

A framework for the description of a number of members of
the AUTOMATH family
Citation for published version (APA):
Bruijn, de, N. G. (1974). A framework for the description of a number of members of the AUTOMATH family.
(Eindhoven University of Technology : Dept of Mathematics : memorandum; Vol. 7408). Technische Hogeschool
Eindhoven.

Document status and date:
Published: 01/01/1974

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7310537a-6d63-4f03-b591-64aca8f9aa3e

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1974-08

Issued June, 1974

A FRAMEWORK FOR THE DESCRIPTION OF A NUMBER OF MEMBERS

OF THE AUTOMATH FAMILY

by

N.G. de Bruijn

University of Technology

Department of Mathematics

PO Box 513, Eindhoven

The Netherlands

N 43

\

I

I

- 1 -

A framework for the description of a number of members

of the AUTOMATH family

by

N.G. de Bruijn

1. Introduction. In this note we shall use a common framework in order to

describe a number of members of the AUTOMATH language family.

Some of the basic features of AUTOMATH will not be repeated in this

note since they have no influence on the distinctions between the various

family members. We mention: the role of identifiers, block openers, con

text indication, syntax of expressions, PN's, the abbreviational system.

We refer to [1, 2J for these things. The notion of def~nitional equiva

lence is also a common feature, except for the question what cases of

beta reduct,ion and eta reduction are to be admitted.

2. Degrees of expressions. There will be a typing relation in the set of all

expressions. It is written in infix fashion: A E B, and it is said that A

has type B, or that B is the type of A. (We use letters A,B,K, ••• as

metalinguistic symbols representing expressions). The type of an expression

~s uniquely\determined up to definitional equivalence.

There is a set of expressions for which we do not have a type; these are

called I-expressions or expressions of degree 1. For all other expressions K

there is a finite sequence of typings K E KI E ••• E Kn- 1 ",here Kn- I is a

I-expression.

- 2 -

We say that K has degree n. (So if A E B, the-degree of B is 1 less than the

one of A). The degree is invariant under definitional equivalence.

In order to describe the I-expressions, we start from a set of primitive

linguistic symbols. They are different from the identifiers that can be

defined in an AUTOMATH book. We shall use letters L,cr, ••• for these,primitives.

As I-expressions we admit primitive symbols, as well as primitive sym-

boIs preceded by a string of abstractors, like

(2.1)

Conditions that describe what A. 's can be admitted in order to make lo

(2.1) "valid", have to be formulated later (section 6). These conditions

wi 11 d.epend on the context.

The L loS called the root of (2. 1) ; if K E ... E Kn- 1 and if the root of

K n-I is L, then we also say that L is the root of K. So every expression

has as its root one of the primitive I-symbols.

The root and the degree of an expression A will be denoted by root (A)

and degree (A).

3. Mock I-expressions and mock typings. If L is a primitive I-symbol, we

denote, in some context, by eM the class of all valid I-expressions of the

form (2.1), without restrictions on n. Since we require the A. to be valid, lo

the class LM depends on the context. The class LM includes L itself.
~ =

A mock I-expression is a thing of the form

(3. I)

(possibly with m 0). It denotes the class of all valid expressloons of the

form

- 3 -

[y ,B] [xl ,AI] ••• [x ,A lr, m m n n (3.2)

with unspecified n, A1, ••• ,An (n may be zero).

A ~ typing ~s a formula of the form

A E (3.3)

It is intended to express that the type of A belongs to the class (3.1).

So (3.3) gives an existence statement: there exist n,A], ••• ,An such that

the type of A is (3.2). Since a mock I-expression describes a class of

expressions, the following usage of E and c is obvious: If T},T2 stand

for abstractor strings (possibly empty) we have

E T I TM , c

If we have A E Band BEe or Bee, then the transition of B to C (in

order to get from A E B to A E C) is not a reduction that leads to definitio-

nal equality, like beta or eta reduction. The way we might consider it, is

"s acrif ice of information". As long as B ~s no mock expression, a formula

A E B gives full information on the type of A; if A E B and B E C, then

A E C g~ves partial information only; if C c D then the transition from

A E C to A E D can be a further loss of information.

4. Limitations on degrees. For every primitive I-symbol T we can, if we wish,

fix an integer n > 0, to be called iidegree bound", and agree that no

expressions of degree exceeding n with root T will be admitted.

5. Irrelevance degrees. For every primitive I-symbol T we can, if we wish,

fix one or more integers n > 1, to be called irrelevance degrees, with the

following agreement on definitional equivalence: if A} and A2 both have

- 4 -

root T and degree n (where n 18 an irrelevance degree), and if Al E B,

D
AZ E B then Al = A2,

6. Admissible contexts. A context can be given by a sequence of abstractors

(6.1)

If B is a correct expression, and if its degree is strictly less than the

degree bound of its root (so that there is no objection to having things

that have B as their type) we admit to open a block y := --- B. That is,

we admit

(6.2)

as a new context.

We also admit this if B 1S a mock I-expression.

7. Abstraction. Assuming. that in the context (6.2) we have a typing or mock

typing P(y) E Q(y), then we wish to conclude in the context (6.1) that

[y,B] P(y) E [y,B] Q(y). (7.1)

The right to do this can be limited by means of a list of quadruples

(O,k,T,£) (where O,T stand for primitive I-symbols, and k,i for positive

integers). If we want to know whether (7.1) is admitted, we take for a the

root of B, for k the degree of B, for t the root of P(y), for £ the degree

of P(y). If this quadruple is on the list, the abstraction is admitted.

In any case, we require that B is an expression, and E£! a mock I-expression.

There is no objection for Q(y) to be a mock I-expression.

- .5 -

8. Application rules. We shall consider two kinds of rules.

(i) If, in a certain context, we have

D E [x,B]C(x),

where C(x) 1S either an expression or a mock I-expression, and

A E B,

then we have

{A}D E C(A), (8.1)

provided that the quadruple (root (A), degree (A), root (D), degree (D»

occurs on a list made for this rule.

(ii) If in a certain context we have

D} E D2 E ••• E Dk E [x,B]C(x),

where C(x) is either an expression or a mock I-expression, and

A E B,

then we have

E (8.2)

provided that the quintuple (root (A), degree (A), root CD}), degree (D}),k)

occurs on a list made for this rule.

Remark. We can, of course, separately deal with the case that C(x) is a

meek I-expression, using lists that are different from those made for the

case that C(x) is an expression. This does not seem to be very useful,

however.

- 6 -

9. Beta reduction. The right to reduce in a certain context

{A}[x,B] C(x) to C(A) ,

(with A E B), may be restricted to special quadruples (root (A), degree (A),

root (C(x», degree (C(x»).

10. Eta reduction. The right to reduce, in a certain context

[x ,B]{x}C to c

(where C does not contain x) may be restricted to special qua~ruples

(root (B), degree (B), root (C), degree (C».

1]. Substitution rules in connection with mock expressions. Assume we have

opened a block with x := -. --r where r stands for a mock expression, and

that inside the block we have f := A(x) E B(x) (where B(x) may be a mock

expression), Then we can use f outside the block: if we have either P E K,

(with K E r) or P E I (with E c r), then we also have f(P) E B(P) (and

this may be again a mock typing). A complete formulation of this substitution

rule has to contain the case of several variables, and has to give a more

serious description of contexts than the mere phrase "outside the block".

We do not go into this here, since these things are standard AUTOMATH

features.

12. Primitive notions. In general, a primitive notion is something that, in a

context like (6.1) is described to have type B, where B satisfies the same

condition as the type of a new variable (see the beginning of section 6):

degree (B) should be less than the degree bound of root (B).

One might hesitate to include the case that B is a mock I-expression. It

seems a bit funny. A mock typing A E B can be seen as incomplete information

- 1 -

about the true typing: it just says that B contains the type of A. If we

introduce ~ primitive notion, we want to interpret it as something with

a fixed meaning thoughout the rest of the book. It seems strange to leave

the reader uncertain about the nature of the notion.

If one writes a theory with such mock PN's, one should realize that one

leaves some freedom to those who want to build models for the theory,

These remarks are not necessarily objections) but nevertheless one may

think of forbidding the case that B is a mock expression at least for some

values of root (B).

13. Fitting speciai languages into this framework. Let us first discuss standard

AUTOMATH. It has just One primitive I-symbol" and the derived mock symbol

'M is called type. The, is not explicitely used,and neither are typings of

the form A E T'M (where T is a non-empty abstractor string). Accordingly

all PN's of degree 2 are mock PN's.

The only degrees to be admitted are 1,2,3. There are no irrelevance

degrees. As far as abstraction is concerned, we only admit (with the nota

tion of (7.1» degree (B) = 2, degree (P(y»= 3.

The application rule (8.1) is restricted to degree (A) = 3, degree (D) = 3.

The rule (8.2) is absent. Beta reduction and eta reduction require (notation

of section 9 and 10) degree (A) = 3, degree C(x) = 3, degree (C) = 3. Since

these are the only situations tbat 'ever occur, we might as well say that

there are no restrictions on the degrees.

In AUT-QE we again have a single , that remains anonymous, but. in con

trast to AUTOMATH, T'M's can be used. The PN's can have type T'M' Again,

the only degrees to be admitted are 1,2,3 and there are no irrelevance

degrees. Abstraction is admitted if (with the notation of (7.1» degree (B)

= 2, degree (P(y» = 2 or 3. For the application rule (8.1) we require

- 8 -

degree (A) = 3, degree (D) = 2, and for (8.2) we require degree (A) = 3,

degree (D}) = 3, k = 2. In beta and eta reduction there are no restrictions

on the degrees.

In AUT-SL(see [3J,[4J) we have a single type T, and no use is made of

mock I-expressions. There is no bound on the degrees, and there are no

irrelevance degrees. There are no restrictions in (7.]) on the degrees of

either B or P(y) (though the case degree(P(y» = 1 will not occur), There

are no restrictions on degrees in (8.1) (though degree (D) = 1 will not

occur), and in (8.2) there is no restriction on degree (A), degree CD I)

or k. There l.S no restriction 011 the degrees in beta and eta reduction.

Since l.n AUT-SL abstraction is universally possible, PN's can be written

as block openers, all lines can be reduced to zero context, and every result

of the book can be represented by means of a book consisting of a single

line. These unessential features give AUT-SL an appearance sli.ghtly different

from the other members of the AUTOMATH family.

There have been experiments with the use of more than one primitive

I-symbol in AUTOMATH and AUT-QE. The symbols used were type and prop.

The interpretation of things like A E B E ~ and C E D E prop \ is that

A is an object, B is a class to which A belongs, D l.S a proposition and C

is a proof. Keeping type and prop apart, has the effect that axioms expressed

for all propositions do not automatically carryover to all classes. More

over, it will be possible to control abstraction, mock expressions, etc.,

by rules that are not the same for the cases type and prop. This is attrac

tive if we want to translate existing formal systems into AUTOMATH-like

languages: many such systems treat classes in a way entirely

different from the treatment of propositions.

One may also think of extra primitive I-symbols for the treatment of

further kinds of constructions, like geometric constructions, computer

programs. If languages will ever claim to realize Leibniz's idea of a

- 9 -

universal language for science, they may need ways for directly

discussing situations in fields like physics, rational mechanics,

chemistry, without the use of an intermediate mathematical model. This

breaks with the usual idea to formalize the mathematical model only,

leaving the relation between that model and the things it describes

to intuition.

The matter of irrelevance degrees (section 5) did not come up yet in

the languages mentioned thus far. (It first came up in the fall of 1973

in an unpublished language called AUT-4). The use for which this feature

has been primarily intended is "irrelevance of proofs". We shall explain

this in some detail.

Assume that we have something that is defined only if a certain

condition on a number of objects is satisfied. To take an example: if s

~s a sequence of reals, then lim s (the limit of the sequence) is defined

only if a certain condition (let us say the condition that s is a

fundamental sequence) holds.

In AUTOMATH the definition can be written as follows

U :=

lim := K

[n,nat]real

fund(s)

real

Here fund(s) can be interpreted as the (possibly empty) class of all

proofs that show s to be a fundamental sequence, and K stands for the ex-

pression that defines the limit.

Outside this block we can refer to the limit of a sequence A only if we

have some proof B that proves A to be fundamental, and the limit is

lim(A,B). If we have two different proofs B1 ,B2 , then we get two different

expressions lim(A,B 1) and lim(A,B2) which need not be definitionally

- 10 -

equivalent. We may try to prove that the two expressions are equal ~n

the sense of some equality notion introduced in the book, but that ~s

not the same thing.

The situation is much more comfortable if we have an irrelevance

degree rule. Let us start with two primitive symbols (or rather mock

symbols) type and prop.

For both we admit degrees 1,2,3, and for prpp we take 3 as irrele-

vance degree. We now have, in" the above example A E [n,nat]real E type --'-
and B} E fund(A) E prop, B2 E fund(A) E prop. Since Bl and B2 have the

same type, and since 3 is an irrelevance degree for prop, the expressions

lim(A,B
1
) and lim(A,B

2
) are definitionally equivalent.

- 11 -

References

[IJ N.G. de Bruijn, "The mathematical language AUTOMATH, its usage, and

some of its extensions", Symposium on Automatic Demonstration

(Versailles December 1968), Lecture Notes in Mathematics, Vol. 125,

Springer-Verlag, 1970, pp. 29-61.

[2J N.G. de Bruijn, "AUTOMATH, a language for mathematics ll
, Notes (prepared

by B. Fawcett) of a series of lectures in the Seminaire de Mathematiques

Superieures, Universite de Montreal, 1971.

[3 J N . G. de Bruijn, "AUT-SL, a single line version of AUTOMATH", Technological

University Eindhoven, Department of Mathematics, Internal Report, notitie 22,

1971.

[4J R.P. Nederpelt, "Strong normalization in a typed lambda calculus with

lambda structured types", Doctoral Thesis, Technological University,

Eindhoven, 1973.

