicators multiple causes model
         3) ML: maximum likelihood approach, MSL: maximum simulated likelihood approach
         4) They did not mention MSL but ML based on Monte Carlo integration. The approach used can be viewed as a simulation-based estimation approach like MSL.
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The expanded HCM framework is illustrated in Fig. 2. It includes a sub-framework to combine two types of 
preference data: revealed preferences (RP), which are based on actual market behaviour, and stated preferences 
(SP), which are based on hypothetical choice situations. Furthermore, in terms of the assumed decision process, 
recently, several researchers14 suggested replacing the random utility maximization model (RUM) with the random
regret minimization model (RRM)15 or with a hybrid RUM-RRM model16.

Over the last decade, numerous studies have developed HCMs to investigate the effects of people’s latent 
attitudes on diverse travel choice behaviours. Table 1 provides a summary of previous research. It can be classified 
according to their applications, model specification (i.e. types of sub-frameworks), and estimation approaches.

2.1. Applications and their latent variables

In terms of travel mode choice behaviour, Walker and Ben-Akiva13 considered subjective perceptions of comfort 
and convenience for different transportation modes as latent attitudes. Temme et al.17 considered perceptions with 
respect to flexibility, convenience, comfort and safety and the personal values (i.e. power, hedonism and security). 
Kim et al.18 and Atasoy et al.19 employed the personal attitudes toward the environment (i.e. environmental 
preferences or concerns) as latent attitudes, which may influence the utility of the transportation model. In addition, 
they considered people’s latent attitudes toward specific travel modes such as pro-car attitude, dislike of driving a 
car and water transit preference. Kamargianni et al.20 considered attitudes toward walking. Moreover, they included 
parents’ latent preference for walking, which may influence the walking preferences of their children.

In terms of vehicle (fuel) type choice, Daziano and Bolduc21 and Jensen et al.23 employed the attitude toward the 
environment as a crucial latent variable, representing the utilities of alternative fuel vehicles (e.g., electric vehicle, 
hybrid vehicle, hydrogen fuel cell vehicle, etc.). Glerum et al.22 considered pro-leasing attitude and pro-convenience 
attitude (e.g., spaciousness, technology, etc.) when modeling purchase behaviour of electric car. Mabit et al.24

included personal appreciation of car features (e.g., joy of driving, comfort, design, etc.) as latent variables in their
HCM. Soto et al.25 used more diverse latent attitudes including personal attitudes toward transport policies, 
environmental concerns, and attitudes towards technology and car.

Prato et al.26 studied travel route choice behaviour by developing a HCM, which included 5 different personal 
psychological abilities and characteristics as latent variables. Daly et al.9 employed personal distrust of government 
as a latent variable for investigating people’s stated preference for different rail security systems. Silva et al.27

investigated the effects of personal propensity to travel on tour type choice behaviour. The result shows that the 
propensity increases the probability to perform more complex tours. Dekker et al.14 addressed leisure activity choice 
behaviour. They employed the needs satisfaction of each leisure activity as latent variables in the discrete choice 
analysis. Results of these applications of HCMs provide evidence of the additional insight in decision-making 
processes HCM models can provide and their explanatory power.

2.2. Model specification: the basic model

A basic HCM incorporates a latent variable model specified by linear-in-parameter relationships into a discrete 
choice model based on linear utility functions. Most previous research has employed the binary/multinomial logit 
model and the multiple indicators multiple causes (MIMIC) model as the discrete choice model and the latent 
variable model, respectively. The MIMIC model is a set of simultaneous equations based on linear-in-parameter 
specifications, in which a latent variable is measured by multiple indicators and regressed on several observable 
exogenous variables. The model consists of a set of structural and measurement relationships. The structural
relationship indicates the causal relationships between observable exogenous variables (e.g., decision-maker’s socio-
demographics) and latent variables. In the measurement relationship, multiple indicator variables are used to identify 
the latent variables. The indicators are responses to survey questions regarding different attitudes. The structural 
equation (1) and the measurement equation (2) can be expressed as follows:= + ,        ~ 0,                                                                                                                                        (1)
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= + ,        ~ 0,                                                                                                                                       (2) 
where indicates an ( × 1) vector of latent variables of individual , and is a ( × 1) vector of 
observable explanatory variables. The ( × ) matrix contains unknown parameters, and the random part 
indicates a multivariate normal distribution with zero mean and an ( × ) covariance matrix . In order to 
identify latent variables, a ( × 1) vector of observable indicator variables is utilized, which are responses of 
individual to survey questions regarding different latent attitudes. This measurement relationship can be 
expressed by a ( × ) matrix of unknown parameters and random disturbance term which is also a
multivariate normal distribution with zero mean and an ( × ) covariance matrix .

The logit model is also comprised of a structural relationship and a measurement relationship. The structural 
relationship is manifested in the utility functions of the choice alternatives, which consists of the latent variables and 
the observed exogenous variables. In previous research, the structural relationships have been represented as linear-
in-parameters utility functions. The measurement relationship is derived under the assumption of utility-maximizing 
behaviour. In order to express choice as a function of utility, an individual’s observed choice is used as a single 
nominal indicator. Structural equation (3) and measurement equation (4) can be expressed as follows:= ( ) ( ) + ( ) ( ) + ( ) ( ) + ,        ~ 0,                                                                         (3) 

= 1,0,              = { }                                                                                                                                          (4) 
where is the random utility of alternative of individual . The notation ( ) after a variable matrix indicates the 
th column vector corresponding to the variable matrix. Notation ( ) after a parameter matrix indicates the th row 

vector corresponding parameter matrix. Thus, the notation ( ) represents the components in terms of the th 
alternative in each variable and parameter matrices. In the discrete choice model, the dimensions of and are 
expanded to explain the utility corresponding to each alternative for individual ; thus, the dimensions become ( × ) and ( × ). A ( × ) matrix indicates alternative-attribute variables of each alternative of individual .
The ( × ) matrix , the ( × ) matrix , and the ( × ) matrix are unknown parameters to be estimated 
for socio-demographic, latent-attitudes and alternative-attributes, respectively.  represents the random disturbance 
term with zero mean and standard deviation . The logit model is induced by assuming independently, identically 
(IID) standard Gumbel distributed random disturbances.

The joint likelihood function of the basic HCM can be defined by assuming that the random disturbance terms 
are independent. The likelihood of an individual consists of the likelihood function of the discrete choice model (i.e. 
logit model) and the measurement and structural components of the latent variable model (i.e. MIMIC model) as 
follows:

( , | , ; ) = ( | , , ; , , , ) ; , ; ,          (5) 
where = , , , , , , , is the full set of parameters to estimate. ( ) indicates the 
likelihood function of the discrete choice model, ( ) and ( ) indicate the distribution functions with regard to the 
latent variable model, which correspond to the measurement relationship and the structural relationship, respectively. 
Since the latent variables are unknown, the likelihood can be obtained by integrating over the latent constructs ( ).
Thus, the dimension of the integral becomes the same as the number of latent variables. By jointly constructing the 
indicators in the latent variable model with the distribution function of the measurement relationship, the indicators
do not only allow identifying the latent variables, but also provide efficiency in estimating the full model. The 
functional forms of these sub-functions depend on the assumptions about the probability distributions of their 
random disturbance terms. According to the assumptions of the probability distributions of the disturbance terms (i.e. 
equations (1), (2) and (3)), the sub-functions can be induced as the following equations:
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( | , , ; , , , ) = ( ) ( ) + ( ) ( ) + ( ) ( )( ) ( ) + ( ) ( ) + ( ) ( )                     (6) 
; , = 1 ( )                                                                                                            (7) 
; , = 1 ( )                                                                                                             (8) 

where ( ) indicates the standard normal density function. While the covariance matrix needs not to be estimated 
according to the normalization with IID error for the logit model, the covariance matrices and have to be 
estimated. If the disturbance terms are assumed to be IID, the covariance matrices are diagonal matrices whose off-
diagonal elements are equal to zero. Accordingly, only and should be estimated, which are the standard 
deviations of the disturbance terms indicating th and th diagonal elements of and , respectively. ( )
indicates the th row vector of the ( × ) unknown parameter matrix , and ( ) indicates the th row vector 
of the ( × ) unknown parameter matrix .

2.3. Model specification: mixed logit specification as the discrete choice model

The mixed logit model is a flexible model, which can approximate any random utility model by considering the 
probability density of parameters28. The model allows considering individual taste variation, unrestricted 
substitution patterns, correlation in unobserved factors over time or repeated choice situations (i.e. panel effect)29.
Walker and Ben-Akiva13 have included the mixed logit model in the HCM in order to reflect individual taste 
variations in terms of alternative attributes and the panel effect due to the repeated choices of each individual in a
stated choice experiment. Random coefficients for the parameters of the attributes can represent individual taste 
variations. The random coefficients vary across individuals according to their assumed probability density functions.
Similarly, the panel effect can be represented by a random coefficient, which vary across individuals but is constant 
over choice situations for each individual. Daly et al.9, Jensen et al.23, Soto et al.25 and Dekker et al.14 also treated the 
panel effect by introducing the mixed logit specification into the HCM. The HCM allowing the mixed logit 
specification has more explanatory power than the basic HCM.

2.4. Model specification: ordered choice model as the latent variable model

The attitudinal indicators are used to identify people’s latent attitudes. Normally, they are responses to attitudinal 
questions and psychological dispositions included in surveys. For example, in terms of environmental attitudes, 
questions such as “I’m likely to choose an alternative mode in order to protect the environment” and/or “I’m willing 
to pay more for environmentally friendly items” can be utilized18. Based on these attitudinal questions, a respondent 
judges the degree of agreement of each statement. Likert scales are most widely used to measure attitudes (e.g., from 
“strongly disagree” to “strongly agree”). 

The basic HCM, which includes a MIMIC model as the latent variable model, assumes continuous indicators and 
linear relationships between the latent attitudes and their indicators. However, Daly et al.9 have pointed out that 
these assumptions are not consistent with the ordinal nature of the measurement of the indicators. They therefore 
suggested replacing the continuous specification by an ordered specification. By treating the indicators as ordered 
categorical variables, the latent variable model part can be represented by an ordered choice model. They concluded 
that this specification is superior to the general assumption of a continuous attitudinal response because using the 
ordered model contributes to an improved explanation of choice behaviour and is intuitively more consistent with 
the nature of the response for the attitudinal indicator. Soto et al.25 also considered the indicators as ordered 
categorical variables. They jointly estimated an ordered choice model to identify latent attitudes and a mixed logit 
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model to investigate choice behaviour in terms of alternative fuel vehicles. Dekker et al.14 employed ordinal 
indicators to measure personal satisfactions of each activity in terms of six potential types of need. In order to reflect 
the ordinal nature of the satisfaction, they included an ordered probit model as the latent variable model in the HCM 
framework.

2.5. Model specification: hybrid random utility maximization-random regret minimization model as the discrete  
choice model

The random regret minimization (RRM) model was developed based on the behavioral intuition that individuals 
try to avoid a situation where one or more non-chosen alternatives outperform a chosen one in terms of one or more 
attributes or characteristics15. The model postulates that people choose an alternative, which minimizes anticipated 
random regret. The most-used framework of the RRM model30 takes the linear-additive multinomial logit form by 
replacing utility with the negative value of anticipated regret. The anticipated regret of an alternative is equal to the 
sum of the pairwise regrets which are obtained by comparing the considered alternative with each of the other 
alternatives in the choice set for every attribute. The RRM model can capture semi-compensatory choice behaviour 
and predict choice set composition effects such as the compromise effect31. There have been several empirical 
studies to investigate travel choice behavior using RRM models. For instance, Chorus30 applied the RRM model for 
understanding travel mode and route choice, travel information acquisition, parking lot choice and shopping 
destination choice behaviours, Chorus and de Jong32 employed the RRM model to investigate people’s departure 
time choice behaviour for their daily commute, Hensher et al.33 studied vehicle type choice behaviour using the 
RRM model, and Chorus and Bierlaire34 established the RRM model for modeling route choice behaviour.

In order to reflect the heterogeneity of decision making along the attributes into the RRM approach, Chorus et 
al.16 suggested a hybrid RUM-RRM model based on a random modified utility function which consists of the 
random utility and the random regret parts. This modified utility function allows for representing difference choice 
processes by difference attributes, which means that some attributes are processed based on the utility maximization 
rule, while others are processed based on the regret minimization rule. According to the empirical analyses of 
Chorus et al. 16, the hybrid RUM-RRM models leads to statistically significant improvements in model fit compared 
with both the full utility-based model and the full regret-based model.

Dekker et al.14 employed a hybrid RUM-RRM model as the discrete choice model of the HCM. In their modified 
utility function, the needs satisfactions for each activity (i.e. latent variables) were treated as the attributes to be 
processed using the utility maximization rule, and the observable attributes (e.g., travel time and costs, activity costs, 
etc.) were treated as the attributes to be processed using the regret minimization rule. However, their empirical 
results show that this specification is not significantly better than the full utility-based specification in terms of 
model fit and predictive ability.

Although this dominant specification based on pairwise comparisons is easy to apply, it has some fundamental 
flaws when attribute differences are small35. Moreover, Rasouli and Timmermans36 did not find much support for 
the logarithmic transformation of the regret function nor for the comparison against all alternatives compared to the 
classic formulation of the regret model 15 in which regret was defined in terms of a function of attribute differences 
against the best foregone choice alternative.  

2.6. Estimation methods

Three different estimation methods have been to estimate HCM: the maximum likelihood (ML) based on 
numerical integration18,22,24,27, simulated maximum likelihood (MSL)9,13,17,20,23,25,26, and Bayesian estimation14,21.

The ML based on numerical integration directly calculates the likelihood value by numerically integrating the 
joint likelihood function (e.g., equation (5)). However, because the dimension of the joint likelihood function is 
determined by the number of latent variables, this approach quickly becomes infeasible as the number of latent 
variables increases. In the case of more than three latent variables, a simulation-based estimation approach such as 
MSL and Bayesian estimation are more appropriate, because these methods are not sensitive to the number of latent 
variables. MSL is the same as ML, except that simulated probabilities rather than exact probabilities are used. The 
simulated probabilities are obtained by random draws of the latent variables from their probability distributions. 
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MSL takes the average value of the likelihood values corresponding to each random draw as an unbiased estimator.
As shown in Table 1, the MSL method has been predominantly used in the previous research. Although it provides 
consistent and efficient estimates regardless of the number of latent variables, Daziano and Bolduc21 pointed out that 
the MSL method for HCM is very demanding in situations with a huge choice set and a large number of latent 
variables. In order to overcome these limitations, the simulated mean of the Bayesian posterior (SMP) can be 
employed as an alternative estimator to the MSL estimator. In the Bayesian approach, the SMP can be obtained 
through a Markov Chain Monte Carlo technique, which is an iterative sampling procedure that the random draws at 
each iteration depend on those at the preceding iteration (e.g., Gibbs sampling). With a sufficient number of 
iterations, the procedure converges to draws from the joint posterior of all parameters. However, it can be difficult to 
determine whether convergence has been achieved3,29.

3. Recent Progress 

3.1. Incorporating social influence variables

Although HCMs provide additional insight into the decision-making process by considering attitudes and other 
psychological aspects, they have been developed from individualistic and egocentric perspectives. In other words, 
the models assume that choice behaviour depends only on individual characteristics (e.g., socio-demographics, 
personal latent attitudes, etc.) and attributes of alternatives. Recently, travel behaviour researchers have become 
interested in the effects of social influence on travel choice behaviour37,38,39,40. Since humans are social beings, 
people are members of social networks and interact with other members of their network. Through interaction with 
social network members, people acquire information about alternatives and update their expectations of the 
outcomes of their choices. Therefore, individuals’ decisions may be influenced by the choices made by members of 
their social network. 

Several types of social influence may affect individual choice behaviour. As a result of joint activity participation, 
group decisions, negotiation, etc., which involve exchanging and sharing information with social network members, 
people may become aware of new alternatives41,42,43. In addition, conformity behaviour may influence choice 
processes. Individuals may be inclined to mimic the behaviour of others. Mimicking behaviour implies that choices 
of social network members directly affect an individual’s utilities. Hence, “individuals belonging to the same group 
may tend to behave similarly44”. This phenomenon has also been referred to as spill-over, conformity and peer effect, 
social multiplier, cascade, bandwagon effect, imitation, contagion, herd behaviour, and so forth. The impact and 
intensity of this phenomenon depends on the kind of choice behaviour. When the characteristics of certain choice 
alternatives are not well-known, or directly experiencing or evaluating the choice options is not easy, people may 
tend to be more conscious of others’ choices. In addition, mimicking behaviour may reflect the tendency to express 
a similar lifestyle and make similar choices as other members of one’s social network.

A few studies in travel behaviour research have incorporated social influence variables into the utility functions,
as exogenous explanatory variables. The estimated parameters of these social influence variables indicate how 
strongly the choices of the reference group influence the decision-making of an individual. Hence, the most 
important issues in these studies are how to define the reference group and how to measure and represent their 
choice behaviour. Some studies have applied Brock and Durlauf45 seminal choice model, in which the probability of 
an individual’s choice is proportional to the aggregate choice behaviour of the relevant social network. Examples 
include Dugundji and Walker46, Dugundji and Gulyás47, Walker et al.48 and Dugundji and Gulyás49. Various field 
variables were considered as social influence variables, defined in terms of the average mode share of each 
alternative in the reference groups. The reference groups were classified according to social and spatial strata,
implying that individuals are assumed to be influenced mostly by others who are in similar socio-economic classes
and/or live nearby. Fukuda and Morichi50 investigated social influence in people’s illegal bicycle parking behaviour
by employing the aggregate frequencies of illegal bicycle parking at railway stations as the social influence variable.

Páez and Scott51 and Páez et al.52 suggested using the more explicit concept of social networking for defining the
reference group. They considered individual-by-individual relationships: one’s reference group consists only of 
one’s significant others (i.e., social network members). In particular, Páez et al.52 suggested a distant-decay function 
in terms of social space. They assumed that an individual receives different amount of influence by others depending 
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on social distance; that is, the social tie strength between individuals. Therefore, their social influence variable 
represents a socially weighted average choice of social network members.

While these approaches are all based on revealed preference data, Kuwano et al. 53 and Rasouli and 
Timmermans54,55 suggested including social influence in stated choice experiments to investigate people’s intention 
to purchase electric cars. Kuwano et al.53 included in their stated choice experiment an attribute depicting the general 
market share of electric vehicles. Rasouli and Timmermans54,55 suggested an experimental approach allowing one to 
investigate more specific and explicit social network effects by differentiating between different elements of social 
networks. The social influence variables were defined by market shares of electric cars for various social network 
types such as family, friend, colleague, and peers social networks. In the stated choice experiment, a respondent 
indicated his/her intention to buy an electric car for different choice situations varying not only attribute levels of 
electric cars but also market share levels by the social network types.

By including the social influence variables into the utility function of the discrete choice model with social 
influence variables, the HCM framework can be elaborated to allow for a mixture of social influences and latent 
attitudes54. The latent variable model part of the elaborated HCM is same as that of the basic HCM, but the utility 
function of the discrete choice model part (i.e. equation (3)) is changed as follows:= ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( ) + ,                                                                              (9) 
where a ( × ) matrix indicates the social influence variables corresponding individual . The ( × ) matrix 

indicates unknown parameters to be estimated for social influence variables, which represents the strength of the 
social influences. The parameters of the elaborated HCM can be estimated through the same estimation approach 
used for the basic model. By simultaneously considering the social aspects and the personal latent aspects, the 
elaborated HCM enables a researcher to investigate not only latent attitudes but social influence in travel choice 
behaviour. 

3.2. Allowing for nonlinear specifications

In the HCM framework, two different types of effects of latent attitudes are modelled. One is the measurement 
relationship of the latent variable model. The other is the structural relationship of the discrete choice model part.
Typically, as described in the basic HCM, linear-in-parameters model specifications have been used for these effects.
However, linear relationship is just one of all possible types of effects because a linear function is just a special case 
of nonlinear functions. Assuming nonlinear relationships thus seems theoretically more appealing as it represents a 
more general approach to model specification. 

In terms of the measurement relationship between latent attitudes and their indicators, Daly et al.9 suggested 
using an ordered choice model by treating the indicators as ordered categorical variables. This approach is an effort 
to represent and investigate the nonlinear effects of latent attitudes on the attitudinal indicators. However, to date, 
nonlinear effects of latent attitudes on the utilities have not yet been examined. When the utility functions 
underlying the discrete choice model are assumed linear in parameters, the model cannot represent any varying 
marginal utility of the levels of the explanatory variables. Empirical evidence suggests that the marginal disutility 
for travel tends to increase with travel time and decrease with travel cost1,57,58. Moreover, it may vary with categories 
of socio-demographic attributes such as income and age46,59. Likewise, different levels of latent attitudes can induce 
a different marginal utility. For example, the utility of a private car may increase exponentially with an increasing 
positive latent attitude with respect to privacy. A model that does not take such nonlinear relationships into account 
might be expected to yield biased policy effects. However, there is no general approach to deal with nonlinear 
relationships related to latent variables in discrete choice analyses. Therefore, it is necessary to relax the linearity 
assumption and check for any nonlinearity in the utility functions of HCMs in order to reflect the more general 
nature of travel choice behaviour.

Several ways to allow nonlinear specification in the utility functions can be considered. First, nonlinear 
relationships can be approximated by linear-in-parameter specifications. There are two possible approaches as 
illustrated in Fig. 3. One approach is using piecewise linear functions by segmenting the attribute levels (Fig. 3(a)).
By estimating separate piecewise linear functions, we can obtain different parameters for different attribute ranges. 
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Thus, proper segmentations can approximate a nonlinear utility function. The other approach is to calculate new 
values for variables by using predetermined nonlinear functions such as logarithmic, exponential or power functions.
In other words, the values of variables are exogenously manipulated through a selected functional form, and the 
manipulated values are used as the explanatory variables. For example, Fig. 3(b) represents that a nonlinear function 
square function. Before estimating the parameters, the squared value of the explanatory variable is calculated first, 
and then, by using the squared value, the function can be treated as a linear function. 

Fig. 3. Approximation of nonlinear function based on linear specification: (a) using piecewise linear functions; (b) using a predetermined function.

These approaches, however, have limitations in that many decisive components such as functional form, the 
number of piecewise linear functions and range of each segment need to be predetermined before parameters can be 
estimated. This makes it difficult to find the ideal model to reflect any nonlinear relationships in the data. We can 
heuristically search for the best combination of these components to find the best model, but this would be an 
extremely time consuming task. In particular, it is difficult to directly and properly handle the value of a latent 
variable because the latent variables are treated as random variables and their values are estimated endogenously in 
the HCM framework. It means that the value depends on the random draws. Moreover, it is varied iteratively 
according to parameters estimated at each iteration of the estimation procedure. Moreover, there is no diagnostic test 
to verify which functional form is significantly best. In case of the piecewise linear approach, the utility function is 
still linear-in-parameters within a selected range and, in general, needs more parameters to describe nonlinear 
relationships compared to the nonlinear utility function expressed by logarithmic, exponential and/or power 
functions.

A more general way to consider nonlinear effects is employing nonlinear functions and directly estimating their
parameters. First of all, we can easily consider a power function for representing various nonlinear effects of latent 
variables (e.g., increasing/decreasing marginal effects by increasing/decreasing the value of latent variables). When 
considering only the latent attitudes and taking a power function for them, the utility function (i.e. equation (3)) of 
the basic HCM is changed as follows:

= ( ) ( ) + ( ) + ( ) ( ) + ,                                                                                                   (10) 
where indicates th component of ( ) , and is a transformation parameter of th latent variable
corresponding alternative . However, there is a mathematical problem in the estimation of the parameters because 
the function becomes discontinuous at = 0. In order to overcome this limitation, two transformation rules can be 
suggested, which are Box-Tukey60 and Box-Cox61 transformations. According to Box-Tukey transformations, the 
power function can be transformed as follows:
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= + 1 , 0+ ,              = 0  ,         + > 0                                                                                              (11) 
where is a location parameter corresponding to the th latent variable. The Box-Cox transformation is obtained as 
a special case by setting = 0:

= 1 , 0,              = 0  ,         > 0                                                                                                                     (12) 
There have been early applications of these transformations for modeling travel behavior. For example, Gaudry and 
Wills62 used Box-Cox transformations to estimate diverse travel demand functions, Gaudry63 explored the properties 
of inverse transformations, applied the logit and the dogit mode choice models, while Koppelman57 applied these 
transformations in developing non-linear utility functions in mode choice models.

These transformation rules provide several advantages to modeling nonlinear relationships. First, the transformed 
equations can eliminate the collinearity between the linear parameter and the transformation parameter , which 
exists when directly estimating the power function (i.e. equation 10)57,61. Secondly, the functional form for each 
variable can be decided endogenously through the estimation result. According to the transformation parameter 
estimated, the function can approximate linear (i.e. = 1), logarithmic (i.e. = 0) and power functions. Finally, 
this transformation allows carrying out a statistical diagnostic test for functional form. Based on the estimated and 
its standard error, we can statistically infer whether is significantly different from 0, 1 or both58,64.

There is a constraint in terms of the scales of latent variables. Regarding the Box-Cox transformation, every 
latent variable corresponding every individual must have only positive values because of the logarithmic component 
of the utility specification. The scale of latent variable depends on both the scale of relevant indicator variables and 
the random distribution of the latent variable. When considering the basic HCM, even if the observed scales of 
indicators are always positive, the probability to take a negative value for a latent variable of an arbitrary individual 
is not always zero because the normal distribution has infinite ranges in both positive and negative directions. This 
probability makes it impossible to apply the transformation to latent variables because the entire space of their 
density functions must be considered in order to evaluate the likelihood function by integrating over the space, as 
formulated in equation (5). In the case of the Box-Tukey transformation, this kind of problem would be also 
occurred. The inclusion of the location parameter may be able to reduce the probability to take a negative value for 
the inclusive term (i.e. + ), but it cannot guarantee that the inclusive term is always positive for the entire 
space of latent variable.

Therefore, it is necessary to develop a method to deal with this limitation by including an explicit mechanism in 
the latent variable model of the HCM framework. One possible solution is relevant to assumption of the probability 
distribution for a random latent variable. If a probability distribution which takes only positive range for their space 
is considered as the distribution of random disturbance term of a latent variable, it can be guaranteed that the latent 
variable has only positive value for its entire space. There are several such probability distributions: the lognormal 
distribution, the Rayleigh distribution, and the truncated normal distribution, etc. In particular, the lognormal 
distribution, which is a probability distribution whose logarithm has a normal distribution, have been frequently 
utilized for specifying the distribution of random parameters in the mixed logit model when the parameter is known 
to have the same sign for every individual, such as cost and travel time13,65. This approach may enable us to use the 
power transformations to investigate the nonlinear effects of latent attitudes in the HCM framework.
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4. Conclusions

The present paper introduces the underlying principles and the recent progresses of HCMs. By incorporating 
different types of models into discrete choice analysis, the HCM provides a powerful framework to account for 
heterogeneity across decision makers, due to different latent attitudes. Furthermore, the recent progresses developed 
by the authors contribute to elaborate and generalize the HCM framework in order to represent a more behaviourally 
realistic choice behaviour. By including the social influence variables into the utility function of discrete choice 
model, the HCM framework can take into account peoples’ interdependent traits stemming from peoples’ sociality.
By allowing nonlinear specifications for the utility functions, the HCM framework can be utilized to investigate 
nonlinear effects of latent variables. In addition, by applying the power transformations which contain a 
transformation parameter to the utility function, the HCM framework allows approximating various types of 
nonlinear functions (including linear function) and conducting the statistical diagnostic test of the function form.
Therefore it becomes a more generalized approach because the basic HCM is a limiting case of the HCM based on 
the nonlinear specification.

Although our recent contributions provided an advanced and generalized modeling approach, several directions 
to further elaborate the modeling approach remain. First, the present study doesn’t address a nonlinear relationship 
between latent variables and their explanatory variables in the HCM framework. By allowing the nonlinear 
specification for all components of the HCM, a more generalized HCM framework needs to be developed in a future 
study. Second, HCM based on RRM (or hybrid RRM-RUM) can be further enhanced with including social influence
variables and allowing for nonlinear specifications in the regret function. These considerations in the HCM 
framework will be addressed in a future study.
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