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A HETEROPOLYMER NEAR A LINEAR INTERFACE�

Marek Biskup�and Frank den Hollander

Mathematical Institute
University of Nijmegen

Toernooiveld �
���� ED Nijmegen
The Netherlands

Abstract� We consider a quenched�disordered heteropolymer in the vicinity of an
interface between two solvents� We show that the free�energy localization concept
introduced in �BdH� is equivalent to pathwise localization� In particular� we prove
that positivity of the excess free energy implies exponential tightness of the polymer
excursions away from the interface� positive density of intersectionswith the interface�
and convergence of ergodic averages along the polymer� We include an argument
due to �G�� showing that if the excess free energy is zero then there is pathwise
delocalization in a certain weak sense�

�� Introduction

The model�

Heteropolymers near an interface between two solvents are intriguing because of
the possibility of a localization�delocalization phase transition� A typical example
is a polymer consisting of hydrophobic and hydrophylic monomers in the presence
of an oil�water interface�

In the bulk of a single solvent	 the polymer is subject to thermal 
uctuations
and therefore is rough on all space scales� However	 near the interface the polymer
can bene�t from the fact that part of the monomers prefer to be in one solvent and
part in the other� The energy gain earned by placing monomers in their preferred
solvent can	 at least for low temperatures	 tame the entropy�driven 
uctuations�
The polymer becomes captured by the interface and therefore is smooth on large
space scales� The two regimes of characteristic behavior are separated by a phase
transition�

As in �BdH
	 we model the polymer by a random walk path �i� Si�i�L 	 where
L � Z indexes the monomers	 Si � Zand Si � Si�� � ��� �View the path as a
directed polymer in Z��� The interface is the horizontal in L �Z� We distinguish

�Some ideas in this paper are based on a note by S� Albeverio� F� den Hollander and X�Y�
Zhou �AdHZ�� which never went beyond the preparatory stage due to the unfortunate deceasing
of the third author�

�On leave from Department of Theoretical Physics� Charles University� V Hole�sovi�ck	ach 
�
��
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two cases� ��� the semi�in�nite polymer	 where L � N and S� � �� ��� the doubly�
in�nite polymer	 where L � Zand S� is arbitrary� The heterogeneity within the
polymer is represented by assigning a random variable �i � �� to monomer i for
each i � L� For instance	 if the two solvents are oil and water	 then �i � �� means
that monomer i is hydrophobic and �i � �� that it is hydrophylic�

Let F �L� be the set of all �nite connected subsets of L� In the simplest model	
the thermodynamics of the heteropolymer is governed by the family �H�

� ���F �L� of
Hamiltonians

H����h
� �S� � �

X
i��

��i � h��i�S�

w�r�t� the reference measure giving all paths equal probability �i�e�	 the measure P
for simple random walk�� Here	 � and h are parameters	 � � ��i�i�L is the disorder
con�guration	 and

�i�S� �

�
sign�Si� if Si �� �

sign�Si��� if Si � ��

The role of the Hamiltonian is that it favors the combinations Si � �� �i � ��
and Si � �� �i � ��	 so hydrophobic monomers in the oil above the interface and
hydrophylic monomers in the water below the interface� �Note that the de�nition
of �i�S� actually corresponds to a bond model�� � plays the role of the inverse
temperature and h stands for an asymmetry between the a�nities of the monomer
species with the solvents� The Hamiltonian is �S��� h�� ��S�����h� symmetric�
In view of this	 we shall henceforth take

I � f��� h��� � �� h � �g
as our parameter space�

It is clear that the disorder con�guration � � ��i�i�L determines the thermo�
dynamic features of the heteropolymer� The annealed case �i�e�	 the partition sum
is averaged over �� treated by Sinai and Spohn �SS
	 mimics the situation where
the �i�s are su�ciently equilibrized with the polymer�s other degrees of freedom�
This case turns out to be exactly solvable when the �i�s are i�i�d� or interact via an
Ising Hamiltonian� In particular	 the annealed heteropolymer is delocalized even in
the presence of an interface� For localization of the polymer an additional binding
potential at the interface has to be superimposed�

The quenched case �i�e�	 � is kept frozen� is mathematically much harder� The
periodic quenched problem �e�g�	 � represents some periodic constraint within the
polymer� has been successfully dealt with by using a transfer�matrix approach
�Grosberg et al� �GIN
�� The random quenched problem �e�g�	 � i�i�d��	 however	 for
several years withstood investigative attempts	 except those exploiting the replica
trick �Garel et al� �GHLO
��

The free energy and a phase transition�

The semi�in�nite quenched i�i�d� random model was recently analyzed in detail
by Bolthausen and den Hollander �BdH
� In this paper	 a localization�delocalization
phase transition is established by estimating the free energy

���� h� � lim
n��

�

j�nj logE
�
eH

����h
�n

�
�
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where �n � f�� �� � � � � ng and E stands for the expectation w�r�t� SRW starting at
�� The limit is shown to exists and to be ��independent by the subadditive ergodic
theorem�

It was observed in �BdH
 that ���� h� � �h	 with the lower bound attained for
delocalized paths� Indeed	 P �Si � � 	 � 
 i 
 n� � C	n��� �as n � ��	 and
conditioned on this event

�

j�njH
����h
�n

�
�

j�nj�
X
i��n

��i � h� � �h�� � o���� � � a�s�

For this reason	 it is natural to work with the excess free energy


��� h� � ���� h�� �h

and to put forward the following concept of a phase transition�

De�nition �� �BdH
 The polymer is said to be

�a� localized if 
 � ��
�b� delocalized if 
 � ��

As already alluded to	 this de�nition is justi�ed by noting that delocalized paths
yield no contribution to 
� Conversely	 only those excursions that move below the
interface can raise 
 above zero� Let us de�ne

L � f
 � �g 
 I
D � f
 � �g 
 I

as the sets of parameters for which the model is localized respectively delocalized in
the sense of De�nition �� Neither of these sets is trivial	 as shown by the following
theorem�

Theorem �� �BdH
 There is a continuous non�decreasing function hc� ����� �
��� �� such that

L � f��� h� � I� � 
 h � hc���g�
Moreover�

lim
���

hc��� � � and lim
���

hc���

�
� Kc�

where � � Kc �� is a number related to a Brownian version of the model�

Theorem � asserts that L and D are separated by a single phase transition line	
which persists for all temperatures� Although it is relatively easy to establish the
existence and uniqueness of hc��� �essentially via the convexity of �� and to evaluate
the limit for large � �through an appropriate lower bound on Z��	 the scaling law for
� � � is a rather involved problem� The intuitive reason why a Brownian constant
should appear for � � � is that for high temperatures the polymer�s excursions are
very large� Therefore	 from a coarse�grained point of view	 both the excursions
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and the disorder inside the excursions can be approximated by their Brownian
counterparts� However	 the details of this approximation are quite delicate�

The persistence of the phase transition line for all � seems to be a remnant of
the one�dimensionality and the discreteness of our model� Namely	 Grosberg et al�
�GIN
 consider a �d SRW with Gaussian steps near a �d planar interface and �nd
that the phase transition curve diverges at a certain �nite �c� above this value
delocalization cannot be induced by any asymmetry	 no matter how strong� �The
mechanism enhancing localization seems to rely on the ability of the path to avoid
lengthy but costly excursions	 by moving in the directions parallel to the interface��

Despite its crudeness	 the free�energy localization concept has proved to be use�
ful also in the study of higher�dimensional generalizations of the present model
�work in progress by Bolthausen�Giacomin �BG
�� The latter authors consider a
d�dimensional Gaussian surface	 stuck at the interface outside a �nite box and
weighted by the same type of Hamiltonian as in our case� Similarly as in �BdH
	 a
localization�delocalization transition is found� However	 the phase transition curve
seems to end in a critical point at some �nite �c when d � ��

Pathwise properties�

Theorem � characterizes the phase transition in terms of the free energy rather
than the path� One would like to prove that	 indeed	 L corresponds to a localized
path and �the interior of� D to a delocalized path� Moreover	 one would like to
learn more about the path characteristics	 e�g�	 the length and the height of a
typical excursion� Progress in this direction has been made by Sinai �S
	 who proved
pathwise localization in the symmetric case h � � for all values of ��

Sinai introduces a �Gibbsian� probability distribution Q�
n in the volume �n �

f�� �� � � � � ng	
dQ�����

n

dPn
�S� �

eH
�����
�n

�S�

Z�����
�n

�

where the reference measure Pn is the projection onto �n of the �d SRW measure
P � His result reads�

Theorem �� �S
 Let h � � and � � �� Then there exist random variables n��� � N�
m��� � N and a number � � ���� � � such that

sup
��i�n

Q�����
n �jSij � s� 
 e��s �n � n���� s � m�����

Here � is the right�shift operator acting on ��

Theorem � states that the path measure exhibits exponential tails� This result
was extended by Albeverio and Zhou �AZ
	 who showed that the length of the longest
excursion in �n is of order logn and so is the height of the highest excursion�

In the sequel	 we shall extend Sinai�s result to all of L� We in fact adopt a
more comprehensive attitude by discussing the entire Gibbsian structure associated
with the above Hamiltonian �Sinai�s result is in this respect a statement about
the Gibbs measures generated by the free boundary condition�� In particular	 we
shall establish uniqueness within a certain reduced �but physical� class of Gibbs
measures	 and prove exponential tightness in the vertical direction and ergodicity
in the horizonal direction�
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�� Preliminaries

Gibbsian structure�

Let ��i�i�L be an i�i�d� sequence of ���valued random variables de�ned on a
probability space ���B�P�� Here � is the space of all disorder con�gurations	 B
is the ��algebra generated by the cylinder sets	 and P is the i�i�d� measure with
P��i � ��� � P��i � ��� � �	�� The expectation w�r�t� Pwill be denoted by E �

Let � � f�Si�i�L � jSi � Si��j � ��	i � Lg be the space of SRW�paths� Let
F be the ��algebra generated by the cylinder sets� For � � F �L�	 let F� be the
��algebra of the path projected onto �	 and let T � 
��SF�c be the tail ���eld�
Let P���F� be the space of all probability measures on ���F�� Note that P���F�
is compact in the weak topology for both the semi�in�nite and the doubly�in�nite
case� Let P�E be probability and expectation under SRW�

We shall de�ne Gibbs measures by means of the Gibbsian speci�cation


����h�

�
S�j �S�c

�
� ���S� � �S�c�

eH
����h
� �S�� �S�c �

Z����h
� � �S�c�

P �S�j �S�c� �� � F �L���

This speci�cation is a measure on paths S� � �Si�i��	 absolutely continuous w�r�t�

the SRW�bridge measure P �S�j �S�c�	 and a measurable function of the boundary

condition �S�c � ��Si�i��c � The partition function Z����h
� � �S�c� is the normalizing

constant �which only depends on �S��	 with �� the outer boundary of ��� The

speci�cations �
����h� ���F �L� form a consistent family�

Given � � � and ��� h� � I	 the Gibbs measures are de�ned as follows�

G��h� �
�
� � P���F��� � �
����h� 	� � F �L�

�
�

By compactness	 when taking a weak limit of 
����h� � �S�c � for a �xed boundary

condition �S � ��Si�i�L we obtain a Gibbs measure �because the speci�cations are
consistent�� Hence G��h� �� ��

As is typical in the theory of Gibbs measures	 the boundary condition may
strongly determine the properties of a Gibbs measure	 in some cases even more
decisively than the interaction itself� In our setting	 for the semi�in�nite case and
any ��� h� � I	 there is a whole class of Gibbs measure �of at least countably�
in�nite cardinality� under which the path departs from the interface at a linear

speed� namely	 when �Si grows linearly with i� The delocalized behavior of the
path under these Gibbs measures clearly is enforced by the boundary condition�
Similarly for the doubly�in�nite case� One can analyze this situation by looking at
the lower free energy � �S generated by �S	 de�ned by

��S��� h� � lim inf
n��

�

j�njE
�
logZ����h

�n
� �S�cn�

�

�S��� h� � � �S��� h� � �h�
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Lemma �� �a� Consider the semi�in�nite case� Let lim supi�� j �Sij	i � c� and

when c � � let limi�� sign� �Si� � �� Then


�S ��� h� � 
��� h��� � c� � �hc��� �� �
�

�
log

	
���c�� � c���c�� � c��	c



�

�b� Consider the doubly�in�nite case� De�ne constants c	� c� and �	� �� analo�
gously� Then


�S��� h� � 
��� h�
�
�� c	 � c�

�

�
� �h

�
��� �	�

c	
�

� ��� ���
c�
�

�
�

�

�
log

	
���c�	c��

�
�� c	 � c�

�

��� c��c�
�

�
� �

c	 � c�
�

��	 c��c�
�



�

Proof� To �nd a lower bound on � �S��� h�	 we pick ��n and restrict the summation

in Z����h
��n

� �S�c�n� to paths that end by hitting the interface and then moving at

maximal speed� In other words	 if cn � j �S�nj	�n	 then the path moves from height
� at position �n��� cn� to height �ncn at position �n� This gives

Z����h
��n

� �S�c�n� � Z����h
��n���cn�

��� exp



�

�nX
i
�n���cn�	�

��i � h��

�	�n��� cn�

n��� cn�



	

�n

n��� cn�


 �

where the binomial factors come from the fact that the path must match the bound�
ary condition� Now	 it was shown in �BdH
 that the partition function with zero
boundary condition appearing in the r�h�s� di�ers by at most a factor of order n
from the partition function with free boundary condition	 which was used to de�ne
���� h�� Therefore the claim follows after taking logarithms	 dividing by �n	 letting
n��	 and using the relation between � and 
�

The doubly�in�nite case is completely analogous� The computation is left to the
reader� �

For small c the c�dependent terms in the r�h�s� of the formula in Lemma ��a� are of
order c� So for every ��� h� � L there exists some c��h��� � � such that if 
��� h� � �

then 
�S��� h� � � for all �S with c 
 c��h����In other words	 any boundary condition
that is sublinear or that is linear with a su�ciently small constant cannot destroy
localization in the sense of De�nition �� Similarly for Lemma ��b��

Lemma � thus makes a natural distinction between good and bad boundary con�
ditions� Since the Gibbs measures can be generated as limits of speci�cations with
di�erent boundary conditions	 the distinction between good and bad also applies
to them� This leads us to the following de�nition�

De�nition �� Given ��� h� � I� the regular Gibbs measures are those � � G��h�

for which lim supi��� j �Sij	jij 
 c��h ��a�s� The set of regular Gibbs measures is

denoted by GR���h� �

Because of their �unphysical� behavior	 the non�regular Gibbs measures will
henceforth be discarded�
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Measurable Gibbsian sections�

As we have already noted	 G��h� �� � for all � by compactness� However	 although
�by the axiom of choice� we can arrange the �� � G��h� into a measure�valued
function of �	 it is not a priori clear that this can be done in a measurable way�
Formally	 if we put GR���h �

S
������GR���h� �	 then the question is whether or not

there are measurable sections ��� ������ � GR���h� We shall answer this question
a�rmatively� This will be important because later on we shall want to integrate
over ��

Lemma �� For ��� h� � I� let G��h be the set of regular measurable Gibbsian
sections�
�a� G��h is non�empty both for the semi�in�nite and the doubly�in�nite case�
�b� For the doubly�in�nite case there is a B�measurable measure�valued function
�� 	 � � �� GR���h such that

��� �� is Gibbsian� i�e�� �� � G��h� �
��� �����

��A� � ���A��

for P�almost all � and all A � F �

Proof� Fix ��� h� � I and suppress these parameters from the notation� We shall
consider the doubly�in�nite case and construct a function �� with the desired prop�
erties� The existence proof in the semi�in�nite case is analogous�

First assume � is a �nite string of sites from Z� Let �
���S�� be the speci�cation
in � de�ned by

�
���S�� �
�

�j�j
eH

�
� �S�

�Z�
�

�f
i���Si
�g�fSmax��Smin�
��g�

Then �Z�
� is a kind of partition function	 containing the condition that the path has

to intersect the interface somewhere and be periodic� Clearly	 �
��� ����A� � �
���A�
for any A � F��

Pick a sequence ��n� of such volumes with j�nj � �n� Now de�ne �
�n�
B �A� by

�
�n�
B �A� �

Z
�

P�d���B����

�
�n

�A� �A � F�n � B � B�n��

Along some subsequence �nk� we have �
�nk�
B �A� � �B�A� for all A � �nF�n 	

B � �nB�n and some �B�A�� Since �B�A� is ��additive on �nF�n ��nB�n 	 it has
a unique extension  � to F � B� Moreover	 �B�A� 
 P�B� implies  �B�A� 
 P�B�	
so by the Radon�Nikodym theorem there exists a �� such that

 �B�A� �

Z
�

P�d���B�d�����A��

The uniqueness of this representation implies that �� is a ��additive probability
measure and that �� � G��h� for P�almost all �� The latter property	 which is claim
���	 holds because for all C � B	 D � F and �� � � the choice B � f� � ���j� �
��j�g 
 C and A � D or A � 
����Dj � � yieldsZ

�

P�d���f�����j�
��j�g�C

�
���D� �E	�


��
��Dj � �

�
� ��
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Here we have been able to substitute the original speci�cation 
��� into �� by Gibb�
sianness	 because � is �xed at �� inside �� Finally	 claim ��� follows from the peri�
odicity of the speci�cation �
���S��� it is trivially jointly translation invariant� �

�� Uniqueness and positive density in the localization regime

For the semi�in�nite regular Gibbsian sections 
 � � implies recurrence	 i�e�	 the
path hits the interface in�nitely often� �Namely	 for any regular boundary condition
�S we have Z�

� �
�S�e��hj�j �� as �� L� But this implies that all situations where

the path leaves the interface in �nite time have zero probability�� Below we shall
in fact prove more	 namely that all regular measures are positively recurrent	 i�e�	
the path visits every height with a certain positive frequency�

For a �Z	 let
��a �S� � lim inf

��L

�

j�j
X
i��

�fSi
ag�

We shall say that ��� ��� � G��h is localized if E�� ��
�
� � �� � ��

Theorem �� Let ��� h� � L�
�a� G��h is a singleton both for the semi�in�nite and the doubly�in�nite case�

�b� The unique doubly�in�nite Gibbsian section ��� ������ is localized and is jointly
translation invariant �i�e�� �������A� � ���A� for P�almost all ���

�c� The unique semi�in�nite Gibbsian section ��� ������ is localized and is asymp�
totically equal to ��� �������

lim
n��

sup
A�F

������nA� � ����
nA�

�� � � P� a�s�

�d� Both have a�s� constant densities� i�e�� for P	almost all �

lim
��L

�

j�j
X
i��

��iA�S� � E�� �A� for �� � almost all S�

�e� Both exhibit exponential tails� namely

���S�n � �s� 
 O���e���sjsj �n � n���� s���

with �s � 
 � �	 when s � � and �s � 
 � ��h� �	 when s � ��

Corollary� Let ��� h� � L� Then all semi�in�nite Gibbs measures generated by the
free boundary condition are identical to �����

�� Three preparatory lemmas

In order to prove the above theorem and corollary we �rst have to state a couple
of technical lemmas� Throughout the sequel we assume ��� h� � L and suppress
these parameters from the notation�
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Lemma �� Let Z�
�n � Z�

��n
��� be the partition function for the boundary condition

�S�n � �� Then for each � � ��� 
� there is a �
 � � such that

P

� �

�n
logZ�

�n � 
 � �h� �
�

 O���e����n�

Proof� Given � � � there is an m large enough such that

�

�m
E�log Z�

�m� � �
 � �h� �	�� 
 � �h� �	���

This follows from the fact that a sublinear boundary condition does not alter the
free energy �see Lemma ��� Put k � bn	mc� Then	 by restricting the path to return
to � at positions �m� !m� � � � � �km �
 �n�	 we obtain

Z�
�n �

�
�m
m

�k���n�km�
n�km

�
�
�n
n

� h k��Y
j
�

Z��jm�
�m

i
Z��km�
�n��km�

After taking logarithms we get

P

� �

�n
logZ�

�n � 
 � �h� �
�

 P

��
k

k��X
j
�

�

�m
logZ��jm�

�m � 
 � �h� ��	!
�
�

where we have assumed n�m so large that the binomial factors give rise to a cor�

rection less than �	!� Now	 ��	�m� logZ��jm�
�m �j � �� � � � � k� �� are i�i�d� bounded

random variables� Therefore a standard large deviation estimate gives that the
last expression is bounded by e����k for some �
 � �� From this the claim easily
follows� �

It will be convenient to use the notion of arrival times	 de�ned as the positions
where the path hits the interface� Let

� � � � N�� � N� 
 � � N� � N� � � � � �

be speci�ed by S�Nk
� � and S�i �� � if i �� �Nk�� �The sequence �Nk� ends when

no further arrival occurs�� Let �k � Nk	��Nk be the interarrival times �whenever
these exist��

Lemma �� Consider K interarrival times in a row� ��i	j�
K��
j
� � If �� is a ��nite�

volume or in�nite�volume� Gibbs measure corresponding to the disorder �� then
there is a � � � such that for any L �Z

E��
�f�i	j � mi	j 	j � �� � � � �K � �g��fNi � Lg� 
 O���

K��Y
j
�

e��mi�j �

Proof� Since �� is Gibbsian we can apply conditioning� The event

A � f�i	j � mi	j 	j � �� � � � �K � �g 
 fNi � Lg
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means that S�kj � � for kj � L �
Pj��

k
�mi	k and S�l �� � for kj � l � kj	�
�j � �� � � � �K � ��� Therefore �recall the de�nition of the Hamiltonian�

���AjfNi � Lg� �
hK��Y
j
�

� � e
���
P

l�Ij
��l	h�

�Z�
Jj
e��hjIjj

PJj

i
���S�kj�� � ���

where Ij � ��kj � �� �kj	�
 
Z	 Jj � Ij � f�kjg	 and PJj is the probability that
SRW conditioned on S�kj � � � S�kj�� never touches the interface in between� By
neglecting the last factor we obtain

���AjfNi � Lg� 

K��Y
j
�

� � e
���
P

l�Ij
��l	h�

�Z�
Jj
e��hjIjj

PJj �

Next	 by Lemma � we have

ZJj e
��hjIjj � e��
�
�jIjj�

with probability at least � � O���e���jIjj� Moreover	 a standard large deviation
estimate gives

P

�X
l�Ij

�l � ��jIjj
�

 O���e��

�
� jIjj�

Hence	 by putting the three preceding estimates together we get

E

�
� � e

���
P

l�Ij
��l	h�

�Z�
Jj
e��hjIjj

PJj

�

 O���

h
e���jIjj � e��

�
�jIjj � e��
�
�jIjj

i
�

If we now set � � sup
minf�
� ��
� 
��g � �	 then the desired exponential estimate
is established� �

The assertion of Lemma ! means that the interarrival times are dominated by an
i�i�d� exponential �process�� If the r�h�s� of the formula in Lemma ! were normalized	
then we could immediately conclude that ��� is uniformly bounded away from zero	
just by using the law of large numbers� Since it is not normalized	 a little more
work is required�

Lemma �� Let ��� ������ � G��h be a Gibbsian section� Then there is a number
"� � � such that ����

�
� � "�� � � for P	almost all �� Moreover� "� can be chosen

uniformly for all Gibbsian sections�

Proof� Let us concentrate on the doubly�in�nite case� �The semi�in�nite case can
be handled analogously�� Let

An
k �
n nX
j
�n

�fS�j
�g 
 k
o
�
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Let further ���n � n�� denote the rightmost arrival in ������n� and	 similarly	
��n�n	� the leftmost arrival in ��n���� Since Lemma ! provides an estimate for
interarrival times in a row	 we have

E�� �An
k� 
 O���

	
�n� �

k


 �X
n��n�
�

e����n	n�	n���

where the binomial factor accounts for all possible positions of the k arrivals within
���n� �n
�

Pick � � "� � � and pick k � k�n� such that k�n�	�!n��� � "� as n��� Then	
using Stirling�s formula	 we obtain

E�� �An
k�n�� 
 O���
�
e���� "������� "���������

��n
�

So if "� satis�es "� log "� � �� � "�� log�� � "�� � �	� � �	 then the r�h�s� is summable
on n� Hence	 using that fPn

j
�n �fS�j
�g � �n"�g � An
k�n� for large n	 we �nd

E��

� ��
m
�

�
n
m

� nX
j
�n

�fS�j
�g � �n"�
��

� �

by the Borel�Cantelli lemma� Therefore the claim follows �recall the de�nition of
��� �� �

�� Proof of Theorem �

The proof will come in four steps�

STEP �� The idea is to prove	 by coupling to a doubly�in�nite translation�invariant
regular Gibbs section ��� ������	 that the tail�behaviour of all regular Gibbs sec�
tions is unique� In order to apply the coupling theory	 we have to show that paths
intersect under the joint measure�

Pick ��� ������ � G��h	 semi�in�nite or doubly�in�nite� Label the paths under
�� by �	 the paths under �� by �� Let

C� � f�S�� S�����nk�k�N � nk � L� lim
k��

jnkj ��� S�
nk � S�

nkg

be the set of pairs of paths that intersect in�nitely often� We shall show that
��� � ����C�� � � for P�almost all �� The proof goes as follows�

As was shown in Lemma �	 both measures have a strictly positive lower density
of intersections with the interface� Hence the function fM � �fN��N�
Mg	 i�e�	 the
characteristic function of the event that � belongs to an excursion larger than M 	
is well de�ned on a set of full measure� Since fM � L����F � E�� �	 we have

lim
n��

�

�n� �

nX
j
�n

�jfM �  fM E�� � a�s�
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by the ergodic theorem� The function  fM is translation invariant	 hence ���  fM � a�
is P�a�s� constant �by ergodicity w�r�t� the disorder� and

���  fM � a� � E�� �  fM � a� 
 EE	� �
 fM �

a
�
EE	� �fM �

a
�

The r�h�s� can be further estimated with the help of Lemma !�

EE	� �fM � 
 O���
�X

n
M

��n� ��e��n � O���Me��M �

Therefore

���  fM � a� 
 O���

a
Me��M

for P�almost all ��
Now	 on f  fM � "�	�g at least half of the arrivals under the measure �� occur

within the ���excursions of length at most M �"� is a lower bound for ��� �� This
means that if the two paths �S�� S�� are to avoid each other	 then one has to stay
either above or below the other during these �in�nitely many� excursions� Let
�o
n � �n n ��n	 and de�ne

pM � sup
n�M

sup
�

max
�

��n�Si � �	i � �o

nj �S � ��� 
��n�Si � �	i � �o
nj �S � ��

�
�

This the least price to pay if the path S� is swapped to �S� during the excursions
containing an intersection of S� with the interface� Clearly	 pM � �� Let N �n�
denote the random number of sites i with jij 
 n where S�

i � � and fM ���iS�� � ��
Then we get

��� � ���
�
f  fM �  �	�g 
 �C�
c

�

 ��� � ����p

N �n�
M �� � as n���

since N �n��� as n��	 �� � ���a�s� for P�almost all �� Above we have again
used Gibbsianness of �� to extract interarrival probabilities �dominated by pM �	
and neglected the terms ���S	 � ��	 as in the proof of Lemma !� Since

��

� ��
M
�

�
 fM �  �	�

��
� �

by the Borel�Cantelli lemma and our earlier estimate	 we �nd that the paths S�

and S� must intersect in�nitely often ��� � ����a�s�

STEP �� We show by a coupling inequality that the measures have to agree on
the tail ���eld� Besides other things	 this implies uniqueness� The proof is done
for �� semi�in�nite	 the doubly�in�nite case requiring only formal alterations�

Given k� l � N such that k 
 l	 let �l � f�� � � � � lg and A � F�l 
F�c
k
�A should

be thought of as approximating a tail event�� De�ne

� � inffn � ��S�
n � S�

ng
�l � inffn � l�S�

n � S�
ng�
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Let � be the random volume ��� �l

N and denote by E� the expectation w�r�t� the
product measure �� � ��� Then we can write�����A� � ���A�

�� � ��E�

�

���Aj � � � �

��E�

�
�� 
���Aj � �

���
�
��E�

�
�f��kg �


�
��Aj � � � �


��E�

�
�f��kg ��� 
���Aj � �


���

 �E���f��kg��

where the second equality follows because �� and �� have the same conditional
probabilities in �nite volumes� This estimate survives in the limit as l��	 so we
have

sup
A�F�c

k

�����A� � ���A�
�� 
 �E���f��kg��

By Step � the r�h�s� tends to � as k � �� Consequently	 �� and �� agree on the
tail ���eld T � In particular	

lim
k��

j����nA� � ����
nA�j � ��

STEP �� The a�s� convergence of ergodic averages for �� can be proved through
a comparision with the a�s� convergence for E�� 	 which is translation invariant�
Namely	 given a set A � F 	 let

A� �
�
lim sup
n��

�

n

n��X
k
�

���kA � E�� �A�
�
�

Clearly	 A� is a tail event	 and E�� �A�� � � by the translation invariance of E�� �
But this implies E�� �A�� � �	 since E�� coincides with E�� on T � So

lim sup
n��

�

n

n��X
k
�

���kA 
 E�� �A� �� � a�s�

for P�almost all �� The same argument works for the limes inferior and so the limit
holds with equality�

STEP �� The last property to prove is that �� and �� have an exponential tail�
Since we know that ����nA� � ����nA� as n��	 it su�ces to study the tail of
��� To that end	 pick s � N� We have from Gibbsianness

���S� � �s� �
�X

n��n�
s

Pn��n��S� � �s�

�Z�
Jn��n�

e��hjIn��n�
j
���S��n� � S�n� � ���

where In��n� � ���n�� �n	

Z	 Jn��n� � In��n� �f��n�g	 and Pn��n��S� � �s�
is the probability that SRW hitting the interface at ��n� and �n	 climbes to height
�s at � without ever touching the interface in between� By Lemma � �after using
the Borel�Cantelli lemma to ged rid of E� we have

�
Z�
Jn��n�

e��hjIn��n�
j��� 
 O���e���n�	n���
�
��
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so the above series is P�a�s� absolutely summable and of order e��s�
�
� �as s����
After letting � � � we obtain that the tail property in Theorem � is proved for s � �	
with �s � 
 � �	� For s � � there is an additional factor

exp
h
���

X
l�In��n�

��l � h�
i

in the numerator of each summand� This raises �s by ��h� �

�� Proof of Corollary

Due to the fact that our regularity concept comprises also a mild linear growth of
the boundary condition �see De�nition ��	 all measures de�ned by the free boundary
condition are regular� Namely	 linearly growing paths have an exponentially small
probability under the measure Pn and do not contribute in the thermodynamic
limit� But according to Theorem �	 there is but one regular Gibbs measure	 hence
it is the one generated by the free boundary condition� �

	� Zero density in the delocalization regime

In this section we present an argument due to G� Giacomin	 showing that in the
interior of the delocalization regime the path is delocalized in the following sense�

Theorem �� �G
 Let ��� h� � int�D� and let �� � G� be an arbitrary semi�in�nite
Gibbs measure� Then

lim
n��

�

n

nX
i
�

�fSi
ag � � �� � a�s� for all a �Z�

Proof� We shall show that for any boundary condition �S and any � � � the event

Aa
b
nc�n �

� nX
i
�

�fSi
ag � b�nc�

has a probability decaying to zero under the �nite volume speci�cation 
��n� � j �S�
in the limit as n��� The key ingredient is the entropy inequality


��n�A
a
b
nc�nj �S� 


log � �Hn

log
�
� � Pn�Aa

k�nj �S���
� �

where Pn� � j �S� is the SRW�bridge probability between � and �Sn	 and

Hn � H�
��n� � j �S���Pn� � j �S��
denotes relative entropy� We note that the speci�c relative entropy Hn	n vanishes
in the thermodynamic limit�

lim
N��

Hn

n
� �

��

��
��� h� � ���� h� � ��
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Indeed	 the �rst equality follows from the convexity and regularity of � inside
int�D�	 while the second equality holds because ���� h� � �h on D� Hence	 after
we show that

lim sup
n��

�

n
logPn�A

a
b
nc�nj �S� � � for all � � ��

for all � � �	 the claim will be proved�
Let �� ���� be the leftmost �rightmost� site i with � 
 i 
 n such that Si � a�

Then

Pn�A
a
b
nc�nj �S� �

X
��l��l��n

Pn��� � l�� �� � l�j �S�Pl��l��A�
b
nc�nj���

where the last factor can be further estimated by

Pl��l��A
�
b
nc�nj�� 


P
�
A�
b
nc�n 
 fS��l��l�� � �g�
P �S��l��l�� � ��


 O�
p
n�P �A�

b
nc�n��

since l� � l� 
 n� Thus

Pn�A
a
b
nc�nj �S� 
 O�

p
n�P �A�

b
nc�n��

Next let us	 similarily as in the proof of Theorem �	 de�ne the interarrival times �i
as the duration between the i�th and the �i � ���st intersection with the interface�

Then we can write A�
b
nc�n � fPb
nc

i
� �i 
 ng� Now	 the �i are i�i�d� with distribution

function satisfying

X
l
�

P ��i � l�zl � ��
p
�� z� for all � 
 z � ��

By the exponential Chebyshev inequality we have

P �

b
ncX
i
�

�i 
 n� 
 z�n���
p
�� z��b
nc�

The right hand side attains its minimumat z� � ��������������� with �� � b�nc	n	
which for � small enough produces

P �A�
b
nc�n� 
 e�n
�

This completes the proof of the claim� �
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