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A framework for the description of a number of members 

of the AUTOMATH family 

by 

N.G. de Bruijn 

1. Introduction. In this note we shall use a common framework in order to 

describe a number of members of the AUTOMATH language family. 

Some of the basic features of AUTOMATH will not be repeated in this 

note since they have no influence on the distinctions between the various 

family members. We mention: the role of identifiers, block openers, con

text indication, syntax of expressions, PN's, the abbreviational system. 

We refer to [1, 2J for these things. The notion of def~nitional equiva

lence is also a common feature, except for the question what cases of 

beta reduct,ion and eta reduction are to be admitted. 

2. Degrees of expressions. There will be a typing relation in the set of all 

expressions. It is written in infix fashion: A E B, and it is said that A 

has type B, or that B is the type of A. (We use letters A,B,K, ••• as 

metalinguistic symbols representing expressions). The type of an expression 

~s uniquely\determined up to definitional equivalence. 

There is a set of expressions for which we do not have a type; these are 

called I-expressions or expressions of degree 1. For all other expressions K 

there is a finite sequence of typings K E KI E ••• E Kn- 1 ",here Kn- I is a 

I-expression. 
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We say that K has degree n. (So if A E B, the-degree of B is 1 less than the 

one of A). The degree is invariant under definitional equivalence. 

In order to describe the I-expressions, we start from a set of primitive 

linguistic symbols. They are different from the identifiers that can be 

defined in an AUTOMATH book. We shall use letters L,cr, ••• for these,primitives. 

As I-expressions we admit primitive symbols, as well as primitive sym-

boIs preceded by a string of abstractors, like 

(2.1) 

Conditions that describe what A. 's can be admitted in order to make lo 

(2.1) "valid", have to be formulated later (section 6). These conditions 

wi 11 d.epend on the context. 

The L loS called the root of (2. 1) ; if K E ... E Kn- 1 and if the root of 

K n-I is L, then we also say that L is the root of K. So every expression 

has as its root one of the primitive I-symbols. 

The root and the degree of an expression A will be denoted by root (A) 

and degree (A). 

3. Mock I-expressions and mock typings. If L is a primitive I-symbol, we 

denote, in some context, by eM the class of all valid I-expressions of the 

form (2.1), without restrictions on n. Since we require the A. to be valid, lo 

the class LM depends on the context. The class LM includes L itself. 
~ = 

A mock I-expression is a thing of the form 

(3. I ) 

(possibly with m 0). It denotes the class of all valid expressloons of the 

form 
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[y ,B ] [xl ,AI] ••• [x ,A lr, m m n n (3.2) 

with unspecified n, A1, ••• ,An (n may be zero). 

A ~ typing ~s a formula of the form 

A E (3.3) 

It is intended to express that the type of A belongs to the class (3.1). 

So (3.3) gives an existence statement: there exist n,A], ••• ,An such that 

the type of A is (3.2). Since a mock I-expression describes a class of 

expressions, the following usage of E and c is obvious: If T},T2 stand 

for abstractor strings (possibly empty) we have 

E T I TM , c 

If we have A E Band BEe or Bee, then the transition of B to C (in 

order to get from A E B to A E C) is not a reduction that leads to definitio-

nal equality, like beta or eta reduction. The way we might consider it, is 

"s acrif ice of information". As long as B ~s no mock expression, a formula 

A E B gives full information on the type of A; if A E B and B E C, then 

A E C g~ves partial information only; if C c D then the transition from 

A E C to A E D can be a further loss of information. 

4. Limitations on degrees. For every primitive I-symbol T we can, if we wish, 

fix an integer n > 0, to be called iidegree bound", and agree that no 

expressions of degree exceeding n with root T will be admitted. 

5. Irrelevance degrees. For every primitive I-symbol T we can, if we wish, 

fix one or more integers n > 1, to be called irrelevance degrees, with the 

following agreement on definitional equivalence: if A} and A2 both have 
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root T and degree n (where n 18 an irrelevance degree), and if Al E B, 

D 
AZ E B then Al = A2, 

6. Admissible contexts. A context can be given by a sequence of abstractors 

(6.1) 

If B is a correct expression, and if its degree is strictly less than the 

degree bound of its root (so that there is no objection to having things 

that have B as their type) we admit to open a block y := --- B. That is, 

we admit 

(6.2) 

as a new context. 

We also admit this if B 1S a mock I-expression. 

7. Abstraction. Assuming. that in the context (6.2) we have a typing or mock 

typing P(y) E Q(y), then we wish to conclude in the context (6.1) that 

[y,B] P(y) E [y,B] Q(y). (7.1) 

The right to do this can be limited by means of a list of quadruples 

(O,k,T,£) (where O,T stand for primitive I-symbols, and k,i for positive 

integers). If we want to know whether (7.1) is admitted, we take for a the 

root of B, for k the degree of B, for t the root of P(y), for £ the degree 

of P(y). If this quadruple is on the list, the abstraction is admitted. 

In any case, we require that B is an expression, and E£! a mock I-expression. 

There is no objection for Q(y) to be a mock I-expression. 
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8. Application rules. We shall consider two kinds of rules. 

(i) If, in a certain context, we have 

D E [x,B]C(x), 

where C(x) 1S either an expression or a mock I-expression, and 

A E B, 

then we have 

{A}D E C(A), (8.1) 

provided that the quadruple (root (A), degree (A), root (D), degree (D» 

occurs on a list made for this rule. 

(ii) If in a certain context we have 

D} E D2 E ••• E Dk E [x,B]C(x), 

where C(x) is either an expression or a mock I-expression, and 

A E B, 

then we have 

E (8.2) 

provided that the quintuple (root (A), degree (A), root CD}), degree (D}),k) 

occurs on a list made for this rule. 

Remark. We can, of course, separately deal with the case that C(x) is a 

meek I-expression, using lists that are different from those made for the 

case that C(x) is an expression. This does not seem to be very useful, 

however. 
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9. Beta reduction. The right to reduce in a certain context 

{A}[x,B] C(x) to C(A) , 

(with A E B), may be restricted to special quadruples (root (A), degree (A), 

root (C(x», degree (C(x»). 

10. Eta reduction. The right to reduce, in a certain context 

[x ,B]{x}C to c 

(where C does not contain x) may be restricted to special qua~ruples 

(root (B), degree (B), root (C), degree (C». 

1]. Substitution rules in connection with mock expressions. Assume we have 

opened a block with x := -. --r where r stands for a mock expression, and 

that inside the block we have f := A(x) E B(x) (where B(x) may be a mock 

expression), Then we can use f outside the block: if we have either P E K, 

(with K E r) or P E I (with E c r), then we also have f(P) E B(P) (and 

this may be again a mock typing). A complete formulation of this substitution 

rule has to contain the case of several variables, and has to give a more 

serious description of contexts than the mere phrase "outside the block". 

We do not go into this here, since these things are standard AUTOMATH 

features. 

12. Primitive notions. In general, a primitive notion is something that, in a 

context like (6.1) is described to have type B, where B satisfies the same 

condition as the type of a new variable (see the beginning of section 6): 

degree (B) should be less than the degree bound of root (B). 

One might hesitate to include the case that B is a mock I-expression. It 

seems a bit funny. A mock typing A E B can be seen as incomplete information 



- 1 -

about the true typing: it just says that B contains the type of A. If we 

introduce ~ primitive notion, we want to interpret it as something with 

a fixed meaning thoughout the rest of the book. It seems strange to leave 

the reader uncertain about the nature of the notion. 

If one writes a theory with such mock PN's, one should realize that one 

leaves some freedom to those who want to build models for the theory, 

These remarks are not necessarily objections) but nevertheless one may 

think of forbidding the case that B is a mock expression at least for some 

values of root (B). 

13. Fitting speciai languages into this framework. Let us first discuss standard 

AUTOMATH. It has just One primitive I-symbol" and the derived mock symbol 

'M is called type. The, is not explicitely used,and neither are typings of 

the form A E T'M (where T is a non-empty abstractor string). Accordingly 

all PN's of degree 2 are mock PN's. 

The only degrees to be admitted are 1,2,3. There are no irrelevance 

degrees. As far as abstraction is concerned, we only admit (with the nota

tion of (7.1» degree (B) = 2, degree (P(y»= 3. 

The application rule (8.1) is restricted to degree (A) = 3, degree (D) = 3. 

The rule (8.2) is absent. Beta reduction and eta reduction require (notation 

of section 9 and 10) degree (A) = 3, degree C(x) = 3, degree (C) = 3. Since 

these are the only situations tbat 'ever occur, we might as well say that 

there are no restrictions on the degrees. 

In AUT-QE we again have a single , that remains anonymous, but. in con

trast to AUTOMATH, T'M's can be used. The PN's can have type T'M' Again, 

the only degrees to be admitted are 1,2,3 and there are no irrelevance 

degrees. Abstraction is admitted if (with the notation of (7.1» degree (B) 

= 2, degree (P(y» = 2 or 3. For the application rule (8.1) we require 
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degree (A) = 3, degree (D) = 2, and for (8.2) we require degree (A) = 3, 

degree (D}) = 3, k = 2. In beta and eta reduction there are no restrictions 

on the degrees. 

In AUT-SL(see [3J,[4J) we have a single type T, and no use is made of 

mock I-expressions. There is no bound on the degrees, and there are no 

irrelevance degrees. There are no restrictions in (7.]) on the degrees of 

either B or P(y) (though the case degree(P(y» = 1 will not occur), There 

are no restrictions on degrees in (8.1) (though degree (D) = 1 will not 

occur), and in (8.2) there is no restriction on degree (A), degree CD I ) 

or k. There l.S no restriction 011 the degrees in beta and eta reduction. 

Since l.n AUT-SL abstraction is universally possible, PN's can be written 

as block openers, all lines can be reduced to zero context, and every result 

of the book can be represented by means of a book consisting of a single 

line. These unessential features give AUT-SL an appearance sli.ghtly different 

from the other members of the AUTOMATH family. 

There have been experiments with the use of more than one primitive 

I-symbol in AUTOMATH and AUT-QE. The symbols used were type and prop. 

The interpretation of things like A E B E ~ and C E D E prop \ is that 

A is an object, B is a class to which A belongs, D l.S a proposition and C 

is a proof. Keeping type and prop apart, has the effect that axioms expressed 

for all propositions do not automatically carryover to all classes. More

over, it will be possible to control abstraction, mock expressions, etc., 

by rules that are not the same for the cases type and prop. This is attrac

tive if we want to translate existing formal systems into AUTOMATH-like 

languages: many such systems treat classes in a way entirely 

different from the treatment of propositions. 

One may also think of extra primitive I-symbols for the treatment of 

further kinds of constructions, like geometric constructions, computer 

programs. If languages will ever claim to realize Leibniz's idea of a 
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universal language for science, they may need ways for directly 

discussing situations in fields like physics, rational mechanics, 

chemistry, without the use of an intermediate mathematical model. This 

breaks with the usual idea to formalize the mathematical model only, 

leaving the relation between that model and the things it describes 

to intuition. 

The matter of irrelevance degrees (section 5) did not come up yet in 

the languages mentioned thus far. (It first came up in the fall of 1973 

in an unpublished language called AUT-4). The use for which this feature 

has been primarily intended is "irrelevance of proofs". We shall explain 

this in some detail. 

Assume that we have something that is defined only if a certain 

condition on a number of objects is satisfied. To take an example: if s 

~s a sequence of reals, then lim s (the limit of the sequence) is defined 

only if a certain condition (let us say the condition that s is a 

fundamental sequence) holds. 

In AUTOMATH the definition can be written as follows 

U := 

lim := K 

[n,nat]real 

fund(s) 

real 

Here fund(s) can be interpreted as the (possibly empty) class of all 

proofs that show s to be a fundamental sequence, and K stands for the ex-

pression that defines the limit. 

Outside this block we can refer to the limit of a sequence A only if we 

have some proof B that proves A to be fundamental, and the limit is 

lim(A,B). If we have two different proofs B1 ,B2 , then we get two different 

expressions lim(A,B 1) and lim(A,B2) which need not be definitionally 
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equivalent. We may try to prove that the two expressions are equal ~n 

the sense of some equality notion introduced in the book, but that ~s 

not the same thing. 

The situation is much more comfortable if we have an irrelevance 

degree rule. Let us start with two primitive symbols (or rather mock 

symbols) type and prop. 

For both we admit degrees 1,2,3, and for prpp we take 3 as irrele-

vance degree. We now have, in" the above example A E [n,nat]real E type --'-
and B} E fund(A) E prop, B2 E fund(A) E prop. Since Bl and B2 have the 

same type, and since 3 is an irrelevance degree for prop, the expressions 

lim(A,B
1
) and lim(A,B

2
) are definitionally equivalent. 
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