
LU et al. 1

Discovering Interacting Artifacts
from ERP Systems

Xixi Lu, Marijn Nagelkerke, Dennis van de Wiel, and Dirk Fahland

Abstract—Enterprise Resource Planning (ERP) systems are widely used to manage business documents along a business processes
and allow very detailed recording of event data of past process executions and involved documents. This recorded event data is the
basis for auditing and detecting unusual flows. Process mining techniques can analyze event data of processes stored in linear event
logs to discover a process model that reveals unusual executions. Existing approaches to obtain linear event logs from ERP data
require a single case identifier to which all behavior can be related. However, in ERP systems processes such as Order to Cash
operate on multiple interrelated business objects, each having their own case identifier, their own behavior, and interact with each
other. Forcing these into a single case creates ambiguous dependencies caused by data convergence and divergence which obscures
unusual flows in the resulting process model. In this paper, we present a new semi-automatic, end-to-end approach for analyzing event
data in a plain database of an ERP system for unusual executions. More precisely, we identify an artifact-centric process model
describing the business objects, their life-cycles, and how the various objects interact along their life-cycles. This way, we prevent data
divergence and convergence. We report on two case studies where our approach allowed to successfully analyze processes of ERP
systems and reliably revealed unusual flows later confirmed by domain experts.

Index Terms—Process Discovery, Artifact-Centric Processes, Outlier Detection, Relational Data, Log Conversion, ERP Systems.

F

1 INTRODUCTION

INFORMATION systems (IS) not only store and process data
in an organization but also record event data about how

and when information changed. This “historical event data”
can be used to analyze, for instance, whether information
processing in the past conformed to the prescribed processes
or to compliance requirements. For example, has each order
by a gold customer been delivered with priority shipping,
or have all delivery documents been created before creating
the invoice? Manual analysis of historic event data is time
consuming and error-prone as often hundreds of thousands
of records need to be checked.

Process mining [1] offers automated techniques for this
task. The most prominent technique is to discover from
historical event data a graphical process model describing
historic behavior; the discovered model can be visually
explored to identify the main flows and the unusual flows
of the process. Process analysts and domain experts can
then for instance identify the historic events that correspond
to unusual flows, investigate circumstances and possible
causes for this behavior, and devise concrete measures to
improve the process [2], [3]. The success of the analysis
often depends on whether unusual behavior is easy to
distinguish visually from normal behavior. Prerequisite to
this analysis is a process event log that describes how all

• X. Lu and D. Fahland are with the Department of Mathematics and
Computer Science, Eindhoven University of Technology, The Netherlands,
5600 MB.
E-mail: x.lu@tue.nl and d.fahland@tue.nl

• M. Nagelkerke and D. van de Wiel are with KPMG IT Advisory N.V.,
Eindhoven, The Netherlands, 6513 AM.
E-mail: Nagelkerke.marijn@kpmg.nl and vandewiel.dennis@kpmg.nl

information changes occurred from the perspective of a par-
ticular process; its underlying assumption is that each event
can unambiguously be mapped to a particular execution of
the process.

1.1 Problem Description

In general, information access is not tied to a particular pro-
cess execution; rather the same information can be accessed
and changed from various processes and applications. A
typical example is Enterprise Resource Planning (ERP) sys-
tems, such as SAP and Oracle Enterprise. These systems
usually follow service-oriented architectures which separate
(1) the high level business processes that invoke information
accesses and (2) the information itself into different layers
[4], [5]. The information is encapsulated in business objects
or documents and is typically stored in relational database.
Moreover, these objects are related to each other through
one-to-many and many-to-many relations and reused in
various processes. Accesses to these objects are encapsulated
in services. Information changes occur when users proceed
with high-level end-to-end business processes and invoke
services to update business objects, known as transactions.
The completion of a transaction is logged as an event also
called transactional data.

The idea is to use transactional data to discover end-
to-end business processes that are executed in reality (see
Sect. A for a detailed discussion). Fig. 1 shows a simplified
example of the transactional data of an Order to Cash (OTC)
process supported by SAP systems; Fig. 2 visualizes the
events of Fig. 1 that are related to document creation. There
are two sales orders S1 and S2; creation of S1 is followed by
creation of a delivery document D1, an invoice B1, another
delivery document D2, and another invoice B2 which also

LU et al. 2

Documents Changes

 Change id Date changed Reference id Table name Change type Old Value New Value

1 17-5-2020 S1 SD Price updated 100 80

2 19-5-2020 S1 SD Delivery block released X -

3 19-5-2020 S1 SD Billing block released X -

4 10-6-2020 B1 BD Invoice date updated 20-6-2020 21-6-2020

Billing documents (BD)

BD id Date created Document type Clearing date

B1 20-5-2020 Invoice 31-5-2020

 B2 24-5-2020 Invoice 5-6-2020

Delivery documents (DD)

DD id Date created Reference SD id Reference BD Document type Picking date

D1 18-5-2020 S1 B1 Delivery 31-5-2020

D2 22-5-2020 S1 B2 Delivery 5-6-2020

D3 25-5-2020 S2 B2 Delivery 5-6-2020

D4 12-6-2020 S3 null Return Delivery NULL

Sales documents (SD)

SD id Date created Reference id Document type Value Last change

S1 16-5-2020 null Sales Order 100 10-6-2020

S2 17-5-2020 null Sales Order 200 31-5-2020

S3 10-6-2020 S1 Return Order 10 NULL

F1

F2

F4
F3

Parent

table

Child

table

Fig. 1. The tables of the simplified OTC example

(Sales Order)

(Delivery)

(Invoice)

(Delivery)

(Invoice)

(Return Order)

(Return Delivery)

(Sales Order) (Invoice) (Delivery)

Divergence

Convergence

7 events “Created” related to S1

3 events “Created” related to S2

Fig. 2. A time-line regarding the creation of documents of the OTC
example.

contains billing information about S2. Creation of S2 is
also followed by creation of another delivery document
D3. Further, there is a return order S3 related to S1 with
its own return delivery document D4. The many-to-many
relations between documents surface in the transactional
data of Fig. 1: a sales document can be related to multiple
billing documents (S1 is related to B1 and B2) and a billing
document can be related to multiple sales document (B2
is related to S1 and S2). This behavior already contains an
unusual flow: delivery documents were created twice before
the billing document (main flow), but once the order was
reversed (B2 before D3).

The main research problem addressed in this paper is to
provide (semi-)automated techniques to

1) to reconstruct accurate graphical models which de-
scribe the high level end-to-end business processes
that were executed in reality, from transactional data
recorded during the execution and

2) to identify main flows and unusual flows to help
users analyze their business processes and the used
business objects.

Classical process mining techniques cannot be applied di-
rectly. Many previous studies have shown that an attempt
to cast transactional data over objects with many-to-many
relations into a single process event log and to discover
a single process model describing all transactional data is
bound to fail. This step leads to false dependencies between
events and duplicate events which obscures the main flow

Legend:

Return delivery

Invoice

Sales order

created
2

Delivery
created

3
created

2

Return order

created
1

created
1

2

1

2

1

1

artifact

Event type

Causal relation
or interaction

Deviating
interaction

Sales orderSales order created
2

Delivery
created

3

Invoice
created

3

Return
order

created
1

Return
delivery
created

1

1

1

2

2

1 1

(a)

(b)

Fig. 3. Artifact-centric model of the behavior in Fig. 2

and hinders the detection of unusual flows [6], [7], [8], [9],
[10]. Casting the events of Fig. 2 into a single log of the
Sales order yields the model of Fig. 3(a) which is inaccurate:
two invoices are created before their deliveries instead of
one, and three invoices are created instead of two (known
as divergence and convergence, respectively) [9].

Contribution. We propose to approach the problem under
the “conceptual lens” of artifact-centric models [11], [12].
An artifact is a data object over an information model;
each artifact instance exposes services that allow changing
its informational contents; a life-cycle model governs when
which service of the artifact can be invoked; the invoca-
tion of a service in one artifact may trigger the invocation
of another service in another artifact. Information models
of different artifacts can be in one-to-many and many-to-
many relations, which allows to describe behavior over
complex data in terms of multiple objects interacting via
service invocations. We apply the artifact-centric view to
our problem as follows: each document of an ERP system
can be seen as an artifact; transactions on the document
are service calls on the artifacts; behavioral dependencies
between transactions of documents can be seen as life-
cycle behavior and dependencies of service calls. With these
concepts, the transactional data of Fig. 1 can be described as
the artifact-centric model of Fig. 3(b). The model visualizes
the order in which objects are created and also highlights the
one unusual flow of invoice B2 being created before delivery
D2.

LU et al. 3

The problem of discovering an artifact-centric process
model from relational ERP data decomposes into two sub-
problems:

1) Given a relational data source, identify a set of
artifacts, extract for each artifact an event log, and
discover a model of its life-cycle.

2) Given a set of artifacts and their data source, iden-
tify interactions between the artifacts, between their
instances, between their event types and between
their events. As a result, obtain a complete artifact-
centric process model.

Fig. 4 shows the overview of our approach: the steps
for discovering individual artifacts (problem 1) are shown
by filled arcs, the steps for discovering interactions between
artifacts (problem 2) are shown by dashed arcs. In a nutshell,
(1.1-1.2) we use the data schema to discover artifact schemas
and then artifact types which detail all timestamped columns
related to a particular business object. (1.3) For each artifact
we then extract a classical event log [1], each case describes
all events related to one instance of the artifact. (1.4) Existing
process discovery algorithms allow discovering a life-cycle
model of the artifact. In parallel, (2.1) we discover interac-
tions between artifacts from foreign key relations in the data
source; (2.2) during log extraction, each case of an artifact
is annotated with references to cases of other artifacts this
case interacts with. (2.3) The case references are refined into
interactions between events of different artifacts, which we
(2.4) generalize to interactions between artifact life-cycles.

We implemented our approach and conducted two case
studies. In both case studies the discovered process models
were assessed as accurate graphical representations of the
source data by domain experts; accurate insights about real
process executions and unusual flows could be obtained
exploratively and much faster than with existing best prac-
tices. In particular, by treating any one-to-many or many-to-
many relation as an interaction between two artifacts, we
could eliminate divergence and convergence, the interac-
tions discovered in (2.1-2.4) were meaningful to business
users, and unusual flows were detected accurately.

The remainder of this paper is structured as follows.
Sect. 2 discusses related work. Sect. 3 illustrates our ex-
tended approach to identify artifacts and their life-cycles
from a given relational data source. In Sect. 4, we discuss
interactions between artifacts on different levels and show
how to identify these interactions to obtain a complete
artifact-centric model. We implemented our technique and
report on two case studies in Sect. 5. Sect. 6 concludes the
paper.

2 RELATED WORK

We discuss existing work along the main problems ad-
dresses in this paper: (1) discovering conceptual entities and
their relations from a relational data structure, (2) extracting
event logs from relational data structures, (3) discovering
models or specifications of a single entity/process from
an event log, and (4) discovering/analyzing relations and
interactions between multiple objects and processes.

Entity discovery. The relational schema used in a database
may differ significantly from the conceptual entities which

Refine or
select by users

2.4 Discover
Artifact-centric

Model (Sect. 4.3)

Data
Source

Import data
schema

Use XTract

1.2 Discover
Artifacts

(Sect. 3.4)

1.3 Extract Logs
(Sect. 3.5)

1.4 Discover
Life-cycle (Sect. 3.5)

2.2 Add interaction
references
(Sect. 4.2)

Refine or
select by users

Case 1
Case 2

…
Case n

Case 1
Case 2

…
Case n

Case 1
Case 2

…
Case n

(Sect 3.2)

2.3 Discover
event-level
interactions
(Sect. 4.3)

Discovering
interactions

Discovering
artifacts

1.1 Discover
Artifact Schemas

(Sect. 3.3)

2.1 Discover
artifact type level

interactions
(Sect. 4.2)

Fig. 4. An overview of our approach.

it represents, mostly to improve system performance. Var-
ious existing works solve different steps along the way.
After discovering the actual relational schema from the
data source [13], [14], [15], an (extended) ER model can
be retrieved that turns foreign keys between tables into
proper relations between entities [16], [17], [18]. The artifact
discovery problem faced in this paper (Sect. 3) goes one
step further: one artifact type may comprise multiple entities
as long as they are considered to be following a joint life-
cycle; see [19, Chap.2] for a discussion. This problem has
been partly addressed in [20] through schema schema sum-
marization techniques [21], but convergence and divergence [9]
may still arise.

It is also possible to discover entities and artifact types
from a raw event stream (instead of a relational structure)
where each event carries “enough” attributes and identi-
fiers. The approach in [22] first reconstructs a simple re-
lational schema from all events and their attributes, two
related entities can be grouped into the same artifact if
one entity is always created before the other (in the event
stream); this extraction dismisses interactions between dif-
ferent artifacts which is crucial to our approach (step 2.1 in

LU et al. 4

Fig. 4). This work extends ideas of [20] and presents a first
complete solution to discovering entities, artifacts, and their
interactions from relational data in Sect. 3 (steps 1.1 and 1.2
in Fig. 4) and Sect. 4 (step 2.1).
Log Extraction. Existing work on extracting event logs from
relational data sources (step 1.3 in Fig. 4) mainly focus on
identifying a monolithic process definition and extracting
one event log where each trace describes the (isolated)
execution of one process instance. Manually approaches to
extracting data from relational databases of SAP systems
particularly failed to separate events related to various
processes; analyzing what was part of the process was
error-prone and time consuming [23], [24]. The generic log
extraction approach of [8] lets the user define a mapping
from from tables and columns to log concepts such as traces,
events, and attributes (assuming the existence of a single
case identifier to which all events can be related); various
works exist to improve finding optimal case identifiers
and relations between the identifiers and events [9], [10],
[25]. If the event data is structured along multiple case
identifiers as in ERP systems, all these approaches suffer
from data convergence and divergence [9]. In this work, we
identify multiple artifact types (each having their own case
identifier) and separate events into artifact types such that
convergence and divergence do not arise; having identified
proper case identifiers and related events, we then reuse
the approach of [8] to extract an event log for each artifact
type. No existing work extracts attributes that describe the
interaction between different artifact instances; we present a
first solution in Sect. 4 (step 2.2 of Fig. 4).

Model discovery. Much research has been conducted on
the problem of discovering a (single) process model from
other information artifacts. Process mining [1] takes as in-
put an event log where each trace describes the execution
of one process instance. An event in the log is a high-
level event corresponding to a complex user action or sys-
tem action, potentially involving dozens or thousands of
method calls, service invocations, and data updates. The
log describes behavior that actually happened allowing to
discover unusual and exceptional flows not intended by the
original process design. Some well known process discovery
techniques are Alpha algorithm [26], (Flexible) Heuristic
miner [27], Genetic process mining [28], ILP mining [29],
Fuzzy mining [30], and Inductive Mining [31], [32]. De
Weerdt et al. [33] compared various discovery algorithms
using real-life event logs. Existing discovery techniques
mainly focus on a single process and assume the model
operates in an isolated environment. We will reuse existing
process discovery techniques when discovering artifact life-
cycle models (step 1.4) and artifact interactions (step 2.3 of
Fig. 4).

One can also use low-level event logs where one event
corresponds to an atomic operation (method invocation,
data read/write, message exchange). Low-level event logs
are usually considered when discovering models and speci-
fications of particular software artifacts (the object-oriented
source code of a module, the GUI, etc.). Various tech-
niques are available to discover formal behavioral specifi-
cations such as automata [34], [35], scenario-based specifica-
tions [36], or object-usage models [37] from low-level event

logs; see [38], [39] for overviews. Like artifacts, object-usage
models describe how an object is being used in a context.
These techniques rely on the assumption of sequential exe-
cution (on a single machine) and strict patterns (following
code execution), while our problem features a high degree
of concurrency and user-driven behavior. Concurrent use
and user influence is considered in [40] being essentially a
variant of process mining discussed above.

Other works use event data generated by users in the
application interface to discover models of how a user
operates an application. These events can be used to analyze
styles of process modeling [41] or problem solving strategies
in program development environments [42]; these works
cannot analyze events beyond the user interface which is
the scope of this paper. In [43] it is shown how to generate
application interface test models by generating user inter-
face on a web interface; that work synthesises user behavior
whereas we analyze actual user behavior.

Interactions and deviations. The notion of artifacts [11],
[12] where a (complex) process emerges from the interplay
of multiple related objects has proven to be a useful con-
ceptual lens to describe behavioral data of ERP systems.
The feasibility of the artifact idea in process mining was
demonstrated in [44], [45] by checking the conformance of a
given artifact-centric model to event data with multiple case
identifiers. In [46], [20], the XTract approach was introduced
which allows for fully automatic discovery of an artifact-
centric model (multiple artifacts and their life-cycles) from a
given relational data source. It is also possible to discover
artifact-centric process models from event streams where
events contain enough attributes to discover entities and
relations [22]; this work also shows how to produce life-
cycle models in GSM notation [47], a declarative language
for describing artifact-centric processes. Both approaches are
limited to identifying individual artifacts, extracting logs,
and discovering life-cycles, but cannot identify interactions
between artifacts and may suffer from convergence and
divergence. In this paper, we extend this approach to avoid
these problems and also discover interactions between arti-
facts.

With respect to the second problem of discovering in-
teractions between artifacts, much less literature has been
found. Petermann et al. [48] proposed to represent relational
data as graphs in which nodes are objects or instances and
edges are relations, which is comparable to (2.1) in Fig. 4.
However, the scope of their approach is limited to instances
and direct relations between objects, while neglecting the
dynamic life-cycles of instances and the interrelations be-
tween them. Conforti et al. [49] address data divergence
and convergence by contextualizing one-to-many relations
as subprocesses of a process instead of interactions between
artifacts; this approach is unable to handle many-to-many
relations as encountered in this paper.

Also object-usage models and scenario-based specifica-
tions have been used to study object interactions. In [50]
it is shown how to discover from source code how an
(object-oriented) object is being used in a caller context; such
models can also be discovered from low-level execution
traces [37]. Also scenario-based specifications discovered
from low-level event logs [36] describe interactions between

LU et al. 5

multiple objects. However, all these works either focus on
a single object or do not distinguish multiple instances of
several interacting objects in many-to-many relations, i.e.,
two orders being processed in three deliveries, which is
a crucial property of our problem. Using event logs from
two different versions of an object, it is possible to detect
changes in object usage [51]. In this paper, we want to
detect deviations of usage of a single version of an object
to identify outlier behavior.

To summarize, our approach addresses a more general
problem than all preceding approaches: (1) discover multi-
ple artifacts (comprising multiple entities) that are in many-
to-many relations to each other such that data divergence
and convergence do not arise, and (2) discover interactions
between artifacts and identify outliers in these interactions.
Sect. 3 and Sect. 4 address the first and second problem,
respectively, and explain our approach more in detail.

3 ARTIFACT DISCOVERY

Our first goal is to identify the high-level conceptual busi-
ness objects stored in the data source and discover for each
such object a model of its life-cycle. However, the relational
schema of the data source may differ significantly from the
conceptual model it represents, usually due to performance
optimizations. After structuring the problem (Sect. 3.1) we
show how to identify all conceptual objects and their event
data in a relational data source in terms of artifacts (Sect. 3.2-
3.4). Then existing log extraction and process discovery
techniques can be applied to obtain a life-cycle model for
each artifact (Sect. 3.5).

3.1 Relational Schema vs. Conceptual Model

One can describe the difference between conceptual high-
level models and relational schemata in terms of four basic
operations. (1) Horizontal partitioning specializes a general
entity (or artifact) into multiple, more specific tables. For
example, “Documents” are distinguished into “Sales Docu-
ments” and “Delivery Documents” stored in different tables,
see Fig. 1. (2) Vertical partitioning distributes properties of
one entity into multiple different tables. For example, the
“Changes” to a “Delivery Document” are stored in the
separate “Document Changes” table. (3) Horizontal Anti-
Partitioning generalizes data from multiple entities into one
table. For example, changes of different document types are
all stored in the same “Document Changes” table rather
than in separate tables. (4) Vertical Anti-Partitioning aggre-
gates attributes of multiple entities into the same table. For
example, “Sales Documents” aggregates attributes for “Sales
Order” and “Return Order” (even though “Reference id” is
only required by “Return Order”). The examples also show
that one table may be the result of multiple such operations.

Event-based analysis of conceptual artifacts requires to
undo these operations: (D.1) recover conceptual entities
from the relation schema, (D.2) group entities that together
describe one real-life business object into an artifact type,
(D.3) such that an event log of the artifact can be extracted,
and (D.4) convergence and divergence do not arise. As
previous works do not solve (D.2) and (D.4), see Sect. 2,
we propose the following semi-automatic approach.

3.2 Artifact Types based on Relational Schemas

To address (D.1)-(D.3), we adopt ideas of [20] and ground
the definition of a conceptual artifact directly in the rela-
tional data source itself. An artifact type defines all attributes
of the artifact and the tables where these attributes are
stored:

• the primary key of one of these tables is chosen as the
artifact identifier, each value of the artifact identifier
defines a new artifact instance;

• each time-stamped attribute (together with the arti-
fact identifier) becomes an event type of the artifact
life-cycle, each time-stamp value defines an event in
the corresponding artifact instance.

Artifact types and event types can carry further attributes:
any attribute in a table holding a timestamp becomes an
event-level attribute; its value provides more information
about the event. Any other attributed related to the artifact
identifer becomes an artifact-level attribute. For example, Old
Value and New Value are event-level attributes of the events
stored in table Document Changes of Fig. 1. Attributes of a
single artifact may be are stored in different tables (to allow
reversing vertical partitioning).

In contrast to [20], our notion of an artifact type is
defined on the attribute level (rather than table level). This
allows omitting attributes of a table in an artifact type
definition and mapping attributes of the same table to
different artifacts (reverses vertical anti-partitioning). More-
over, the same attribute may be shared by different artifact
types (reverses horizontal anti-partitioning); in this case a
discriminating condition has to be provided to relate records
in the source to the correct artifact type/event type. Fig. 5
illustrates two artifact types Sales Order and Return Order
grounded in the same tables of Fig. 1; the primary key SD.id
is refined by the two conditions SD.[Document type] = ’Sales
Order’ and SD.[Document type] = ’Return Order’; timestamp
attribute Date changed is refined into 3 different event types
of Sales Order by 3 different conditions. Formal definitions
of artifact types are given in Sect. B.3.

3.3 Artifact Schema Discovery

To discover artifact types from the relational source we first
compute an abstraction of an artifact type, called artifact
schema that only reverses vertical partitioning while also
ensuring (D.4), as shown below. Refining an artifact schema
into artifact types to reverse the other operations of Sect. 3.1
may require user input as discussed in Sect. 3.4.

An artifact schema is a set of tables that together contain
all attributes of an artifact type – or multiple artifact types
of the same shape. These tables obey 3 principles. (1) The
tables of an artifact are related to each other via one or more
references (being the result of vertical partitioning). (2) As
each artifact type has an artifact identifier, there is a main
table Tm to which all other tables of the artifact refer. (3) As
convergence and divergence is a side-effect of denormaliz-
ing a one-to-many reference during log extraction, the tables
of each artifact type are only be related by one-to-one references.
Timestamp attributes related to each other via one-to-many
references should go into different artifact types.

LU et al. 6

Name

Artifact Id

Condition

name "Created"

Event id {[SD id]}

Timestamp {[date created]}

Condition

name "last change"

Event id {[SD id]}

Timestamp {[last change]}

Condition

name "Price updated"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Price updated'

name "Delivery block released"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Delivery block released'

name "Billing block released"

Event id {[Change id]}

Timestamp {[Date changed]}

Condition

Changes.[Change type] =

'Billing block released'

Artifact Sales Order

Sales Order

{[SD id]}

DateCreated

Event type BillingBlockReleased

SD.[Document type] = 'Sales Order'

LastChange

Event type

Event type

Event type PriceUpdated

Event type DeliveryBlockReleased

Name

Artifact Id

Condition

name "Created"

Event id {[SD id]}

Timestamp {[date created]}

Condition

Artifact Return Order

Return Order

{[SD id]}

SD.[Document type] = 'Return Order'

Event type DateCreated

Artifact schemas

Name Main table Tables

BD BD BD, Changes

SD SD SD (, Changes)

DD DD DD

Fig. 5. The artifact schemas of Fig. 1 (top left) and two artifact types
derived from schema SD.

From these principles, one obtains a set of artifact
schemas as follows: First obtain the relational schema S of
the data source (either from documentation or by recovering
it from the tables [20]). Partition the set of all tables in S into
maximal sets T1, . . . ,Tk such that all tables in each Ti are
connected via one-to-one references only. In each Ti, pick
the table which has no incoming reference as the main table
Tm,i

1; (Ti, Tm,i) is an artifact schema. For example, from the
relational schema of Fig. 1, we obtain the 3 artifact schemas
shown in Fig. 5 (top left); note that table Changes is initially
not part of schema SD. It has to be added manually as we
discuss later.

Any one-to-many reference is now between two different
artifact schemas. This way, event types related to each other
via one-to-many references are now separated into different
artifacts; and convergence and divergence within one arti-
fact can no longer occur. Behavioral dependencies arising
from event types separated by one-to-many references will
be expressed as interactions between different artifacts; see
Sect. 4 and the overview in Fig. 4.

Artifact schemas are discovered based on structural
properties only and might not fit domain knowledge. Thus,
in a second step, a user may add or remove tables from a
schema to obtain the intended artifact. This way, also one-
to-many references may be included in an artifact schema
at the potential cost of data convergence and divergence;
see [19, Chap.2] for a detailed discussion. Moreover, to
reverse vertical anti-partitioning where one table stores
information of several artifacts, we explicitly allow artifact
schemas to overlap in tables. In Fig. 5, artifact schema SD is

1. While the existence of a unique main table Tm,i cannot be formally guaran-
teed for all relational schemas, previous studies and our own results suggest that
such a table can always be found in practice [9], [24], [52], [7], [20].

extended with table Changes.

3.4 Artifact Discovery and Refinement
From an artifact schema SA (a set of related tables), a
generic artifact-type definition A of SA (detailing identifier,
event-types, and related attributes, but without discrimi-
nating conditions) can be obtained automatically using the
algorithm CreateTraceMapping(SA) of [20]. By this algorithm,
the primary key of the main table of SA becomes the artifact
identifier. Each time-stamped column C in a table T in SA

becomes an event type EC , every other non-timestamped
column in T defines an attribute of event type EC . Every
non-timestamped column in any table in SA that cannot be
related to one specific event type defines an artifact-level
attribute. This generic artifact type needs to be refined to
revert all operations of Sect. 3.1, as we show next.

Refining artifacts. In case SA contains information about
multiple similar artifacts types (due to horizontal anti-
partitioning), A has to be refined: create a copy of A for
each different artifact type A1, . . . , An and define a condi-
tion ϕ1, . . . , ϕn over the artifact-level attributes of A that
allows to select only records of the respective artifact type,
e.g. SD.[Document type] = ’Sales Order’. In principle, the
conditions ϕ1, . . . , ϕn have to be the given by the user.
However, in the presence of a discriminating column C
holding finitely many values v1, . . . , vn, such as Document
type in table SD of Fig. 1, the conditions for each artifact
type can be generated automatically as C = v1, . . . , C = vn;
the user only has to specify the name of the discriminating
column. This can be generalized to multiple discriminating
columns.

The resulting artifact type then should be refined by the
user. For instance, by removing event types or attributes she
is (currently) not interested in or which are side-effects of
vertical anti-partitioning. Moreover, one event type can be
refined into multiple event types by defining a discriminat-
ing condition over event-level attributes detailing the kind
of event. In Fig. 5, column Date changed is refined into three
event types based on the different values of discriminatory
column Change type. A tool supporting these operations is
shown in [53, Chap.6].

Handling generalization Identification of artifact schemas
reverts vertical partitioning; manual refinements of artifact
schema and artifact types as described above allows to
revert horizontal and vertical anti-partitioning (but requires
domain knowledge.) Reverting horizontal partitioning (i.e.,
specialization of a general entity into multiple tables) is
similar to generalizing entities and highly depends on the
given relational schema [54]; see Sect. B.4 for a detailed
discussion.

3.5 Log Extraction and Life-Cycle Discovery
An artifact type essentially specifies how to extract an event
log from the data source (each component refers to columns
and attributes). In [46], [20] it is shown how to map an
artifact schema to a log extraction specification for which the
technique in [8] produces a number of SQL queries which
extract artifact instances, events, and serializes them in an
XES event log. The definitions of [46], [20] can be adapted

LU et al. 7

Log Name Sales Order

Trace

ID name timestamp event attrs

Event e1 S1 Date created 16-5-2020 -

Event e2 1 Price updated 17-5-2020 Old value = "100", New value = "80"

Event e3 2 Delivery block released 19-5-2020 Old value = "x", New value = "-"

Event e4 3 Billing block released 19-5-2020 Old value = "x", New value = "-"

Event e5 S1 Last change 10-6-2020 -

Trace

ID name timestamp event attrs

Event e1 S1 Date created 17-5-2020 -

Event e2 S1 Last change 31-5-2020 -

ID = S1, Document type = "Sales Order", value = 100

ID = S2, Document type = "Sales Order", value = 200

Fig. 6. An example of event log extracted for artifact Sales Order

for our artifact types: instead of extracting data from all
columns of a table, only extract the columns specified in the
artifact type, and for any discriminating condition ϕ append
a WHERE ϕ clause in the extracting SQL query; see [53,
Chap.4.3] for details. Fig. 6 shows the event log extracted
from Fig. 1 using the artifact type definition Sales Order of
Fig. 5.

The resulting event log of the artifact type can be given to
any existing process discovery technique to discover a life-
cycle model of that artifact. Different discovery techniques
have been compared extensively on a conceptual and on
empirical level [33].

Fig. 7. The life-cycle discovered
for the artifact Sales Order

One characteristic spe-
cific to artifacts is that, unlike
in classical workflow pro-
cesses, concurrency may be
of secondary concern (i.e.,
if a business object may
never be accessed concur-
rently by two users/pro-
cesses at the same time, then
discovering a transition sys-
tem model [55] could pre-
vent finding false concur-
rency). The subsequent in-
teraction discovery requires
that each event of an arti-
fact is translated into (ex-
actly one) action of the life-
cycle model as otherwise in-
teractions cannot be discov-
ered properly. This assump-
tion excludes algorithms that
may discard certain events
during discovery or that
may duplicate tasks. We applied the flexible heuristic
miner [27] in our evaluation (Sect. 5); applying this miner
on the event log of Fig. 6 yields the model shown in Fig. 7.

Discussion. The presented artifact discovery technique
heavily builds on earlier work [20]. That work only dis-
covers abstract artifact schemas from which event logs are
extracted directly, a schema may contain one-to-many rela-
tions giving rise to convergence and divergence. This work
prevents one-to-many relations within an artifact schema,
refines an artifact schema into artifact types (defined on
attribute level) which can be refined further based on do-

PAGE 22

Sales Documents

Table

Deliveries Documents

Table

Sales

Documents

table

Deliveries

Documents

table

Billing

Documents

table

Billing Documents

Table

Sales Order Delivery

Return order Return delivery

Invoice

F1

F2

F2

F3

Fig. 8. The five artifact types of Fig. 1 and their type-level interactions
(ARTIs).

(a) Artifact type level interactions (ARTI):
F3 (Invoice → Delivery)

(b) Artifact instance level interactions (ARI):
B1 7→ D1, B2 7→ D2, B2 7→ D3

(c) Event level interactions (EVI) between event logs:

Date created
18-5-2020 Date created

20-5-2020

Inv. date upd.
10-6-2020

Date created
22-5-2020 Date created

24-5-2020 Date created
25-5-2020

Delivery D1 Invoice B1 Delivery D2 Delivery D3Invoice B2

e1

e3

e4
e5

e6

e2

(d) Event type level interactions (EVTI) between life-cycle
models :

Inv. date upd.

Delivery Invoice
2

1

Date createdDate created

Fig. 9. Interaction discovery for the Invoice and Delivery artifacts of
Fig. 1.

main knowledge. Both approaches are compared in our
evaluation in Sect. 5.

4 INTERACTION DISCOVERY

In Sect. 3 we inferred temporal relations between the transac-
tions of each individual business object (expressed as its life-
cycle model). For this, we considered all timestamp values
structurally related (via one-to-one relations) to the identifer
of the business object.

Next, we refine the structural one-to-many and many-to-
many relations between business objects into temporal rela-
tions between their transactions (expressed as interactions
between life-cycle models). We outline the basic idea of our
approach by an example (Sect. 4.1) and provide definitions
and algorithms afterwards (Sect. 4.2-4.3).

4.1 Basic Idea

Consider the five artifact types shown in Fig. 8 identified
from the tables of Fig. 1 (also using the Document Type
attribute for refinement). Reference F3 indicates that Invoices
are related to Deliveries. Specifically, invoice B1 is related to
delivery D1, and invoice B2 is related to two deliveries D2

and D3. We call a structural reference between two artifact
types an artifact type level interaction (ARTI) and each pair
in the reference an artifact instance level interaction (ARI).
Figure 9(a,b) summarizes both; we discuss how to detect
ARTIs and ARIs in Sect. 4.2.

LU et al. 8

VBAK

(Sales

documents)

LIKP

(Delivery

documents)

VBRK

(Invoice

documents)

VBAP

(Sales lines)

LIPS

(Delivery

lines)

VBRP

(Invoice lines)

BKPF

(Payment

documents)

CDHDR

(Changes

Header)

One to

many

name Table

BSID

(Open

Payment

documents)

BSAD

(Closed

Payment

documents)

CDPOS

(Changes

LINES)

Fig. 10. ER-model of the SAP OTC process

Our assumption is that a structural reference between
(tables of) two different artifact types implies a behavioral re-
lation between their instances. Thus, from the order of events
in related artifact instances, we can infer temporal relations
between event types of related artifact types. For example,
Fig. 9(c) visualizes the extracted traces for invoices B1, B2

and for delivers D1, D2, D3. Based on the ARIs, we consider
trace B1 together with trace D1 and trace B2 together with
traces D2 and D3. Looking at the order of events in different
related traces, we observe that e2 directly follows e1, e5 follows
e4, and e6 follows e5. We call such ordering information
event level interactions (EVI). By generalizing the ordering to
event types, we obtain event type level interactions (EVTI) as
shown in Fig. 9(d): the Create transaction for Delivery objects
leads to a Create transaction for Invoice objects in two cases,
but in one case the order is reversed. We discuss various
ways to discover EVIs, EVTIs, and unusual flows in Sect. 4.3.

4.2 Interactions between Artifacts

Conceptually, any non-empty relation between the main
tables of two artifact types is an artifact type level interaction
(ARTI). We call the source of an ARTI the parent (e.g.
Invoices of F3), and the target the child (e.g. Delivery of
F3), though this structural ordering gives no indication of
temporal ordering of events. Any pair of artifacts instances
of an ARTI is an instance level interaction (ARI).

In practice, not all discovered artifact types are relevant
in an analysis. For example, when analyzing the deliv-
ery and invoice documents of an SAP OTC process (see
Fig. 10 for its ER-model) artifacts derived from delivery lines
and invoice lines tables are irrelevant and shall be omitted.
However, now the relation between delivery and invoice
documents can no longer be analyzed as the connecting
artifact interactions are omitted as well.

Indirect ARTIs. To allow omitting artifacts and yet study
interactions of the remaining artifacts, we introduce indirect
ARTIs. An indirect ARTI is a sequence of direct ARTIs; the
first (last) artifact in the sequence is the parent (child). There
are three types of ARTIs as illustrated in Fig. 11. (a) In a
strong ARTI, all references have the same direction, thus,
each child instance has exactly one parent instance, e.g.,
D4 refers to only S1 via S3 and to no other instances.
(b) In a weak ARTI, one intermediate artifact is the child of
two direct ARTIs (i.e., reference direction changes), which

Sales Order

Return order Return delivery

Sales Order Delivery Invoice

Sales Order Delivery

Return order

S1

S3 D4

S1

S2

D1

D2

B1

B2

D3

S1

S3

D1

D2

(a)

(b)

(c)

Fig. 11. Examples of strong (a), weak (b), and invalid (c) indirect ARTIs
based on data of Fig. 1.

allows that a child instance of the indirect ARTI has two or
more parent instances (leading to over-approximation). For
example, sales order S1 is linked to two invoices B1 and
B2 while B2 is also linked to S2. (c) An ARTI is invalid if
an intermediate artifact is the parent of two direct ARTIs. In
this case the ARIs are arbitrary and unreliable, e.g., in Fig. 11
one cannot infer whether return order S3 is linked to D1 or
D2 or both. Formal definitions of ARTIs and ARIs are given
in Sect. C.1.

Discovering ARTIs. We discover direct and valid indirect
ARTIs as follows. In the graph having the main tables of all
artifact types as nodes and non-empty references between
main tables as directed edge, each edge is a direct ARTI.
We identify all strong indirect ARTIs by a depth-first-search
on the graph along the directed edges; the user can prune
search at depth m. Finally, all weak indirect ARTIs are
identified by joining any two (direct or strong indirect)
ARTIs that share the same child table; the user can limit
the over-approximation in indirect ARTIs by restricting the
second ARTI in the join to length ≤ k. Further any found
ARTI can be omitted if it contains < r ARIs (to focus on
frequent interactions only).

Enriching logs with ARIs. For each artifact type A, and
each ARTI IA,B where A is the source, we can generate an
SQL query joining the tables in the ARTI to obtain all ARIs.
Then for each instance a of A we add to the trace of a (in the
extracted event log) with an attribute listing the identifiers
of all child instances of a. For example, the trace of Invoice
B2 gets the attribute interact : Delivery = {D2, D3}. The
algorithms are given in Sect. C.2.

4.3 Interactions between Event Types

Next, we refine the extracted ARI between two artifacts into
behavioral relations between their event types. From a log
perspective, if a trace ta of an artifact instance a refers to
an instance b of another artifact with trace tb, we call the
pair (ta, tb) interacting traces. Two interacting traces indicate
that some events between them may interact. We discuss
several techniques to classify that “two events interact.”
and to derive EVTIs. In particular, we distinguish frequent
interactions and infrequent interactions and consider the in-
frequent ones as outliers; see Sect. C.3 for formal definitions.

Merge interacting traces. The first step for identifying
whether events “interact” is to merge any two interacting
traces: simply order the union of all their events by times-
tamp. Doing this for all interacting traces gives a merged

LU et al. 9

log in which we can study the temporal order of events of
two artifacts together.

Classifying interactions. We propose 5 different classi-
fication techniques. (1) Adapt the directly-follows relation
(DF) [1]: an event eA DF-interacts with eB iff eB directly
follows eA in a merged trace and eB and eA originate in
different artifacts; the pair (eA, eB) is a DF-EVI. By project-
ing all DF-interactions to their event types, we obtain the
corresponding DF-EVTI as illustrated in Fig. 9. (2) Alterna-
tively, one could only consider those EVTI pairs with the
maximum number of DF-EVIs in the merged log (DF-max-
EVTI); other thresholds are possible as well. (3) Apply an
existing process discovery algorithm D on the merged log
L: in the resulting model D(L) any direct causal relation
between event types from different artifacts defines a D-
EVTI. (4) Absolute precedence (AP-EVTI): event type A AP-
interacts with event type B iff in every trace of the merged
event log, every event of type A occurs before any event of
type B. (5) Shortest time between events (ST-EVTI): event
type A ST-interacts with event type B iff events of type B
occurs after events of type A, are from different artifacts,
and the average time delay between events of A and events
of B in the same trace is minimal among all pairs of event
types. Although each merged log has only one ST-EVTI
pair, we found this classifier useful for identifying the main
EVTI and for hiding complexities when there are many
interactions between two artifact types (see Sect. 5). For each
EVTI discovered, we simply add an edge between the two
event types from the life-cycle models, which results in a
complete artifact-centric process model showing artifacts’
life-cycles and interactions between their transactions.

Classifying unusual flows. Classifiers (2)-(5) are designed
to identify main flows of artifact interactions while classifier
(1) identifies all interactions. Thus, by first computing all
interactions using DF-EVTI and then removing main EVTIs
using any of the other techniques one obtains the set of
infrequent interactions (we found D-EVTI to be most ef-
fective). In high-volume systems such as ERP systems, the
infrequent flows are typically unusual flows that warrant
further investigation.

5 CASE STUDIES AND EVALUATION

The techniques are implemented as (1) a standalone tool
based on [20] for artifact discovery and log extraction, and
(2) a plugin to the Process Mining toolkit ProM (www.
promtools.org) for discovering artifact life-cycles, their in-
teractions, and unusual flows. The ProM plugin in partic-
ular allows to interactively change the view on an artifact-
centric model by hiding certain event types or changing the
interaction classifier; see [53, Chap.6] for details.

For our evaluation, we aimed at the following research
questions. (RQ1) Do the returned models correctly describe
the business objects in the source system? (RQ2) Do the
returned models correctly describe main flow and unusual
flows of transactions recorded in the system? (RQ3) Do
the resulting models aid non-technical domain experts in
understanding their data and draw conclusions about the
data? We conducted two case studies using two real-life,
production data sets from two different ERP systems. The

Steps Manual input Results Manual input Results

Import scope 11 tables&PKFK scope 7 tables&PkFK

1.1 8 art. schemas 6 art. schemas

1.2 3 columns as input 35 artifacts 6 artifacts

2.1 k=2, m=1, r=1 ? Interactions k=2, m=1, r=1 7 interactions

1.2Refine Only documents 18 artifacts Scope selection 3 artifacts

2.1Refine Only preceding relations 29 interactions 3 interactions

1.3&2.2 18 logs 3 logs

1.4-2.4 use HM see Figure. use HM see Figure.

OTC process in SAP PA process in Oracle

Fig. 12. Steps followed for both case studies

first case study considered (RQ1) and (RQ2) and compared
our approach to earlier work, the second case study consid-
ered (RQ2) and (RQ3).

5.1 Case I - Order To Cash in SAP
As this paper presents the first end-to-end approach to
analyze all event data in an ERP system, we evaluated (RQ1)
and (RQ2) wrt. different sets of techniques. For (RQ1), we
compared the two artifact-centric approach of this paper
(“this“ in the following) and of [20]; for (RQ2), we compared
this approach to classical log extraction [10], [8] and discov-
ery which is the current standard in automated analysis of
ERP event data (“classic”).

Context and data. The first case study was performed for the
Order to Cash (OTC) process supported by SAP systems;
that process organizes orders, payments, and deliveries
similar to our OTC running example, but has many vari-
ations supported by complex data structure [53, p.69]. The
source data has been provided by KPMG and comprised
2 months of data in 11 tables of a production SAP OTC
implementation; see Fig. 10 for the ER-model. In total, we
considered 134,826 records of 5-49 columns (33 avg.).

Setup. For both (RQ1) and (RQ2), all approaches took the
entire original data set as input. We then compared the
resulting models as follows. For (RQ1), a returned artifact
is correct if it has a meaningful interpretation as a business
object of the OTC process. We checked precision and recall
of the resulting model wrt. correct artifacts based on expert
knowledge. For (RQ2), a flow (an arrow from an event type
A to an event type B) in the model is correct if any events
of type A and B occurring in that order in the data source
belong to (transitively) related object instances in the data
source; this was checked by querying the data source. For
the ability to distinguish main flow from unusual flow, we
tested whether an unusual flow in the model contained
false positives; this again required expert assessment. The
authors with an affiliation to KPMG, acted as the experts,
provided the requirements for the target model, and evalu-
ated the results based on their expertise in ERP systems and
data analytics.

Execution. We took the following steps. (This) we followed
our approach of Fig. 4; Fig. 12 shows the parameters of
each step; only document-level artifacts were considered;
DF-EVTI and D-EVTI with [27] were used to find unusual
flows. (Classic) We chose the sales order identifiers as case
identifiers (as creation of a sales orders is the starting point
of the OTC process); all timestamp attributes of document-
level tables with a (transitive) relation to the case identifier

www.promtools.org
www.promtools.org

LU et al. 10

Fig. 13. SAP OTC process - artifact-centric model with outliers

were included in the log extraction; during log extraction,
any event which was indirectly related to a sales order
instance was added exactly once to the trace of this sales
order. ([20]) We imported the relational schema also used
in our approached and identified artifact schemas with k-
means clustering starting at k = 2 and incremented until no
new artifact schemas were found (at k = 10); all results were
considered in the analysis. See [19, Chap.7.3] for details.

Results for (RQ1). (This) We obtained 18 artifact types
connected by 29 ARTIs; these corresponded precisely to the
18 document level business objects classified by the experts.
([20]) As the approach returns clusters of tables but cannot
separate records within a table, the resulting model essen-
tially describes artifact schemas instead of artifact types. For
k = 9, we correctly identified 7 of the 8 artifact schemas but
also obtained two incorrect artifact schemas which did not
contain business objects but the change records of the actual
objects. Further, one artifact schema contained two different
business objects connected by a one-to-many reference. For
k < 9 more business objects were grouped into the same
artifact schema; for k > 9, empty artifact schemas were
returned instead of refining existing clusters with one-to-
many relations. Sect. E provides details.

Results for (RQ2). (This) We obtained the model shown in
Fig. 13 which classifies one unusual flow highlighted by the
red arc. By construction of the technique, all flows in the
model are correct (as flows are only identified from events
in related tables). The unusual flow from Payments Received
to Invoice Created was unanticipated and indicates that there
were payments received before the corresponding invoices
were created in the account receivable, which arouse our
interest. We validated the unusual flow by looking into the
database (the SQL query used can be found in [53, p.76])
and found that for the cases that caused this flow, the
database indeed contained a Payment Received date earlier
than the Posted In AR date. Further investigation revealed
that the cases was (indeed) manually changed by someone
using the transaction code FB05, which is used to apply
for cash (automated or manually) incurring risks. Thus,
we automatically detected an unexpected but true, unusual
action. No other unusual flows were found in the data
source. The flows described by this model were assessed
as accurate by the experts.

(Classic) Fig. 14 shows the process model obtained from
the classically extracted event log obtained with Fluxicon
Disco (www.fluxicon.com/disco) which is based on the
directly-follows relations in the log. The model is rather
convoluted and unreadable due to data convergence and

8

1

1472

1

6

341

346

53

59

142

18

17

90

108

138

1

141

13

3

257

22

65

47

2

278

1360

1

2439

23

907

1

46

620

597

1

1

212

1

1

1

2

22

10

12

6

1

2

1

15

107

78

26

31

7

12

371

316

2

11

49

9

15

22 1

89

1

3

18

1298

854

354

42

5 9

1

14

15

1140

646

39

46

55

641

14

304

271

568

734

625

4

8

49

7

5

6

Created

2581

Delivery H_Created

5118

Payment05or15_Payment Received

822

PostInAR_PostedInAR

3479

Invoice H_Created

2629

InvoiceCancellation H_Created

40

Contract H_Created

741

ProFormaInvoice H_Created

730

ReturnDelivery H_Created

1

CreditMemo H_Created

34

ReturnOrder H_Created

1

CreditMemoRequest H_Created

33

DebitMemoRequest H_Created

2

DebitMemo H_Created

14

Fig. 14. SAP OTC process case study - a life-cycle of sales orders
obtained using a classical log conversion approach.

divergence and contains many incorrect flows. For instance,
9 out of the 14 event types have a self-loop, which are false
positives, as no event in the original data set is directly
related to another event of the same type. To quantify the
false positives, we compared the directly-follows relations
of the extracted event log to the directly-follows relations
(arcs between event types) of the artifact-centric model in
Fig. 13 (assuming ground truth for the latter). We found that
6696 out of 13644 directly-follows pairs to be incorrect, i.e.,
about 50%. This resulted in 36 out of the 79 arcs in Fig. 14
to be incorrect.

We then located events of directly-follows pairs of the
classic log that are incorrect wrt. model of Fig. 13 in the
original data source; we checked whether the business object
instances to which these events belong are structurally re-
lated in the data model; in all cases, the business objects had
no relation. Hence, none of the additional flows identified by
the classic approach was correct. This also implies that the
artifact-centric model did not miss any correct flow. We also
observed wrong statistics: while the original data source
contains 338 contract objects, the extracted log contains 741
contract created events due to event duplication. Sect. E
provides details.

Discussion. Our approach allows to correctly identify all
business objects of the process in terms of artifacts; the
existing approach failed both due to a conceptual limitation
(cannot separate records in a table) and in precision and
recall. As a limitation, our technique requires expert knowl-
edge to correctly define all artifacts in the first place. How-
ever, once structural artifact types are defined, the resulting
artifact-centric model correctly classifies main flows and
unusual flows. No false positives or false negatives were
found. Sect. E.3 reports on an explorative analysis where we
investigated the impact of complex life-cycle models with
many event types on the interactions between artifacts.

5.2 Case II - Project Administration in Oracle
The second case study aimed at (RQ2) and (RQ3) had
been performed for the project administration (PA) process
supported by the Oracle ERP system of an educational
organization (called “client” in the following).

Context and data. The Project Administration (PA) process
supported by Oracle Enterprise ERP system facilitates thou-
sands of projects running by the educational organization,
e.g. research projects. In short, the PA process starts with
creating projects in the system. During the execution of the
project, tasks are created for the project to declare different
expenditures related to a task, e.g. personnel, materials. For

www.fluxicon.com/disco

LU et al. 11

Create

Completion

Start Create
Artifact
Project

Artifact
Task

Start

Artifact
Expenditure

Fig. 15. A proclet system discovered by using the DF-max-EVTI classi-
fier

assessing financial risks, expenditures should end before tasks
are completed and before corresponding projects are closed.
The source data comprised 7 tables over in total 16805
records and 134 columns.

Setup. We applied the artifact-centric approach to discover
a fixed set of artifacts, life-cycle models, and artifact inter-
actions. Using our interactive ProM plugin [53, Chap.6.2],
we then explored the model and produced different views
highlighting different flows. Unusual flows were identified
both with the tool and by visual inspection on the model;
the correctness of these flows was then discussed with the
client in an interactive session of one hour. As the client was
unfamiliar with the notation of the model, the client was
first trained to read the model before we validated findings
and gathered feedback.

Execution. The steps followed in our approach are shown in
Fig. 12. Documentation about the data schema (esp. primary
keys and foreign keys) was available. For the log extraction
step, we considered only the artifacts Projects, Tasks and
Expenditures (as these are the primary objects in the process),
each containing 1132, 1236 and 3100 instances, respectively.
The three event logs were imported into ProM. The heuristic
miner was used for the artifact-centric process discovery; see
Sect. E.4 for details.

Results. In total 5 different views on the artifact-centric
model were generated; Fig. 15 shows the view highlight-
ing the main interactions obtained using the DF-max-EVTI
classifier; see [53, Chap.7.2] for all other views. On the 5
views, we identified in total 10 unusual flows. 7 flows were
classified as unusual by our technique. 2 unusual flows were
identified by the experts from KPMG by visual inspection
of the model. 1 unusual flow was identified by the client
themselves during the discussion by visual inspection of the
model.

All identified unusual flows were confirmed as correct
wrt. the source data, i.e., no false positives were identified.
Four of the unusual flows were explained by the client
as rare cases which can happen in the process; for two
unusual flows the client indicated that the intended process
may have not been followed and further investigation was

required; one unusual flow could be traced to an implemen-
tation detail of the Oracle system; one unusual flow, though
correct wrt. the source data, could neither be explained by
the expert nor by the client; finally, two unusual flows were
identified due to inaccuracies in the source data (i.e., some
timestamps had only granularity of entire days). Fig. 15
shows an unusual flow identified by experts and confirmed
as a rare case in the process by the client. Two of the unusual
flows are discussed in more detail in Sect. E.5; a detailed
discussion on all flows is available in [53, Chap.7.2].

The discussion of unusual flows led to a further analysis
question which required to explore the data further and
refine the Expenditure artifact based on different expenditure
types; findings are reported in Sect. E.6.

Discussion. We could show that the approach is generic
and can be applied on a different process supported by a
different ERP system. We were able to use the discovered
artifact-centric models to help experts and clients commu-
nicate and identify deviations in their real processes. All
identified unusual flows were correct (though two unusual
flows occurred due to inaccurate data). Moreover, a rela-
tively short training of less than one hour sufficed to enable
a domain expert unfamiliar with the notation to identify
unusual flows on their own, even in the case where an
unusual flow is not identified automatically but has to be
recognized by the user. The lessons learned for conducting
such an artifact-centric analysis have been summarized as a
methodology in [19, Chap.6].

6 CONCLUSION

In this paper, we addressed the problem of discovering a
process model from event data of stored in a relational
data source, in particular event data of ERP systems. We
proposed to discover a model that describes the process as a
set of interacting data objects (of a process), each following
its own life-cycle, also called artifacts. We presented a semi-
automatic, end-to-end approach to identify artifacts in a
relational data source and extract a life-cycle event log for
each identified artifact. From each log, a life-cycle model
of this artifact can be identified using existing process dis-
covery techniques. Second, we provide, for the first time,
a family of techniques to discover causal dependencies,
between artifacts at the type level and at the event level.
This information can be visualized as interactions between
the extracted artifact life-cycle models. We validated our
approach in two case studies using real-life data from ERP
systems. In the case studies, the discovered models accu-
rately describe the real executions of the recorded business
processes. The case studies also show that the discovered
models provide useful insights into the processes and allow
users to identify unusual flows of executions.

Future Research. This paper made a first step towards
a fully discovery of artifact-centric process models from a
relational data source. Currently, our approach for discov-
ering artifacts still needs manual steps such as indicating a
column for splitting the artifacts or splitting the event types.
More advanced algorithms can be developed to identify
the “perfect” artifact automatically by using, for example,
metrics and heuristics. Furthermore, we considered the line
level artifacts (e.g. sales order lines) as separate artifacts in

LU et al. 12

our case study and omitted them from the log extraction.
It would be interesting to investigate the hierarchy of arti-
facts; for example, supporting the discovery of sub-artifacts
within artifacts. A limitation of the current interaction dis-
covery is that it is limited to two artifacts. We would like to
discover the interaction flow between multiple artifacts by
merging multiple artifacts for example.

APPENDIX A
PROBLEM CONTEXT AND MOTIVATION

As today’s business are becoming more process-driven,
service-oriented infrastructures supporting business execu-
tions frequently are organized several layers [5]:

• business object layer modularizes functionalities and
increases their re-usability;

• business process layer orchestrates functionalities to
deliver end-to-end business services and values; and

• user interface layer handles interactions between
user and system.

ERP systems such SAP and Oracle Enterprise are examples
of such a service-oriented infrastructure. SAP has many
modules where each module handle particular business ob-
jects; access to these objects is encapsulated in services. The
high-level end-to-end processes in an SAP system invoke
various services to update business objects which trigger
state changes in the life-cycles of a business object and in-
teractions (or service invocations) between these objects. For
example, Order to Cash process of SAP can invoke services
from modules like Sales & Distribution (SD), Production
Planning (PP), Material management (MM) and Finance &
Controlling (FICO) and uses business objects provided by
these modules to execute the end-to-end process that starts
from (1) receiving orders from customers to (2) manufactur-
ing the products to (3) delivering them to customers, and
finally (4) receiving payments from customers [4].

These modules and the business object layer remain the
same but depending on the company, the business process
that is executed may be configured differently. For example,
most webshop companies do not manufacture and therefore
do not use Production Planning modules or related objects.
Moreover, even in a configured process of a company, not
all executions invoke the same services of the SAP system.

In this paper, we are reconstructing these business pro-
cesses and the service calls that were executed in reality,
from transactional data recorded during the execution, by
discovering the used business objects, their life-cycles and
their interdependencies.

The discovered end-to-end processes can be used to
analyze for example how the business objects are used
and whether the current way of using are desirable. This
helps business users to understand how their processes are
running in the reality and improve their processes.

APPENDIX B
ARTIFACT DISCOVERY – TECHNICAL DETAILS

B.1 Preliminaries - Relational Data
The relational concepts used, i.e. table, column, reference
and data schema, are listed in this section.

Definition 1 (Table, Column). T = {T1, · · · , Tn} is a set of
tables of a data source, where each table Ti = 〈C,Cp〉 is a tuple
of its columns C and its primary keys Cp.

In the OTC example, there are four tables, each of which
has one column as primary key, i.e. T = {SD, DD , BD,
Changes} and e.g. table SD = 〈{SD id, Date Created,
Reference id, Document Type, Value, Last change }, {SD
id}〉.

Definition 2 (Reference). F = 〈Tp,Cp, Tc,Cc, Fcondition〉 is
a reference if and only if

• Tp is the parent table ,
• Cp is an ordered subset of columns denoting the primary

key of the parent table,
• Tc is the child table,
• Cc is an ordered subset of columns denoting the foreign

key, and
• Fcondition is the extra condition for the reference (which

can be appended in the FROM part or the WHERE part
of an SQL query).

The condition Fcondition reflects the as-is situation in
various ERP systems such as SAP where Cc only is a proper
reference to an entry in Tp if that entry has a particular
value in particular column of Tp. For example, the foreign
key F4 can be defined by three references, and one of these
references is 〈 [SD], {SD id}, [Changes], {Reference Id}, “
[Changes].[Table name] = “SD ” ”〉. The condition Fcondition
could be empty indicating Fcondition is true.

Definition 3 (Data schema). S = 〈T,F,D,
column domain〉 is a data schema with:

• T is a set of the tables with the primary keys of each table
filled in;

• F is a set of references between the tables;
• D is a set of domains; and
• column domain that assigns each column a domain.

B.2 Artifact Schema Identification
The formal definition of artifact schema and the algorithm
for computing artifact schemata are listed.

Definition 4 (Artifact Schema). SA = 〈TA,FA,DA,
column domain, Tm〉 is an artifact-schema if and only if SA

a subset of the schema S = 〈T,F,D, column domain〉, i.e.,

• TA ⊆ T is a subset of tables;
• FA ⊆ F is a subset of reference;
• DA ⊆ D is a subset of domains;
• column domain is the assignment function of the

schema; and
• Tm ∈ TA is the main table in which the trace identifiers

can be found.

Algorithm ComputeArtifactSchemas(S)
1. Let a graph G = (TG,FG)← (S.T,S.F)
2. for F ∈ FG
3. do if (F is not one-to-one)
4. then remove F from FG
5. for a connected sub graph g = (Tg,Fg) ⊆ G

LU et al. 13

6. do TA ← Tg , FA ← Fg ,
7. select a table Tm ∈ TA which has no parent

table in TA
8. DA ← the union set of domains of columns

of the tables in TA
9. create a new artifact schema SA =

〈TA,FA,DA,S.column domain, Tm〉
10. add artifact schema SA to S
11. return S

The starting point for finding artifact schemas in the
relational data source is its schema S. From this graph,
the references which are not one-to-one are removed, thus
resulting in a graph only connected by one-to-one refer-
ences. Each of the resulting connected sub-graphs can be
considered as valid artifact schemas as it only contains
tables which are linked by one-to-one references. The main
table Tm can be selected as a table which has no parent in
the set TA of the selected tables. The set DA of domains is
the union set of all domains of columns of the tables in TA.
We can obtain an artifact schema SA and add it to the set S
to be returned.

B.3 Artifact Identification

The formal definitions of event type and artifact type are
presented in this section. In addition, an example of an
artifact type is shown in Tab. 1

Definition 5 (Event types). Ei = 〈Ename,CEid, Ctime,
CEattrs, Econdition〉 ∈ E is an event type if and only if:

• Ename is the name of the event type;
• CEid is a set of columns defining the event identifier;
• Ctime is the column indicating the ordering (or the

timestamps) of events of this event type;
• CEattrs is a set of columns denoting the attributes of the

event type; and
• Econdition is a condition (which can be appended in the

FROM part or the WHERE part of an SQL query) to
distinguish various event types stored in the same column
Ctime of the data source.

Definition 6 (Artifact types). A = 〈Aname,CAid,E,Cattrs,
I,SA, Acondition〉 is an artifact if and only if:

• Aname is and artifact name;
• CAid is a set of columns denoting the case identifier of the

artifact;
• E is a set of event types;
• Cattrs is a set of columns denoting the case attributes,
• I is a set of interactions between this artifact A and other

artifacts (which remains as an empty set in this section);
• SA is the corresponding artifact schema; and
• Acondition is the an artifact condition which is an extra

condition (which can be appended in the FROM part
or the WHERE part of an SQL query) that is used to
distinguish various artifacts having the same main table
Tm (or having the same artifact schema).

TABLE 1
An example of the Sales Order artifact

Artifact’s component Value
Aname Sales Order
CAid { SD id }

E1 ∈ E

〈Ename = date created,
CEid = {SD id},
Ctime = [date created],
CEattrs = {},
Econdition = ∅〉

E2 ∈ E

〈Ename = last change,
CEid = {SD id},
Ctime = [latest change],
CEattrs = {},
Econdition = ∅〉

Cattrs { [Document type], [Value]}
I ∅
Acondition Tm.[Document type] = ‘Sales Order’

B.4 Handling Generalization

In this section, we discuss how to handle horizontal parti-
tioning in the data source, that is, when information about
a conceptual general artifact is not stored as such, but has
been distributed over many different tables. For example
in Fig. 1, one could be interested in extracting a general
“Documents” artifact rather than one artifact for different
document types.

Generalizing different artifact types into one general
artifact is similar to generalizing entities and highly depends
on the given relational schema [54].

1) The specialization is materialized in the relational
schema by a discriminating attribute. In this case
all artifact types are found in the same tables,
and hence will be contained the same artifact
schema. When defining the artifact type, one simply
specifies are more general discriminating condition
Acondition in Def. 6. The resulting general artifact
type then contains more or even all event types and
attributes in the artifact schema.

2) The specialization is materialized as an “IS-A” re-
lationship with a “general table” and foreign keys
from its specializations. In this case, the general ta-
ble and all specializations of interest become part of
the artifact schema, and the general table is chosen
as main table. Artifact type definition proceeds as
described above.

3) The specialization is materialized as separate tables
without an “IS-A” relationship. In this case no gen-
eralizing main table for the different specializations
can be defined. Two solutions are possible. (1) One
can first extract the life-cycle event log for each
specialized artifact, and then merge the resulting
event logs into one generalized event log. Prefixing
values of identifier attributes prevents collisions of
different specializations. (2) For the purpose of the
analysis, one could transform a copy of the original
relational source, for example by introducing an “IS-
A” relationship with appropriate foreign keys.

LU et al. 14

APPENDIX C
INTERACTION DISCOVERY – TECHNICAL DETAILS

In this section, the formal definitions and algorithms for
discovering interactions between artifacts are given.

C.1 Interaction Types and Definitions

We provide formal definitions of ARTIs and ARIs.

Definition 7 (Direct artifact type level interaction, Parent
artifact, Child artifact). Let A be a set of artifacts and F a set
of references. (AS , F,AT) ∈ A× F× A is a direct, artifact type
level interaction between the two artifacts AS and AT , if and only
if, (1) F = 〈TSm,CSAid, TTm,CTc , Scondition〉 is a reference from
some attributes CTc of the main table ofAT to the artifact identifier
CSAid of AS , and (2) there has to be an entry s in TSm referring
to an entry t in TTm that s satisfies the condition AS .Acondition,
and t satisfy the condition AT .Acondition.

We denote the artifact AS as the parent artifact and the
artifact AT as the child artifact.

For example, (ASalesOrder, F2, AReturnOrder) is a direct,
artifact type level interaction.

The direct ARIs are instantiated from the interactions on
the type level by joining the main tables based on direct
type level interactions. Below, an SQL query is shown which
select the direct instance level interactions of the direct
type level interaction (ASalesOrder, F2, AReturnOrder). The
resulting instance level interaction is (S1, S3). Note that the
query can be generated automatically using the artifacts and
references. For technical details, we refer to [53, Chap.4].

SELECT DISTINCT
SalesOrder.[SD ID] AS [SO id],
ReturnOrder.[SD ID] AS [RO id]
FROM SD AS SalesOrder
INNER JOIN SD AS ReturnOrder
ON SalesOrder.[SD ID] = ReturnOrder.[REFERENCE ID]
AND SalesOrder.[DocumentType] = ‘Sales Order’
AND ReturnOrder.[DocumentType] = ‘Return Order’

Lemma 1 (Reference property). Given a direct, type level
interaction (AS , F,AT), an instance in the parent artifact AS
can be linked to zero or multiple instances of the child artifact
AT , whereas an instance in the child artifact AT can only be
linked to zero or one instance of the parent artifact AS .

Proof. According to the definition of a direct type level
interaction, the reference F is a direct foreign key between
the two main tables. Therefore, the property of a foreign key
(or the structure of a relational database) indicates that an
entry in the parent table (in this case the main table AS .Tm
of the parent artifact) is linked to zero or multiple entries in
the child table (in this case the main table AT .Tm of child
artifact), whereas an entry in the child table is only linked
to zero or one entry in the parent table, which automatically
implies the Reference property since each entry in the main
table refers to an artifact instance.

Definition 8 (Valid artifact type level interactions). Let
A be a set of artifacts and F be a set of references. An artifact
type level interaction IS,T = 〈d1, · · · , dn〉 ∈ (A × F × A)∗
between artifacts AS and AT with n ≥ 1 is a sequence of direct
interactions di = (APi , Fi, ACi) ∈ A × F × A and 1 ≤ i ≤ n,

PAGE 31

S T
d1 dn

S T
d1 dn AP1 ACn Ac1

Apn

S
d1 dk AP1

ACk = AC(k+1)

T
dk+1 dn Apn

(1) (2)

(3)

Fig. 16. Type level interactions

which satisfies one of the following properties (also shown in
Figure 16):

(1) the parent artifact AP1 of the first direct interaction d1
is the artifact AS , and the child artifact APn of the last
direct interaction dn is the artifact AT , and for 1 ≤ i <
n, ACi = APi+1 ; or

(2) the child artifact AC1 of first direct interaction d1 is the
artifact AS , and the parent artifact APn of the last direct
interaction dn is the artifact AT , and for 1 ≤ i < n,
APi = ACi+1 ; or

(3) there is a number k and 1 ≤ k ≤ n, for 1 ≤ i < k,
ACi = APi+1 , and ACk = ACk+1

, and for k < i < n,
APi = ACi+1 , and the parent artifact AP1 of first direct
interaction d1 is the artifact AS , and the parent artifact
APn of the last direct interaction dn is the artifact AT .

Additionally, in all cases the number of instance level interactions
is greater than zero.

Definition 9 (Strong interaction). An artifact type level inter-
action IS,T = 〈d1, · · · , dn〉 between artifacts AS and AT that
satisfies Definition 8(1) or (2) is called strong. The length of
strong joins of this interaction is n.

Definition 10 (Weak interaction). An artifact type level inter-
action IS,T = 〈d1, · · · , dn〉 between artifacts AS and AT that
satisfies Definition 8(3) is called weak. The length of strong
joins of this interaction is k, and the length of weak joins is
m = n− k.

If m > 0, then the interaction relation may be de-
scribe an over-approximation of actual interactions. Let
lengthSJ(IS,T) = k and lengthWJ(IS,T) = m denote the
length of strong and weak joins of IS,T .

Invalid Interactions. Compared to weak interac-
tions, a sequence that has two consecutive direct in-
teractions (ASi , Fi, ATi) and (ASi , Fj , ATj) with the
same parent artifact ASi and different target artifacts
is invalid. Figure 11(c) shows an example: the in-
teraction composed of (ASalesOrder, Fi, ADelivery) and
(ASalesOrder, Fj , AReturnOrder). Since an instance of the
artifact Sales Order can be linked to multiple instances of the
artifact Delivery and multiple instances of the Return Order,
it is impossible to determine the exact relations between the
instances only based on the references. For instance, D1 and
D2 refer to S1, but also S3 refers to S1, but there is no explicit
relation that indicates whether D1 is then related to S3 or D2
to S3. Therefore, this type of interaction is considered to be
invalid.

LU et al. 15

C.2 Artifact Type Level Interaction Discovery

In this section, the algorithms for computing artifact type
level interactions are presented. First, given a set of arti-
facts A = {A1, · · · , An}, the algorithm ConstructInteraction-
Graph(A,F) computes an interaction graph G = (A, D).
From the interaction graph G, the algorithm CalculatesInter-
actions(A, G, r, k,m), with r > 0, k ≥ 1 and 0 ≤ m ≤ k
compute a set of ARTIs I, direct and indirect, for each
artifact.

Definition 11 (Interaction graphs). Given a set A of artifacts
and a set F of references, G = (A, D) with D ⊆ A×F×A is an
interaction graph, if and only if, for each d = (As, F,At) ∈ D,
d is a direct, artifact type level interaction between artifacts As
and At.

The set of outgoing edges of artifact AS ∈ A is denoted by
outEdges(AS) = {(AS , Fi, x) ∈ D | x ∈ A}. Similarly, the
incoming edges of artifact AS is defined as inEdges(AS) =
{(x, Fi, AS) ∈ D | x ∈ A}.

For example, Figure 8 shows the interaction graph of
the OTC example including the direct interactions (denoted
by the arcs) between the artifacts (denoted by the elliptic
nodes).

Algorithm ConstructInteractionGraph(A, F)
1. D ← ∅
2. for F = 〈Tp,Cp, Tc,Cc, Scondition〉 ∈ F
3. do for Ap ∈ Artifacts(TP), Ac ∈ Artifacts(Tc)
4. do if countSelect(Ap, F, Ac) ≥ 0
5. then D ← D ∪ (Ap, F, Ac)
6. return G = (A, D)

Algorithm CalculatesInteractions(A, G, r, k,m)
1. for AS ∈ A
2. do I← ∅
3. for (AS , F, At) ∈ outEdges(AS)
4. do Icurrent ← 〈(AS , F, At)〉
5. if countSelect(Icurrent) ≥ r
6. then I← I ∪ Icurrent
7. calculateJoins(AS , At, Icurrent, I, r, k − 1, m)
8. A.I← I
9. return A

Algorithm calculateJoins(AS , Acurrent, Icurrent, I, r, k,m)
1. if k > 0
2. then for (Acurrent, F, Anext) ∈ outEdges(Acurrent)
3. do Inext ← Icurrent + 〈(Acurrent, F, Anext)〉
4. count← selectCount(Inext)
5. if count ≥ r
6. then I← I ∪ Inext
7. if count > 0
8. then calculateJoins(AS , Anext, Inext, I, r, k− 1, m)

9. if m > 0 ∧ lengthSJ(Icurrent) > lengthWJ(Icurrent)
10. then for (Anext, F, Acurrent) ∈

inEdges(Acurrent)\set(Icurrent)
11. do Inext ← Icurrent + 〈(Anext, F, Acurrent)〉
12. count← selectCount(Inext)
13. if count ≥ r
14. then I← I ∪ Inext
15. if count > 0
16. then calculateJoins(AS , Anext, Inext, I, r, 0, m− 1)
17. return

Single-Sided Discovery. Note that a design decision is
made to restrict the identification of symmetric interactions
on the parent artifact by using the condition that the length

of strong joins is at least the length of weak joins, in addition
to that the number of strong joins greater than zero (i.e.
k ≥ 1).

C.3 Event Type Level Interaction
The formal definition of event logs, traces and events [1] are
listed.

Definition 12 (Event universe E). Let E be the event uni-
verse, i.e. the set of all possible event identifiers. Events may be
characterized by various attributes. Let AN be a set of attribute
names. For any event e ∈ E and name n ∈ AN : #n(e) is
the value of attribute n for event e. If event e does not have an
attribute named n, then #n(e) = ⊥ (null value).

For example, #type(e) is the event type associated to
event e describing the activity that has been executed;
#time(e) is the timestamp of event e (also denoted by T (e)).

Definition 13 (Case universe L). Let L be the case universe,
i.e. the set of all possible case identifiers. A case also has attributes.
For any case c ∈ L and name n ∈ AN : #n(c) is the value of
attribute n for case c. If case c does not have an attribute named
n, then #n(c) = ⊥.

Definition 14 (Traces). Each case has a special mandatory at-
tribute trace: #trace(c) = σc ∈ E∗, which is a finite sequence of
events σ ∈ E∗ such that each event appears only once. We assume
traces in a log contain at least one event, i.e. #trace(c) 6= 〈〉.

Definition 15 (Logs). An event log is a set of cases L ⊆ L
such that each event appears at most once in the entire log. We
use A to denote the set of all event types appearing in log L, i.e.
A = {#type(e) | c ∈ L ∧ e ∈ #trace(c)}.

Definition 16 (Projection F). Given a log L and an event type
E ∈ A, FE(L) filters L and retain, for each of its traces, the
event of event type E only.

For example, the trace sales or-
der σS1 consists of two events, i.e.
〈(S1, created, 16-5-2020), (S1, latestchange, 10-6-2020)〉.
If we apply the project function on the trace σS1
with E = created, we obtain Fcreated(σS1) =
〈(S1, created, 16-5-2020)〉.

Definition 17 (Trace precedence <T). Given two traces σs
and σt, σs <T σt, if and only if, for each event es ∈ σs and
et ∈ σt, the timestamp #time(es) of the event es is before the
timestamps #time(et).

For example, FE(σs) <T FE(σt) means that each event
es ∈ σs which has the event type E is executed earlier than
each event et ∈ σt which has the event type E. σs =T σt,
σs >T σt, σs ≤T σt and σs ≥T σt are also similarly defined.

Definition 18 (Function #I T (c)). Given a log L, of which
each case is enriched with instance level interactions, a case c, and
artifact T , we use the notation #I T (c) to retrieve the instance
level interactions between the case c and the set of cases of artifact
T .

Definition 19 (Function I). Given two event logs LS and LT ,
we define I(LS , LT) = {(cs, ct) | cs ∈ LS ∧ ct ∈ LT ∧ ct ∈
#I T (cs)} ⊆ LS × LT as the set of trace level interactions
between the logs LS and LT , where each (cs, ct) ∈ I(LS , LT)

LU et al. 16

indicates that there is an instance level interaction between the
two traces cs and ct seen from the parent artifact AS to the
child artifact AT .

Definition 20 (Event type level interactions (EVTI)). Given
two artifact typesAS andAT , and their set of event typesAS and
AT , respectively, an event type level interaction (ap, ac) between
AS and AT satisfies, at least, the requirement that ap ∈ AS and
ac ∈ AT , or vice versa.

In the following, we present two methods to identify
event type level interactions between the events of two
interacting traces LS and LT . More specifically, we identify
the relation X ⊆ (AS × AT) ∪ (AT × AS) where AS and
AT denote the event types of LS and LT , respectively.

C.4 EVTI Discovery by Merging Logs
We present the CalcETLInteractionsByMergingLogs algorithm
below. In general, for each (σs, σt) ∈ I(LS , LT), we merge
the two traces to a new trace using the merge function M
(see Line 5) that simply builds the union of the events of two
traces σs and σt and orders all events by their timestamp
(see [53, Chap.5] for a formal definition). All merged traces
are added to the log Lnew containing events originally from
two artifacts.

Now, a process discovery algorithm Miner() can be
applied on the merged log Lnew to discover dependencies
between the two sets of event types, i.e. AS and AT . (see
Line 7). Each direct succession (Ei, Ej) between the two
event types Ei and Ej discovered where Ei ∈ AS and
Ej ∈ AT (or vice versa) is considered an event type level
interaction between artifacts AS and AT , and added to the
result X (see Lines 8-9).

Algorithm CalcETLInteractionsByMergingLogs(LS , LT)
1. if I(LS , LT) = ∅
2. then return ∅
3. else Lnew ← [], X ← ∅
4. for (σs, σt) ∈ I(LS , LT)
5. do σnew ←M(σs, σt)
6. if σnew 6= 〈〉 then add σnew to Lnew
7. Mnew ←Miner(Lnew)
8. for (Ei, Ej) where Ej is a direct successor of Ei in the model

Mnew , and (Ei, Ej) ∈ AS ×AT or (Ei, Ej) ∈ AT ×AS
9. do add (Ei, Ej) to X .
10. return (Lnew, X)

For example, if we use the heuristic miner as the
Miner(Lnew), a simple causality net DG = (Anew, D), in
which D ⊆ Anew × Anew indicates the direct succession
between event types, is obtained from the log Lnew. Here,
a dependency (Ei, Ej) ∈ D with Ei ∈ ALS and Ej ∈ ALT
(or vice versa) is returned as an event type level interaction.
When using a miner that returns a Petri net, we first com-
pute the direct succession between transitions by omitting
the places and then identify event type level interactions.

An important remark is that different process discovery
techniques return a different set of event type level interac-
tions. The meaning of an event type level interactions iden-
tified also varies depending on the discovery miner chosen
as Miner(L). For example, the interactions (dependencies)
between two event types identified by the alpha miner are
absolute precedence, thus event type A always before event
type B, and no B is found before A in the log. In contrast,

the event type level interactions returned by the flexible
heuristic miner have a different meaning, i.e. event type A
is mainly before event type B, and B before A is much less
frequent (or lower than the threshold) in the log.

C.5 EVTI Discovery by Using Defined Criteria
Definition 21 (Criterion absolute precedence). For each
(Ep, Ec) ∈ AsubS × AsubT ∪ AsubT × AsubS , (Ep, Ec) ∈ X
is an ETLI according to absolute precedence, iff, for all
(σs, σt) ∈ I(LS , LT) : FEp(σs) ≤T FEc(σt)

Definition 22 (Criterion existing precedence). For each
(Ep, Ec) ∈ AsubS × AsubT ∪ AsubT × AsubS , (Ep, Ec) ∈ X
is an ETLI according to existing precedence, iff, there is
(σs, σt) ∈ I(LS , LT) : FEp(σs) ≤T FEc(σt)

Definition 23 (Criterion shortest time). (Ep, Ec) ∈ X is an
ETLI according to shortest time, iff,

1) min(Ep,Ec)∈AsubS×AsubT (∑
(σs,σt)∈I(LS,LT) AvgTimeDur(FEp (σs),FEc (σt))

|I(LS ,LT)|), or,
2) min(Ep,Ec)∈AsubT×AsubS (∑

(σs,σt)∈I(LS,LT) AvgTimeDur(FEp (σs),FEc (σt))
|I(LS ,LT)|)

)

Definition 24 (Event level interactions). Let σ =
〈e1, e2, · · · , en〉 be a trace. For all i = [1, ..., n−1], we call event
ei+1 the direct successor of ei; we write (ei, ei+1) ∈ succ(σ). Let
succ(L) denote the direct successors of all traces in L. Now, if L
is merged from two logs LS and LT , an event ei ∈ L indicates
ei ∈ ES ∪ ET which is the union set of events of LS and LT .
We define an event level interaction as follows. A succession
(ei, ei+1) ∈ succ(L) with L merged from LS and LT is an
event level interaction between the two events if and only if
ei ∈ ES and ej ∈ ET or vice versa.

Definition 25 (Criterion existence of an event level interac-
tion). (Ep, Ec) ∈ X is an ETLI according to existence of an
event level interaction, iff, there exists (ei, ei+1) ∈ succ(L)
such that (1) ei ∈ ES ∧ ei+1 ∈ ET (or vice versa) and (2)
#type(ei) = Ep ∧#type(ei+1) = Ec

Definition 26 (Criterion max number of event level interac-
tions). (Ep, Ec) ∈ X is an ETLI according to max number of
event level interactions, iff, , iff,

max
(Ep,Ec)∈AsubS×AsubT

⋃
(σs,σt)∈I(LS ,LT)

(

{(ei, ei+1) | (ei, ei+1) ∈ σ ∧ σ ∈M(σs, σt)

∧#type(ei) = Ep ∧#type(ei+1) = Ec})
∨

max
(Ep,Ec)∈AsubT×AsubS

⋃
(σs,σt)∈I(LS ,LT)

(

{(ei, ei+1) | (ei, ei+1) ∈ σ ∧ σ ∈M(σs, σt)

∧#type(ei) = Ep ∧#type(ei+1) = Ec})

APPENDIX D
COMPLEXITY ANALYSIS

In this section, we provide a complexity analysis of our
approach. The running time of algorithms are summarized

LU et al. 17

in Table 2. We use the same number to refer to the same step
in the overview shown in Figure 4.

In the following analysis, we use |T| to denote the
number of tables, |C| to denote the number of columns, |F|
the number of references, |A| the number of artifact types,
|E| the number of event types, and |L| to denote the size of
log in term of number of events.

The database schema identification (1.0), including pri-
mary key and foreign key extraction, is an NP-hard prob-
lem. Our approach and tools support both importing the
existing data schemas, which takes O(|T| + |F|), as well
as using the original XTract approach to discover data
schemas, which is exponential in number of columns.

The artifact schema identification (1.1) runs in linear with
respect to the number of tables or the number of references.
The artifact identification (1.2), which follows, runs in worst
caseO(|A|×|C|) because for each artifact type the algorithm
has to include all columns (as identifiers, event types, or
attributes of the artifact type). The extraction of a log of a
defined artifact type (1.3) currently takes quadratic in terms
of the number of entries in the data set, in worst case, since
each entry in the main table is joined with all other entries
to obtain its events and attributes. In theory, this running
time can be improved to be linear in terms of the number
of entries. Finally, the complexity of the discovery of a life-
cycle of an artifact (1.4) depends on the discovery algorithm
selected, which might be linear or exponential in terms of
the number of events of the log for the artifact.

For discovering interactions between artifact types (2.1),
the algorithm basically follows a depth-first-search to select
all paths composed of references of which the number of
strong joins is at most k and the number of weak joins is
at most m, and therefore, grows exponentially in (k + m).
The interactions between artifact types are then used to
extract interactions between artifact instances for logs (2.2),
which takes quadratic in terms of the number of entries in
the data set and is executed during step 1.3. Discovering
interactions between event types (2.3) of two interacting
artifacts requires to merge their logs, which takes O(|L|2),
to run a discovery algorithm. To discovery an artifact-centric
model, step 2.3 is re-run for every two interacting artifacts,
and between each two event types, thus O(|E|2), if they
interact, we add an event type level interaction.

During the case studies, which is discussed in Section 5,
steps (1.3) combined with (2.2) are the most time-consuming
part; to extract about 30000 traces, in total circa 30000 events,
it takes almost a hour. Other steps executed during the two
case studies take less than ten minutes2.

APPENDIX E
CASE STUDIES AND EVALUATION – DETAILS

In this section, more details on the case studies are reported.

E.1 SAP Order To Cash Process: Data and Discovery
Fig. 17 shows the details of tables used for discovering
artifacts and their interactions in the SAP - OTC process
case study. Fig. 18 shows a part of the artifact type definition

2. We import the data schema, and for step (2.1) we use k = 2 and
m = 1

TABLE 2
Running time analysis

Step Running time
1.0 NP-hard or O(|T|+ |F|)
1.1 O(|T|+ |F|)
1.2 O(|A| × |C|)
1.3 O(|Entries|2)
1.4 running time on the discovery algorithm selected
2.1 O(|A| × |F|k+m)
2.2 O(|Entries|2)
2.3 O(|L|2+ running time of discovery algorithm)
2.4 O(|E|2)

TABLE 3
Artifact schemas obtained using the original XTract approach.

k 2 3 4 5 6 7 8 9 10
CDPOS C1 C1 C1 C1 C1 C1 C1 C1 C1
CDHDR C2 C2 C2 C2 C2 C2 C2
VBAK C8 C8 C8
VBAP C2 C5 C5 C5 C5 C5 C5
LIPS
LIKP C7 C7 C7 C7
VBRK C6 C6 C6 C6 C6
VBRP C2 C3 C3 C3 C3 C3 C3 C3
BKPF C3 C4 C4 C4 C4 C4 C4 C4
BSAD C9 C9
no table C10

obtained; see [19] for all artifact type definitions and further
details on the extraction. Fig. 19 shows the interaction graph
discovered for the process.

Table

Name Constraint and Time scope

Row Count

used

Column

Count

BKPF where '2012-09-01' <= cpudt and cpudt < '2012-11-01' and awtyp = 'vbrk' 11358 32

BSID where '2012-09-01' <= cpudt and cpudt < '2012-11-01' 4428 49

BSAD where '2012-09-01' <= cpudt and cpudt < '2012-11-01' 911 49

CDHDR

 where '2012-09-01' <= [UDATE] and [UDATE] < '2012-11-01' and (

cdhdr.objectclas = 'VERKBELEG' or cdhdr.objectclas = 'faktBELEG') 13903 9

CDPOS

 inner join cdhdr on cdhdr.changenr = cdpos.changenr where '2012-09-01' <=

[UDATE] and [UDATE] < '2012-11-01' and (cdhdr.objectclas = 'VERKBELEG' or

cdhdr.objectclas = 'faktBELEG') 56018 10

DDFTX where tabname = 'vbak' or tabname = 'vbrk' 237 5

VBAK where '2012-09-01' <= erdat and erdat < '2012-11-01' 3383 40

VBAP where '2012-09-01' <= erdat and erdat < '2012-11-01' 4317 35

VBRK where '2012-09-01' <= erdat and erdat < '2012-11-01' 5285 37

VBRP where '2012-09-01' <= erdat and erdat < '2012-11-01' 10206 31

LIKP where '2012-09-01' <= erdat and erdat < '2012-11-01' 11623 51

LIPS where '2012-09-01' <= erdat and erdat < '2012-11-01' 13157 15

Fig. 17. SAP OTC process - tables and record counts

E.2 SAP Order To Cash Process: Result Details

The artifact schemas returned by [20] are listed in Table 3
when given k as the number of artifact types. Each artifact
schema is converted into an artifact. For instance, when k
is 2, tables from VBAP to BSAD are returned as one artifact
type (C2) with main table VBRP; when k is 5, tables VBAK,
VBAP, LIPS and LIKP are returned as one artifact type (C5)
with the main table VBAP.

Using classical conversion approach, we obtained a
sales-order-oriented event log. The directly-follows-graph of
the sales-order-oriented event log is shown in Figure 14. The
absolute number of directly follows relations between event
types is counted and summarized in Figure 20.

LU et al. 18

n: violating n: non-violating n: C O D RO RD I DR DM IC CR CM PI AR P Total

C 0 371 316 0 0 15 0 0 0 0 0 9 22 0

O 53 0 1472 0 0 346 0 0 0 0 0 59 341 6

D 46 907 2439 0 0 597 0 0 1 1 1 212 620 23

RO 0 0 1 0 0 0 0 0 0 0 0 0 0 0

RD 0 0 0 0 0 0 0 0 0 0 1 0 0 0

I 0 65 47 0 0 142 1 0 17 3 1 90 1360 278

DR 0 0 0 0 0 0 0 2 0 0 0 0 0 0

DM 0 0 0 0 0 0 0 3 0 0 0 0 5 0

IC 0 0 1 0 0 10 0 0 2 0 0 0 22 1

CR 0 0 1 0 0 1 0 0 0 6 12 0 8 0

CM 0 0 0 1 0 1 0 0 0 7 2 0 15 1

PI 0 18 141 0 0 138 0 0 2 2 2 257 108 13

AR 1 49 42 0 1 1298 1 9 18 14 15 89 854 354

P 0 31 12 0 0 26 0 0 0 0 0 0 78 107

100 1441 4472 1 1 2574 2 14 40 33 34 716 3433 783 13644

100 1070 2683 1 1 1468 1 12 20 27 17 257 932 107 6696

100% 74% 60% 100% 100% 57% 50% 86% 50% 82% 50% 36% 27% 14% 49%

79

0 36

53 0

46 907 2439

0 0 0

0 0 0 0

0 65 47 142

0 0 0

0 0 0 0 0 3

0 0 1 0 2

0 0 1 1 6

CreditMemoRequest H_Created

CreditMemo H_Created

ProFormaInvoice H_Created

ReturnDelivery H_Created

Invoice H_Created

DebitMemoRequest H_Created

DebitMemo H_Created

InvoiceCancellation H_Created

aligning

Contract H_Created

(Order) Created

Delivery H_Created

ReturnOrder H_Created

PostInAR_PostedInAR

Payment05or15_Payment Received

Sum total number of edges

Sum the number of "False" edge

Relative False Edges w.r.t. Total in %

Fig. 20. Statistics wrt. directly-follows relations discovered in the sales-order-oriented log

Art.Schema Maintable Artifact Artifact condition Extracted

BKPF BKPF PostInAR <maintable>.awtyp = 'VBRK' Yes

Payment05or15

(<maintable>.bschl = '05' or

<maintable>.bschl = '15') Yes

Payment01or11

(<maintable>.bschl = '01' or

<maintable>.bschl = '11')

VBAK VBAK Order H <maintable>.vbtyp = 'C' Yes

VBAP VBAP

Order L

inner join tableVBAK s4 on

<maintable>.vbeln = s4.vbeln

and s4.vbtyp = 'C'

BSAD BSAD

Fig. 18. SAP OTC process - artifacts

Fig. 19. SAP OTC process - interaction graph

E.3 SAP Order To Cash Process: Exploration on Com-
plex Life-Cycles and Interactions

In Sect. 5.1, we analyzed and compared flows between
the Create event types of the different artifacts. To further
investigate the correctness of the model, we also explored
the possibility of creating complex life-cycle models and
their impact on artifact interactions.

For this, we returned to the data extraction and now
included in the Sales Order artifact type all event types
found in the change tables CDHDR and CDPOS; see [53,
Chap.7.1.3] for details. Since the trace identifiers have not
changed, and interactions have not changed, there is no

Fig. 22. SAP OTC process - the Orders artifact with change event types

need to re-extract other artifacts. Using the DF-max-EVTI
classifier, we obtained the artifact-centric model shown in
Fig. 21.

Complexity of Interactions. The refined model of Fig. 21
shows that the event-types of the Sales Order artifact have
clearly differ in their interactions with other artifacts.
The red circles indicate interesting differences. For in-
stance, most artifacts, e.g. Delivery, Credit Memo Request,
Debit Memo Request are generally created directly after the
creation of Sales Order, whereas the invoices (that are di-
rectly related to a sales order via vgbel and vgpos) are created
after the Release Date change event type of this sales order.
Similar for the invoice cancellation artifact, of which the
creation generally takes place after the Next Date of the sales
order changes.

Discussion. At this point, while the results show that while
artifact-centric models and interactions between artifacts are
able to distinguish main flow and unusual flows, we also
noted a limitation of our technique. Showing all interactions
discovered on the merged log makes the artifact-centric
model very complex and almost impossible to analyze,
further simplification or filtering techniques have to be
developed.

LU et al. 19

Fig. 21. SAP OTC process - the same artifact-centric model as Figure 14 except the life-cycle of artifact Sales order is extended

E.4 Oracle Project Administration Process: Data and
Discovery

The tables used in the Oracle PA process analysis is shown
in Fig. 23. Documentation about the data schema (esp.
primary keys and foreign keys) was available.

Table Name

Row Count

downloaded Used

Row Count

used

Column

Count

FND_USER 905 905 27

HR_ALL_ORGANIZATION_UNITS 1053 1053 43

MTL_SYSTEM_ITEMS_B 0

OE_ORDER_HEADERS_ALL 0

PA_COST_DISTRIBUTION_LINES_ALL 95943 x 5543 15

PA_EXPENDITURE_COMMENTS 55149 30511 7

PA_EXPENDITURE_ITEMS_ALL 96978 x 5620 32

PA_EXPENDITURE_TYPES 94 x 94 10

PA_EXPENDITURES_ALL 682590 x 3100 24

PA_PROJECT_CUSTOMERS_V 16238 16238 17

PA_PROJECT_STATUSES 80 x 80 23

PA_PROJECTS_ALL 5364 x 1132 29

PA_TASKS 2416 x 1236 31

PA_TRANSACTION_SOURCES 48 48 4

PAY_COST_ALLOCATION_KEYFLEX 1694 1694 11

PO_HEADERS_ALL 5186 5186 139

PO_LINE_LOCATIONS_ALL 7700 7700 148

PO_LINES_ALL 7700 7700 135

Fig. 23. Oracle PA process table record counts

The six artifacts are shown in Figure 24. Seven direct type
level interactions are found between the artifacts which are
shown in Figure 25.

E.5 Oracle Project Administration Process: Results De-
tails

We report on two unusual flows identified in the case study
of Sect. 5.2, in particular on the confirmation of unusual
flows in the underlying data, and the corresponding expla-
nations from the client. Further unusual flows are discussed
in [19, Chap.7.4] and [53, Chap.7.2].

Q1: Tasks started before their projects created, are these double
administration work? Fig. 15 shows a main EVTI of the
process from Task Started to Project Created. This observation

Artifacts Maintable Extracted

Interaction

From To via

Project PA_PROJECTS_ALL x Project Tasks

ExpAll PA_EXPENDITURES_ALL x Tasks ExpAll ExpItem

Tasks PA_TASKS x

CostDistr PA_COST_DISTRIBUTION_LINES_ALL

ExpItem PA_EXPENDITURE_ITEMS_ALL

ExpTypes PA_EXPENDITURE_TYPES

Fig. 24. The artifacts created for Oracle PA process

Fig. 25. Interaction graph of PA artifacts

indicates that tasks had been started before their corre-
sponding project had been created. Although the flow is not
automatically revealed as a deviating flow, the experts from
KPMG considered this as an unusual flow. In the interview,
the client validated this observation and indicated that the
flow is allowed if the time duration between Project Created
and Task Created is short. The client stated that when creating
a project in the system, the specification of all tasks related
to this project are known, thus the creation time of tasks
should happen shortly after the creation of the project in the
system. If not, it may indicate that double administrative
work have been performed. The average time between the
creation of project and tasks is 1.088 day. Of the 1236 tasks,
we found 1197 tasks that had been created less than a day
after the project was created; 8 tasks that had been created
between a day and 14 days after the project was created; and
31 tasks had been created later than 14 days after the project

LU et al. 20

Fig. 27. Expenditures created after projects closed in database

had started. We found no task had been created before the
creation of its project, as the model had shown.

Q2: Do projects that closed before its tasks completed incur
any financial risks? Another unexpected unusual observation
that was made on the view shown in Fig. 26 which shows
that many projects were closed before the related tasks com-
pleted. Open tasks allow expenditures to be booked while
the project may already be closed. Triggered by this observa-
tion, the client asked us to further investigate whether there
are expenditures created after the projects are closed or com-
pleted. We found two projects had been created in parallel
with the creation of the expenditures indicating that there
are expenditures which are created after the two projects
are closed. Verifying this observation in the database, we
retrieved that 5 out of the 28 expenditures related to these
two projects were indeed created after the two projects were
closed, shown in Fig. 27. Two of the five expenditures are
created more than 24 hours after the closure of the projects,
others on the same day. This result again shows that our
approach allows to identify true unusual flows.

E.6 Oracle Project Administration Process: Explo-
ration
During the discussion, the client and the experts suggested
to explore whether different expenditure objects are used
differently in the process. For instance, personnel costs are
constant during the execution of projects, thus less interest-
ing, but all other categories may show variations and may
thus be more interesting to analyze. For this, we refined
the artifact type Expenditures based on the expenditure EX-
PENDITURE CATEGORY column in the PA EXPENDITURE
TYPES table [53, p.87]. The resulting model is shown in
Fig. 28 and confirms the assumptions that each type of
expenditure has different event type level interactions with
the project life cycle. For example, the staff expenditures are
created towards the beginning of the project (9), whereas the
others expenditures are created after the project is definitive
(i.e., created in the system) or after the Update Program
event type(10) of the project.

ACKNOWLEDGMENTS

We thank B.F. van Dongen and H.M.W. Verbeek for their
substantial support in writing this paper. We also thank W.
van Kessel (KPMG) for his substantial support in analyzing
the Oracle case study.

REFERENCES

[1] W. van der Aalst, Process Mining: Discovery, Conformance and En-
hancement of Business Processes. Springer, 2011.

[2] M. van Eck, X. Lu, S. Leemans, and W. van der Aalst, “Pm2: a
process mining project methodology,” in CAiSE 2015 (accepted),
2015.

Fig. 28. Interactions between the eight expenditure artifacts and the
project life cycle

[3] S. Suriadi, M. T. Wynn, C. Ouyang, A. H. ter Hofstede, and N. J.
van Dijk, “Understanding Process Behaviours in a Large Insurance
Company in Australia: A Case Study,” in Advanced Information
Systems Engineering. Springer, 2013, pp. 449–464.

[4] M. Al-Mashari and M. Zairi, “Supply-chain re-engineering using
enterprise resource planning (erp) systems: an analysis of a sap r/3
implementation case,” International Journal of Physical Distribution
& Logistics Management, vol. 30, no. 3/4, pp. 296–313, 2000.

[5] A. D. Brucker and I. Hang, “Secure and compliant implementation
of business process-driven systems,” in Business Process Manage-
ment Workshops. Springer, 2013, pp. 662–674.

[6] M. van Giessel, “Process Mining in SAP R/3: A method for
applying process mining to SAP R/3,” Master’s thesis, Eindhoven
University of Technology, 2004.

[7] I. Segers, “Investigating the application of process mining for
auditing purposes,” Master’s thesis, Eindhoven University of
Technology, 2007.

[8] J. Buijs, “Mapping data sources to xes in a generic way,” Master’s
thesis, Eindhoven University of Technology, 2010.

[9] D. Piessens, “Event Log Extraction from SAP ECC 6.0,” Master’s
thesis, Eindhoven University of Technology, 2011.

[10] A. Roest, “A Practitioners Guide Towards Process Mining on
ERP Systems - Implemented and Tested for SAP Order to Cash,”
Master’s thesis, Eindhoven University of Technology, 2012.

[11] A. Nigam and N. Caswell, “Business artifacts: An approach to
operational specification,” IBM Systems Journal, vol. 42, no. 3, pp.
428–445, 2003.

[12] D. Cohn and R. Hull, “Business artifacts: A data-centric approach
to modeling business operations and processes,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering,
vol. 32, no. 3, pp. 3–9, 2009.

[13] R. J. Miller and P. Andritsos, “Schema discovery,” IEEE Data Eng.
Bull., vol. 26, no. 3, pp. 40–45, 2003.

[14] J. Turmo, A. Ageno, and N. Català, “Adaptive information extrac-
tion,” ACM Comput. Surv., vol. 38, no. 2, 2006.

[15] S. Sarawagi, “Information extraction,” Foundations and Trends in
Databases, vol. 1, no. 3, pp. 261–377, 2008.

[16] V. M. Markowitz and J. A. Makowsky, “Identifying extended
entity-relationship object structures in relational schemas,” IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 777–790, 1990.

[17] R. H. L. Chiang, T. M. Barron, and V. C. Storey, “Reverse engi-
neering of relational databases: Extraction of an EER model from
a relational database,” Data Knowl. Eng., vol. 12, no. 2, pp. 107–142,
1994.

LU et al. 21

Fig. 26. Expenditures created after projects closed

[18] R. Alhajj, “Extracting the extended entity-relationship model from
a legacy relational database,” Inf. Syst., vol. 28, no. 6, pp. 597–618,
2003.

[19] X. Lu, M. Nagelkerke, D. van de Wiel, and D. Fahland, “Discover-
ing Interacting Artifacts from ERP Systems (Ext. Version),” bpm-
center.org, BPM Center Report BPM-15-08, 2015.

[20] E. Nooijen, B. van Dongen, and D. Fahland, “Automatic Discovery
of Data-Centric and Artifact-Centric Processes,” in Business Process
Management Workshops. Springer, 2013, pp. 316–327.

[21] C. Yu and H. V. Jagadish, “Schema summarization,” in Proceedings
of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006. ACM, 2006, pp. 319–330.

[22] V. Popova, D. Fahland, and M. Dumas, “Artifact lifecycle discov-
ery,” International Journal of Cooperative Information Systems, World
Scientific., 2014 (to appear).

[23] J. E. Ingvaldsen and J. A. Gulla, “Preprocessing support for large
scale process mining of sap transactions,” in Business Process
Management Workshops. Springer, 2008, pp. 30–41.

[24] A. Ramesh, “Process mining in peoplesoft,” Master’s thesis, Eind-
hoven University of Technology, 2006.

[25] K. Yano, Y. Nomura, and T. Kanai, “A practical approach to
automated business process discovery,” in Enterprise Distributed
Object Computing Conference Workshops (EDOCW), 2013 17th IEEE
International. IEEE, 2013, pp. 53–62.

[26] W. van der Aalst, A. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 16, no. 9, pp. 1128–1142,
2004.

[27] A. Weijters and J. Ribeiro, “Flexible heuristics miner (fhm),” in
Computational Intelligence and Data Mining (CIDM), 2011 IEEE
Symposium on. IEEE, 2011, pp. 310–317.

[28] A. d. Medeiros, A. Weijters, and W. van der Aalst, “Genetic process
mining: an experimental evaluation,” Data Mining and Knowledge
Discovery, vol. 14, no. 2, pp. 245–304, 2007.

[29] J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik,
“Process discovery using integer linear programming,” in Applica-
tions and Theory of Petri Nets. Springer, 2008, pp. 368–387.

[30] C. Günther and W. van der Aalst, “Fuzzy mining–adaptive process
simplification based on multi-perspective metrics,” in Business
Process Management. Springer, 2007, pp. 328–343.

[31] S. J. J. Leemans, D. Fahland, and W. van der Aalst, “Discovering
block-structured process models from event logs-a constructive
approach,” in Application and Theory of Petri Nets and Concurrency.
Springer, 2013, pp. 311–329.

[32] ——, “Discovering block-structured process models from non-
conforming event logs,” in In 9th International Workshop on Business
Process Intelligence 2013 (BPI), Beijing, China, 2013.

[33] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A
multi-dimensional quality assessment of state-of-the-art process
discovery algorithms using real-life event logs,” Information Sys-
tems, vol. 37, no. 7, pp. 654–676, 2012.

[34] D. Lo and S. Khoo, “Smartic: towards building an accurate, ro-
bust and scalable specification miner,” in Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006,
2006, pp. 265–275.

[35] M. Gabel and Z. Su, “Javert: Fully automatic mining of general
temporal properties from dynamic traces,” in Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. SIGSOFT ’08/FSE-16, 2008, pp. 339–349.

[36] D. Fahland, D. Lo, and S. Maoz, “Mining branching-time scenar-
ios,” in 2013 28th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2013, Silicon Valley, CA, USA, November
11-15, 2013, 2013, pp. 443–453.

[37] M. Pradel and T. Gross, “Automatic generation of object usage
specifications from large method traces,” in Automated Software
Engineering, 2009. ASE ’09. 24th IEEE/ACM International Conference
on, Nov 2009, pp. 371–382.

[38] A. Zeller, “Specifications for free,” in NASA Formal Methods - Third
International Symposium, NFM 2011, Pasadena, CA, USA, April 18-
20, 2011. Proceedings, 2011, pp. 2–12.

[39] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” Software Engineering, IEEE Transactions
on, vol. 35, no. 5, pp. 684–702, Sept 2009.

[40] J. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow
from interleaved traces,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, 2010, pp. 613–622.

[41] J. Pinggera, P. Soffer, D. Fahland, M. Weidlich, S. Zugal, B. Weber,

LU et al. 22

H. Reijers, and J. Mendling, “Styles in business process modeling:
an exploration and a model,” Software & Systems Modeling, pp. 1–
26, 2013.

[42] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing
developer interactions,” in Software Visualization (VISSOFT), 2014
Second IEEE Working Conference on, Sept 2014, pp. 147–156.

[43] M. Schur, A. Roth, and A. Zeller, “Mining behavior models from
enterprise web applications,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013,
2013, pp. 422–432.

[44] D. Fahland, M. d. Leoni, B. van Dongen, and W. van der Aalst,
“Behavioral conformance of artifact-centric process models,” in
Business Information Systems. Springer, 2011, pp. 37–49.

[45] ——, “Conformance checking of interacting processes with over-
lapping instances,” in Business Process Management. Springer,
2011, pp. 345–361.

[46] E. Nooijen, “Artifact-Centric Process Analysis–Process discovery
in ERP systems.” Master’s thesis, Eindhoven University of Tech-
nology, 2012.

[47] R. Hull, E. Damaggio, R. D. Masellis, F. Fournier, M. Gupta,
F. T. Heath, S. Hobson, M. Linehan, S. Maradugu, A. Nigam,
P. Sukaviriya, and R. Vaculn, “Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with condi-
tions and events.” in DEBS, ACM, 2011, pp. 51–62.

[48] A. Petermann, M. Junghanns, R. Muller, and E. Rahm, “Biiig:
enabling business intelligence with integrated instance graphs,” in
Data Engineering Workshops (ICDEW), 2014 IEEE 30th International
Conference on. IEEE, 2014, pp. 4–11.

[49] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa,
“Beyond tasks and gateways: Discovering bpmn models with
subprocesses, boundary events and activity markers,” in Business
Process Management. Springer, 2014, pp. 101–117.

[50] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ser. ESEC-FSE ’07.
ACM, 2007, pp. 35–44.

[51] A. Mocci and M. Sangiorgio, “Detecting component changes at
run time with behavior models,” Computing, vol. 95, no. 3, pp.
191–221, 2013.

[52] J. E. Ingvaldsen and J. A. Gulla, “Preprocessing support for large
scale process mining of SAP transactions,” in Business Process Man-
agement Workshops, BPM 2007 International Workshops, BPI, BPD,
CBP, ProHealth, RefMod, semantics4ws, Brisbane, Australia, September
24, 2007, Revised Selected Papers, ser. Lecture Notes in Computer
Science, vol. 4928. Springer, 2007, pp. 30–41.

[53] X. Lu, “Artifact-Centric Log Extraction and Process Discovery,”
Master’s thesis, Eindhoven University of Technology, 2013.

[54] D. Embley and B. Thalheim, Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges. Springer, 2012.

[55] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van
Dongen, E. Kindler, and C. W. Günther, “Process mining: a two-
step approach to balance between underfitting and overfitting,”
Software and System Modeling, vol. 9, no. 1, pp. 87–111, 2010.

Xixi Lu M.Sc. is a PhD candidate at the Eind-
hoven University of Technology researching in
the areas of architecture of business informa-
tion systems and process mining. She received
her bachelor’s degree in Computer Science and
Master of Science degree in Business Informa-
tion Systems from the Eindhoven University of
Technology. She also studied Economics and
Management at Tsinghua university as an ex-
change student. Her research interests include
business process management, conformance

checking between process models and recorded logs, deviation detec-
tion and analysis, and process mining in general.

Marijn Nagelkerke M.Sc. RE is advisor in the
KPMG IT Advisory practice in The Netherlands.
Marijn has a Master of Science degree in Busi-
ness Information Systems from the Eindhoven
University of Technology. As an IT auditor &
advisor he is involved in supporting the financial
statement audit which has a main focus on the
detection of deviations in client processes and
compliance with financial regulations. Marijn is
a member of KPMG’s Center of Excellence on
Data Analytics in which he applies data analytics

on financial and IT systems. His main expertise is on data analytics and
process mining and he specializes on processes supported by Oracle
e-Business Suite/Financials.

Dennis van de Wiel M.Sc. RE is manager in
the KPMG IT Advisory practice in The Nether-
lands. Dennis has a Master of Science degree in
Econometrics from Maastricht University. As an
IT audit manager he is involved in supporting the
financial statement audit and on advising clients
on how to further improve their processes and
leverage their IT systems & investments. Dennis
is lead of KPMG’s Center of Excellence on Data
Analytics which services over 6 KPMG countries
in data analytics on financial and IT systems. His

main expertise is on processes supported by the SAP ERP system,
and Dennis specializes in large complex implementations at mainly
corporate clients of KPMG.

Dirk Fahland Dr. is assistant professor at the
Eindhoven University of Technology research-
ing in the area of distributed systems, he re-
ceived his Ph.D. in Computer Science from
the Humboldt-Univeristät zu Berlin, Germany,
and the Eindhoven University of Technology, the
Netherlands, in 2010. His research interests in-
clude distributed processes and systems built
from distributed components for which he inves-
tigates modeling systems (using process mod-
eling languages, Petri nets, or scenario-based

techniques), analyzing systems for errors or misconformances (through
verification or simulation), and process mining/specification mining tech-
niques for discovering system models from event logs. He particularly
focuses on distributed system with multi-instance characteristics and
their synchronizing and interacting behaviors. His results appeared in
journals such as Software & Systems Modeling, The Computer Journal,
Data and Knowledge Engineering, and Information Systems.

	Introduction
	Problem Description

	Related Work
	Artifact Discovery
	Relational Schema vs. Conceptual Model
	Artifact Types based on Relational Schemas
	Artifact Schema Discovery
	Artifact Discovery and Refinement
	Log Extraction and Life-Cycle Discovery

	Interaction Discovery
	Basic Idea
	Interactions between Artifacts
	Interactions between Event Types

	Case Studies and Evaluation
	Case I - Order To Cash in SAP
	Case II - Project Administration in Oracle

	Conclusion
	Appendix A: Problem Context and Motivation
	Appendix B: Artifact Discovery – Technical Details
	Preliminaries - Relational Data
	Artifact Schema Identification
	Artifact Identification
	Handling Generalization

	Appendix C: Interaction Discovery – Technical Details
	Interaction Types and Definitions
	Artifact Type Level Interaction Discovery
	Event Type Level Interaction
	EvTI Discovery by Merging Logs
	EvTI Discovery by Using Defined Criteria

	Appendix D: Complexity Analysis
	Appendix E: Case Studies and Evaluation – Details
	SAP Order To Cash Process: Data and Discovery
	SAP Order To Cash Process: Result Details
	SAP Order To Cash Process: Exploration on Complex Life-Cycles and Interactions
	Oracle Project Administration Process: Data and Discovery
	Oracle Project Administration Process: Results Details
	Oracle Project Administration Process: Exploration

	References
	Biographies
	Xixi Lu
	Marijn Nagelkerke
	Dennis van de Wiel
	Dirk Fahland

