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Abstract 

The quasi-particle excitation structure in a semiconductor is strongly 

connected to and determined by the -dynamically screened- Coulomb 

interaction. Part of this interaction may be included in a one- electron 

effective potential while the remaining effects can best be described with 

the aid of the so-called mass operator M(l,2). Starting from a diagrammatic 

expression for M(l,2) we give a rederivation of Hedin's equations, relating 

M to a polarization function P and a vertex function r. Various 

approximation schemes with particular choices of one- electron effective 

potential and mass operator are discussed. The ultimate goal of the paper is 

to show how the excitation structure can in principle be obtained within the 

so-called GW (bubble) approximation, which is generally advocated to be a 

promising scheme. 
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Excitation energies in semiconductors 

1. The energy gap f.n a density functional approach. 

In an earlier pa.per1) an extensive discussion has been devoted to a 

(re)derivation of the expression 

( 1.1) 

being the energy that has to be added to the Kolm-Sham (KS) energy gap c of 
g 

a semiconductor in order to obtain the "true .. energy gap E = c +A . In this g g g 

expression, obtained earlier by Perdew and Levy2) and Sham and Schltiter3), 

the function ~N+l(r;N) is the KS eigenfunction belonging to the lowest 

unoccupied KS level, the energy eigenvalue of which is equal to ~+l(N); N 

is the number of electrons in the charge-neutral semiconducting crystal; 

M(r.r';e) is the Fourier transform (with respect to time) taken at the 

frequency elh of the improper mass operator M(l,2) defined by means of the 

relation (compare with eq. (6.21) of ref. 1) 

G(l.2) = G (1.2) +I d(3)d(4} G (1,3} M(3,4) G (4.2). 
0 0 0 

(1.2) 

Here G(l,2} and G (1.2) are one-particle Green functions belonging to the 
0 

unperturbed KS system and to the fully interacting system, respectively. The 

arguments j = 1,2,3,4 in the functions G • G and M stand for the 
0 

space-time points rj. tj. In ref. 1 the relation (1.2) was given in 

short-hand notation 
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G:G +G MG 
0 0 0 

(1.2a) 

In order to determine M(l,2) it is us~ful to consider the proper mass 

operator M(l.2) first. It is defined by Dyson's equation 

G = G + G MG. 
0 0 

(1.3) 

A relation between Mand M, not explicitly involving G was given in eq. 

(6.24) of ref. 1 and reads 

,.., -1 
M = M(l - G M) . 

0 

The Green functions G and G fulfil the equations 
0 

and 

- h I d(3) M(l.3) G(3,2) = h 6(1,2), 

(1.4) 

(1.5) 

(1.6) 

where the effective potential veff(r1;N) in the above-considered local 

density functional (LDF), (or KS) scheme4>, reads (compare eq. (3.6) of 

ref .1) 
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(1. 7) 

In (1.7} u(r1} is the external potential felt by an electron, which, e.g .. 

in a pseudopotential approach is to be identified with a sum over all ionic 

pseudopotentials; vH(r1:N} is the Hartree potential ; vxc(r1:N} is the 

exchange-correlation potential. 

The above mass operator M(l,2} can formally be expressed in terms of 

diagrams (see for instance appendix B of ref. l}, giving Min terms of Green 

functions G and interaction functions v(i,j} = v(r.,r.}6(t.-t.} where 
l J l J 

v(ri,rj} = e2
/(411€

0
lri-rjl}. Together with the solution ~N+l(r;N} of the KS 

equation -::::-__ _ 

c. .(N} ~ .(r;N}, 
J J 

( 1.8} 

and the above equations (1.2} to (1.7} this contains the complete 

information necessary to obtain the quantity A of eq. (1.1}. In the above g 

expressions both vH(r;N} and v (r;N} are functionals of the electron xc 

density 

p(r:N} + = - i G(rt,rt ), (1.9} 

+ where the notation t stands for t + ~. with~> 0 but infinitesimally 

small. In the above-assumed l.DF framework the right-hand side of (1.9} can 

in a good approximation be written -i G (rt.rt+}. expressing the fact that 
0 

5) . 
'the Hohenberg-Kohn (HK} theory leads to the exact ground-state density. 
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2. The mass operator and quasi-particles 

Determining {calculating) the energy gap E of a semiconductor 
g 

constitutes only part of 4etermining the more general excitation structure 

of the semiconductor. The question therefore arises whether this excitation 

structure may also be determined. In this section we will indicate in how 

far the mass-operator concept may be of help in evaluating the excitation 

structure. 

Before doing so we emphasize that the mass operator M{l.2) as defined by 

Dyson's relation G = G + G MG is dependent on the choice of the 
0 0 

unperturbed Green function G (as a matter of course the exact Green 
0 

function G is independent of this choice). In the previous section the 

function G was chosen to fulfil (1.5), which is special in that it involves 
0 

the {local) one-electron effective potential veff{r:N) as chosen in the LDF 

context. One may, however, choose other one-electron effective potentials 

instead. Well-known in this respect is for instance the {local) one-electron 

effective potential 

(2.1) 

where the second term in the right-hand side of (2.1) is the Hartree 

potential. Note that we define this potential in terms of the exact Green 

H function G. In actual practice veff{r) is always used in an approximated 

way, by applying approximate versions of G. 

As there is no necessity to restrict to local effective potentials one 

may introduce {non-local) one-electron effective potentials as well. 

Well-known in this respect is the addition to (2.1) of the non-local 

Hartree-Fock potential 
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v~f(r, r') = + i v(r,r') G{rt,r't ). {2.2) 

Also other local or non-local effective potentials may be chosen {see for 

instance section 4) .. Each particular choice is representative for some 

"" subdivision of the total Hamiltonian Hof the interacting system of many 
..... 

particles in an unperturbed term H describing independent particles and a 
0 

perturbation term H
1

. 

Starting from any such independent-particle picture, implying a choice 

of G • the related mass operator M(l,2) is formally given by the complete 
0 

diagrammatic expansion (compare Fig. B5 of ref. 1) . 

M(l,2) 

1 

1 z9.. Cr 1) 

l = ..vvvvvvY\ + zni (rl ,r2) 

2 

(al) 2 (a2) 

+ ~---0 ' + lJ 2 

2 
(b) (c) 

1 3 

+ 
--D ' \ 

/ 4 I 
+ I I 

t 
,,. 

\ 3 -- ...... 
2 4 

2 
(d) (e) 

+ all skeleton diagrams of higher order 
in the interaction•-------• (v(i,j)). 

i j 
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In (2.3) the contribution to M{l,2) of the first diagram (a1) is defined by 

(2.4) 

where the function zl(r1) is equal to veff(r) - u(r), in which veff(r) 

represents a particular choice of local one-electron effective potential. 

If, for instance, veff(r) is chosen equal to (2.1), the diagram (a1) 

compensates the Hartree diagram (b) completely. 1be contribution of diagram 

(82) is defined by 

(2.5) 

where znl(r1,r2) stands for a particular choice of non-local effective 

potential verf<r1.r2>· 1be function znl<r1,r2) might for instance be chosen 

equal to (2.2), just compensating the Hartree-Fock diagram (c). Doubl~ full 

lines in the diagrams stand for Green functions G(i,j); dotted lines 

indicate interaction functions v(i,j). 1be only extension with respect to 

the diagrammatic expansion in Fig. B5 of ref. 1 lies in the inclusion of the 

diagram (82) involving the contribution to M(l,2) due to a non-local 

one-electron effective potential. Note that. in spite of the various choices 

to be made for zl(r1) and znl(r1 .r2)~ the contribution of each individual 

diagram {b), (c), (d), etc., is independent of these choices. as these 

diagrams involve G and v functions only. It is important to note. however, 

that this statement is correct as long as the exact G is meant. as obtained 

with the help of the complete expansion (2.3). In an approximation scheme 

such as the GW scheme, to be discussed in section 4, in which M(l,2) is 
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approximated by restricting to a ftxed subset of diagrams. while choosing 

z2(r1} = - i J d3r'•v(r.r'}G(r't.r't+} and zn2 (r1,r2} = 0, the resulting 

approximate G {and thus the resulting quasi-particle excitation structure} 

will generally be different if a different choice for z2 and zn2 is made. It 

might be argued, however, in this particUlar GW approximation scheme, that 

the subset of diagrams is large enough to ensure that such differences are 

of minor importance. 

Just as in {1.4) the tmproper mass operator M{l.2} can be obtained from 

Mand G . Unless this function is obtained in the IDF context, it cannot be 
0 

used in the expression {l.l} for Ag. as will be obvious from the earlier 

discussion in this section. 

Let us now outline the connection between the mass operator (starting 

from any one-electron effective potential} and the excitation spectrum. This 

connection is based on eq. (1.6): 

Let us first introduce the Fourier transform of G(l,2} = G(r1.r2:t1-t2} 

with respect to t 1-t2 at frequency e/I:l, which is given by 

(2.6) 

If we then Fourier transform eq. (1.6} with respect to t 1-t2 (note that we 

replace veff(r1;N} in (1.6) by a more general local or non-local 

one-electron effective potential veff} one directly obtains 

(2.7) 
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We will prove6 •7> that the solution of this equation may be written as 

(2.8) 

where the functions ~ (r;e} and ~ (r;e} are solutions of 
n n 

(En(e} + ~ v2-veff) ~n(r;e} - fl J d3
r'M(r,r' ;e} ~n(r' ;e} = O 

(2.9) 

and 

(E:(e} + ~ v2-veff) ~n(r;e} - fl J d3
r'Mt(r,r';e} ~n(r';e} = 0, 

(2.10) 

respectively. In (2.9) and (2.10} the energy E (e} is generally 
n 

complex-valued, while Mt is the Hermitian adjoint of M. Writing (2.9) and 

(2.10} in short-hand notation as (En(e} - ~(e}} ~n = 0 and 

(E*(e} - ~t (e}}~ = 0, respectively, we easily obtain the following 
n n 

identities for scalar products involving the functions ~ and~ : m n 

(~ , ~(e) ~ ) = E (e} (~ .~ ) m n n m n 

(2.11) 

where the scalar product is defined by 
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I 3 * {+.~) = d r + {r;c) ~{r;c). {2.12) 

Eq. {2.11) gives 

-{E {c) - E {c)) {+ .~ ) = 0, n m m n {2.13) 

implying 

<+ .~ ) = 0, m n if E {c) ~ E {c). n m {2.14) 

The case E {c) = E {cr~deserves additional attention in case 0£ degeneracy. n m 

It can be proven8 ) that the freedom 0£ choice in £unctions ~ and + in case . n m 

0£ degeneracy makes it possible to choose them such that all £unctions ~n 

and + are bi-orthonormal in the sense that m 

{2.15) 

Assuming completeness 0£ the £unctions ~ , we may now write any £unction n 

F{r) as 

{2.16) 
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which implies the closure relation 

2 ~ (r:c) ~*(r';c) = o(r-r'). 
n n (2.17) 

n 

In order to prove (2.8) to be the solution of (2.7) we now proceed by 

substituting (2.8) in (2.7). Application of (2.9) is then easily shown to 

lead to the identity (2.17), which proves (2.8) to be correct. 

* We note that the functions ~ (r:c) occuring in (2.8) are the solutions 
n 

of 

fi.
2 

-2 * J 3 f* * (En(c) + 2iii' V- - veff) ~n(r;c)-fl d r'M (r,r';c) ~n(r';c) = O. 

(2.18) 

This equation is obtained by taking the complex conjugate of eq. (2.10). As 

(2.19) 

f * we ma.y replace M (r.r';e) in (2.18) by M(r',r:e) which makes equation 

* (2.18) for the functions~ (r;e) very similar to eq. (2.9) for the functions 
n 

~n(r;e), but the equations are not equal a priori, unless the property 

M(r1.r2:e) = M(r2,r1:e) holds. This leads us to the conclusion that, quite 

generally, in the above-considered case of degeneracy, one has to find (i.e. 

to construct), according to (2.8), at each couple of energy levels En(e) and 

E*(e) in eqs. (2.9) and (2.10), two sets of functions ~(i) and ~(i) with 
n · n n 

. (i) (j) 
i = 1,2, ... ,N such that (~n , ~n ) = oij" Here N is the number of linearly 
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independent eigenfunctions ~(i} of eq. (2.9) at energy E (e), or, n n 

equivalently, the number of linearly independent eigenfunctions ~(i). of 
n 

* (2.10} at energy E (e). 
n 

We will now discuss the quasi-particle interpretation of G(rr,r
2

:e). 

eq. 

First, we emphasize that (2.8), although it is an exact representation of 

the Fourier-transformed Green function, is not very useful in an actual 

numerical scheme. In the quasi-particle approximation6 ) we assume G(r
1
.r

2
;e) 

in (2.8) to have simple poles e for which holds 
n 

e =E(e), n n n. (2.20) 

while the (possible} singularities due to the non-analyticity of ~n(r1 ;e), 

~ (r2 :e} or E (e) will be neglected. The corresponding approximation to G is 
n n 

then obtained by putting 

where 

dE (e) 
= 1 - _n,,___ 

de le=c . 
n 

(2.21) 

(2.22) 

The addition of ~ in (2.21} assures, in an approximate way, equal pole 

c:ontributions in (2.8) and (2.21). 

The set of complex energy values e defined through (2.20) is to be 
n 

interpreted as the quasi-particle spectrum. The imaginary parts of en define 
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the quasi-particle lifetimes nlim(6 >1-1. The general believe is that the 
n 

values of 1Im(6 )I are small, such that the real parts of the poles 6 can 
n n 

be interpreted in the usual way as the single quasi-particle energies, 

provided that a chemical potential µ exists such that Im(6 ) > 0 when 
n 

Re(6 ) < µ and Im(6 ) < 0 when Re(6 ) > µ. This chemical potential µ n n n 

separates the occupied quasi-particle states from the empty ones. 

r In the special case that the mass operator M is Hermitian, i.e. M = M , 

the procedure of finding the functions ~(i) and ~(i) is easy. As the 
n n 

equations (2.9) and (2.10) are identical in this case, we may start by 

orthonormalizing the functions ~~i) according to c~~i). ~~j)) = 6ij" This 

can always be achieved if M =Mr. Realizing that the functions ~(i) are also 
n 

solutions of eq. (2.9) we may choose them equal to ~(i) in this case, such 
n 

that eq. (2.15) is satisfied. Eq. (2.8) then reduces to 

G(rl.r2;6) = n L 
n 

* ~n(r1 ;6) 'Pn(r2 ;6) 

6-E (6) n 

(2.~) 

The more general case, in which M # Mt turns out to be particularly 

simple in the cases to be considered in this paper, in which the mass 

operator has the two important properties: 

(2.24) 

and 

(2.25) 
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where R is any lattice vector belonging to a given Bravais lattice. These 

properties apply when dealing with crystal periodicity and can generally be 

. proven in such cases. It can easily be shown that condition (2.25) allows 

that the solutions of (2.9) may be chosen to be of the Bloch type, to be 

denoted-by • 2 ,k(r;c); here k is a wavevector in the first Brillouin zone 

(lBZ) and 2 is a bandindex. It can also be shown, if • 2 .k(r;c) is an 

eigenfunction of (2.9) at eigenvalue E. that there exists a function 

~2 .-k(r;c) . with opposite k-vector. which is an eigenfunction of (2.9) at 

the same energy. Starting now from the complete set of Bloch functions 

* • 2 ,k(r,;c) belonging to the level with energy E. the dual set of "' 

-~functions, which, due to the property (2.24) must be linear combinations of 

the • 2 .k functions (observe that eqs. (2.18) and (2.9) are identical 

equations). can be simply obtained by choosing the"'* functions equal to the 

functions • 2 .-k(r;c). Namely (•;,k'' • 2 .k). = 0 for any k' ~ - k as a direct 

* consequence of the Bloch property, while (•2 ,-k' • 2 .k) ~ 0 (this scalar 

product is necessarily different from zero as otherwise we would be in 

* conflict with (2.15)). The functions • 2 .k and • 2,-k can be normalized such 

that their scalar product yields 1: Eq. (2.8) then assumes the form 

(2.26) 

* We emphasize that • 2 ,-k equals • 2 ,k only in the case of a Hermitian mass 

operator M; if • 2 .k(r;c) is an eigenfunction of (2.9) at energy E2(k;c), the 

function .;,k(r;c) ts generally no eigenfunction of eq. (2.9) but belongs to 

* eq. (2.10) with energy E2(k;c). 
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The quasi-particle approximation of G in {2.26) can be written as 

(2.27) 

where ce(k) satisfies ce(k) = Ee(k;ce(k)). The cp--functions in (2.27) are to 

be taken at c = ce(k) but in the corresponding notation this has been 

suppressed. Again the residue factor ge.k is similarly defined as in (2.22). 

In principle the equations (2.8) for G(r1.r2;c). and (2.9) for 

~ (r;c) have to be solved selfconsistently in order to reveal all n 

characteristics of the quasi-particle spectrum. In this procedure, it is 

well understood that the mass operator M. occurring in (2.7), is related to 

G and G
0 

according to Dyson's equation. while G
0
(r1,r2 ;e) is the solution of 

(2.28) 

As this task is too formidable, one is obliged to adopt some drastically 

simplifying approximation scheme. Several schemes have been proposed until 

now and some of them will be discussed in section 4. Before describing these 

schemes we first discuss a reordering of the diagrams in the expression 

(2.3) for M(l.2) in terms of a dynaatca.tty screened tntera.ctton function 

W{l.2). In this connection an analytical expression for M(l.2) is obtained, 

expressing M in terms of Green functions G(i,j) and interaction functions 

W(i.j). This expression has first been given by Hedin(9) and is rederived in 

section 3 by starting from the diagrammatic expansion (2.3). 
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3. Diagrammatic derivation of Hedin's equations for M(1,2) 

According to (2.3) the mass operator M(l,2) can always be represented by an 

infinite series of skeleton Feynman diagrams in which internal (double) full 

lines represent Green function G(i,j) , dotted lines represent interaction 

functions v(i,j), while the first two diagrams (the diagrams (a1) and (a2) 

in (2.3)) contain wiggled and (double) wiggled lines representing local and 

non-local functions z2(r1) and zn2(r1,r2), respectively. It is our aim to 

show that the contribution to M(l,2) due to all diagrams (but the first two) 

can also be expressed in a closed analytical form, in terms of functions G 

and v. The resulting expression, however, has to be supplemented with three 

additional equations, as it turns out to be helpful to introduce three 

additional functions, i.e. a screened interaction function W, a polarization 

function P and a vertex function r. The resulting equations are known as 

Hedin's equations9 >. 

We first introduce the dynamically screened interaction function W(l,2) 

by means of the symbolic equation 

1 1 1 
1'I f ' 11 

t '1 
W(l,2) = l 1 = + 

11 
1, 11 

'1 I 1' (3. la) 
1, I 

,1 

W2 •2 ~2 
In analytical form this implicit relation, defining W(l ,2) reads 

W(l,2) = v(l,2) + J d(3)d(4) v(l,3) P(3,4) W(4,2). (3.lb) 
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Here the so-called polarization function P(l,2) is symbolically represented 

by 3 

P(3,4) = • = (zero order in W) 

4 
4 

3 

+ (first order in W) 

4 

+ + + 

+ + 
0 •• u 

ti 
+ 

c 
, 1 II 

tJ 
(second order in Wl 

+ ••• (higher order in Wl 

(3.2} 

Note that due to the definition of the double dotted W-interaction lines, no 

P diagram in the expansion (3.2) may contain a P diagram in one of its W 

interaction lines, nor is it possible that a W interaction line separates a 

P diagram into parts which are P diagrams themselves. 

The interaction function W(l.2) is in fact a dynamically screened 

interaction, as it takes the polarization effects inherent in the function P 

into account in such a way that it leads to non-vanishing contributions also 
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if the time arguments in 1 and 2 are different. unlike in the unscreened 

interaction function v(l,2). The fiinction W(l.2) can alternatively be 

written 

J -1 W(l.2) = d(3) € (1,3) v(3.2), (3.3) 

-1 thus introducing the inverse dielectric screening function € By the 

introduction of the double dotted lines representing the screened 

interaction W the number of diagrams contributing to M(l.2) is reduced: Up 

to the third order in W we now have 

1 ZQ, (rl) 

M(l,2) = ~ 
2 

l 
~ 
~ 
f \ 

JI 
+ 

.// 

2 (c) 

~ 
~ 

4 ~ 
II 

/I 
// 

; 

l 

/}' 
,1 

+ ,, ,, 
\\ 3 , ...... 

' 
2 (d) 

1 

+ + 

2 

+ 

(first order in W) 

(second order in W) 

1 l 
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l 
1 1 

6' t/' 
" ~ 

+ \t ,, + -- + 

II' 
,, 

\\ " ,,,/ A 
// Q 

\\ # ~ ,, # ~ 

2 2 

(third order in W) 

+ ••• (higher order in W) • 

{3.4) 

It should be noted that the third diagram in {3.4) (the so-called 

Ha.rtree diagram) still contains an unscreened interaction line. The Hartree 

diagram can easily be suppressed by choosing {pa.rt of} the local function 

H 
ze<r1> in the first diagram of {3.4) equal to veff(rl) - u(rl) {see {2.1)) 

such that the diagram {b) is compensated by (pa.rt of} the first diagram in 

(3.4). 

It is observed from (3.4) that all diagrams except the first three ones 

can f orma.lly be represented by a di'agram with a vertex pa.rt: 

M{l,2) 

l 

= 

4 

2 

- ---0sM'(l,2) 

• ! f d(3)d(4) W(l+,3) G{l,4) r(4,2;3), 
fl. 

(3.5} 

where the vertex pa.rt. according to (3.4) is f orma.lly represented by 
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f (4,2;3) = 

= 

+ 

+ 

+ 

+ ••• 

4 

2 

4 
• 3 
2 

2 

4 

2 

4 

3 

3 

' 03 
// 

I' 

2 

+ 

+ 

(zero order in W) 

(first order in W) 

4 4 4 

+ 3 

2 2 2 

.. 
~ 
~ 

03 
~ 

9 

2 

(second order in W) 

(higher order in W). 

{3.6) 

Page 19 



The argument 1+ in the function W(l+,3) in the right-band side of eq. 

(3.5) does not simply follow from the diagrammatic equation (3.4). Its 

origin lies in eq. (5.26) of ref. 1 being an equation relating the Green 

function G to an expectation value of a product of Heisenberg field 

operators, among which some have equal time arguments. In the procedure of 

expressing such expectation values quite generally in terms of one-particle 

Green functions it is inevitable to introduce infinitesimal time 

differences, such that products of operators with equal time arguments keep 

the order in which they were put before the time ordering operation is 

introduced. In a number of cases, e.g., cases in which an integration over 

some space-time variable j has to be performed, the additional + in j+ can 

+ safely be omitted. Note that the prescription to have the argument 1 in eq. 

(3.5) is consistent with, e.g., the prescription given in eq. (B.27) of re£. 

1 for calculating the contribution of the diagram (c) of Fig. B.5 (see also 

prescription (i) at page 49 of ref. 1). 

From the diagrammatic structure of the vertex part r in (3.6) it is 

straightforward to obtain the corresponding analytical expression for the 

vertex function: The zero order contribution to f(4,2;3) is clearly equal to 

o(4,2) o(4,3) as can be deduced from the M(l,2) diagram in ( .. 4) 

contributing to first order in W. As far as the higher order contributions 

to f(4,2;3) are concerned it should be realized that the structure of the 

vertex diagrams in (3.6) (with the exception of the zero order diagrams in 

W) is such that each r-diagram can be obtained by starting from any skeleton 

diagram contributing to M'(4,2). in which, however, one internal particle 

line representing G(k,l) is replaced by two particle lines representing 

G(k,i) and G(j,l). and a diagram contributing r(i,j:3). Note that this 

replacement has to take place in the polarization parts contributing to 
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double dotted interaction lines as well (see for instance two of the 

diagrams in· (3.6) which are of second order in W).lb.e elimination from a 

M'(4.2) diagram of subsequently all internal particle lines representing the 

function G(k.2) is in fact equivalent with taking the functional derivative 

oM'(4.2)/0G(k.2). lb.erefore. taking the above structural property of the 

vertex part r into account. we conclude to the analytical expression 

f(4.2;3) = o(4.2) o(4.3) 

+ J d(i)d(j)d(k)d(2) 
0~f~:~~ G(k,i)G(j,2)f(i,j;3). (3.7) 

Until now, the polarization function P(3,4) is the only function which has 

not yet been given in analytical form. In view of the above definition (3.6) 

of r it is straightforward, however, to conclude to*)see also (3.2)) 

i J + P(3,4) = - fi_ d(i)d(j) G(4,i)G(j,4 )f(i,j;3). (3.8) 

lb.is completes our attempt to write M'(l,2) in closed analytical form. We 

succeeded in doing so by means of eqs. (3.5), (3.lb), ~.7) and (3.S). 

It is tempting to assume that due to the introduction of W(l,2), or 

-1 
€ (1,2), the series of diagrams as given in (3.4) leads to contributions 

which will converge much more rapidly than the series of diagrams as given 

in (2.3). However, it has not yet rigorously been proven whether the 

subsequent contributions of the diagrams in (3.4) indeed show this 

convergence property. 

*) As far as the argument 4+in the right-hand side of (3.8) is concerned, 

the reader is referred to the discussion just below eq. (3.6). 
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We conclude this section by emphasizing that the above equations (3.5). 

(3. lb}'. (3. 7) and (3.S) express M' (1.2) in terms of the Green function G and 

the interaction function v. These equations have to be supplemented with 

Dyson's equation expressing G in terms of G and M, where G is completely 
0 . 0 

determined by eq. (1.5) in which veff(r1:N) has to be replaced by the 

effective potential one wants to start with. As a matter of course it is a 

considerable task to accurately determine the function M(l.2) starting from 

a known G function. In subsequent sections we will elaborate on this 
0 

subject. 

-
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4. Approxima.tion schemes 

In this section we give a brief description of some approximation 

schemes that have been, or may be, considered in order to obtain a 

quasi-particle excitation structure. According to eq. (2.9) it will always 

be necessary to specify both.veff and M(r1,r2 ;c). Specifying veff is 

equivalent to giving the functions zt(r1) and znt{r1 ,r2), introduced in eq. 

{2.3) and below. Specification of M(r1,r2 :c) may, for instance, be achieved 

by specifying which {parts of) diagrams are to be retained in the expansion 

{2.3) for M(l,2). 

{ i) The Har tree a.pproxima.tton 

In this scheme we may choose 

c 4.18.> 

(4.lb} 

-
+ .--o =O. { 4. lc) 

This choice is such that the Ha.rtree diagram (b) in (2.3) is exactly 

compensated by diag~am {a1), while diagram (92,) does not contribute. 

Eq. {4.lc} implies that the contribution of diagrams {c), (d), etc., 

is taken equal to zero. Eq. {2.9) reduces to 
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(4.2) 

Here we distinguish between solutions ~ +{r1:µ+e+) with energy s s 

eigenvaluesµ+ e+ and e+ > 0, and solutions ~-{r1 :µ-e-) with energy s s s s 

eigenvaluesµ - e- and e- > 0. It is well known that the Green s s 

function G{r1.r2 ;e) connected with the system of one-particle 

equations (4.2) can generally be written 

(4 .. 3) 

where TJ is a infinitesimally small positive quantity, "formally" 

giving the poles for which Re{e) < µa positive imaginary part. and 

those for which Re{e) > µ a negative imaginary part (see the 

discussion around (2.21)). Eq. (4.3) is nothing but a special case of 

(2.21). 

+ From (4.3) and (2.6) one easilf"derives -iG{r1t.r1t )-

= 2 l~-{r1 :µ-e-) 1
2 = p{r1). representing the density of electrons at 

- s s s 
+ + 

r 1. 'Ibe functions ~-{r;µ±e-) form a complete orthonormal set due to s s 
• 

the Hermiticity of the potential occurring in (4.2). 'Ibe 
+ 

quasi-particle excitation structure (i.e. the energies e- and the s 
+ + 

functions ~-{r:µ±e-)) follows in principle by solving (4.2) s s 

self-consistently, using (4.3). As no exchange and correlation 

effects are taken into account the obtained excitation structure is 

Page 24 



generally considered to be inaccurate, at least for semiconductors. 

As M(l,2) = 0 according to (4.lc), the implication of Dyson's 

equation is that the above G coincides with the unperturbed G . 
0 

It is instructive to realize that the Hartree scheme may 

alternatively be obtained by choosing 

(4.4.a) 

( 4.4. b) 

+ 

= - ~ 6(t1-t2) 6(r1-r2) J d3r'v(r1 ,r')C(r't,r't+). 

(4.4.c) 

where {4.4c) precisely ~ls the contribution of diagram (b) in 

{2.3) one easily checks that the mass-operator term in (2.9) indeed 

reduces to 

I 3 • + + + 
= - i d r' v(r1,r') C(r't,r't) ~;Cr1 ;µ±e.;). (4.5) 
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just as in {4.2), while the effective potential veff in {2.9) is 

reduced to u{r1). Dyson's equation now reads G = G' + G'~G. ~here G' 
0 0 0 

belongs to the unperturbed system with veff = u{r). 1he function 

~{r1 ,r3 ;c) is clearly local in space and independent of e. 

{ii) The Hartree-Fock approximation 

In this scheme we may choose 

(4.6a) 

(4.6b) 

M(l ,2) = j + 

(al) (a2) 

+ ---0 + [) • 0, 
(4.6c) 

, (b) .. 
leading in (2.3) to the exact compensation of diagrams {a1) and (b), 

as well as (82) and (c), respectively. {Note that in diagram (c) of 

(2.3) the interaction v is unscreened, unlike in diagram (c) of 

{3.4).) 1he further prescription, in accordance with (4.6c) is to 

disregard the contributions of all other diagrams in (2.3). Eq. (2.9} 

reduces to 
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(4.7) 

+ + + 
while G is given in terms of ~-(r;µ±e-) and e-. as in (4.3). The functions s s s 

+ 
~- form again a complete set of orthonormal functions due to the s 

Hermiticity of the non-local potential in (4.7). Solving (4.7) 

+ 
self-consistently. using the expression (4.3) for G(r1,r2:e) in terms of~; 

+ 
and c-,yields in principle the quasi-particle excitation structure in this s 

scheme. As a general resultlO) the energy gap obtained in the Hartree-Fock 

(HF) scheme overestimates the true energy gap. As M(l,2) = O. according to· 

(4.6c), the implication of Dyson's equation is that the above G coincides 

with the unperturbed G
0

. The HF scheme can alternatively be arrived at by 

choosing 

(4.Sa.) 

., 
(4.Sb} 

+ 

+ ---0 + 
(b) 

(c) 
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{4.Sc} 

where {4.Sc} is precisely equal to the contribution of diagrams {b} 

and {c) in (2.3). One easily checks that the ne.ss-operator term in 

(2.9) indeed reduces to 

I 3 + + + = - i d r' v{r1,r') G{r't,r't ) ~;{r1 :µ±e;) 

just as in (4.7), while the effective potential veff in (2.9) is 

reduced to u{r1). Dyson's equation now reads G = G' + G'~G where G' 
0 0 0 

belongs to the unperturbed system with veff = u{r). 1be function 

~{r1 .r3 :e) has local as well as non-local parts in space and is 

independent of e. -
{iii) The Pratt scheme 

11) In this scheme. originally due to G.W. Pratt we choose 

{4. lOa) 

(4.lOb) 

M{l.2} = 0. (4.lOc) 
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lbe choice is such, as in the HF scheme, that diagrams (a1) and (b), 

as well as (~) and (c) in the expansion (2.3) compensate exactly. 

lbe function v~ff(r1 ,r2) is chosen such as to compensate for all 

those parts of the contributions of all remaining diagrams (d), (e), 

(f), ...• which can be written in factorized form 

(1/ll)o(t1-t2)f(r1.r2). Clearly the function v~ff(r1 .r2) should be 

chosen equal to the sum of all those functions f(r1,r2). Disregarding 

the remaining parts of the contributions of the diagrams, the mass 

operator M(l.2) equals zero. in accordance with (4.lOc). Eq. (2.9) 

reduces to 

( + ±> ±c + ±> = µ _ e ~ r
1

;µ::i:e , 
s s s 

(4.11) 

+ + + where G is given in terms of ~-(r;µ±e-) and e-. as in (4.3). lbe s s s 
+ 

functions ~- form again a complete set of orthonormal functions due s 

to the Hermiticity of the non-local potential in (4.11) (the 

Hermiticity of the non-local operator f{r1,r2 ) can easily be proven). 

Solving (4.11) self-consistently, using the expression for Gin terms 
+ + 

of ~-and e- , as in (4.3), yields in principle the quasi-partiele s s 

excitation structure. lbe Pratt scheme can be considered as a logical 

extension of the above HF scheme, but has to our knowledgde not been 
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investigated in any detail. The reason for this lies undoubtedly in 

the complicated character of the non-local potential v~ff(r1 ,r2). As 

M(l,2} = 0 according to (4.lOc), the implication of Dyson's equation 

is that the above G coincides with the unperturbed G . The Pratt 
0 

scheme is alternatively arrived at by choosing 

{4.12a) 

( 4.12b} 

(4.12c) 

where (4.12c} is precisely equal to the sum of contributions of all 

parts of M diagrams {d), (e), {f), .•. in (2.3) which are proportional 
p 

to o(t1-t2). One can again easily check that M (1,2) leads to the 

mass-operator term in (2.12), while the effective potential veff in 

(2.12) is reduced to u(r1). Dyson's equation now reads G = G' + G'MPG 
0 0 

where c· belongs to the unperturbed system with v ff = u(r). The 
o . e 

~ function Mp(r1,r3 :e) has local as well as non-local parts in space 

and is independent of e. The above Pratt scheme is as far as one can 

get within a scheme of quasi-particles with infinite lifetime {due to 

the Hermiticity of the operator in (4.11} all energy eigenvalues are 

real).Inclusion of add.tttona.l parts of M diagrams will introduce the 

e dependence of M(r1,r2:e); it introduces complex energy values in 

(2.9), the real parts of which may essentially be different frQm the 

quasi-particle energies to be obtained in the above Pratt scheme. For 

that reason there is no guarantee at all that the obtained energy 
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band structure in the Pratt scheme. will indeed be close to the 

experimentally known structure in semiconductors. though this might 

be so under circumstances. 'Ihis implies in fact the incompleteness of 

any scheme in which M(l,2) is approximated by taking it proportional 

to 6(t1-t2 ); such schemes lack the incorporation of dynamical 

screening effects. Such effects are included for instance in the GW 

scheme. to be discussed at the end of this chapter. It is 

instructive. however, to describe the so-called Slater x.a13) and 

LDF4 ) schemes first. 

(iv) The Slater Xa scheme 

In this scheme we choose 

1/3 
_ 3ae2 ( 3p(r1)l 

Sir€ 11" ] • 
0 

M(l,2) = 0. 

(4.13a) 

(4.13b) 

(4.13c) 

Here the second term in the right-hand side of (4.13a) which we call 

µ (r
1

) is introduced in order to simulate the correction to xc 

quasi-particle energies due to exchange and correlation. 'Ille constant 

a is usually chosen in between the V'dlues 1 and 213. 'Ille choice a = 1 
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is due to Slater13) and is based on a calculation of the average 

exchange energy per particle for a uniform electron gas in which the 

wave functions of the electrons are represented by plane waves. The 

4) . 
choice a = 2/3 is due to Kohn and Sham and is based on a local 

effective exchange one-electron potential obtained within the lDF 

scheme {see next section) 

{4.14) 

where p{r1) = - i G{r1t,r1t+) and where ~x{p) is approximated by the 

expression obtained for a uniform electron gas4) 

{4.15) 

A choice for a in between 1 and 2/3 is often ma.de, as it is believed . . 

to account both for exchange and correlation effects in an acceptable 

way. The choice {4.13) is such that the contribution of diagrams {a1) 

and {b) in {2.3) cancel, while diagram {82) contributes zero. The 

remaining diagrams in {2.3) are disregarded, such that M{l.2) = 0. 

Eq. {2.9) reduces to · 

3ae2 
- 8iT€ 

0 

(4.16) 
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+ + + 
while G is given in terms of .-(r:µ±e-) and es-· as in (4.3). The s s 

+ 
functions .- form a complete orthonormal set due to the Hermiticity s . 

of the potential in (4.16). Solving (4.16) self-consistently, using 
+ + . 

the expression for G in terms of .~ and c- yields, in principle, the 
s s 

quasi-particle excitation structure. As M(l,2) = O. according to 

{4.13c) , the implication of Dyson's equation is that the above G 

coincides with the unperturbed G .The obtained quasi-particle 
0 

excitation structures within this scheme, generally deviate more or 

less significantly from the experimentally known structures. Due to 

the particular way in which the extra potential term in (4.13a.) is 

arrived at, it is not possible to indicate precisely which (parts of) 

M diagrams in the expansion (2.3) may be held responsible for the 

related quasi-particle excitation structure. It is true that the 

quasi-particle excitation structure may alternatively be obtained by 

means of the f onna.l choice 

( 4.17a) 

(4.17b) 

1/3 _ =2 [ 3p:r1)) }. 
0 

(4.17c) 
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but it is not easy if not impossible to decide which {parts of) M 

diagrams in either {2.3) or (3.4) are accounted for by means of the 

expression {4.17c) . Dyson's equation now reads c = c· + c·~c where 
0 0 

c~ belongs to the unperturbed system with veff = u{r). 

{v) The density fW1Ct iona.l (JJF) scheme 

4 5) In this scheme, due to Hohenberg. Kohn and Sham ' • we choose 

6 E [p] 
+ xc I 

6 p(r) p:p(r
1
)' 

M(l.2) = 0. 

The exchange-correlation-energy functional Exc[p] is ·often 

approximated by 

E [p] = J d3r p(r) E (p{r)). xc xc 

( 4.18a) 

( 4.18b) 

( 4.18c) 

( 4.19) 

in which case 6 E [p]/6p equals d(p e {p))/dp. The excha.nge-xc xc 

correlation energy per particle is then approximated by 

0.44 
(7.8 + r (p)/a )a • s 0 0 
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where 4v (r (p))3/3 = p-l and a is the Bohr radius. while.ex(p) is s 0 

given by (4.15). The second term in the right-band side of (4.20) is 

the well-known Wigner interpolation expression14) for the correlation 

energy at intermediate particle densities. This approximative scheme 

is called the local density functional (LDF) scheme. 

The choice in (4.18) i~ such that the contribution of diagrams 

(a1) and (b) in (2.3) or (3.4) cancel, while diagram (82) contr~butes 

zero; the remaining diagrams in (2.3) or (3.4) are disregarded such 

that M(l,2) = 0. Eq. (2.9) reduces to 

(4.21) 

where p is given in terms of G by (1.9) , while G is given in terms 

+ + + + + 
of ~-(r:µ±e-) and e-, as in (4.3). The functions ~-(r;µ±e-) form a s s s . s s 

complete set of orthonormal functions du~ to the Hermiticity of the 

potential in (4.21). Solving (4.21) self-consistently, using the 

+ + expression for G in terms of ~-and e-, yields in principle the DF 
s s 

quasi-particle excitation structure. The special character of the DF 

scheme shows up in the property4) that the obtained ground-state 

+ electron density p(r) = -i G(rt,rt ) is equal to the exact 

ground-state electron density. In spite of this property, there is no 

reason at all to expect a correct reproduction of the excitation 

structure. Results obtained thusfar within the LDF scheme 

substantially underestimate, e.g., the •!xperimentally known value of 

the energy gap15l. 
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As M(l,2) = 0 • according to (4.18c) , the implication of Dyson's 

equation is that the above G coinci.des with the unperturbed G . Again 
0 

the quasi-particle excitation structure may alternatively be obtained 

by means of the Formal choice 

(4.22a) 

(4.22b) 

o E (p] } 
+ xc I 

op p=p(rl) ' 
(4.22c) 

but it is again not easy to decide which (parts of) M diagrams are 

accounted for by means of the expression (4.22c). Dyson's equation 

now reads G = G'+G'~FG where G' be~ongs to the unperturbed system 
0 0 . 0 

with veff = u(r). 1£ we denote the Green function G occurring in 

(4.22c) by <fJF and the exact Green function by Gex, we have 

_DF + ex + 
c;--(rt.rt) = G (rt.rt). (4.23) 

while, according to (2.7) 

I ] c°F(r1 .r2 ;~) = n o(r1-r2 ), 
p=p(rl) 

(4.24) 
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and 

- h I d3r3 Mxc{r1,r3 :c} Gex{r3 ,r2 :c} = h 6{r1-r2). 

(4.25} 

Here M is the exchange-correlation mass operator, which is obtained xc 

if the local one-electron effective potential is chosen as in the 

Hartree scheme, {i}, while no approximations are applied {consistent 

with Gex being the exact Green function}. Using (4.23} and Dyson's 

equation 

(4.26} 

-1 
where Vxc{r1 ,r2 } stands for h 6{r1-r2 } c5Exc[p]/6p{r1), one easily 

obtains by transforming {4.26·} back to the tct2 domain and by taking 

the limit t
2

.&.t
1

: 

I 3 I _Df ex d r' c5Exc[p]/6p{r'} de~ (r,r':c} G {r' ,r:c} 

{4.27} 
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Eq. (4.27) gives the connection between c5E /op(r') and the exact xc 

functions M and Gex. and can for instance be used to construct xc 
. t3, 16) 
l . 

(vi) The GW approximation 

In this scheme9) we choose 

(4.28a) 

(4.28b) 

Mc:N(l,2) = ~ + 

+ ---0 + 

(b) (4.28c) 

(c) 

leading in (2.3) and (3,4) to the exact compensation of diagrams (a1) 

and (b): the diagram (82) contributes zero, while the further 

prescription is to take diagram (c) in the expansion (3.4) fully into 

account (We emphasize that it is the screened interaction W that 

operates in thi~ diagram, unlike-in the expansion (2.3) where the 

bare interaction v operates in diagram (c)). Eq. (4.28c) therefore 

reduces to 
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i + = fiG(l,2)W(l ,2), 

(4.29) 



in accordance with (3.5), where the function r(4,2:3) has been put 

equal to 6(4,2) 6(4,3). As is clear from (4.29) the function MGW(l,2) 

factorizes into a product of two functions G and W (which explains 

the name GW approximation). The scheme heavily anticipates on the 

"weakness" of W, assuming therefore all'higher order diagrams (in W) 

in (3.4) to be negligible. There is, however, no reason a priori why 

the GW scheme would be a valuable scheme. Note, that if in (4.29) the 

function W(l+,2) is replaced by v(l+,2), expression (4.28) reduces to 

~(1,2) of eq. (4.Sc), such that the HF scheme is recovered. Note 

furthermore, that the expression (4.29) does not factorize with 

6(t1-t2) due to the more general time dependence in W(l+,2) (see 

(3.la), (3.lb) and (3.3)) which introduces the effects of dynamical 

screening. 

At this point we might ask whether the above choice of diagrams 

in (4.2Sc) would lead to the same quasi-particle excitation structure 

if the functions z2(r1) and z2(r1,r2) in (4.2Sa) and (4.2Sb) bad been 

chosen differently. Suppose for instance that the functions z
2 

and 

zn2 had been chosen as in the HF scheme (i.e. equal to (4.6a) and 

(4.6b), respectiv~ly). In order to answer this question one has to 

realize that the particular choice of z2 and zn2 in the HF case was 

made because it led to contributions of diagrams (a1) and (82) in 

(2.3) which had their exact counterparts in diagrams (b) and (c) of 

the expansion (2.3) of M(l,2). The same HF scheme will result (i.e. 

the quasi-particle equations (4.7) are equal) if z 2 and zn2 are 

chosen equal to (4.Sa) and (4.Sb), respectively. Any choice of z2 and 

zn2 "in between" those two extremes (i.e. representing only fractions 

of the z
2 

and zn
2 

of (4.6a) and (4.6b)) is such that the exact 
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counterparts are fully contatned in diagrams (b) and (c) or (2.3) and 

will therefore lead to precisely the same approximate quasi-particle 

excitation structure. Put otherwise: the quasi-particle equations 

(4.7) are completely equal in all the above cases. as an arbitrary 

subdivision or the operator occuring in (4.7) in an 

"effective-potential" part and a "mass-operator" part is or no 

+ + + 
influence to the solutions ~-(r;µ±e-) and eigenvalues e-. Therefore, 

s s s 

in answering the above question concerning the choice or ze and zne 

in the GW scheme one has to investigate whether the exact 

counterparts or the contributions or diagrams (al) and (82) in 

(4.2Sc) are indeed contatned in diagrams {b) and (c). It will be 

clear from the above that. e.g .• a choice £or ze and zne as in the HF 

case leads to the same quasi-particle equations as the exact 

counterparts or (a1) and (82) are indeed contained in {b) and (c). 

But suppose that instead we choose z2 and zne as in the l.DF scheme. 

i.e. z2 and zne equal to.(4.18a.) and (4.lSb) • respectively. The 

question has then to be put whether the exact counterparts or (a1) 

and (82) are indeed contained in {b) and (c). The answer is obviously 

negative: th~ first (Hartree) term in the right hand side or (4.18a.) 

is indeed such that diagrams (a1) and (b) compensate exactly; the 

exchange-correlation term in ( 4. lSa.) • however. has its counterpart 

undoubtedly in a class or M diagrams larger than the single diagram 

(c) in {4.2Sc); this was already made plausible in the earlier 

discussion of the 1.DF scheme. The conclusion is therefore that GW 

schemes with different choices of one-electron effective potentials 

may lead to different excitation structures. From a practical point 

of view this conclusion is very likely to be of minor importance. 
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Namely, the idea 

behind the GW scheme is in fact to neglect in expression (3.4} all 

diagrams with more than one W-interaction line. If W indeed proves to 

be a "weak" interaction function. this truncation in the expansion 

(3.4} leads to "small" deviations from the true M(l.2} function. 

implying that the ma.in correction terms are included. Consequently, 

the above-mentioned counterpart of the exchange-correlation term in 

(4.18a} will be mainly contained in diagram (c} of (4.2Sc}. All this 

points to the necessity of investigating whether or not GW schemes 

with different effective potentials lead to different results. 

In actual practice the GW scheme is further restricted by using 

approximate diagrammatic relations for W. We discuss first the 

so-called bubble approximation scheme. 

(vi a} The bubble approxtma.tton 

In this scheme the screened interaction function W(l,2} is 

approximated by 

1 1 1 1 

W(l.2} ft ' ' • 11 I I I 

II I 0 0 11 I = 11 ::: 
I + + + ••• 

11 I 0 11 
I I 

11 
~ l w I • 

2 2 2 2 
1 1 

' • 
I I 

I 
I o: = I + 
I (4.30a} 

I II 

• ~ 
2 2 
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or 

W(l,2) = v(l.2) - ~ J d(3)d{4)v(l.3)G(3,4)G(4,3+)W(4,2) 

s v( 1. 2) + WP{.l, 2), {4.30b) 

approximating the polarization function P(3,4) of (3.2) by the bubble 

diagram of zero order in W. In view of the anticipated "weakness" of 

W. this approximation is certainly not unreasonable. It leads, 

according to (4.29) to {b stands for bubble) 

,GW i [ + + ] · Mt, (1,2) = fi v{l .2) + Wp(l ,2 G{l.2). (4.31) 

In order to relate this scheme to the earlier HF and Pratt schemes it 

is instructive to consider the approximation to W {1.2) in which 
p 

only those contributions to·W are retained that can be written as . p 

WCr1,r2) 6(t1-t2). The related 1'(1,2) then reduces to 

+ where the argument t 1-t2 in the 6 function is replaced by t 1-t2 . When 

comparing (4.32) to the second term in the expression (4.Sc) for 

~(1,2) it is observed that the interaction function v(r1.r2) in 

{4.Sc) is replaced by a statically screened interaction function 
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v(r1,r2) + W(r1,r2). Note furthermore that (4.32) will be close to 

the second term in the right hand side of expression (4.12c) for 
p 

M (1,2) in the Pratt scheme, due to the "wealmess" of the screened 

interaction function W(l,2). 

In subsequent sections we will concentrate ma.inly on the bubble 

approximation scheme with dynamically screened interaction as it 

apparently shows the ability to reproduce the main characteristics of 

the quasi-particle structure of a semiconductor15>. Before doing so 

we shortly discuss the so-called ladder-bubble approximation scheme. 

(vi b) The ladder-bubble approximation 

In this scheme the starting point is again the GW approximation 

(4.29) for M(l,2). Unlike in the previous bubble approximation 

scheme, the expression for r(4,2:3) in (3.7) is not approximated by 

6(4,2) 6(4,3) , but is written 

r(4,2:3) = 6(4.2) 6(4.3). 

+~I d(i)d(j)W(4+,2)G(4,i)G(j,2)f(i,j;3). (4.32) 

This approximate expression is arrived at by putting 

6 M'GW(4,2) i + 
6 G(k, 2) ~ n W(4 ,2) 6(4,k) 6(2,2), (4.33) 

which is obtained by neglecting the implicit dependence of Won G. 

Diagranunatically, eq. (4.32) can be written 
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Substitution of this expansion in the expression (3.8) for the 

polarization P yields {cf. {3.2)) the so-called ladder-bubble 

expansion Plb {lb stands for ladder bubble) 

3 3 3 

+ + + ••• , {4.35) 

4 4 4 

such that 

{4.36) 

with 

w1bc1.2) = v(l.2) + J d(3)d(4) v(l.3) P1b(3.4) w1bc4.2). 

{4.37) 

17) lbe scheme has been applied by Strinati et al. In view of the 

assumed "weakness" of W one may expect. however. that improvements 

with respect to the earlier-discussed bubble approximation scheme 

will be of limited significance. 
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5. Relating the mass operator and the quasi-excitation structure in the 

bubble approximation 

The mass operator M(l,2) in the GW approximation given by eq. (4.29) can 

easily be Fourier transformed with respect to t 1- t 2 , leading to 

{5.1) 

where 1J is a positive infinitesimally small quantity. The functions G, W, M 

-1 as well as the related functions P,€ and€ (r1,r2;e) all have the 

translational property 

(5.2) 

where R is a lattice vector. For that reason, when Fourier transforming with 

respect to r 1 and r2 we may write such functions as 

(5.3) 

with 

(5.4) 

where Q is the volume of the crystal; q is a wave vector in lBZ; Kand K'are 

reciprocal lattice vectors. Fourier transforming (5.1) in this way leads to 
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+m 

M __ K, ( q; e) = !n 2 2 I 
--K. 1.LU q ,. G, G. -<JO 

de' 
2iTfi' 

• GG G'(q' ,e.-e.') WK-G-K K'-G'-K (q-q'+K ,e') 
• q' q q 

-ie.'17/fl 
e I 

(5.5) 

where G, G' and K are reciprocal lattice vectors; K is introduced to 
q q 

ensure that q - q' + K lies. in lBZ. It might be very difficult if not 
q 

impossible to actually compute all the matrix elements of G,W, and M that 

are involved. Let us, however, in order to show how the matrix elements 

~.K'(q;e) are related to the excitation spectrum, assume that the 

computation of these quantities can indeed be achieved. By considering' the 

eigenvalue equations (2.9) we might then proceed as follows: 

H Take veff to be equal to veff(r) of (2.1) and try to solve the equations 

for the Bloch functions ~ (r;e.) by expanding them in plane waves 
n 

exp(i(k+G)•r)~ for given k points in lBZ. (see the discussion below 

(2.25), where it was argued that (2.9) indeed admits Bloch type solutions). 

Due to the non-Hermiticity of M, the obtained set of functions will not be 

orthonormal, while the eigenvalues will generally be complex valued. Eqs. 

(2.9) can then be written 

{5.6) 
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where n is the band index. In the quasi-particle approximation we have to 

find e values en such that en= En(k;en) (see eq. (2.20)). We may now try o 

determine the eigenfunctions ~ k(r;E (k)) and the eigenvalues E (k). (Note n, n n 

that we dropped the argument e in E (k)). If we expand~ k(r;E (k)) in n n n, n 

plane waves, i.e. 

~ i(k+G)•r 
~ k(r;E (k)) = ~ d k(G;E (k))e , n, n G n, n (5.7) 

it is easily shown that the coefficients d k(G;E (k)) fulfil the set of n, n 

equations 

+ 2 [vHff G G' + h MG G' (k:E (k) )]d k(G' ;E (k)) = 0. G' e , , , n n, n 
(5.8) 

Diagonalization of this system of equations may be achieved by standard 

means, leading to the quasi-particle spectrum En(k); the real pa.rt of En(k) 

yields the so-called band-structure within this scheme. 

Let us now outline the possibilities (and difficulties) in obtaining the 

matrix elements ~.K'(q;e) of (5.5). Clearly, there is a need to determine 

the matrix elements GG,G'(q;e) and WG.G'(q;e) first. Let us (in an iterative 

scheme) start by calculating the matrix elements G G G'(q;e) of some 
O, , 

unperturbed Green function G . As the LDF scheme, (v) in section 4, may be 
0 

considered as an approximation scheme in which important 

exchange-correlation effects are already contained in its unperturbed Green 

function, we will take the LDF Green function G as a first approximation to 
0 

G. This function G
0

, according to (4.3), can be written 
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= n L: 
k.i 

* N ~ {r1 )~ {r2)} 
+ L: s s 

s=l ~+~--µ-ill 
s 

Here the functions~ {r) (s = N+l, ... ) are the conduction-band KS s 

(5.9) 

eigenfunctions, while the functions ~s{r) (s=l,2, ... N) are the valence-band 

KS eigenfunctions {note that we dropped the energy argument in~ {r)). From n-

now on we will choose for them the Bloch functions ~i.k{r). where k is in 

+ -lBZ and i is the band index. The quasi-particle energies ~ +µ and -~ +µ are 
s s 

equal to the KS eigenvalues ~j>µ and ~j(µ, respectively, which, henceforth 

we indicate by ~i{k). The function sgn(µ - ~i{k)) enables us to write 

* G0{r 1 .r2 ;~) in compact form. As ~i.k{r) = ~i.-k{r) (due to time-reversal 

synunetry) and ~i{k) = ~i{-k) we easily deduce from (5.9) the property 

(5.10) 

From this property it can easily be shown that any diagram contributing to 

M{r1.r2 ;t1 - t2 ) has the same symmetry property. This leads to the 

observation that all functions G
0

, G, M, W{r1 .r2 :~) have the symmetry 

property (5.10). 

The Fourier transform G K K'{q;~). according to (5.4) and (5.9), can be o. I 

written 
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G K K' {q;c.)=-ofl 2 
O, ' . k.t 

{5.11) 

and is accessible for numerical calculations18>. The accuracy of the result 

is of course related to the mesh of k-points in lBZ and the number of energy 

bands taken into account. 

The second step is to determine the matrix elements WG.G'(q;c) in the GW 

approximation (which in the present treatment is reduced to the bubble 

approximation). In view of our first step in which G i.n (5.1) is replaced by 

G of (5.9), it is not unlogical to consider in the calculation of Win the 
0 

expansion (4.30a), the bubble diagram involving G functions instead of G 
0 

functions. In order to find the matrix elements, we first recall expression 

{3.3), which in Fourier transformed form reads 

{5.12) 

-1 where€ (r1.r2 ;c) is the Fourier transform with respect to time of the 

-1 inverse dynamical dielectric screening function€ (1,2). '11lis function as 

well as W(r1,r2 ;c) itself cannot easily be expressed in terms of the 

(bubble) polarization function P. However, using (3.1) and (5.12), formally 

written as W = v + vPW and W = €-1v, we may write (1-vP)€-lv = v leading to 

€ = 1 - vP, or 

€{1.2) = 6(1.2) - J d(3) v(l,3) P{3.2). (5.13) 
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which in Fourier transformed form reads 

(5.14) 

Eqs. (5.13) or (5.14) relat~ the dielectric function€ in a relatively 

simple way to the polarization function P. The strategy must therefore be to 

determine €(r1.r2 ;c) first. in terms of P(r1.r2 ;c), after which the obtained 

€(r1.r2;c) is inverted in order to obtain W(r1.r2 :c). We will take P(l.2) in 

this first iteration cycle equal to (compare (3.8)) 

(o) I + . P (1.2) = - ~ G (1.2) G (2,1). 
n O O 

(5.15) 

or. in Fourier transformed form with respect to· t 1-t2 

i J de ' , , i TJE. •Ill = - fi 2ni1 G
0
(r1.r2 :c ) G

0
(r2 .r1:c -c)e . 

(5.16) 

Similar to the procedure leading from M(r1.r2:c) in (5.1) to MJc,K'(q;c) in 

(5.5). we may express the Fourier transform of p{o) in (5.16) in terms of a 

convolution integral containing Fourier transforms of G . We will outline 
0 

another way in which the c'-integration in {5.16) is done first (this 

possibility exists in this case. as the function G
0
{r1.r2 :c) is explicitly 

given by (5.9)). Using (5.9), eq. (5.16) can be written 
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+a> 
in6.'lll e 1 Id . • - 6. ------------------

2iri [6.'-6. -in sgn(µ-6. )][6.'-6.-6. -in sgn(µ-6. )] 
-a> m m n n 

(5.17) 

Applying the residue theorem, use of 1-sgn(µ-a) = 2(1-0(µ-a)). and 

l/(x ± in) = P(l/x) + ivo(x) lead to the expression 

(5.18) 

The factor 2 in front of (5.18) originates from the fact that each 2,k state 

is degenerate with respect to spin. In fact the bubble diagram from which 

(5.18) originates, consists of two particle lines, both representing Green 

functions with equal spin (this is a result of the interaction v(l,2) being 

spin independent). Taking both spin possibilities into account gives the 

factor 2. We note that the reasoning that led to property (5.10) also leads 

to the property 

(5.19) 

which therefore holds for €-l(o)(r
1
,r

2
;6.) and €(o)(r

1
,r2 :6.) as well. More 

generally, this property will hold for P, €-l and €. 
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(o) 
1be Fourier transform P K,K'(q;c) follows from (5.4) and (5.18) and 

reads 

(o) 
p K,K'(q;c) 

_ ~ 
2 

_ {0(µ-ci(k))-0(µ-ci,(k+q+K )} 

- O k,i,i'[c-ci,(k+q+Kq)+ci(k)+i~{e(µ-ci(k))-0(µ-ci,(k+q+Kq))}] 

(5.20) 

Note that the sununa.tion in (5.18) over k' reduces to one term for which 

k'=k+q+K , where K is such that k' lies in lBZ. Note furthermore that 
q q 

(5.19) implies 

(5.21) 

and similarly for the matrix elements of€ and €-l. 

Eq. (5.20) is in principle accessible for calculations: If the 

KS-eigenfunctions and eigenvalues for a sufficient number of k points and 

band indices i are known, the computation involves, apart from summations 

over i,i', a summation over lBZ. 1his has to be done, however, for a variety 

of combinations of K,K',q and e. 

By Fourier transforming the expression (5.14) for €(r1,r2 ;c), according 

to (5.4), it is observed that it is an easy task to obtain the related 

Fourier coefficients of the dielectric function. We have 
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(5.22) 

in which 

(5.23) 

The desired matrix elements w~~k·(q;E.) in (5.5), however, according to 

(5.12), read 

(o) . -l(o) . N , 1K,K' (q,E.) = ~.K' (q,E.) v(q+K ) . (5.24) 

This implies that, in order to obtain the matrix elements of €-l(o), there 

is a need to invert the matrix· consisting of the elements ~~k·(q:E.} given 

in (5.22}. Eq. (5.24} then yields the matrix elements wfc~k·(q;E.} in an easy 

way. If a sufficient number of matrix elements of G and wCo} may indeed be 
0 

obtained in this way, the matrix elements ~~k· (q:c) can be obtained by 

(5.5}. From the behaviour of the functions G(o}(r
1
.r2 :c} and p(o}(r

1
,r2 :c} 

it can be expected that the integrand in (5.5} will tend to zero, if le! -+ 

m, in a sufficiently fast way. such that the actual integration range can be 

limited. By introducing the function 17} 

G G G'(q;c,c') a G G G'(q:c-c'} + G G G'(q;c+c'} 
01 I 01 • Ot t 

(5.25} 

and using the property (5.19} for w~~~.(q:c) the E.
1 -integration in (5.5} can 

furthermore be restricted to positive c' values only. Previous treatments15) 

suggest that there is no need for an E.'-mesh finer than 0.25 eV in such an 

integral. The obtained ~~k· (q;c) may now be used in the calculation of an 

energy structure E~l}(k) with the aid of eq. (5.8}; here the superscript (1) 
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indicates that only a first step has been achieved in the iteration scheme 
. 

to calculate the excitation structure in the bubble approximation scheme. 

Strictly spoken, one has to repeat the outlined calculational scheme until 

convergence is obtained. There are indications, however, that the first step 

is already sufficiently accurate15>. Note that, if more iteration steps are 

needed. the expression (2.27) for the Green function applies instead of a 

less general expression like (2.23). In that case one is confronted with the 

. * principal difference between functions ~l.k and ~l.-k on the one hand, and 

the additional factor gl,k on the other. However, there are strong 

indications15>. that these additional features are of minor importance. The 

physical implications of such differences still remain to be investigated. 

We end up this section by emphasizing that the above-outlined procedure 

has not yet proven to be.a really pra.cttca.t scheme. It involves an enormous 

amount of data handling, which may make the scheme impractical. 

The main problem is very probably the choice of {plane wave) 

representation. A representation in terms of local functions15) seems. to be 

a more plausible choice, as M(r1,r2 :6) presumably falls off strongly with 

increasing distance lr1-r2 1. The above description may serve. however, as a 

guide for the underlying theory, showing how the mass operator on the one 

hand is related to the quasi-particle excitation structure on the other. 

Most schemes until now make use of model expressions for matrix elements of 

the E-l operator13) (i.e. the so-called plasmon pole model). the parameters 

of which are determined by demanding that certain sum rules are fulfilled. 

Though such an approach indeed does not contain adjustable parameters. it 

does force the dielectric function to be of a special form. The ultimate 

theory has, in our opinion, to be free of such 'models. This requires the 

calculation of the mass operator in a fully ab inttto (i.e. model-free) way. 
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This enables one to judge rigorously whether the bubble approximation scheme 

is indeed sufficiently general in order to yield the quasi-particle 

excitation structure in a semiconductor. We are currently investigating 

whether E (k} can indeed be obtained by following such a procedure. 
n 
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