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2D Semi-Analytical Modeling of Eddy Currents in Segmented
Structures

C.H.H.M. Custers, T.T. Overboom, J.W. Jansen, and E.A. Lomonova
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

The paper concerns the semi-analytical modeling of eddy currents in segmented structures of electromagnetic devices. A Fourier
series is used to describe the spatial distribution of the conductivity and included in the magnetic field solutions. By incorporating
multiple time harmonics in the solution, transient behavior of forces due to eddy currents can be obtained. To validate the developed
method, it is applied to a coreless linear motor and compared to finite element results. The eddy currents in segmented conducting
structures of motors, such as permanent magnet arrays, can be accurately determined with this method.

Index Terms—Eddy current, Fourier analysis, Permanent Magnet Machines, Analytical Modeling.

I. INTRODUCTION

N synchronous permanent magnet (PM) machines, the

static field of the magnets interacts with a time varying
field caused by a set of coils. Besides the intended force, also
parasitic forces are produced, for instance due to eddy currents
induced in non-laminated conducting parts of the machine,
such as the magnets. These currents and their associated force
and losses depend on the structure of the magnets and can be
reduced by segmentation [1]. Hence, to accurately predict the
eddy current behavior in the magnets, their finite dimensions
and segmentation has to be taken into account.

The 2D Fourier analysis technique [2], [3], is a fast alterna-
tive for finite element analysis for the design and analysis of
electromagnetic devices. With this semi-analytical technique,
eddy currents and their reaction field can be modeled. A lim-
itation of this method as described in [2], [4] is that the eddy
currents are only calculated in a infinitely long electrically
conducting slab with homogeneous material properties, and as
a result, segmentation is not taken into account. To overcome
this limitation, in [5] the eddy currents in a conducting plate
with finite length are approximated with the method of images.
However, for problems in which the conducting part is smaller
than the source of the magnetic field the results are inaccurate.

In this paper, the Rigorous Coupled Wave Analysis (RCWA)
technique [6] is applied to 2D quasi-static magnetic field
modeling of motor topologies with a variable conductivity
in the Cartesian domain. In [6], the diffraction of a high-
frequent electromagnetic wave by a planar grating with a
position dependent permittivity and permeability is modeled.
With this technique, inhomogeneous material properties are
included in the solution of electromagnetic field quantities. By
incorporating a position dependent conductivity function in the
Fourier based field analysis, eddy currents in segmented parts
are modeled. The developed method is applied to a coreless
motor model of which the top half of a periodic section is
shown in Fig. 1. The back-iron is assumed to be infinitely
permeable and nonconductive because the focus of the paper
is on the eddy currents induced in the segmented region.
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Fig. 1. Top half geometric model of a periodic section of a linear coreless

motor.

II. MAGNETIC FIELD MODELING

The model of the coreless motor of Fig. 1 is divided into
three horizontal regions, respectively the magnet region, air
gap region and coil region. To obtain the solutions of the
magnetic field quantities, the vector potential formulation is
used. The magnetic vector potential A is defined as B =
V x A, where B is the magnetic flux density. Because a
two-dimensional problem is treated, the vector potential is
reduced to the z-component. Based on Maxwell’s equations
and the constitutive relations, the Poisson equation is derived
for nonconducting regions
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where (i is the permeability of vacuum and p,. is the relative
permeability. M, is the remanent magnetization and J5** is
an externally imposed current density.

In the magnet region, eddy currents are induced, which can
be obtained from the vector potential by
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where o(x) describes the position dependent conductivity
of the magnet array. Generally, the vector potential of a
conducting region has to satisfy the diffusion equation
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III. SEMI-ANALYTICAL SOLUTION

The magnetic field solutions are expressed in terms of
Fourier series. The model is assumed to be periodical in the
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z-direction. As a result, the x-dependent solution is described
by a complex Fourier series. To model the movement of the
coil array, also the time dependent solution is described by
a Fourier series. Because there is no correlation between the
different time harmonics the principle of superposition is ap-
plicable. As a consequence, the vector potential solution can be
determined for each time harmonic separately and the results
can be superimposed. The solution to the vector potential
is found by applying the method of separation of variables
and has the following general form with a homogeneous and
particular solution respectively

Az(w, Y, t) =

Z Z ( m,n Sﬂ 'Y, )+Ym,n(y) ej(k"IjLw"Lt)) . (4)
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The spatial frequency, k,, is defined as k,, = ”T—”, where 7
is half of the periodic width of the model and w,, = 2%,

where T is the time period. The y-dependent solution Y5, ,, ()
is equal to

Ymn(y) = Am,n €V Am.ny + bm,n e\ Xm,ny7 (5)

where a,,, and b, are unknown coefficients for each
harmonic which will be determined by applying boundary
conditions between the regions. The eigenvalues A, ,, of the
y-dependent solution are derived in section III-B and II-C.
Ppn(z,y,t) in (4) is the particular solution that is related to
the source terms and will be derived in the following section.

A. Particular solution

For the magnet region the following holds for the particular
solution
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where M, . are the Fourier coefficients describing the spatial
distribution of the magnetization which does not depend on
time. For the coil region with the source current density the
following holds
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where J¢** are the Fourier coefficients that describe the
spatial and time distribution of the externally imposed current
density. The three-phase current density in the coil array, de-
scribed by JE7* | is sinusoidal and synchronously commutated
for maximum propulsion force. This means that the frequency
of the current is equal to f = 2, where v is the speed of the
coil array. The time varying behavior of the current density is
written as the complex form of a cosine function
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Fig. 2. Varying conductivity as a function of position in the magnet region.

where J is the peak current density, ph denotes the phase and

04 =0, 0p = —2F and 0c = 2F. The coefficients J pp,, .
of phase ph are calculated by performing the integral
. 1 [T
J. =JK,, —
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where K, are the coefficients of the spatial distribution of
the current density of phase ph. The coefficients Je’”t are
obtained by J”t =JoAmn T B T JeCoin -

B. Homogeneous solution for nonconducting regions

For the nonconducting regions the eigenvalues A\,
determined by

n are

Ann = k2. (10)

In the nonconducting region, the eigenvalue of harmonic
number n depends only on spatial frequency k,,. This means
that the spatial harmonics are uncorrelated. The matrix repre-
sentation of (10) is given by

A, = K2, (11)

where K is a diagonal matrix containing the spatial frequen-
cies k. The matrix A,, is also diagonal and contains the
eigenvalues )\, of time harmonic m.

C. Homogeneous solution for conducting regions

The conductivity ¢ in the magnet region varies as function
of position. A Fourier series is introduced that represents the
spatial distribution of ¢ inside the region
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The coefficients v,, in (12) are obtained by calculating the
Fourier transform of the function shown in Fig. 2. For this
function it holds that & > 0 for positions where conductive
material is present and o = 0 for positions where air is located.
Up on substituting (12) and homogeneous solution of (4) in
the diffusion equation of (3) and performing the derivatives,
the following is obtained
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This equation contains the product of two series with the
same spatial frequencies. A new series with the same spatial
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Fig. 3. Eddy current density in the magnets calculated by FEA.

frequencies can be calculated, according to Laurent’s multi-
plication rule [7]
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This multiplication can be written in matrix form

Yy, (15)

where y,, is a vector containing the coefficients of the y-
dependent solution. The matrix ¥ is a Toeplitz matrix con-
taining the coefficients of o (z). Using Laurent’s multiplication
rule, the solution of A,, is given by

A = K? + popiy jom ®. (16)

Contrary to Section III-B, the eigenvalue A, , of harmonic
number n depends on multiple spatial frequencies and a
coupling of different spatial harmonics occurs. As a result,
the matrix A,, is not diagonal and the eigenvalues of the y-
dependent solution are not directly obtained. To determine the
eigenvalues, an eigenvalue decomposition is performed on A,

A =Q,,ALQ (17)

where A/ is a diagonal matrix containing the eigenvalues and
Q,,, is the matrix containing the corresponding eigenvectors.
After performing the decomposition, the solution of A, is
equal to

A, Y, t) =
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where
E, (y) = diag (e\/ Mﬂy) .

The unknown coefficients, which are determined by applying
boundary conditions between regions, are collected in vectors
denoted by a,,, b,,. The vectors )\;n and k contain the
diagonal entries of A}, and K respectively.
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IV. MODEL VERIFICATION

The coreless motor of Fig. 1 is modeled to verify the
developed method. Because the model is symmetric with
respect to the z-axis a Neumann boundary condition is applied
in the center of the coils and no forces in the y-direction
are considered. The dimension of the simulated motor are
listed in Table I. The force exerted on the segmented magnet

TABLE I
DIMENSIONS OF THE CORELESS MOTOR
Dimension Symbol | Value | Unit
Half periodic width T 56.0 mm
Air gap height hg 1.0 mm
Magnet width Wy 24.0 mm
Magnet height hm 9.0 mm
Coil width We 36.0 mm
Conductor bundle width | w, 12.5 mm
Coil height he 8.0 mm

array are calculated using the Maxwell Stress tensor. To only
model the eddy current force acting on the magnet array, the
magnetization of the magnets is set to 0 A/m and their relative
permeability p, is set to 1. The back-iron is assumed to be
infinitely permeable and nonconductive, and therefore, it is
replaced by a Neumann boundary condition.

The results of the developed semi-analytical method are
compared to results obtained from a transient FE analysis
performed with Cedrat Flux 2D [8]. The back-iron is also
replaced by a Neumann boundary. The current density in the
coils is commutated on the g-axis and has a peak value of
J =5 A/mm?2. A second order triangular mesh is applied to
the model. The mesh size throughout the entire model is equal
to 0.5 mm, which results in a total number of 15826 mesh
elements. Assuming that at least three mesh elements per skin
depth are required for simulation of eddy currents, results of
the FE analysis are accurate up to a frequency of 5.6 kHz for
o =2-107 S/m. Fig. 3 shows the eddy current distribution in
the magnets at one time instant, calculated by FEA.

A. Modeling multiple conducting segments

In the model, eddy currents are induced in four separate
magnets. When the conductivity function describes the con-
ductivity of multiple segments as shown in Fig. 2, the obtained
results are incorrect because the segments are modeled as if
they are connected while they are in fact electrically isolated.
This is illustrated by the solid line in Fig. 4, where the
calculated eddy currents are shown in the center of the magnets
(dashed line in Fig. 1) as a function of the position. In this
steady-state simulation, the coils are stationary and excited
with a frequency of 50 Hz. The sum of currents inside one
magnet is not equal to 0 A. To approach the correct result, the
conductivity function has to describe the conductivity of one
segment only and the eddy currents are calculated for each
segment separately. Afterwards the results are superimposed.
This result is shown in Fig. 4 by the dashed line, which is
in good agreement with the FE simulation. The error with
respect to the FE analysis result is less than 1 %. The method
of calculating the eddy currents in each segment separately is
used in the remainder of the paper. The disadvantage of this
method is that the effects of the eddy currents in the individual
segments on each other are not modeled.

B. Modeling transient behavior

To verify the transient forces during movement obtained
with the developed semi-analytical model, a simulation is
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Fig. 4. Eddy current density as a function of position in the center of
the magnets compared to FE results. ANAps qii.cond. 1S the result of
using a conductivity function that describes the conductivity of all magnets.
ANAP /. sep.cond. 18 the result of using a conductivity function that describes
the magnets separately. The conductivity of the magnets is 1 - 10 S/m.
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Fig. 5. Verification of obtained transient eddy current force in the x-direction.

performed in which the coil array moves in the positive x-
direction with a constant speed of v = 1 m/s. The conductivity
of the magnets is set to 1-10° S/m, which is a typical
conductivity value for sintered NdFeB magnets. The results are
obtained using 61 spatial harmonics and 61 time harmonics.
The eddy current force is shown in Fig. 5. The error at the
peak values of the force is less than 3 % with respect to the
FE result.

To analyze the accuracy of the method of calculating eddy
currents in individual segments and superimposing the result-
ing force, a transient simulation is performed at several speeds
and for three values of the conductivity. Two different cases are
studied. Firstly, a simulation is performed in which magnet 1
of Fig. 1 is conducting, while the other magnets are not. The
mean force due to the eddy currents of both the developed
semi-analytical method and FE analysis is shown in Fig. 6a.
The figure shows that for all conductivity values the results are
in good agreement and the maximum error with respect to the
FE result is less than 4 %. Secondly, a simulation is performed
in which all four magnets are conducting (Fig. 6b). For a
conductivity value of 1 - 106 S/m, the maximum error is 2 %.
However, for conductivity values higher than 1-107 S/m the
error significantly increases, especially at high speeds. This is
caused by the influence of the eddy current distribution in one
magnet on another magnet, which is larger at high conductivity
values.

V. CONCLUSION

In this paper a 2D magnetic field modeling technique
has been presented that is capable of modeling the spatial
distribution of the conductivity. The conductivity has been de-
scribed by a Fourier series and incorporated in the solution of
magnetic field quantities. With this method the eddy currents
in segmented structures are modeled. The inclusion of multiple
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Fig. 6. Mean eddy current force versus speed for 3 different values of

the conductivity. (a) Resulting force when only magnet 1 is conducting. (b)
Resulting force when all magnets are conducting.

time harmonics to the solution makes it possible to model
transient eddy current forces.

With the presented method it is not possible to model
the spatial conductivity distribution of multiple conducting
segments at once. When multiple conducting segments are
considered inside a region, the conductivity of each segment
has to be separately modeled and the results have to be
summed. As a consequence, the effects of the eddy currents
in the individual segments on each other is not modeled.
However, for typical conductivity values of NdFeB magnets,
accurate results (less than 3 % error with respect to FE) have
been obtained with superposition.
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