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1. INTRODUCTION 

Gate arrays, otherwise known as logic arrays or cellular arrays, are a 

type of programmable or semi-custom semiconductor components made possi

ble by the rapid advances in integrated circuit design techniques and 

manufacturing technology. Where an electronic system may be implemented 

using TTL or CMOS logic, a gate array can typically replace twenty to 

fifty SSI/MSI packages and effect considerable cost, weight, size and 

power savings in the end equipment. 

The concept of having a fixed base pattern of logic gates on a silicon 

integrated circuit (IC) which is then programmed or "wired up" by custom

ised metal patterns is not new. It was first proposed in the mid-1960s 

and used by several companies where the development cost of custom Ie 

design were not justified for the relative low volumes of each variant 

desired. It is this trade-off of development cost, unit cost and proto

typing time that is addressed by the use of gate arrays and other types 

of programmable components, notably microprocessors. Such components are 

called semi-custom integrated circuits as they are part standard (the 

base diffusion) and part custom (usually the interconnect and contacts). 

The term semi-custom is not usually applied to microprocessors, which are 

personalised or programmed by the ROM program mask, although conceptually 

they too are semi-custom. Another class of semi-custom products are cell 

based designs where blocks of predesigned elements are drawn from a 

library, and a total design requiring unique masks for all processing 

levels, instead of just a few, is generated. 

This report only regards the design automation of the interconnect 

of gate arrays. Gate arrays are designed in many technologies (TTL, 

CMOS, NMOS). CAD systems for gate arrays have to face new problems caused 

by the rapid growing of the gate array market. The GAS gate array design 

system developed at the Eindhoven University of Technology claims to be 

very flexible with regard to the gate array type. It is designed for 

small and medium sized companies which have to deal with a large and plu

riformly organised set of vendors and foundries, predominantly located in 

the US. To establish the flexibility an entry in the design system is 
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created, where structure and properties of a gate array can be' descr:tbed 

in a special for this purpose developed language: GADL (gate array 

description language). In GADL it is possible to describe the gate 

array structure, its design rules, the set of macro stamps and the pro

perties of a cost function (used to guide .the Leerouter) in an easy way. 

The main part of the report consists of a description of GADL (chapter 5) 

and a description of the GADL compiler (chapter 6). 

,. 
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2 . GATE ARRAY FEATURES 

When we look at gate arrays, there are a few things they have in common. 

The most consist of a regular arrangement of basic cells (cellular 

array). Each cell can be personalised by.metalisation to perform logic 

functions like NAND, OR, FLIPFLOP, etc .. These cells, usually referred to 

as function boxes, active areas etc., are separated by routing space, 

usually referred to as channels. Channels can be divided into basic cells 

called junction boxes, connection boxes or channel cells. 

The area formed by regular repetition of function and junction boxes is 

called the core of a gate array. Around the core, a number of bonding 

pads and I/O-buffers is located. These I/O cells don't offer much space 

for routing and therefor are not interesting for us except the terminal 

positions. Figure 1 shows two typical gate array structures. 

# # # # # # # # # # # # # # # # # # # # # I/O-cell 
# DODD # 
# # 

# # 
# # 0 active area 

# DODD # 
# # 

# # 
# # 

# DODD # 
# # 

# # 
# # 

# DODD # 
# # 

# # 
# # 

# # # # # # # # # # # # # # # # # # # # 

a) b) 

Figure 1. Two typical gate array structures: a) island structure, b) row 
structure 

Let us now take a closer look at the junction and function boxes. A 

channel cell can vary in complexity from just some orthogonal tracks for 

intercellular connections to a more complex structure with prefabricated 

connection paths (cross unders or underpasses) with fixed or programmable 

contacts to the me,tal layer(s) above (figure 2). The gate cells of gate 

arrays are relatively more complex since many trade-offs have been made 

in these cell design. A gate cell consists of a number of discrete com

ponents with which one can build a set of useful functions in a 
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Figure 2. Channel cells. 

Figura 3. Gate cells. 

particular technology. These components enable the function to be built 

up to give the best compromise in terms of performance. The basic ,design 

will support the use of a number of cells to form a more complex func

tion. A cell includes the active and passive components necessary to 

build any of the required functions with the greatest flexibility in pro

grammability. 

Depending on design philosophy, process technology, I/O capacities and, 

most importantly, routability of the gate array, gate cells may (and do) 

have quite different structures and properties. However, a gate cell 

always has to be: 

• Programmable (intraconnectable) 

• Interconnectable 

t.- .",j _ i .~ 
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A few different gate cells are given in figure 3. 

Although the gate arrays have different structures and are designed in 

different technologies, the following attributes the most have in common, 

even for those gate arrays which have not gate cells and routing channels 

explicitly: 

• The intercellular connections can only be made vertically and/or hor

izontally on certain pre-defined tracks . 

• When non-orthogonal wires are permitted in gate arrays, they are either 

provided by gate array foundries or routed manually. 

This observation leads to the conclusion that all, for routing interest

ing, features can be mapped onto a three dimensional grid. Figure 4 

gives an example of the "gridding" of a part of a gate array. 

Figure 4. Gridding of a gate array part. 

Each coordinate in the third dimension represents a layer, where a layer 

corresponds (in general) with two physical masks: an interconnection mask 
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and a contact (hole) mask. 

The grid representation of gate arrays will serve as 

routing data structure. 

6 

• a basis ,for the 
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3. SYSTEM OVERVIEW 

In figure 5 an overview of the gate array design system is given. 

globll grid 

cOlIIPlllr 

~--- -----

r-------------., 

core/.acro 
cOlIPlllr 

placar 

global 
router 

router 

Figure 5. System overview. 

Ichl .. UCI 
Intry 

Itandard 
nltUlt 

l1.ulaUon 
uta 

7 
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First the gate array (structure, designrules, costs) and it"s macro stamps 

(structure, terminal positions, legal positions) have to be described in 

GAOL and compiled to a datastructure suitable for the placement and 

routing programs. A macro is here regarded as a functional element (NAND, 

NOR, FLIPFLOP, etc.) while a macro stamp is one physical realisation of a 

functional element. The compilation has to be done just once· for each 

gate array type. The data obtained from the core/ma.cro compiLer is stored 

in the core library (gate array core data) and in the macro library 

(macro stamp data). 

Now netlists can be generated, either by hand (text) or by a schematics 

editor. 

The placer takes care of the placement of macro stamps (when one macro 

has several physical realisations, the placer choses one stamp). The 

currently implemented placer works on the basis of simulated annealing 

(statistical cooling) [lJ 

After the placement step, the gate array circuit is routed globally by 

the global router. The predicate "global" is assigned to this router 

because it operates on a global grid. This grid is usually much rougher 

than the fine grid proposed in chapter 2 and is defined by the global 

grid definicion file. The global grid divides the gate array in global 

grid cells, where the cells correspond with "natural" routing space and 

the cell boundaries with "natural" routing blockades (usually power lines 

or active area). Figure 6 shows an example how a gate array could be 

divided in global cells. 

A complete description of the global router is given by P. Nuijten [2). 

With the information of the global router, the results of the placement, 

the gate array core grid and the contents of the macro library, the local 

router takes care of the final routing of the gate array circuit. For 

this purpose, an extended Leerouter is developed [31 

In order to check the results (while developing the programs) and to 

simulate the circuit with regards to electrical performances (node capa· 

cities, cross coupling etc.) a circuit extractor will be developed. 

, , 

""-.':.: .'-k'· -..L<"">-~ 1 
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~ 
~ ~ ~ ~ ~ 

Figure 6. Global cell choice. 

This report regards the GAOL language, the GAOL compiler and the struc

ture of the core and macro libraries (enclosed in dashed lines in figure 

5). 
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4. ROUTING DATA STRUCTURE 

The GAOL compiler is developed in parallel with the program for local 

routing. Most of the data generated by the compiler is used by this 

router. The router operates on a universal data structure (universal with 

regards to the gate array type) which will be described here. This data 

structure is the target 'language' for the GAOL compiler. As proposed in 

chapter 2, the information for routing can be mapped onto a three dimen

sional grid. 

First of all, a few notions with regard to grids are stated. A grid G of 

size XSIZE * YSIZE * ZSIZE is a set of vertices (gridpoints) Pi: 

G - ( Pi - (xi'Yi,zi) I 0 ~ Xi < XSIZE, 0 ~ Yi < YSIZE, 

o ~ zi < ZSIZE }. 

Xi represents the x-coordinate, Y
i 

the y-coordinate and zi the Z coordi

nate of the vertex. 

The distance D(Pl,P2) between vertices Pi and P2 is defined as: 

Pi and P2 are called neighbours if D(Pl,P2) - 1. 

An edge is a pair of neighbour vertices, representing the gridline part 

between the vertices. The set E of edges is defined by: 

A path P in G is an ordered set of vertices: 

so that, 

1 ~ i ~ m. 
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The path is said to be constructed of the edges (Pl,P2)' (P2,P3)' 

(Pm-2' Pm-l)' (Pm-l,Pm)· 
A layer Ll is a set of vertices defined by: 

Our task now, is to assign those attributes to the vertices and edges so 

that the router can fulfil its task properly (without an unjustifiable 

amount of overhead). In this chapter, the information needed by the 

router is summarised. 

4.1 The position of wires, vias, wire blockades and via blockades 

To map these properties onto the data structure, each edge is assigned a 

signal type. A signal type can have one of the three values: INITIAL, 

IMAGE or INHIBIT. A signal type initial indicates that the corresponding 

edge is free for routing (no blockade, no fixed wire or via). Likewise 

signal types of fixed and inhibit indicate an edge is occupied by a (pre

fabricated) wire or via, or blocked for routing respectively. 

The router issues a fourth signal type: ROUTER, but this is beyond the 

scope of this report. 

It will be obvious to the reader that in this way every wire being a path 

in G and every via that is positioned at a gridpoint can be modelled in 

the grid data structure. A careful choice of the positions of gridlines 

(which don't have to be equidistant) guarantees that a grid representa

tion of each orthogonal wire and each via is possible. Non orthogonal 

wires however can not be transformed to a proper signal type setting of 

edges in the grid. Therefor the predicate equivalent point is introduced. 

In this context, two (or more) points are called (electrically) 

equivalent if there is a galvanic connection between these points and 

there is no way to model this connection in the grid representation. So a 

diagonal wire, that starts and ends at gridpoints, can be modelled by 

assigning an equivalent relation to these points. Care must be token that 

no other wire can cross the spanning orthogonal region of this diagonal 
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wire. 

Generally each vertex has a set of equivalent vertices associated with 

it. It will be obvious that if P2 is an element of the equivalent vertex 

set of PI' PI will be an element of the equivalent vertex set of P2. 

4.2 Design rules 

Design rules are divided into numeric and structural rules. Structural 

rules tell something about preferred directions, not recommendable confi

gurations etc .. They can be merged into the Leerout cost function and 

will not be discussed here. 

In general numeric design rules take the form of a set of permissible 

geometries that can be used by the designer to make devices and intercon

nections within the resolution of the process and without violating the 

device physics required for their proper operations. They can be reduced 

to their simplest form: a set of geometrical constraints of the form of 

minimum allowable values for certain widths, separations, extensions and 

overlaps of geometrical elements. The length unit is usually in Lambda 
[ 4] 

Gate array (numeric) design rules are quite different from the general 

ones. In gate arrays all the devices (transistors) are prediffused and 

only those processing steps involving the interconnections have to be 

carried out. Now, the width of wires and the size of via holes are pro

cess determined (and can be regarded sizeless) so the gate array design 

rules only concerns the minimum separations between interconnection lay

out elements (wires and via holes). The most basic design rules are 

already mentioned: 

• All interconnections have to be made on gridlines 

• All vias have to be made on crossing points of gridlines (gridpoints) 

These rules are automatically provided by our way of modelling. Another 

consequence of the gridding process is that spacing rules can be 

described in terms of grid steps instead of Lambda. Because of the fact 
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that gridlines don't have to be equidistant, and design rules are 

expressed in terms of grid steps, design rules are position dependent. 

In our system, the design rules are modelled by the concept of shadowing. 

In general each edge in the grid shadows other edges in its surrounding 

area. If an edge sl shadows an edge s2' it means that if s1 is occupied 

(i.e. a wire or via runs along the edge), s2 should be free and vice 

versa. 

In practice this means that, if the router decides to occupy edge s, all 

edges shadowed by s should be free. Up to now we have been able to model 

all numeric gate array design rules by this shadowing process. 

For example, a horizontal edge can shadow horizontal edges on the adja

cent horizontal gridlines (figure 7a). 

-->~ X -->~ X 

a) b) 
Figure 7. Shadowing 

This means that if the router decides to rout a wire along edge 52' its 

shadowed edges (edge s1 and s3) have to be free i.e. not occupied by 

another net (figure 7a). Likewise a wire can shadow vias on adjacent 

gridlines (figure 7b). 

It will be obvious that if sl shadows s2' then s2 will shadow sl' so for 

every shadow relation a complementary relation exists. 
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4.3 Leerouter cost function 

The Leerouter is guided by a path cost function F. This function defines 

(for 

F(P) 

each edge 

of a path P 

s) the costs F(s) to extend the path along s. The 

- (Pl,P2, .. ,PmJ is now defined as the sum of the 

of the edges the path is constructed of: 

i-mol 
F(P) - ~ F«Pi,Pi+l». 

i-l 

~osts 

costs 

The router tries to find a minimum cost path between the gridpoints it 

has to connect. 

F has to be consistent to guarantee the proper operation of the, router: 
[5 J 

Path consistency property: 

Let F be a path cost function, P any minimum cost path from vertex A to 

vertex B, and Q any minimum cost path from B to C. If PQ is a minimum 

cost path from A to C through B, then F is called consistent with respect 

to P and Q. If F has this property for all choices of A, B, C, P and Q, 

then F is called consistent. 

This implies that every path cost function F, where the costs to add an 

edge s to the path P are independent of the edges P is constructed of, is 

consistent. 

Although the cost function could have any exotic shape and could be 

dependent on anything, we have to keep in mind that the router has ·to 

compute the function value every time it extends a path. Therefor we have 

restricted the properties of the function to the following simple form: 

Suppose s (Pl,P2)' then F(s) is defined as: 

".) -1 c if Pl or P2 is occupied 
0 

c if PI or P2 is not occupied 
n 
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where c and c 
o n 

are predefined constant costs values. A vertex 

called occupied with respect to a rout R, if P is a start point of 

P 

R. 

15 

is 

In spite of the fact that the above mentioned cost function form is very 

simple, and may be too simple in some cases, we have been able to model 

most of the desired costs in this form, while the 'computation' of the 

edge costs can be done by just testing the occupancy condition. 

4.4 Macro stamp information 

For macro stamps some extra information has to be stored. First there are 

the positions of the terminals. The router has to know the exact position 

of the macro stamp terminals. 

Second, the placer needs to know where the legal positions of the macro 

stamps are. A legal position of a macro stamp is some position in the 

gate array core, where the stamp performs its required function. For most 

gate array types the legal positions of macro stamps are sets of equidis

tant points. 

Besides the terminals and legal positions we need to know the position of 

the internal wires of the macro stamps. Internal wires are those nets of 

a macro, which are not electrically equivalent to any terminal. These 

wires can not be used for routing and should be isolated. Isolation can 

not be performed during compilation because the internal wires can have 

connections to the 'outside' world. This implies that internal wires 

should be isolated during the design phase of the circuit. However, when 

the user specifies the positions of terminals and power lines, internal 

wires can be extracted automatically. Terminals and power lines are 

easier to discover than internal wires, so we will perform this automatic 

extraction. 

Finally we need to know the equivalent terminals of a macro. Terminals 

are called equivalent if the nets connected to these terminals can be 

interchanged without changing the function of the macro. For example, the 

inputs A and B of a 2 input 'and-gate' can be interchanged, while the 

function will remain out - A.B . The router is not yet able to exploit 

this feature, while routing the circuit, but in future it will be. 
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4.5 Implementation considerations 

The in the previous sections proposed modelling of gate array features 

should be implemented in a form where we have an easy access to the pro

posed properties, and where the amount ·of required memory space is 

minimal. 

The grid is stored as a three dimensional array of vertices. This is a 

minimum because we need information about each vertex, so for each grid

point data should be present. The edge descriptions are merged into the 

vertex records. Every gridpoint contains information about three edges: 

the edge in the north direction, the edge in the east direction and the 

edge in the down direction. The compass-card is given in figure 8. 

y ORTH 
~~~X AST 

Z DOWN 

Figure I. Compaas-card 

What information has to be stored at each vertex ? 

1. The signal type of the associated edges. This means that in the ver

tex data structure minimal 6 bits have to be reserved for the signal 

types of the three corresponding edges. 

2. Equivalent positions to the vertex. Equivalent relations are merged 

into the data structure by using a so called equIvalence table. Each 

vertex has a equivalence index field and a equivalence offset field. 

The equivalence index Is a pointer into the equivalence table. Each 

entry in the table represents a set of equivalent points. The 

equivalent points are stored cyclic as offsets to the next point in 

the set. The equivalence offset addresses a point in the cycle. Fig

ure 9 shows the representation of two sets of equivalent gridpoints. 

This way of storage makes it possible to represent different sets of 
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equivalent points, that have the same geometrical appearance, by just 

one table entry. Because of the repetitive structure of gate arrays, 

this means that the number of table entries is usually rather small, 

while the information stored at each vertex is minimal. 

3. Shadowed edges of the associated edges. To store these properties, 

here again an external table, the design rule table, is used. Each 

vertex contains a design rule index, which is an entry in the design 

rule table. Every table entry contains three shadow lists. The first 

is the list of edges, shadowed by an east edge at the vertex. The 

second the list of edges, shadowed by a north edge and third the list 

of edges, shadowed by a down edge. A shadowed edge is fully deter

mined by the position of the associated vertex and the direction of 

the edge (north, east or down). Therefor we store the shadowed edges 

as a relative position (relative to the position of the vertex in 

question) plus an indication about the direction of the edge. The 

direction indicators are: EAST_EDGE, NORTH_EDGE and DOWN_EDGE. A 

shadowed edge can now be addressed by two attributes: (direction, 

rel_position) . 

For example, if the east shadow list at some gridpoint contains the 

elements (EAST_EDGE, (0,1,0» and (EAST_EDGE, (0,-1,0», it means 

that an east edge at the vertex shadows horizontal edges on adjacent 

tracks (figure 10). 
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Figure 10. Design rule table. 

Again because of the repetitive structure of gate arrays (and their 

design rules) the number of entries in the design rule table is quite 

small. 

4. The costs to occupy each of the associated edges. As could be 

expected, here again we use an external table: the cost table. A 

vertex is assigned a cost index which represents an entry in the cost 

table. Every entry in the cost table contains six absolute cost 

values being the c 's and c 's of the associated (three) edges. If o n 
the router decides to occupy edge s - (Pl,P2)' then dependent whether 

P2 is occupied with respect to the path currently expanded, the cost 

for this occupation is defined by the corresponding c or c. Figure 
o n 

11 shows an example of cost definitions using a cost table. 
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Figure 11. Cost table 

4.6 Summary 

The for the compiler interesting datafields at each gridpoint (vertex) 

are: 

• North signal type 

• East signal type 

• Down signal type 

• Equivalence table index 

• Equivalence table entry offset 

• Design rule table index 

• Cost table index 

Besides this vertex data structure three tables are necessary: 

• Equivalence table 

• Design rule table 
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• Cost table 

Macro stamps require some extra information: 

• Terminal positions. 

• Legal positions. 

• Internal wire positions. 

• Equivalent terminals 

The definition of the vertex data structure is given in appendix A. 
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5. LIBRARY STRUCTURES 

In the previous section, the routing data structure was stipulated. The 

two libraries where the data is stored are described in this section. 

For the gate array core, the data is stored in a directory (gate array 

core library). In here, each item (grid, equivalence table, etc.) 

corresponds with a special file. 

lndeX 
l.y .... 

lntern.l. 
l.g.l. 

broth.r Ubr ... y (1 •• 1 

Figure 12. Macro library structure 

Besides the gate array core data however, we need information about the 

macro stamps. Of course, here again a grid must be stored, but we also 

need information about the stamp's terminal positions, the position of 

internal wires (these can not be used for routing) and its legal posi

tions (a macro stamp can not be mapped at every arbitrary place in the 
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core, but has several predefined positions where the stamp performs its 

required behaviour). For this purpose a directory or directory tree 

could be used, but we have chosen (for sake of surveyability) for a 

separate macro library file. The file is a binary dump of the macro 

library structure given in 

are extensively described in 

figure 12. The 

literature [6]. 
used library access routines 

Now that we have defined the target language for the compiler, the source 

language (GAOL) will be described. 
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6. THE GADL LANGUAGE 

6.1 Goals of GAOL 

The objective of GAOL is to describe the features of gate arrays, as men

tioned in the previous sections, in an easy, compact and 'natural' way. 

The frame of GAOL is a combination of the languages GAOSL and GAORL, as 

proposed by Jichun Bu [7J In these languages it is possible to describe 

the gate array core structure and its design rules. These languages are 

combined, adjusted and extended so that we can now describe the total 

gate array (inclusive macro stamps, design rules and cost function pro

perties) in one uniform grammar. 

Because of the repetitive structure of gate arrays the operation repeti

tion is supported in GAOL. Also transformations (mirror, rotation) on 

grid structures are legal operations. Besides the repetitive features, 

the language is hierarchical to an unlimited depth. 

The combination of hierarchy and repetition makes it possible to describe 

most gate array cores in an extremely compact way (1 a 2 pages). 

6.2 An outline of GAOL 

Each legal GAOL sentence starts with a library definition followed by a 

layer declaration. Then an item list with all image- design ru1e- and 

cost function descriptions follows. 

syntax: 

<GAOL sentence> ::- "(" <library_def> 

<layer_dec1> 

<item list> ")". 

The library definition defines the location where the libraries should be 

stored. 

syntax: 

<library_def> ::- "(" "LIBRARY" <dir name> ")". 

semantics: 

mkantelb
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<dir name> is the name of a (UNIX) directory. In this directory a sub

directory CORE is created. In here, all gate array core information is 

stored (gate array core library). In <dir_name> the file HLIB is created 

too. This file contains the information about the macro stamps (macro 

library). In the sub directory HACROS of.<dir_name>, for each macro, a 

directory <macro_name> is generated, where the names of the macro's ter· 

minals and a file flag called gate_array are stored. The sub directory 

MACROS is used by the schematics entry program: ESCHER. The directory 

structure is visualised in figure 13. 

example: 

LAYERS 

EDJAIILE 

DlLTAIILE 

COSTJAIILE 

POIIERS 
LAYERJNFO 

( LIBRARY /users/paul_l/TAL004 ) 

TERMINAlS TERMINAlS 

... t .......... y 

Figure 13. The directory structure 

E-v . directory 

The layer declaration statement declares all layer names used in the GADL 

description. 

syntax: 

<layer_decl> ::- "(" "LAYERS" I<layer_name>)+ H)". 

semantics: 

The layer names have to be declared from the wafer upto the surface. 

example: 

( LAYERS diffusion poly metall metal2 ) 
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The <item_list> is a list of items: 

s~t~: 

<item_list> ::- {<item>}+. 

We distinguish four kinds of items: 

• image definition item 

• range definition item 

• design rule definition item 

• cost function definition item 

6.2.1 Image definition item 

25 

The image definition item defines the geometrical appearance of the core 

or the macro stamps. These alternatives are mutually exclusive. 

As mentioned in section 6.1 the structure description is hierarchical. 

The basic blocks are modules. A module can either be a simple module 

(type MODULE), a core module (type CORE) or a macro module (type MACRO). 

A simple module only describes geometry of a grid part. A core module 

defines the geometry of the total gate array core 

defines the geometrical appearance of a macro 

stamps). Simple modules can be called at certain 

and a macro module 

(and its associated 

positions in other 

modules. Of course, no recursion is allowed because an endless loop would 

be created. 

Now the total image definition item is a list of modules. When a core 

module is defined, no macro modules are allowed. 

s~t~: 

<image_definition> ::- "(" "IMAGE" {<module>}+ H)". 

<module> ::- "(" "CORE" <name> 

")" 

{<power_name>} * 
<simple_module_body> 

"(" "MODULE" <name> <simple_module_body> ")" 

"(" "MACRO" <name> <macro_body> H)". 



- the GAOL language -

<simple_module_body> ::- <dimension_sm> {<image_statement>}*. 

<macro_body> :- "(" {<term_name>}* ")" 

n(n {<power_name>}* n)n 

{<e~term_set>}* 

{<stamp>}+. 

semantics: 
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In the description of the core, the names of the power lines (and their 

positions) should be defined, because they are treated as special nets 

(if they don't appear in the netlist they should be isolated). The body 

of a simple module is just a dimension specification followed by a list 

of image statements. Some image statements are only meaningful and legal 

in macro stamp descriptions. For example the definition of a terminal in 

a simple module is meaningless and therefor not allowed. 

The body of a macro consists of a list of terminal names, a list of power 

names, a list with equivalent terminal sets and a stamp list. The termi

nal names and power names of one macro are the same for all stamps. The 

positions of the terminals and the powers should be defined within the 

stamp body. The positions of the power lines are important when we want 

to determine the internal wires of a macro stamp. The equivalent terminal 

sets are identical for all stamps too. 

syntax: 

<e~term_set> ::- n(n nEQTERMn <term name> 

example: 

(EQTERH inl in2 in3) 

<term_name>}+ n)n. 

A stamp defines one physical realisation of a macro. Different stamps of 

one macro could have totally different geometric appearances, but they 

can also have the form of rotations or mirrors of one basic structure. 

In the latter case, it is advisable to define a simple module containing 

the basic structure, and call this module (with the proper transforma

tions) in the macro stamp bodies. 

syntax: 

<stamp> :: _ II (" <name> 

<dimension sm> 
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{<image_statement>}* ")". 

All image statements concern positions in grids. For ease of speech, 

first a few notions with regards to grids are stated. Each simple module, 

core module or macro stamp has its own local grid. The gridlines in this 

grid have to correspond with gridlines in the fine routing grid. However, 

sequential gridlines in the local grid can have many fine gridlines 

between them. Gridlines where no module is called are regarded as the 

gridlines of the fine routing grid. The gridpoints in the local grid are 

addressed by a position. A position is a pair of integers representing 

the x gridline and the y gridline in the local grid respectively. Note: 

the origin of the coordinate-system is (00). 

Gridpoints in the fine grid are addressed by coordinates. It will be 

obvious to the reader that every position in the local grid corresponds 

with a coordinate in the fine grid. 

The size of the local grid is defined by a <dimension_sm>. 

syntax: 

<dimension 8m> ::- "(" "DIMENSION" <x dim> <y_dim> H)". 

semantics: 

This statement defines the dimension of the module's local grid. 

defines the number of y-axis-parallel gridlines. Likewise, 

defines the number of x-axis-parallel lines. 

example: 

( DIMENSION 14 12 ) 

Now we have to choose our set of image statements in such a way that all 

properties mentioned in chapter 4 can be described. We should also have 

the possibility to indicate the router freedom in the different layers to 

determine reducibility of layers (see section 7.1.1), and to make the 

description more compact. 

syntax: 

<image_statement> ::- <layer_sm> 

<call sm> 
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<wire sm> 

<nwire sm> 

<via sm> 

<nvia sm> 

<pvia_sm> 

<equivalence_sm> 

<terminal sm> 

<power_sm> 

<legal_sm>. 

The <layer_sm> specifies the default wire and via types. 

syntax: 

<layer_8m> ::- "(" "lAYER" <name> <wire_type> <via_type> ")" 

semantics: 

28 

The wire and via types determine the degree of freedom for the router in 

the layer defined by <name>. <wire_type> or <via_type> can either be 

"FIX(ED)" or "PROG(RAHHABLE)". A type of FIX means that there is no 

freedom for the router to expand its paths in the layer. Likewise a type 

of PROG means that the router can create wires (or vias) in the 

corresponding layer. The layer type definition of the core module is used 

to determine the reducibility of layers. Layers with both via type and 

wire type set to FIXED offer no freedom for the router and can be 

reduced. 

examples: 

( LAYER diffusion FIXED FIXED ) 

( LAYER metal PROG FIX) 

In the layer 'diffusion', the router can not create wires or vias (to the 

layer beneath). In the layer 'metal'. wires can be generated. but vias 

are at (user defined) fixed positions. 

A <call_sm> calls a simple module (optionally transformed) at a certain 

position in the local grid. 

syntax: 

<call sm> ::- "(" "AT" 
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«position»+ 

[<copy_attr>j 

«transform»* 

<name> ")". 

<position> ::- 11(" <xpos> <ypos> ")". 

<copy_attr> ::- "ex" "(" <integer> <integer> ")" 

"CY" 11(11 <integer> <integer> ")" ]. 

<transform> ::- "MX" I "MY" I "R90" I "RIS0" I "R270". 

semantics: 

29 

This statement defines calls of simple module <name> at all local grid 

positions defined by «position»+ and <copy_attr>. The size of the 

called module with respect to the local grid is always I * 1. The defined 

positions are the points where the left under corner of the called module 

is mapped to. 

The two integers in each copy attribute represent the delta- and times

value respectively. So CX(2 3) means: copy three times in the x direction 

with a delta of two. The <copy_attr> operates on all positions of «posi

tion>)+. If a module is called at position, let's say (x y), then 

between the local gridlines x and x+l as many fine gridlines as required 

by the called module are inserted. The same holds for the y direction. 

The first gridline of the called module covers the local gridline of the 

calling module at the called position. Care must be token that all 

modules, called at coordinate X, require an equal number of gridlines to 

be inserted. 

The transformation MX mirrors the called module in the x-axis, MY mirrors 

in the y-axis. R90 rotates the called module 90 degrees anti clock-wise. 

Transformation are executed 'from the <name> away'. 

example: 

( AT (3 3) CX(2 2) CY(1 3) HX R90 gate_cell ) 

Here, the module 'gate_cell' is called (first rotated and then mirrored) 

at the positions (3 3), (5 3), (7 3), (34), (54), (74), (35), (5 5), 

(7 5), (3 6), (5 6) and (7 6). These are the positions where the left 

under corner of the (already transformed) module 'gate_cell' is mapped 

to. 
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Wire statements define the galvanic horizontal connections (horizontal 

means: situated in one layer). 

syntax: 

<wire sm> ::- "(" IIWIRE" <name> 

{<coordinate>}+ 

[<copy_attr>j "In. 
<coordinate> ::- "(" <int> ["." <int>j <int> ["." <int>j "In. 
semantics: 

A wire is here regarded as a horizontal galvanic connection between grid

points in the layer defined by <name>. The wire sequentially connects the 

gridpoints defined by their coordinates. When non-orthogonal wire-parts 

are defined, the spanning region of the wire part is blocked for routing, 

i.e. when the wire-part runs from (xl yl) to (x2 y2), the region formed 

by the cartesian product of (xl,xl+l, .. , x2) and (yl, yl+l, y2) is 

blocked for routing (no wires can enter this region). The copy attribute 

operates on the total wire shape. 

Coordinates defined in a wire statement are a little more complex than 

the positions defined in a call statement. Where the positions in a call 

statement only address positions in the local grid, in a wire statement 

it is possible to address coordinates in the fine grid. This is esta

blished by adding sub coordinates to the positions in the local grid. 

These sub coordinates define the number of fine gridlines that have to be 

added to the fine grid coordinate corresponding with local grid position. 

For example the coordinate (5.3 8.9) defines a coordinate obtained by 

stepping 3 fine gridlines in the x direction from the fine gridline 

corresponding with local gridline 5, and 9 gridlines in the y direction 

from the fine gridline corresponding with local gridline 8. This feature 

can be very useful to define powerlines (which are across the whole gate 

array) and to connect modules. Sub coordinates are only legal at posi

tions where modules are called, and where the sub coordinate does not 

exceed the called module's fine dimension. 

NOTE: The copy attribute only affects the local grid position. It is not 

legal to add sub coordinates to the copy attributes. 

examples: 
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(WIRE metail (0 0) (3 0) (3 4) CX(4 1) ) 

(WIRE poly (0 8.1) (0.13 8.1) CX(2 1) ) 
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The first statement defines two wires of equal shape. The second again 

defines two wires and shows the use of sub coordinates. One wire runs 

from (0 8.1) to (0.13 8.1), the other from (2 8.1) to (2.13 8.1). 

A nwire statement defines the position of wire blockades. 

syntax: 

<nwire sm> :: - "(" "WIRE" <name> 

«coordinate»+ 

<copy_attr> H)". 

semantics: 

A nwire statement defines gridline parts that are blocked for routing. 

If a diagonal wire segment is detected, the spanning region is blocked as 

a whole. The same remarks as to wire statements apply to nwire state

ments. 

example: 

( NWIRE poly (3.4 0) (5 0) CY(2 3) ) 

Via statements define the position of vias (contact holes). 

syntax: 

<via sm> ::- "(" "VIA" <namel> ["." <name2>] 

«coordinate»+ 

[<copy_attr>] H)". 

semantics: 

A via statement defines vias (holes) from layer <namel> downto layer 

<name2>. If no <name2> is defined, a via to the underlying layer is 

assumed. The positions of the vias are defined by the coordinates and 

the <copy_attr>. If two layer names are defined, it is necessary that 

<namel> is nearer to the surface of the wafer than <name2>. For the coor

dinates, the same as for the wire statement holds. 

example: 

( VIA metaI2.diffusion (0 0) (3.2 4.6) CX(2 1) ) 

(VIA poly (0 0) (0 5) (0 11) CX(2 10) ) 
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It is advisable to define 'related' vias in just one statement in stead 

of using a separate one for each individual via. 

Nvia statements define the via blockades. 

syntax: 

<:nvia sm> ::- "( n IINVIA" <namel> [". II <name 2> ] 

«coordinate»+ 

<copy_attr> H)H. 

semantics: 

At the defined positions, no via can be created by the router. 

example: 

( NVIA metal.poly (1 0) (1 5) GX(2 100) CY(20 8) ) 

Pvia statements define the positions of programmable vias. 

syntax: 

<pvia_sm> ::- H(H HPVIAH <namel> [H.H <name2>] 

«coordinate»+ 

<copy_attr> H)H. 

semantics: 

This statement is useful in cases where the layer via type is set to 

FIXED and where at some pre-defined positions vias can be created. The 

pvia statement defines those positions. 

example: 

( PVIA poly (1 0) (1 5) GX(2 100) CY(20 8) ) 

An equivalence statement defines a set of electrically equivalent points. 

syntax: 

<equivalence_sm> ::_ H(H HEQ(UIVALENT)?H <name> 

«coordinate»+ 

<copy_attr> ")" 

semantics: 

An equivalent statement defines a set 

in the layer <name>. The set is 

of electrically equivalent points 

defined by the coordinate list. 

<copy_attr> does not extend the set, but increases the number of sets, In 
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fact it creates another set with the same shape but located elsewhere. 

example: 

( EQ poly (3.1 0) (6.83.9) CX(5 1) CY(3 7) ) 

A terminal statement defines the position of a terminal. 

syntax: 

<terminal sm> ::- "(" "TERM(INAL)?" <name I> <name2> 

{<coordinate>}+ ")". 

semantics: 
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This statement is only meaningful and legal in a macro stamp body. 

<name I> is the name of the terminal. The name has to be declared in the 

terminal list of the macro module. <name2> defines the name of the layer, 

the coordinate(s) of the terminal are positioned. Only one coordinate of 

a terminal tree has to be defined. All galvanically connected coordinates 

are regarded as terminal positions. Usually the coordinate list exists of 

one coordinate. The defined layer should be not-reducible. 

NOTE: A terminal position definition for each declared terminal should be 

present. 

example: 

( TERMINAL in2 metal (0 5.1) ) 

The power statement defines the position of power lines. 

syntax: 

<power_sm> ::- "{" "POWER" <name1> <name2> 

{<coordinate>]+ "In. 
semantics: 

All remarks concerning a terminal statement apply to a power statement. 

However, power position definitions are also allowed in the core module 

description. 

example: 

( POWER vdd metal (0.9 6) ) 

A legal statement defines the legal positions of a macro stamp. 

syntax: 
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<legal_sm> ."= "(" "LEGALII 

")"". 

<start> ::- <int>. 

<delta> ::- <int>. 

"(" <start> <delta> <end> ")" 

"(" <start> <delta> <end> ")" 

<end> ::- <int> 1 ·END· [._. <int>l. 

semantics: 
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Each legal statement defines a set of legal positions. The first 

<start>-<delta>-<end> sequence concerns the x-direction, the second the 

y-direction. <start> defines the first fine grid coordinate in the core 

grid. This position is repeated with delta <delta> until <end>. The 

legal position set is formed by the cartesian product of the x-direction 

coordinates and the y-direction coordinates. If <end>is ·END·, it means 

that the coordinates should be repeated until the size of the gate array 

core. <end> does not has to be: a multiple of <delta> plus <start>. 

examples: 

( LEGAL (0 20 200) (0 10 50) ) 

( LEGAL (0 14 END) (0 8 END-I) ) 

6.2.2 Range definition item 

The range definition item defines ranges, and assigns names (identifiers) 

to them. These ranges may be used in the design rule and cost function 

part of the description. 

syntax: 

<range_item> ::- .(. ·DEFINE· (<range_de£>l* .) •. 

<range_de£> ::- .(. <name I> (<interval>l+ .) •. 

<interval ::- <integerl> [ •..• <integer2>J [<copy_op>J 

"ALL" 

<name2> (·+·1·_·) <integer3>. 

sel1lSntlcs: 

A range definition assigns <namel> to the range defined by the interval 

list. A range is a sequence of x (y) coordinates. An interval 1s a 
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closed sequence of coordinates (optionally copied) or a point to the 

definition of an earlier defined range (optionally offsetted). In the 

interval definition, just an <integer1> defines the coordinate with that 

value. <integer1> .. <integer2> defines a range from <integer_1> upto and 

including <integer2>. Copy operators can be added to these intervals. 

"ALL" defines the total axis (x or y). Whether the x or y axis is meant 

should be clear from the context the range is called in. <narne2> 

(n+n I n _") <integer3> defines a range obtained by adding (subtracting) 

<integer3> coordinates to each element of the range associated with 

<name>. 

example: 

( DEFINE 

( vdd x 19 CP(30 5) ) 

( poly_under_x 0 CP(2 94) vdd x+2 vdd-2 ) 

( x axis ALL) 

( junction_x 10 .. 29 CP(30 5) ) 

) 

The first range defines a sequence 19,49, ." 169, the second a sequence 

0, 2, .. , 188, 21, 51, .. , 171, 17,47, .. , 167, the third a sequence 

O .. MAX and the last a sequence 10, II, .. ,29,40, .. ,59 etc .. 

Now, areas can be defined as the cartesian product of two ranges, where 

the first is the x coordinate range and the second the y coordinate 

range. 

6.2.3 Design rule definition item 

The design rule description knows no hierarchy because of the problems 

that would occur at the module's boundaries. As stated earlier, design 

rules are defined by the concept of shadowing. We define three kinds of 

objects: HORWIRE, VERWIRE and VIA. HORWIRE corresponds with an edge in 

the east direction, VERWIRE with an edge in the north direction and VIA 

with an edge in the down direction. With these three objects and area 

definitions it should be possible to model all of the design rules apply

ing to a gate array type. The design rule part of the core description 
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consists of a list of design rule statements. 

syntax: 

<design_rule_item> ::- "(" nDRL" «drl_statement»* ")". 

<drl statement> ::- "(n <object> <name> 

"(" «interval>)+")" 

"(" «interval»+ ")" "SHADOW" 

«shadow»+ 

<object> ::- "HORWIRE" I "VERWIRE" I "VIA". 

<shadow> ::- n(" <object> <name> <integerl> <integer2> H)". 

semantics: 
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A design rule statement says: When <object> is made in the area defined 

by the cartesian product of the two interval lists and the layer <name>, 

then it shadows the elements in the shadow list. A shadow element con

sists of the shadowed object, the layer name of the shadowed object and 

the position of the shadowed object relative to the position of the 

"make-object". <integerl> defines the delta-x and <integer2> the delta-y, 

so a shadow ( VIA metal -1 1 ) defines a shadowed via in layer metal (to 

the layer beneath) at the position obtained by adding -1 to the x-

coordinate of the position of the object made and adding 1 to the y-

coordinate. Every ("make-object",shadow) combination has its complement, 

i.e. if object A at (x,y) shadows object B at (x+dx, y+dy) then object B 

at (x,y) shadows object A at (x-dx,y-dy). These complements are gen

erated automatically with respect to effects at the area boundaries. This 

means that the area defined in the input is not automatically copied to 

the complement relation, but shifted over the delta's as defined in the 

shadows. 

example: 

(DRL 

( VERWIRE meta12 (in~ate) (ALL) SHADOW 

( VIA meta12 -1 0 ) 

( VIA meta12 1 0 ) 

) 
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( VERWIRE meta12 (in_channel) (ALL) SHADOW 

( VERWIRE meta12 -1 0 ) 

( VERWIRE meta12 1 0 ) 

) 

( VERWIRE metall (in_channel) (ALL) SHADOW 

( VIA meta12 -1 0 ) 

( VIA meta12 1 0 ) 

) 

) 

6.2.4 Cost function item 

Here again, the cost function description knows no hierarchy because of 

boundary problems. The same objects: HORWIRE, VERWIRE and VIA. as in the 

design rule item are appropriate to describe the costs to occupy edges. 

It is also legal to use defined ranges (defined in the range definition 

item) in the cost function description. 

syntax: 

<cost_item> ::_ n(n nCOSTn «cost_statement»* n)n. 

<cost_statement> ::- <cost_define> I <cost_assignment>. 

<cost_define> ::- n(n nDEFINEn <name> <cost> n)n. 

<cost_assignment> ::- n(n <object> <name> 

n) n • 

n(n «interval»+ n)n 

n(n «interval»+ n)n nCOSTn 

<costn> I nOCCUP(IED)?n <cos to> 

<object> ::- nHORWIREn I nVERWIREn I nVIAn. 

semantics: 

A cost definition statement associates the identifier <name> with the 

cost value <cost>. A cost assignment says: The costs to occupy the edges 

defined by the layer <name>, the area defined by the interval lists and 

the direction defined by <object> are equal to <costn>, if one of the 

gridpoint defining the edge is not a start point of the route, and equal 
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to <costa> if so. <costa> and <costn> are either values (integers) iden

tifiers (defined in a cost definition) or "INFINITE" to indicate a cost 

value of infinite. 

The costs of edges which are not set in the input default to the unit 

cost 1 (costs have to be positive). 

example: 

( COST 

) 

( DEFINE function box cost 100 ) 

( DEFINE junction_box_cost 200 ) 

( HORWIRE metal (diffusion_x) (diffusion-y) 

COST INFINITE OCCUPIED 1 

) 

( HORWIRE metal (function_x) (function-y) 

COST function box cost 

) 

( VERWIRE metal (junction_x) (junction-y) 

COST junction_box_cost 

) 

In appendix E an example of a gate array core description and some macro 

descriptions are included. 
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7 . THE GAOL COMPILER 

In this chapter the algorithms and data structures used by the actual 

compiler are summarised. All routines operate on an internal data struc

tures, independent of the input syntax. It is rather easy to redefine the 

input syntax (the features however have to be the same) without rewriting 

the compiler. 

We distinguish three main parts in the compilation phase: 

• Image compilation. 

• Design rule compilation. 

• Cost function compilation. 

These parts are discussed separately. 

7.1 Image compilation 

Before we take a look at the internal data structure and the routines, 

the notion 'layer reduction' is introduced. 

7.1.1 Layer reduction 

In gate array technology some layers are provided by the foundry and 

offer no freedom for routing. It would be useless to regard these layers 

in our system because they only require storage space and don't contri

bute to the amount of information. These layers can be 'deleted' by the 

process of layer reduction. However, we can not just delete the layer(s) 

because they generally contain information about electrical equivalences 

in the layer above. When we discover that a layer can be reduced, all 

electrical equivalences obtained from the 'wire pattern' in the reducible 

layer have to be merged in the data structure of the upper layer. These 

electrical equivalences can be modelled in the same way as the equivalent 

relations discussed in section 4.5. For example: A fixed poly underpass 

under a routing channel of some CMOS gate array, with fixed metal poly 
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Figure 14. Layer reduction. a) geometry. b) grid model. c) reduced grid 
model. 

vias can be modelled as shown in .figure 14. 

7.1.2 Data structure 

The input description statements are one to one projected to an internal 

data structure described in this paragraph. As the description is fully 

hierarchical, the data structure is too. The basic block is the module 

(figure l5a). The modules which are not a macro stamp are linked in a 

list called MODULES. The macros (figure l5b) are linked in a list called 

MACROS. The field 'stamps' of a macro is a list of modules, where each 



- the GAOL compiler - 41 

name name 
type nr of terms 
x dimension terms > 
y_dimension nr_of_powers 
x c list > powers > 
y_c_ list > e'Lterms > 
call list > stamps > -
callref list > next > 
layer > 
grid > b) 
processed 
next > 

terms > 
powers > 
nr_of_legals 
legals > 
nr_of_internals 
internals > 

a) 

Figure 15. Structures: a) MODULE b) MACRO 

module represents a macro stamp. Now, each module structure corresponds 

with a module-, core- or macro stamp definition in the input descrip

tion. 

Besides these two lists there is an extra pointer called 'CORE MODULE' 

pointing to the module, describing the core of the gate array, and a list 

called 'LEAVES' containing all leaf cells. If a macro stamp is not cal

ling any sub-module, the type will be 'MACRO_STAMP', but it will be added 

to 'LEAVES'. 

Module structure description: 

• 'name' is the name of the module as defined in the input. 

• 'type' can either be MODULE_CELL, CORE_CELL, LEAF_CELL, MACRO STAMP or 

NOT_CONNECTED. MODULE_CELL, CORE_CELL and MACRO_STAMP are self expla

natory. A module is assigned the type LEAF CELL if it calls no other 

module. NOT CONNECTED means that the module is not called and is not a 

CORE_CELL or MACRO_STAMP. 

• 'x dimension' and 'y_dimension' define the size of the local grid. 
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'x dimension' is the number of y-axis parallel local gridlines, 

'y_dimension' the x-axis parallel gridlines. 

• 'x c list' and 'y_c_list' are arrays of size x_dimension and 

y_dimension respectively. They are used during the expansion of the 

local grid to the fine grid (hierarchy processing) and are discussed in 

the description of the expansion routines. 

o 'call list' is the list of called modules, inclusive the positions 

where the modules are called, and the effective transformations. 

o 'callref_list' is the list of all modules that call this one. 

o 'layers' is an array of size NR_OF_LAYERS, where NR_OF_LAYERS is the 

number of layers declared in the input description. Each element of 

layers contains the (n)wires, the (np)vias, the equivalent relations 

and the default wire and via types (for that layer) as described in the 

input. 

o 'grid' is a three dimensional array of type CVERTEX (appendix A). Ini

tially this array is empty (filled with nulls) but will be filled dur

ing the compilation. 

o 'processed' is a boolean to indicated that the module has been pro

cessed during some compilation phase. The initial value of 'processed' 

is FALSE. 

• 'next' points to the next element of the list. 

Beneath the line of figure 15a the extra data for macro stamps is summar

ised: 

o 'terminals' is an array where the positions of the terminals are 

stored. 

o 'powers' is an array where the positions of the power lines are stored 

(is also used in the CORE_MODULE). 

• 'nr_oI_internals' is the number of internal wires of the stamp. 

o 'internals' is a list of the positions of the internal wires. 

o 'nr_of_legals' is the number of legal position sets of the stamp. 

o 'legals' describes the legal position sets. 
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Macro structure description: 

• 'name' is the name of the macro as defined in the input description. 

• 'nr of terms' is the number of terminals of the macro. 

• 'terms' is a list with the terminal names of the macro. 

• 'nr_of-powers' is the number of powers defined for the macro. 

• 'powers' is a list with the power names. 

• 'eq_terms' is a list of the equivalent terminal sets. 

• 'stamps' is the list of all stamps. The elements in the list are of the 

type MODULE. 

• 'next' points to the next macro in the list (MACROS). 

o 

<pallUanl> 

I 

<pallUanl> 

<llrJlfJlal> 

<pollU_> 

Figure 16. The EQ_ARRAY 

Besides these two structures we need a special array to store the 

equivalent relations: the EQ_ARRAY (figure 16). The size of the array is 

E~INDEX_RANGE + 1, where E~INDEX_RANGE - 2e~bits_l. 'e~bits' is the 

number of bits reserved for the equivalence index in the VERTEX data 

structure (appendix A), Each entry in the array represents an equivalence 

set. The elements in the array contains two fields: 'nr_of_pos' and 

'positions'. 'positions' is an array of size E~OFFSET_RANGE + I, where 

EQ_OFFSET_RANGE - 2offset_bits_l. The actively used number of elements in 

this array is 'nr_of_pos'. The equivalent positions in the array are 

stored as offsets to the first element of 'positions'. 
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7.1.3 Routines 

The routines in the image compilation part can be divided in three sec

tions: 

• Grid expansion routines 

• Grid filling routines 

• Layer reduction routines 

NOTE: The algorithms are described in terms of a meta-language, presented 

in appendix C. 

Grid expansion: 

During grid expansion, the local grid is expanded to the fine grid. This 

means that between the gridlines of the local grid as many fine grids as 

required by the called modules are inserted. The grid expansion routines 

use the 'x_c_list' and 'y_c_list' fields of the modules. A 'c list' con

tains three fields: 'nr_oi_pos', 'nr of coord' and 'coord_array'. 

'nr_of_pos' is the number of fine gridlines, 'nr_of_coord' is the number 

of local gridlines and 'coord_array' is an array of size 'nr of coord' 

Each element in 'coord_array' contains two fields: 'position' and 

'expansion_list'. 'position' is the position of the local gridline in the 

fine grid (relative to the origin of the module), and 'expansion_list' is 

a pointer to the 'c list' of the module called at that coordinate. Fig

ure 17 shows an example of how to interpret these lists. Expand_grids is 

the routine that builds this part of the data structure. 

- expand_grids () 

synopsis: 

void expand_grids () 

description: 

The objective of this routine is to define the fields in the 'c list's 

as described above. 

algorithm: 

BEGIN 
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Figure 17. Coordinate lists. 

FOR all leafs DO 

set processed flag in leaf 

(they don't have to be expanded): 

leaf is processed; 

ROF; 

FOR all leafs DO 

expand (recursively) the axes 

of the calling modules 

expand super axes of leaf; 

ROF; 

END; 

subroutine: 

. expand_super_axes () 

synopsis: 

void expand_super_axes ( module ) 

MODULE PTR module; 

description: 

45 
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This routine recursively checks whether the grids of the modules, that 

call <module>, can be expanded and expands them. 

algorithm: 

BEGIN 

FOR all calling modules DO 

IF calling module not yet processed THEN 

IF all sub modules of calling module processed THEN 

expand axes of calling module; 

now calling module is processed; 

expand super axes of calling module; 

FI; 

FI; 

ROF; 

END; 

subroutines: 

BOOLEAN sub_modules_processed (); 

void expand_axes (); 

void 

- sub_modules_processed () 

synopsis: 

BOOLEAN sub_modules_processed ( module ) 

MODULE PTR module; 

description: 

Returns TRUE if all sub-modules of <module> are processed, i.e. if the 

'processed' field of all sub-modules is TRUE. Else returns FALSE. 

- expand_axes () 

synopsis: 

void expand_axes ( module ) 

MODULE_PTR module; 

description: 

Actually expands the axes of <module>. 

algorithm: 
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BEGIN 

FOR all called modules DO 

IF at called position already expansion list THEN 

IF expansion lists not equal THEN 

error; 

FI; 

ELSE 

set expansion list to c list of called module; 

FI; 

ROF; 

update positions in c list of module; 

END; 

subroutines: 

BOOLEAN exp_lists_equal (); 

void update_positions (); 

- exp_lists_equal () 

synopsis: 

void exp_lists_equal ( listl, list2 ) 

C_LIST_PTR listl, list2; 

description: 
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Returns TRUE if the lists <listl> and <list2> are equal concerning 

number of gridlines. Else returns FALSE. 

- update_positions () 

synopsis: 

void update_positions ( c_list ) 

C_LIST_PTR c_list; 

description: 

Updates the position fields in the 'coord_array' of <c_list>. 

Grid filling: 

After the expansion of the grids, the filling can start. 
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synopsis: 

void image_cmp () 

description: 
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Compiles the description as defined by the statements in the input to a 

proper signal type and equivalence index and offset setting in the grid. 

algorithm: 

BEGIN 

IF macros defined THEN 

determine core pattern under macro stamps; 

( fill all grids: 

fill grids; 

find internal wires of macros; 

ELSE 

IF core module defined THEN 

fill grids; ( fill all grids except the core grid I 

fill core grid; ( fill the core grid ) 

FI; 

FI; 

END; 

subroutines: 

CVERTEX PTR_3 

void 

void 

void 

void 

void 

void 

- fill_grids 0 
synopsis: 

read_image_grid (); 

read_eLtable 0; 

read_pattern 0; 

free_grid 0; 

fill_grids 0; 

find internals 0; 

fill_core_grid 0; 

void fill_grids () 

description: 

Fills the grids of all modules except the core module (special case) 
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according to the statements in the input definition. 

algorithm: 

BEGIN 

processed field of the core module is set to TRUE 

to avoid grid filling during this -routine: 

all modules except core module not processed; 

FOR all leafs DO 

IF leaf not processed THEN 

fill leaf layers; 

now leaf, is processed; 

fill super modules (calling modules) of leaf; 

FI; 

ROF; 

END; 

subroutines: 

CVERTEX PTR 3 

void 

void 

allocate_grid (); 

fill_layer (); 

fill_super_modules 

- fill_core_grid () 

synopsis: 

void fill_core_grid () 

description: 

(); 
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Fills the grid of the core module. The core module is processed 

separately because in the grid of this module we can (generally) reduce 

layers. The core module usually is the biggest of all and requires an 

enormous amount of storage space. Therefor, we don't allocate the hole 

grid but in first instance only one layer, the nearest to the wafer. 

After the filling of that layer, for every other layer we check whether 

the layer beneath can be reduced and merged into the current layer. If 

so, the actual reduction takes place. The layer reduction routine 

returns whether a layer was really reducible. If it was, the space of 

the reduced layer is used for the layer above the current one. 

algorithm: 
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BEGIN 

allocate bottom layer; 

fill bottom layer; 

FOR all other layers from wafer upto surface DO 

IF no space for layer reserved THEN 

allocate layer; 

FI; 

fill layer; 

IF not a not-reducible layer detected THEN 

IF layer under current one reducible THEN 

reduce layer under current one; 

IF really reduced THEN 

reserve space of layer under current one for 

layer above current one; 

ELSE 

not-reducible layer detected; 

FI; 

ELSE 

not-reducible layer detected; 

FI; 

FI; 

ROF; 

END; 

subroucines: 

CVERTEX_PTR_3 allocate_layer (); 

void fill_layer (); 

BOOLEAN reduce_layer (); 

void init_Iayer (); 

- fill_layer 0 

synopsis: 

void fill_layer ( module, layer_number) 

MODULE_PTR module; 

int layer_number; 

50 
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description: 

Fills layer <layer_number> of <module>. The layers of all called 

modules should be filled before this routine is called. 

algorithm: 

BEGIN 

{ fill the grid with the grids of the called modules: } 

fill calls; 

{ fill the grid with all other objects: } 

fill the layer with the in the input defined wires 

for the module; 

fill nwires; 

fill vias; 

fill nvias; 

fill pvias; 

fill equivalences; 

END; 

subroutines: 

void fill_wires 0; 
void fill vias 0; 

void fill_equs 0; 

void fill calls 0; 

- fill_super_modules () 

synopsis: 

void fill_super_module ( module ) 

MODULE PTR module; 

description: 

Recursively fills the super modules (calling modules) of <module> .. 

algorithm: 

BEGIN 

FOR all calling modules DO 

IF calling module not processed THEN 

IF all sub modules of calling module processed THEN 

fill layers of calling module; 
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calling module is processed; 

fill super modules of calling module; 

FI; 

FI; 

ROF; 

END; 

subroutines: 

BOOLEAN sub_modules_processed (); 

CVERTEX_PTR_3 allocate_grid (); 

void fill_layer (); 

void 

- fill wires 0 

synopsis: 

void fill wires ( module, layer_nr, list, type) 

MODULE PTR module; 

int 

WIRE PTR 

int 

description: 

layer_nr; 

list; 

type; 
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Fills the grid of <module> with the information in <list>. <list> is 

either the wire- or the nwire list of the module. <type> is the signal 

type the signal type fields of the vertices have to be set to (IMAGE or 

INHIBIT). If <type> is IMAGE and a diagonal wire segment is defined, 

the ends of the wire segment are included in the E~ARRAY and the span

ning region of the wire segment is blocked for routing. 

algorithm: 

BEGIN 

FOR all wires in the list DO 

FOR all coordinates of the wire DO 

get next_coordinate; 

IF vertical or horizontal wire segment THEN 

set signal types; 

ELSE I diagonal wire segment: ) 
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IF previous wire segment was not diagonal THEN 

add coordinate to equivalence bucket; 

FI; 

add next_coordinate to equivalence bucket; 

block spanning region for routing; 

FI; 

ROF; 

empty bucket in EQ_ARRAY and set indices in grid; 

ROF; 

END; 

subrout:ines: 

void 

void 

void 

void 

set_north_type (); 

set_east_type (); 

add_e~position (); 

update_e~array (); 

- fill vias 0 

synopsis: 

void fill_vias ( module, layer_nr, list, type) 

MODULE_PTR module; 

int layer_nr; 

VIA PTR list; 

int type; 

description: 

53 

Fills the grid of <module> with down signal types according to the 

information in <list>. 

subroutines: 

void 

- fill_equs 0 
synopsis: 

void fill_equs ( 

MODULE]TR 

int 

module, layer_nr, list) 

module; 

layer_nr; 
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WIRE PTR list; 

description: 

Fills the grid of <module> with equivalence indices and offsets accord

ing the information in <list>. 

subroutines: 

void 

void 

add_e~position (); 

update_e~array (); 

- fill calls 0 

synopsis: 

void fill calls ( module, layer_nr ) 

MODULE PTR module; 

int 

description: 

The layer <layer_nr> of the called modules (called by <module» are 

copied (with respect to the transformations) to the grid of the calling 

module. 

algorithm: 

BEGIN 

FOR all called modules DO 

compute the absolute position of the called origin; 

transform the grid and copy it to the grid of the 

calling module; 

ROF; 

END; 

subroutines: 

void transform (); 

- transform 0 
synopsis: 

void transform ( target, position, call) 

MODULE PTR target; 

int 

CAll PTR 

*position; 

call; 
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description: 

Copies one layer of the grid of the module represented by <call>. with 

respect to the transformations, to the grid of <target> at <position>. 

The copied layer is the layer field of <position>. During the transfor

mations, a vector containing: x-value, y-value, north-signal-type, 

east-signal-type. south-signal-type and west-signal-type is used. This 

vector is passed to the transformation primitives which return the vec

tor after transformation. 

algorithm: 

BEGIN 

IF there are transformations THEN 

FOR all positions in the layer DO 

initiate the transformation vector; 

copy the equivalence row associated with the 

current position from the E~ARRAY to bucket; 

FOR all transformations DO 

transform transformation vector; 

transform equivalence bucket; 

ROF; 

set the vertex fields in the grid of the calling 

module according to the data in the 

transformation vector; 

empty bucket in E~ARRAY and set eq indices in grid; 

ROF; 

ELSE 

no transformations, just copy the grid; 

FI; 

END; 

subroutines: 

void mirror_x 0; 

void mirror_e~x 0; 

void mirrory 0; 

void mirror_e<LY 0; 
void rotate 90 0; 
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rotate _ e'L90 (); 

update_e'Larray (); 

56 

The called routines of transform () are the transformation primitives. 

For example, rotate_90 () rotates a vector 90 degrees anti-clockwise: 

- rotate 90 0 

synopsis: 

void rotate 90 ( vector, max_x, max-y ) 

int 

int 

description: 

vector [I; 

Transforms <vector> so that the result represents the same point after 

90 degrees rotation (anti-clockwise). Exchanges values of <max x> and 

<maxy>. 

algorithm: 

BEGIN 

new x :- maxy - oldy; 

newJ :- old_x; 

new north :- old_east; 

new east :- old_south; 

new south :- old_west; 

new west :- old_north; 

exchange max x and maxJ; 

END; 

Layer reduction: 

During layer reduction, the data in the 'fixed' layer has to be merged in 

the data structure of the layer above. A layer is reduced in two passes. 

First all positions where a programmable via (type INITIAL) to the upper 

layer exists are expanded, i.e. a depth first search of the wire tree is 

performed and all positions in the tree where a via to the layer above 

exists are made equivalent. 

Second all positions where a fixed via (type IMAGE) to the upper layer 

exists are expanded. All positions above the wire tree where a fixed via 
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exists are made equivalent. If there are only second pass equivalences, 

all information of the bottom layer is merged into the layer above. How

ever, if there are first pass equivalences the layer con not be deleted 

because it contains information of the reduced layer structure. The hor

izontal wire types (north type and east type) however, can be set to 

INHIBIT because all wire information is enclosed in the equivalence set

tings in the reducible layer. This will limit the search space during 

the local routing phase. 

- reduce_layer () 

synopsis: 

BOOLEAN reduce_layer ( module, layer_index) 

MODULE PTR module; 

int 

description: 

According to the above mentioned procedure the layer <layer_index> of 

<module> will be reduced. Reduce_layer () will return TRUE if the layer 

is really reduced, and FALSE if second pass equivalences are detected. 

During the first pass, the routine add-lower_eq () is passed to the 

find_equs () procedure. add_lower_eq () adds a position of the reduci

ble layer to the equivalence bucket. During the second pass, 

add_upper_eq () is passed to find_equs (). add_upper_eq () adds a posi

tion of the layer above the reducible one to the equivalence bucket. 

algorithm: 

BEGIN 

{ pass 1 } 

FOR all positions in the reducible layer DO 

IF programmable via to the layer above THEN 

find the equivalent points in reducible layer; 

update equivalence array with data from bucket 

(bucket is filled by find equivalences routine); 

FI; 

ROF: 

{ pass 2 } 
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FOR all positions in the reducible layer DO 

IF fixed via to layer above THEN 

find equivalent points in layer above; 

update equivalence array with data from bucket 

(bucket is filled by find equivalences routine); 

FI; 

ROF; 

IF equivalences during first pass detected THEN 

set horizontal signal types to INHIBIT; 

FI; 

END; 

subrout:ines: 

void 

void 

void 

find _ equs (); 

update_e~array (); 

set inhibits (); 

- find_equs 0 
synopsis: 

void find_equs ( module, position, direction, routine) 

MODULE PTR module; 

int 

int 

void 

description: 

position []; 

direction; 

(*routine) (); 

58 

, 

Recursively expands <position> in the layer (DFS). <direction> indi

cates which direction to omit (incoming direction). <routine> is a 

pointer to the routine to be called each time a via to the layer above 

is detected. 

algorithm: 

BEGIN 

IF position not yet reduced THEN 

now position is reduced; 

IF there are equivalent positions to this one THEN 

FOR all equivalent positions DO 
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find equivalences, direction - NONE; 

ROF; 

FI; 

FOR all directions DO 

IF this direction not equal to ',direction' THEN 

CASE direction OF 

UP: 

IF prog or fixed via to layer above THEN 

call 'routine'; 

FI; 

DOWN: 

( layer under this already reduced ) 

no action; 

NORTH: 

IF connection to north THEN 

find equs of position north, dir - SOUTH; 

FI; 

etc. for SOUTH, EAST and WEST. 

ESAC; 

FI 

ROF; 

FI: 

END; 

subroutines: 

void 

59 

In the previous the EQ_ARRAY was used by several routines. The name 

equivalence bucket was mentioned too. The bucket was used to collect all 

elements of an equivalent set, whereafter the bucket was 'emptied' in the 

EQ_ARRAY. Because equivalence indices in the vertex data structure are 

only meaningful if they are positive (equivalence index 0 means no 

equivalent points), the entry 0 in the E~ARRAY is used as the bucket. 

The routines that operate on the ~ARRAY and equivalence bucket 
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(EQ_BUCKET) are described now: 

- add_e~position () 

synopsis: 

void add_eq_position ( module, position, bucket) 

MODULE]TR module; 

int position [ 1 ; 
EQ_ARRAY_PTR bucket; 

description: 

Adds <position> to <bucket>. Takes care that 

equivalent positions are copied to <bucket> too. 

algorithm: 

BEGIN 

all 

IF position has already equivalent positions THEN 

add absolute coordinates of the equivalent set 

to the bucket; 

ELSE 

already 

add absolute coordinates of 'position' to bucket; 

FI; 

END; 

subrou tines: 

void add_e~element (); 

- update_e~array () 

synopsis: 

void update_e~array ( module, bucket) 

MODULE]TR 

EQ_ARRAY_PTR 

description: 

module; 

bucket; 
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existing 

Updates the E~ARRAY with the information in <bucket>. Takes care of 

the proper setting of equivalence indices and offsets in the grid 

structure. 

NOTE: The coordinates in the bucket are stored as absolute coordinates. 

In the E~ARRAY, they are stored as offsets to the first element. The 

coordinate of the first element in an E~ARRAY entry is always (0,0). 

algorithm: 
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BEGIN 

IF there are at least two elements in the bucket THEN 

IF there is a row in EQ_ARRAY equal to the bucket THEN 

set the indices and offsets in the grid; 

ELSE 

add a row to the EQ_ARRAY; 

set indices and offsets in the grid; 

FI; 

FI; 

END; 

subroucines: 

int 

void 

void 

check_array_row (); 

add_array_row (); 

set_e~indices (); 

7.2 Design rule compilation 

7.2.1 Data structure 

line 
statement_nr 
obj ect 
layer 
shadow_list - -> 
x_range - -> 
y_range - -> 
next 

a) 

min 
max 
define - -> 
offset 
delta 
copy 
next - -> 

b) 

line 
name 
range - -> 
next - -> 

c) 

Figure 18. Structures: a) DRL_STATEMENT b) RANGE c) DEFINE. 
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The area description parts in the design rule statements offer the possi

bility to call defined ranges (section 6.2.2). The DEFINE and the RANGE 

are basic blocks in the design rule data structure. Besides the defines 

and the ranges, for each design rule statement a structure DRL STATEMENT 

(figure 18) is present. All design rules are linked in a list called 

DRL STATEMENTS. The range definitions are linked in a list called 
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DEFINES. 

Design rule structure description: 

• 'line' is the number of the line, the statement was defined in the 

input. It is used to facilitate the communication with the user. 

• 'object' is the 'make-object' of the design rule statement. 

• 'layer' is the number of the layer the statement applies to. 

• 'shadow list' is the list of shadowed objects (and their positions). 

• 'x_range' and 'y_range' define the affected area. They are pointers to 

lists of structures of type RANGE. The area is formed by the cartesian 

product of the coordinates in the 'x_range' and the coordinates in the 

'y_range' . 

• 'next' is a pointer to the next element of the list (DRL_STATEMENTS). 

Range structure: 

• 'min' and 'max' define the interval of the range. 

• 'define' points to a range definition. A range definition (structure 

DEFINE) is a range with a name assigned to it. The range is now defined 

by the range of the define and 'offsec'. To each element of the 

defined range, 'offset' is added. A range is either defined by 'min'

'max' or by 'offset'·'define'. 

• 'copy' and 'delta' define how often and how spaced the range defined by 

'min'-'max' or by 'offset'-'define' has to be repeated. 

• 'next' is a pointer to the next element in the list (of ranges). 

Define structure description: 

• 'name' is the name of the range definition. 

• 'range' is a list of structures RANGE, associated with the defined 

name. 

• 'next' points to the next element of the list (DEFINES). 
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7.2.2 Routines 

In the following considerations, a one layer case is assumed. It is 

rather easy to extend this contemplation to a multi layer case. 

Denote G as the set off all gridpoints in the core. 

The, in the input defined, set Ci of designrules takes the form of a set 

of constraints c applying to a rectangle denoted by 

O(c), c E Ci , o(c) C G, where 

D(c) 0 (c) * 0 (c). x y 
o (c) is the x-axis projection of D(c) and 0 (c) the y-axis projection. 

x y 
A constraint is here regarded as a the set of shadow relations associated 

with the vertex in consideration. 

It is allowed that associated rectangles overlap, i.e. for some c l E Ci 
and c 2 E Ci (c l ~ c 2) it is allowed that 

D(Cl ) n D(C
2

) ~ ¢. 

Now, the object of the design rule compilation is to determine, for each 

(x,y) E G, the set of constraints D(x,y) C Ci , that (x,y) has to obey. 

Note that D(x,y) is a constraint by itself. In fact, D(x,y) is the entry 

in the design rule table. 

The most straight forward algorithm Al to implement this compilation is: 

Algorithm AI: 

BEGIN 

FOR all (x,y) E G DO 

set :- ¢; 

FOR all c E C
i 

DO 

IF (x,y) E D(c) THEN 

set :- set U c; 

FI; 

ROF; 

D(x,y) :- get_index(set); 

ROF; 

END; 

get index(set) is a function that checks whether there already exists an 
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entry in the design rule table corresponding with 'set'. If so, the index 

of the entry is returned. If not, a new entry in the table is created and 

the index of that entry is returned. 

The complexity of Al is: 

• IGI' ICi I tests, 

unions, • IGI'ICi I 

• IGI D-assignments, 

• IGI design rule table checks. 

Let us now suppose that we have a set C of elementary constraints, where 
e 

the associated rectangles do not overlap, i.e. 

O(cl ) n O(cZ) - 0, 

c I E Ce ' Cz E Ce ' c I ~ cz. 
The set of elementary rectangles R is now defined by 

e 
R (o(c) ICE C 

e e 
Note that in this case we can define an inverse function of o. This 

inverse function: r, returns for each r E R the constraint(s) affecting 
e 

r, 

r(r) - c if and only if O(c) - r. 

The algorithm A2 to determine D(x,y) for all (x,y) EGis now: 

Algorithm A2: 

BEGIN 

FOR all c E C DO 
e 

i :- get_index(c); 

FOR all (x,y) E O(c) DO 

D(x,y) :- i; 

ROF; 

ROF; 

END; 

The complexity of AZ is: 

D-assignments, 

design rule table checks. 
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It will be obvious that A2 is much less complex Al. So if we are able to 

transform the set Ci to an equivalent set Ce ' the determination of D(x,y) 

would be more simple. 

A transformation algorithm will now be discussed. 

Define I as the smallest set of non-overlapping intervals along the x
x 

axis, so that every x-projection °x(c) , c E Ci can be represented by the 

union of a number of elements of Ix' i.e. 

V ( i l n i2 - 0 ) 

V ( o (c) c I ) 
x x 

c E C
i 

Likewise we define I : 
y 

V ( i l n i2 - 0 ) 

i l E I y' i2 E I 
Y 

V ( 0 (c) c I ) 
y y 

c E Ci 
Define the constraint x-projection P (i) on 

x 
P (i) - ( c E C. i C 0 (c) x 1 x 

Likewise: 

Proposition: 

The set of constraints C defined by 
e 

C - ( C(i ,i ) liE I , i 
e x y x x Y 

) , i E 

Ely' 

interval 

I x 

o(C(1 ,1 » 
x y 1 * 1 x y 

where, 

(1) 

(2) 

(3) 

(4) 

i as 

(5) 

(6) 

(7) 

C(1 ,i ) - ( c E C1 ICE ( P (1 ) n P (1 » (8) x y x x y y 
so, 

r(i * i ) - C(i , i ) 
x Y x Y 

is a set of elementary constraints equivalent to C
t

" The equivalence 

holds that the result of algorithm Al and the result of algorithm A2 are 

the same. 
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Proof: 

From (1) yields that intervals do not overlap, so i * i 
xl Yl 

(i E I x' i E I ) does not overlap any other rectangle i * i xl Yl Y x 2 Y2 
(i .. i or i .. i ) . This means that the rectangles are elementary, x2 xl Y2 Yl 
so C is too. 

e 
The other part of the proof (equivalency) is divided into two steps: 

a. If (x,y) 

b. If (x,y) 

E D(c), 

ji!! D(c), 

c E 

c E 

Ci then according to Ce , c applies 

C
i 

then according to C , 
e 

c does 

to (x,y) too. 

not apply to 

a. 

(x,y) too. 

* * * * * * Let c E C
i

, x E 0 (c ) and y E 0 (c ) . We proof that c applies x y 
(x,y) according to C too. e 
From (2) yields: 

3 * * * * ( x E i ) , i c o (c ) ) 

* 
x x x 

(9) 

i E I x x 
From (5): 

* * c E P (i ) x x (10) 

Likewise: 
* * c E P (i ) 

Y Y 
(11) 

From (10), (11) , (8) and (9): 
* * * c E C(i ,i ) (12) 

x* Y * 
(x,y) E i * i 

x y * 
(13) 

From (12) and (13) yields that c 
* * * 

applies to (x,y) 

* 
according to C . 

e 

to 

b. Let c E Ci , x ji!! Dx(C ). We 

* 
proof that c is not an element of D(x,y) 

according to C too. If x is not an element of one of the intervals 
e * 

in I , there will no constraints be defined for x x 
«7) and (8». 

* * * * If x is an element of i (i n 0 (c ) - 121), then: x x x 
From (5): 

* ji!! P (i*) c x x 
and from (8): 

* * c ji!! C(i , iy)' i E I 
x Y Y 

according to C e 
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so: 

* This means that c* does not apply to (x ,y) for some y. The same holds 

* * * * for y E i (i no (c ) - 0). y y y 

The algorithm A2 now looks like: 

Algorithm A2: 

BEGIN 

{ Determine Ix' I y ' P (i ), P (i ): ) x x y y 
I :- x-axis; 

x 
I :- y-axis; 

y 
FOR all c E Ci DO 

( x-direction: 

FOR all i E I DO 
x 

IF 0 (c) n i ~ 0 THEN 
x 

I :- I \ i' x x ' 
split(i,D (c»; (*) x 
P (i l ) :- P (i); x x 
Px(i2) :- Px(i) U c; 

P (i
3

) :- P (i); x x 
Ix :- Ix U i1 U 12 U 13 ; 

FI; 

ROF; 

{ same for y-direction: 

ROF; 

( Determine C(ix,iy): 

FOR all i E I DO 
Y Y 

FOR all i E I DO 
Y Y 

i :- get index ( P (i ) n P (1 ) ); 
- x x y Y 

FOR all (x,y) E ix * iy DO 

D(x,y) :- i; 

ROF; 



ROF; 

ROF; 

END; 
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(*) : split(i,D (c» needs some explanation. The interval i is divided x 
into three intervals: iI' i2 and i3 according to figure 19. 

interval i: 

values of 0 (c): 
x 11-i2-13-0 

----+--i2-- i3 11-0 

11 -i2-- 13 

i3-0 il ---i2-----+--------

11-12-13-0 

11-13-0 i2----+----

Figure 19. Interval splitting. 

Figure 20 visualises the result after the determination of I , I , P (i ) 
x y x x 

and P (i ). 
y y 

To state the complexity of this transformation algorithm 

let's take a closer look at it (with implementation in mind). The deter

mination of I starts with one interval (the complete axis) and ends with 
x 

IIx l intervals. The mean value of the number of intervals in I 
x 

is 

~·(II 1+1) ~ ~·II I. SO, the number of sp1ittings along the x-axis is ± 
x x 

~·IIxl·ICil. Likewise the number of splittings along the y-axis is ± 

~·IIyl·ICil. The total number of sp1ittings is ± ~·(IIxl+llyl)·ICil. In 

the worst case: II 1+11 I IC 1+1 ~ IC I (IC I - II 1.11 I). SO the x y e e e x y 
'maximum' number of splittings is: ~·ICel· ICil. Per splitting at most two 

interval tests and two unions have to be executed, so the determination 

of I , I , P (i ) and P (i ) requires: x y x x y y 

• ICel·ICil 

·ICel·ICil 

interval tests 

unions 
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O(A) 
(A) _Px n P Ij Y (A) (A) 

O(B) 
(A,B) ~. (A) (A,B) (A,B) 

O(C) 
(A,B,C) (C) (A,C) (A,B,C) (A,B) 

(B,C) (C) (C) (B,C) (B) 

(C) (C) (C) (C) '/J 

(C) (A,C) {A,B,C} (A,B) 

Figure 20. Result of first part of algorithm A2. 

The intersection of P (i ) and P (i ), i E Ix' 
x x Y Y x 

i E I at most y y 
IP (i)1 + IP (i )1 comparisons (P and Pare x x y y x y sorted). Because 
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~ 

(B) 

(B) 

(B) 

'/J 

(B) ~p 
x 

requires 

P (i ) C 
x x 

C., P (i ) C C. yields: IP (i )1 + IP (i )1 S 2·IC.I. SO the determina-
1 y Y 1 X X Y Y 1 

tion of C(i ,i ) for all i E I and i E I takes 2·IC 1·ICil comparis-xy x x y y e 
ons. 

An interval test takes two comparisons. Now if we express the complexity 

of Al and A2 in the 'primitives': number of tests, unions, D-assignments 

and design rule table checks (which is the most expensive one) we obtain: 

item algorithm Al algorithm A2 

comparisons 4·IGI·ICi I 4·IC I·IC I e i 
unions IGI·ICi I ICe 1·ICi I 

drl table checks IGI IC I e 
D-assignments IGI IGI 
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IC I is usually a lot smaller than IGI (in the TAL004 gate array: IGI 
e 
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81,918 , IC I - 881). Therefor we may conclude that algorithm A2 will be 
e 

a lot faster than algorithm Al. 

7.3 Cost function compilation 

During the cost function compilation the same algorithms as during design 

rule compilation are used. The only difference is that, in stead of sha

dow lists, cost values are computed. This means that cost table checks 

are less complex than design rule table checks (values in stead of lists 

should be compared). 

7.3.1 Data structure 

Here again the DEFINE and RANGE are basic parts of the data structure. 

Besides these, the STRUCTURE COST STATEMENT is defined as in figure. 

line 
statement nr 
object 
layer 
cost 
oce cost 
x_range - -> 
y_range - -> 
next - -> 

Figure 21. Structure COST STATEMENT. 

The fields in a cost statement ~re self explanatory (see section 4.5 and 

section 7.2.1). 
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7.3.2 Routines 

As mentioned, the same algorithm as in the design rule compilation part 

is used (section 7.2.2). During cost table checks, the union of shadowed 

edges in the design rule table check should be replaced by summing 

corresponding costs. 
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8. DIAGNOSTICS AND PERFORMANCE 

Syntax errors: 

The parser is generated by 'yacc'. This implies that a syntax error is a 

fatal error and no recovery can be performed. 

Semantics errors: 

Semantics errors are caught as much as possible and reported as early as 

possible. Errors detectable during the scan through the input are 

reported within the input text at the corresponding line. These kinds of 

errors are declarative errors and boundary exceeding errors. 

Other error messages are suspended until the end of the compilation, 

where the message inclusive the line number in the input text (if deter

minable) are reported. Error messages are sorted according to their line 

numbers. If no line number can be determined, the error message is gen

erated in such a way that the error is locatable in an other way (e.g. 

the position in the grid or the module the error occurred in). 

A special effort is made to suppress mUltiple reporting of declarative 

errors. Also a limit for the total number of errors is defined 

(currently set to 30). 

The messages themself seem to be self explanatory. 

Performance: 

gate array item time (5) space (kbytes) 

core 249 574 
~I 

macros 76 51 

core 104 409 
TAL004 

macros 233 288 

Figure 22. Performance of the program. 

The criterions considered are: 

• Response time (core compilation, macro compilation) . 

• Required storage space (core grid, macro library). 
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These entities are determined for two gate array types: 

• AMI CMOS gate array (1000 gate equivalents, 1 routing layer) . 

• TAL004 low power shottky gate array (500 gate equivalents, 2 routing 

layers). 

The results are stipulated in figure 22. 
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9. CONCLUSIONS AND ACKNOWLEDGEMENT 

• In GAOL it is possible to describe gate array core and macro stamp 

features in a compact way. The language offers the possibility to 

define the geometrical appearance. the design rules and the Leerout 

cost function. 

The gridding of gate arrays seems to be very practical process to 

describe the features and the grid can serve as a frame for the routing 

data structure. 

The concept of shadowing to model the gate array numeric design rules 

seems to cover all present-day known constraints. 

Altough the form of the Leerout cost function that can be entered by 

GAOL is quite simple, it seems to meet most of the modeller's needs. 

The cost function can also be used to model structural design rules. 

• The GAOL compiler generates (given a gate array description in GAOL) 

most of the data required by the other modules in the GAS gate array 

design system in an easy accessible way. The compiler seems to be user 

friendly concerning use, response time and error messages. 

• To generate a mask tape (goal of the system), a layout item should (and 

will) be added to GAOL. 

• At this place I would like to thank professor J.A.G. Jess, my direct 

coach ir. A. Slenter and the other menbers of the design automation 

group for their coorporation and the pleasant time I had during my gra

duation period. 
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Appendix A: Vertex Data Structure 

Data structure CVERTEX: 

field: bits: comment: 

east_signal_type 2 signal type of edge 

north_signal_type 2 signal type of edge 

dOWfl_signal_type 2 signal type of edge 

equivalence_index 6 index in equivalence table 

equivalence_offset 8 address in equivalent set cycle 

design_rule_index 8 index in design rule table 

cost_index 8 index in cost function table 

reduced 1 flag (vertex is reduced) 

traced 1 flag (vertex is traced) 

macro_wire 1 flag (vertex element of macro wire) 

total: 39 - 5 bytes/vertex 
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Appendix B: Syntax of GADL 

GADL sentence : 

~ library def H layer decl H item list ~ 

library_def : 

~LIBRARYH directory name ~ 

layer _ decl : 

~ LAYERS~ layer name 
- ( 

item list : 

) 

item 

image item 

range item 

design rule item 

cost function item 

range_item : 

~DEFlNE~range def )~ 
- ( 

design_ruLe_item : 

~(j~d~r~l~st~a~:~e~m~e~n~tJI=J)t) ~ 

cost function item : - -



- appendix B: syntax of GAOL - 77 

module 

module name 

power_name 

module name 

macro name 

4 dimension sm I 
1,---( __ = ~) J 

terminal_name 

stamp 

--+@-+(EQTERMH terminal name 1 ('1 terminal_name 1 )'~ 
( 

stamp : 

~ stamp name H[~di~m~e~n~s~i~on~s~m~lll~(~)~1 ~im~a~g~:~s~m;t=)~J.-)o' ~ 

dimension 8m : 

--+@-+(DIH(ENSION)?HX dim Hy dim ~ 
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image_sm 

layer sm 

call sm -
~L wire_sm 

H nwire sm I 

via sm 

nvia sm 

pvia sm 

e'Lsm I 

~ terminal sm r--
Hpower sm 

Y legal sm 

PROG(RAMHABLE)? PROG(RAMHABLE)? 

FIX(ED)? FIX(ED)? 

call sm 

position copy_attr 

transform module name 

position 
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transform : 

wire sm 

wire like sm 

nwire sm : 

---+@-+(NIllRE H wire like sm ~ 

wire like 8m : - -

--lrll.a~y;;;e;;:r-_ n;;:am;;;;;;e0--'(l-_~).:I =c=oo=r=d=i(:n=at=e=~) ) I copy _ attr ~ 
( 

coordinate : 

~ l)O-lxSUb 
. ) 

via sm : 

nvis sm : 

pvis_sm 

~via_like sm ~ 

79 
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via like sm : 

( )1 coordinate ))1 copy attr ~ 

vis_layer : 

4 layer_name 1 )0 ()-.I layer nan1e 
) 

EQ(UIVALENT)? layer_name 

coordinate copy_attr 

terminal sm 

TERH(INAL) ? terminal name 

coordinate 

power_name 

coordinate 

legal_SID : 

( ) 

-0---+( LEGAL H x legals H y legals ~ 

end : 

80 
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range_def : 

~-;di.e;tf~i~n;e _-:n;;:am;;;e;!f-.,.--;)~ll:i~nrtt:;e-;;rv~a;;-lil-"",)~) ~ 
( 

interval : 

posint posint 

I'-----------~ ALL }----------j 

define name posint 

drl statement .' 

)r-----~ 

object 

area : 

shadow : 
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~ object H layer_name H delta_x H deltaJ ~ 

cost statement : 

OCCUP(IED)? 
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directory_name: 

4 identifier ~ 

terminal_name: 

4 identifier ~ 

4 identifier ~ 

y_dim : 

4posint~ 

distance : 

4posint~ 

times : 

4posint~ 

y : 

4Posint~ 

y_sub : 

4Posint~ 

delta x : 

TQ-rl posint ~ 

identifier : 

layer _name: 

4 identifier ~ 

power name 

4 identifier ~ 

x dim: 

4Posint~ 

line : 

4Posint~ 

delta : 

4Posint~ 

x : 

4Posint~ 

x sub : 

4Posint~ 

deltay : 

TQ-rl posint ~ 

-+(a-zA-Z/) l( ) (a-zA-ZO-9.../) lJ ) 
: . 

posint : 

82 
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Appendix C: Algorithm Description Heta Language 

The language used in the descriptions of the routines is a high level 

'meta'-language. The language only knows five statement kinds: 

Action specifier: 

<text>; 

<text> specifies the action to be executed. An action is formulated in a 

natural language. 

IF-statement: 

IF <test> THEN 

<statement(s» 

FI; 

<test> is an, in a natural language, formulated test. E.g. "all ele

ments are processed" or "an element exists" are valid expressions for 

tests. If the test is obeyed, the action(s) defined by <statement(s» 

is (are) executed. 

IF-ELSE-statement: 

IF <test> THEN 

<statement (s)_l> 

ELSE 

<statement(s)_2> 

FI; 

If <test> is obeyed, <statement(s)_l> 

<statement(s) 2> are executed. 

are executed. Else 
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FOR-statement! 

FOR <set_description> DO 

<statement(s» 

ROF; 
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<set_description> describes a set of elements (could be anything). 

E.g. "all modules" or "all elements not in An are valid set descrip

tions. The statement executes <statement(s» for each element in the 

set. 

CASE-statement: 

CASE <variable> OF 

<value_l> : 

<statement(s) 1> 

<value 2> : 

<statement(s) 2> 

<value n> : 

<statement(s) n> 

ESAC; 

<variable> is a variable, e.g. "element" or "counter". If the variable 

has value <value_i>. <statement(s)_i> (O<i<n+l) are executed. 

Comment is enclosed in "{" "J" and is not regarded as a part of the algo

rithm. An algorithm description is a list of action specifiers enclosed 

in BEGIN - END;. 

Example: 
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Example of an algorithm description: 

Marks the elements in set A that are processed. 

and unmarks the elements that are not. 

BEGIN 

FOR all elements of A DO 

IF element is processed THEN 

mark element; 

ELSE 

unmark element; 

FI; 

ROF; 

END; 

85 
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Appendix D: Ouput Formats 

The output format of each file in CORE is separately discussed. 

LAYERS: 

LAYERS is a so called 'binary' file. Use fread() and fwrite() to access 

LAYERS. 

format: 

LAYERS ::- <nr_of_layers> <x_size> <y_size> <vertices> 

<nr_of_layers>, <x size> and <y_size> are of type GRID_DIM (- int). The 

<vertices> are stored as records of type CVERTEX (character array of 5 

elements). The layer-direction is the most significant one, the x

direction the least significant one. 

EQ_TABLE: 

EQ_TABLE is an ASCII file (text). 

format: 

<entry> l*. 

<entry> ::- <nr_of_elements> "\n" <element> l*. 

<element> ::- <x_offset> <y_offset>. 

The length of the list <entry> l* should correspond with 

<nr_of_entries>. Likewise, the length of the list ( <element> l* should 

correspond with <nr of elements>. 

DR TABLE: 

DR_TABLE is an ASCII file. 

format: 

<shadow> l* "\n" 

<nr_of_east_shadows> <shadow> 1* "\nn 

<nr_of_north_shadows> ( <shadow> l* "\n". 

<shadow> ::- "\t" <direction> <delta_layer> <delta-y> <delta_x>. 

<direction> could either be DOWN_EDGE, EAST_EDGE or NORTH_EDGE. 
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COST TABLE: 

COST TABLE is an ASCII file. 

fOrIIUlt: 

COST_TABLE ::- <nr_of_entries> "\n" ( <entry> )*. 

<entry> ::- <north_cost> "\tn <eas,t_cost> "\t n <down_cost> "\t" 

<north occ> "\t" <east OCC> "\tn <down acc> "\n". 

LAYER INFO: 

87 

LAYER INFO is used to store the layer names and information about their 

reducibility. The file is read during macro image compilation. 

fOrIIUlt: 

LAYER_INFO ::- ( <layer> )*. 

<layer> ::- <layer_name> <reduce_info> "\n". 

<reduce info> ::- "reducible" I "not reducible". 
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Appendix E: Examples 

AMI CMOS GATE ARRAY CORE INPUT: 

( 

(* 

*) 

(* 

(LIBRARY /users/paul_l/develop/AMI)· 

( LAYERS metal ) 

( IMAGE 

( CORE ami_core (vdd vss) 
( DIMENSION 25 33 ) 

( LAYER metal PROG FIX ) 

( AT (0 0) CX(l 24) CY(2 16) channel cell ) 
( AT (0 1) CX(l 24) CY(2 15) gate cell ) 

(* power lines: *) 
( WIRE metal (0 1.2) (24.13 1.2) CY(2 15) ) 
( POWER vss metal (0 1.2) CY(2 15) ) 
( WIRE metal (0 1.9) (24.13 1.9) CY(2 15) ) 
( POWER vdd metal (0 1.9) CY(2 15) ) 

) 

( MODULE channel_cell 

flijL 
:(j.-.'~J "U ~:~ :..t~ ~:1 '_r~: ~:; "!). .~:- ~:~ i-.~ ::' <.: 
'1.'-: n :r:,. ~:i ".r; ~'~. '._~ ;"; C;" :::! "f'";" ~'.:: ',~ ~·:i G 
".::~ ~:: ~::j ~:; .t;; ~:': !-'" ,'": :"] : .. i i,:: . -, ~:-~ :"; -i) 

~ ,Jl!J '.:: .. '.J '.:: @" U •..• !!l .. :: . :: ..... 00 
~~~ :", t~ :": 

0 

( DIMENSION 14 8 ) 

( VIA metal (0 0) (0 3) (0 7) CX(4 3) 
( VIA metal (2 0) (2 7) CX(4 2) ) 
( EQ metal (0 0) (0 3) (0 7) CX(4 3) 
( EQ metal (2 0) (2 7) CX(4 2) ) 

) 

( MODULE gate_cell 

) 

) 
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o 
*) 0 

(DIMENSION 14 12) 

(* poly gates and underpasses: *) 
( VIA metal (0 0) (0 6) (0 11) CX(4 1) ) 
( VIA metal (2 0) (2 5) (2 11) CX(4 1) ) 
( VIA metal (8 0) (8 5) (8 11) ) 
( VIA metal (10 0) (10 5) ) 
( VIA metal (12 0) (10 11) ) 
( VIA metal (12 6) (12 11) ) 
(EQ metal (0 0) (0 6) (0 11) CX(4 1) ) 
(EQ metal (2 0) (2 5) (2 11) CX(4 1) ) 
(EQ metal (8 0) (8 5) (8 11) ) 
(EQ metal (10 0) (10 5) ) 
(EQ metal (12 0) (10 11) ) 
(EQ metal (12 6) (12 11) ) 

(* diffusion vias: *) 
( VIA metal (1 1) (1 4) CX(2 6) ) 
( VIA metal (1 7) (1 10) CX(2 6) ) 
(EQ metal (1 1) (1 4) CX(2 6) ) 
(EQ metal (1 7) (1 10) CX(2 6) ) 

( DEFINE 

( diffusion_x 
( diffusionJ 

) 
( difisJ 

) 
( channe1J 

1 CP(2 174) ) 
9 CP(20 15) 
12 CP(20 15) 
15 CP(20 15) 
18 CP(20 15) 

8 .. 9 CP(20 15) 
11 .. 12 CP(20 15) 
14 .. 15 CP(20 15) 
17 .. 18 CP(20 15) 

0 .. 7 CP(20 16) ) 

89 



- appendix E: examples - 90 

( channel_boty 0 .. 6 CP(20 16) ) 
( channel_viay o CP(20 16) 

3 CP(20 16) 
7 CP(20 16) 

) 
( poly_ft_x o CP(14 24) 

S CP(14 24) 
) 
( poly_fty S CP(20 15) 

19 CP(10 15) 
) 
( po1y_ft_is_x 0 

13 .. 14 CP(20 14) 
7 .. S CP(20 15) 

) 
( po1y_ft_isy 7 .. S CP(20 15) 

IS .. 19 CP(20 IS) 
) 

) 

( COST 

( HORWIRE metal (ALL) (ALL) COST 1 ) 
( VERWIRE metal (ALL) (ALL) COST 1 ) 
( VIA metal (ALL) (ALL) COST 1 ) 

( HORWIRE metal (ALL) (diffusiony) COST INFINITE OCCUP 1 ) 
( VERWIRE metal (diffusion_x) (difisy) COST INFINITE OCCUP 1 ) 

( VERWIRE metal (ALL) (channel_boty) COST SO ) 
( HORWIRE metal (ALL) (channel_viay) COST SO ) 

( HORWIRE metal (ALL) (channely) COST 10 ) 
( VERWIRE metal (ALL) (channel_boty) COST 10 ) 
( HORWlRE metal (poly_ft_is_x) (poly_fty) COST 250 ) 
( VERWIRE metal (poly_ft_x) (poly_ft_isy) COST 250 ) 

) 
) 
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AMI CMOS GATE ARRAY MACRO INPUT: 
( 

(* 

*) 

( LIBRARY /users/paul_l/develop/AMI ) 
( LAYERS metal ) 

( IMAGE 

( MACRO and2 (inl in2 out) (vdd vss) 

( ee28 

( DIMENSION 7 12 ) 

( TERMINAL inl metal (1 0) ) 
( TERMINAL in2 metal (3 0) ) 
( TERMINAL out metal (6 10) ) 

( POWER vdd metal (0 9) ) 
( POWER vss metal (0 2) ) 

( LEGAL (1 14 END) (8 20 END) ) 

(* wire definitions for macro and2 cc28 *) 
(* wire 1 *) 
( WIRE metal (0 4) (0 6) (2 6) (2 5) (5 5) ) 
( WIRE metal (2 6) (2 7) ) 
(* wire 2 *) 
( WIRE metal (6 4) (6 7) ) 
(* POWER connections *) 
( WIRE metal (4 1) (4 2) ) 
( WIRE metal (0 10) (0 9) ) 
( WIRE metal (4 10) (4 9) ) 

) (* end of stamp cc28 *) 

( cc29 
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( DIMENSION 7 12 ) 

( TERMINAL inl metal (3 0) ) 
( TERMINAL in2 metal (5 0) ) 
( TERMINAL out metal (0 10) ) 

( POWER vdd metal (0 9) ) 
( POWER vss metal (0 2) ) 

( LEGAL (1 14 END) (8 20 END) ) 

(* wire definitions for macro and2 cc29 *) 
(* wire 1 *) 
( WIRE metal (1 5) (4 5) (4 6) (6 6) (6 4) ) 
( WIRE metal (4 6) (4 7) ) 
(* wire 2 *) 
( WIRE metal (0 4) (0 7) ) 

(* POWER connections *) 

( WIRE metal (2 1) (2 2) ) 
( WIRE metal (2 10) (2 9) ) 
( WIRE metal (6 10) (6 9) ) 

) (* end of stamp cc29 *) 

( cc30 

( DIMENSION 13 12 ) 

( TERMINAL inl metal (1 0) ) 
( TERMINAL in2 metal (3 0) ) 
( TERMINAL out metal (6 10) ) 

( POWER vdd metal (0 9) ) 
( POWER vss metal (0 2) ) 

( LEGAL (9 14 END) (8 20 END) ) 

(* wire definitions for macro and2 cc30 *) 

(* wire 1 *) 
( WIRE metal (1 5) (1 8) (3 8) (3 6) ) 
(* wire 2 *) 
( WIRE metal (2 7) (2 5) (4 5) (4 3) (7 3) (7 5) ) 
(* wire 3 *) 
( WIRE metal (6 4) (6 7) ) 

(* power connections *) 

( WIRE metal (0 1) (0 2) ) 
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( WIRE metal (8 1) (8 2) ) 
( WIRE metal (0 10) (0 9) ) 
( WIRE metal (4 10) (4 9) ) 
( WIRE metal (8 10) (8 9) ) 

) (* end of stamp cc30 *) 

( cc3l 
( DIMENSION 13 12 ) 

( TERMINAL inl metal (9 0) ) 
( TERMINAL in2 metal (11 0) ) 
( TERMINAL out metal (6 10) ) 

( POWER vdd metal (0 9) ) 
( POWER vss metal (0 2) ) 

( LEGAL (1 14 END) (8 20 END) ) 

(* wire 1 *) 
( WIRE metal (5 5) (5 3) (8 3) (8 6) (10 6) (10 7) ) 
(* wire 2 *) 
( WIRE metal (6 4) (6 7) ) 
(* wire 3 *) 
( WIRE metal (9 5) (11 5) (11 6) 

(* power connections *) 

( WIRE metal (4 1) (4 2) ) 
( WIRE metal (12 1) (12 2) ) 
( WIRE metal (4 10) (4 9) ) 
( WIRE metal (8 10) (8 9) ) 
( WIRE metal (12 10) (12 9) 

) (* end of stamp cc3l *) 
) (* end of macro addl *) 

(* other macros *) 
(* *) 
(* *) 

) 
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