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I. The radiative transfer equation. 

Investigations carried out on wall-stabilized electric arcs in 

nitrogen and argon [I, 2, 3l have shown that radiative energy 

transfer is no longer negligible when the central temperature 

rises above about 12,000 OK. In particular, the energy transfer 

by means of ultra-violet radiation (A < 2000 ~), which is subject 

to reabsorption in the discharge, plays an important part in the 

total energy balance of the discharge. 

In the general case, where reabsorption of emitted radiation in 

a discharge which is in L.T.E. is not negligible, the calculation 

of the radiative energy transfer is based on the stationary radia

tive transfer equation which is given by [4, 5l: 

o grad I = 0;' [I - I l v v vp v 
(1) 

in which te unit vector 0 indicates the propagation direction of 

the radiation, I is the intensity of the radiation with frequency v 
v, I is the intensity of the black body radiation and ,,' the 

v v 
(spec~ral) absorption coefficient, corrected for the induced emission. 

(c:;~ = "v {I - exp (-hv/kT)}). 

The contribution made by radiation from all directions to the total 

radiative energy balance at 

equation (1) over the total 

With 0 grad Iv - div (Olv) , 

J div 
4" 

.,. 
(nl ) dn 

v 

a certain point, is obtained by integrating 

solid angle 4" . .,. 
(div n " 0) this gives: 

£ dn 
v 

I dn 
v 

in which dn is an element of the solid angle around a unit vector n 
= ,,' i is the (spectral) emission coefficient. 

v vp 
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+ respresents the spectral flux vector q . 
v 

The two terms on the right-hand side of equation (2) represent respec-

tively the total emitted and the total absorbed radiation energy per 

unit volume. time and frequency; these are indicated by e and a 
v v 

respect i ve Iy. 

Obviously (2) can now be written as: 

+ 
di v q = e - a = u 

\) \.l V \) 
(3) 

Here the term u is the balance between the emitted and absorbed rad i-
v 

ation energy per un i t vo I urne • time and frequency. 

Assuming that the coeff i c i ents EV and ct are i sot rop i c. v it can be shown 

a point 
+ 

[2] : that at r = o the terms qv' a and e are gi ven by v v 

+ ( r 0) J J J 11 (t:) exp (- r ct' dp) dV ( 4) qv = = 6 v v r2 0 

a (r = 0) = ct' (r = 0) J f f E C;:) exp (- I: ct' dp) dV 
v v- v v r2 

( 5) 

e (r = 0) = 4itE (r = 0) ( 6) 
v v 

One can distinguish two extremes: 

a) Where the absorption coefficient ct' is very large, so that the mean 
v 

free path Iv of the photons (Iv = l/a~) is so small that at a given 

point (r = 0) the only radiation arriving will be that from the 

immediate neighbourhood of that point. for which EV is practically 

constant. Then from equations (4.5.6) with £ (-;:) = a' (r = 0) follows: 
v \I 

= 0; a 
v 

= 41T£ ; U 
V \I 

- a = 0 
\I 

0) 
(equi I i bri urn radiation) 

b) For very 

a medium 

small values of ct' 
\I 

the situation may occur in which in 

of limited extent the absorption per 

negligibly small with respect to the emission 

unit volume a 
\I 

is 

per unit volume e 
\I 
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In determining the radiative energy transfer, a first approximation 

will be given by: 

(8) 
(optically thin radiation) 

If the value of ~~ lies between the two extremes mentioned above, 
-+-

the calculation of q and a at a give~ point will require inte-
v v 

gratlon over the total volume of the medium emitting the radiation. 

The calculation of the total radiative energy flux q{f qvdv); the 

total emission e (J evdv) and absorption a (J avdv) of radiative 

energy per unit volume and time will also require integration over 

the frequency range of the emitted radiation. 

In the special case of cylinder symmetry, we can simplify (6) 

and (5) as follows [2]: 

e (T r ) = 4 1T£ (T r ) 
v A v A 

in which 8{g) is given by: 

£ (r) r f1T -=:==B?l{ g!:f)===~ 
o r2+r 2_ 2r r cos~ v Q Q V ' , 

A Q A Q 
1T/2 

8{g) = J exp (-g/cosS)dS 
o 

with g/cosS, the optical thickness, given by: 

.....9....... a I dl = __ fA 1 

cosS Q v cosS fA a'ds 
p v 

The variables are shown in figure 1. 

( 12) 

The expression for ~v in the centre of the discharge (r = 0), can be 

considerably simplified because, as a result of the symmetry, the 

integration over the angle. in (10) can be carried out directly reading: 

(13) 

Despite the cyl inder-symmetry, the calculation of a{r) involves a great 

deal of work, which can be carried out properly using a digital computer. 



However, it is essential for 

from 
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the calculation of (a)r that the 

equations (10) and (13) are known as coefficients E and ~' 

" " a function of position in the medium. The following two sections 

will deal with this in more detail. 

Fig. I. Co-ordinates of the source 

POint Q and the observation point A. 

I I. Emission and absorption of radiation in a high pressure discharge. 

As early as 1923 Kramers [6] derived the following relationship for the free-

free absorption coefficient for one ion with cha rge Z.e and one 

electron, wi th velocity v, per unit vo I ume: 

4 " Z2 e 6 
~ =--
" 313 hcm2 (4,,£ ) 3v ,,3 

e 0 

where: 

h = Planck's constant (6.6256 10- 34 I sec) 

e = elementary charge (1.60210 10-19 C) 

me= electron rest mass (9.1091 10-31 kg) 

c = speed of light in vacuum (2.9979 108 m sec-
1
) 

£ = vacuum permittivity (100/36" 10- 11 F/m) o 

absorbing 

(14) 

With n i ions per unit volume and dne electrons in the velocity interval 
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between v and v + dv, assuming L.T.E., Integration over the 

Maxwellian velocity distribution of the electrons gives the 

following expression for the free-free absorption coefficient [7]: 

16rrz zZe 6 n n. 
e I (15) () = g 

hc(2rrm
e

) 3/z (kT)l/Z v
ff 

ff 3/3 (4rr~o)3 ,,3 

where k is Bo I tzmann' s constant and gff is the Gaunt factor. 

The Gaunt factor takes into account the deviations from Kramers'theory. 

An expression for this factor is given by Griem [8]. The value of gff 

is usually about unity. 

if the distribution of atoms among the excited states is a Boltzmann 

distribution, then for hydrogen, the bound-free absorption coefficient 

is found as follows [9]: 
Kramers' formula (14) is applied to all states with the same principal 

quantum number n, and a summation over the lower excited levels and an 

integration over the upper excited levels is then carried out. Unsold 

[10] "extended the expression which holds for hydrogen to complex atoms. 

The structural peculiarities of complex atoms were taken into account 

by introducing an 

y is the ratio of 

* effective nuclear charge Z and a factor y/UA• 

the number of sub-levels in a complex atom for the 

given principal and orbital quantum numbers nand t, to the analogous 

quantity for the hydrogen atom and UA is the partition function of the 

complex atom. 

* The quantity Z is given by Unsold as: 

IA - I n,t 
(16) 

where I 0 corresponds to the actual energy of the level of the complex n, .. 
atom with the given Quantum numbers nand t. IA and IH are the ionization 

energies of the complex atom and hydrogen atom respectively. Hence the 

following expressions for the bound-free absorption coefficients were 

obtained [9, 11]: 
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2 
~. 

Z"YkT 16112 e6 nA 
" = exp (- IA/kT) [exp(h,,/kT) -1] 
"bf 3/3 U h4c3,,3 (47fE)3 

0 A 

( 1 7) 

" ~ " 9 
*2 

Z 
16112 e6 ykT n

A 
" =-- exp (- I A/kT) [exp(h" /kT)-I] 
"bf 3/3 ( 411EOP U h"c,,3 9 

A 

(I 8) 
" > " 9 

where nA is the particle density of the complex atoms per unit volume 

and "g is the frequency limit of the close lying terms given by: 

" = (I - I ) /h 
9 g 

(see figure 2) 

-I r freestates 

c d 

I hvg e !f hVn 

boundstates 

h 

o 9 roundlevel 

a) free-free absorption b) free-free emi ss ion 

c) bound-free absorpt i on d) free-bound emission 

e) bound-bound absorption f) bound-bound emission 

Fig. 2. Schematic diagram of energy states and transitions for 

atom, ion or electron. 
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The absorption coefficient for the whole continuum is obtained from 

the expressions for ~ by the addition of the free-free absorption 
"bf 

coefficient ~ found from equation (15). With the help of the Saha 
"ff equation, the product n.n in equation (15) can be expressed in terms 

I e 
of the number of atoms nA per unit volume, giving for the continuum 

absorption coefficient for complex atoms the following expressions 

[9,ITl: 
*2 

16rr2 e6 yZ kT nA IA)/kT] *) 
~" =-- exp [(h" -

3/3 (4rreo) 3 U h4c ,,3 A 
(19) 

" Ii " g 

*2 

16rr2 e6 yZ kT nA 
~ =-- exp [(h"g - I A) /kT] 
" 3/3 (4rrE ) 3 U h4c ,,3 

0 A 

" > "g 
(20) 

When L.T.E. applies, the relationship between the emission coefficient 

E. and the absorption coefficient ~ is given by Kirchhoff's law: 
" " 

£ = ~ I 
" " " p 

[1 - exp (-h,,/kT) 1 =~' I 
" " P 

(21) 

in which the term {I - exp (- h,,/kT)} takens into account the effect 

of the induced emission; I is the intensity of the black body radiation 
" as given by Planck's formu.fR: 

2 h,,3 
= - ----=--- (22) 

exp(h,,/kT) - 1 

Application of the law of Kirchhoff results in the following expressions 

for the continuum emission coefficient E,,: 

32rr2 e 6 
E =--

Z*2 

" 3/3 (4rrE ) 3 
0 (23) 

" , " g 

*) 
This equation is frequently referred to as the Kramers-Unsold formula. 



E = 32rr2 
v 

3/3 

v > v 
g 

(4rrE )3 
o 
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[exp ((h(vg-v) - IA}/kT)] 

(24) 

AS can be seen from equation (23) the continuum emission coefficient 

is independent of the frequency 

proportionally to exp(-hv/kT). 

for v ~ v . For v > v , E 
g g V 

decreases 

Calculation of the bound-free absorption coefficient for photons whose 

energy is greater than the ionization energy of the complex atom (hv > I
A

), 

making use of equation (18) gives rise to considerable deviations [9]. 

By employing the fact that these photons are mainly absorbed by atoms in 

the ground level, the following approximation formula can be derived 

for complex atoms [9]: 

hv > IA 
(25) 

*2 
The value of Z , according to Unsold [10] and Vitense [12], is of 

levels which corresponds to the ground the order of 4 to 7 for all 

state of the atoms. 

With the help of Kirchhoff's law, we find for the emission coefficient: 

= 64rr2 e6 *2 
E Z (26) v nA• I A· exp{-hv/kT) 

3/3 ( 4rrEo)3 h 3c 3 

hv > IA 

It should be noted that the ionization energy I is decreased by an 

amount ~I , as a result of electric micro-fields in the plasma generated 

by charge carriers. This correction must be introduced when calculating 

the coefficients ~ 
v 

The lowering of the 

and E • 
v 

ionization energy ~I can be calculated by means of the 
z 

Debye-HUckel approximation [1]: 

3 
(4rrE ) h 

o 

(27) 



where: 

k = 
£ = o 

"e = 
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Boltzmann's constant (1.38 10-23 J oK-I) 

h • •• (100 10- 11 F -1) t e vacuum permIttIvIty 36rr m 

the density of the electrons [m- 3] 

n. = the density of the particles i with electric charge Z.e 
I I 

(Z. = 0 for neutrals; Z. = 1 for single ionized particles; etc.) 
I I 

The 

Ct' 
v 

dependence, as function of the 

of a spectral line is given by 

frequency, of 

the following 

the absorption coefficient 

relationship, derived 

from the classical theory 

2 

0. 1 = 
V 

rre 

""[lii;"E]iii"C 
o e 

[13] : 

nj f jm Q(v) (1 - exp(-hv/kT)) (28) 

where n. is the population density per unit volume of the energy level j; 
J 

f. is the oscillator strength for the transition of the lower level j to 
Jm 

the higher level m and Q(v) is the normalized line shape function 

( f Q (v) dv = 1). 

The population n. of the energy level j is given, in the case of L.T.E.,by: 
J 

n = n j 
:J. 

u exp (- I./kT) 
J 

(29) 

where n is the total particle density of the atoms or ions per unit 

volume; U is the partition 

the statistical weight and 

Application of Kirchhoff's 

the emission coefficient £v 

(4rr£ )m c o e 

function of the atoms or ions: g. and I. are 
J J 

excitation energy of level j respectively. 

law (equation (21) to equation (28) gives for 

n
J
• f. Q (v) exp(- hv/kT) 

Jm 
(30) 

The line shapes of spectral lines are almost never determined by natural 

broadening only. 
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Besides natural broadening, Doppler broadening is always present and 

dominates the line shapes near the line centre at high temperatures 

or low densities. 

However, in a high pressure discharge (pressure some atmospheres), the 

two above-mentioned universal line broadening mechanisms are often 

negligible, because the line shapes are strongly influenced by the 

interaction of the radiating atoms or ions with surrounding particles. 

This broadening mechanism is referred to as pressure broadening. Inter

action with the radiating atoms or ions can be achieved by either neutral 

or charged particles. The effect of charged particles, however, is so much 

greater than that of neutral particles that the interaction of the latter 

can be neglected as soon as there is any appreciable ionization [14]. 
(For nitrogen at a pressure of a few atmospheres, this occurs when the 

temperature rises above 10 4 oK). 

Hence there are two main broadening agents, ions and electrons. Because electric 

fields are involved, this type of broadening is called Stark broadening. 

A fundamental study of pressure broadening has been made by Baranger [14]. 
Based on this study Griem [15] calculated the Stark broadening of several 

elements and tabulated numerical results [16]. 

The shape of a line broadened by the Stark effect can be described, to 

a first approximation by a Lorentz function [17] , which is given in 

normalized form by [13]: 

L (v) = -
Tf 

1 

e: (31) 

where v . is the central line frequency and a is the half-half width 
mJ s 

for Stark broadening. 

Figure 3 shows a Lorentz function, normalized on unity, as a function of 
the normalized frequency deviation (v-Vmj)/as ' The earlier mentioned Doppler 

broadening results 
form by [13]: 

in a Gaussian line shape, which is given in normalized 

1 
G(v) =-

.r;-
1 
- exp 
aD 

[_ mJ 
[

V - v 'J 2 

aD 

The half-half width of this function is given by [18]: 



v . \ I 2kMT 
BO Iiii2 = :J \I 
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In2 = 1.48 10-20 v .\~ mJ ~ "1M 

where M is the mass of the emitting atoms. 

(33) 

When the half-half width due to the Stark effect (at high densities 

the natural broadening can be entirely neglected) is not appreciably 

greater than the half-half width due to the Doppler effect, the resultant 

line profi Ie is obtained by folding the two I ine shapes Ls{v) and GO{v), 

that is [19]: 

V{v) = f'Go(v') Ls (v - v') dv" 

o 

ID 

Fig. 3. Lorentz function. 

(34) 

Thfs leads to Voigt profiles, which are available In both tabular and 

graphic form for' a large number of conditions [20, 21, 22]. 

Figure 4 shows a number of normalized Voigt profiles as functions of the 

normalized frequency deviation k, with the ratio SS/SO = a as a parameter. 

The frequency deviation k is defined by: k = {v - v .)/w, where w is the 
mJ 

effective half-half width of the Voigt profile. 

For a > 0.4 a first approximation for w is given by I21J: 

(35) 

It is appearent from figure 4 that the Voigt functions for large values 

of k, I.e. in the "wings", behave as a Lorentz function. This is a result 
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of the fact that the Gauss function at large values of k approaches zero 

more rapidly than the Lorentz function. 

The influence of the Gauss (Doppler) kernel on the Voigt functions becomes 

less as a increases. 

For a > 1, It appears that the Voigt profile, apart from a relatively small 

kernel, approximates well to the Lorentz profile. 

o 
10 

V(I1/l) \ 

~ 10' 

'\~ ~ 

10
2 ,\ "'" ~ ~ 

~ " .......... 

"" ~ ~ 

10l 
........... r-... 

";o,s --""" 
~ 1'- ~ 

1.,:'0 ........ -
IIi' 

?:::.. ..l. 
12 16 (I 2 o 4 8 

Fig. 4. Values of the function V(a,kw)/V(a,o) for some values of a. 

I II •... Absorption and emission coefficients for the NI continuum and 

N I, N I I lines. 

I I 1-1. The NI continuum. -----------------

Figure 5 reproduces part of the term diagram NI which has been taken from 

[231. 

It can be seen from figure 5, that the "p. level in the 1s22s22p23s system 

forms the lower limit of the group of strongly-excited levels, lying close 

toge ther. 

The lowering of the ionization energy t:J, calculated by means of equation 

(27), is about 0.4 eV at a pressure of 3 atm.abs. and 0.5 eV at a pres·sure 

of 5 atm.abs. 
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The series limit frequency v corresponding to the 3s 4p level (see 

fIgure 5) is then about 9.38
g

1014 sec- 1 (3200 ~). The series limit 

frequencies v I' v 2 and v h corresponding to the levels 2p2po, 2p20o 
4 0 g g g '15 -1 0 

and 2p S (ground state) have the values -2.54 10 sec (1180 A), 

-2.82 1015 sec- 1 (1060~) and -3.38 1015 sec- 1 (885~) (principel series 

I imit) respectively. 

5 2112p 2 ns 2,12p 2 np 2,2 2p 2 nd 

10 

~,2p _ _ ,p{4~. 
I--

.. --!F.2p !fo{==~ 
{' h2P __ 2.jJ 

" 0 " r 2, ),2_20 
hllg 4pO 

lp 'DO 
. 2S0 

212"_'" lIfp-... ~ 

r hll91 

hVg2 

hV9h 

5 

2, 2,JJ 

2p 200 

, 0 2p'!fJ 

Fig. 5. Part of the term diagram of NI. 

The horizontal line at 14.53 eV denotes the ionization energy of N, which is 

the series limit of terms belonging to the configuration (ls2) 2s22p2ns , 

2s22p2np and 2s22p2nd. 

The terms going to other limits are given at the right-hand side. 

For notation of the terms see [23]. 

The effect of the different values of the lowering of the ionization energy 

AI at the two above-mentioned pressures, has been neglected in calculating 

the series limit frequencies. 

The factor y/UA has been calculated making use of the tables of Wiese et al. 

[24] (calculation of y) and the tables of Planz et al. [25) (calculation 

of UN)' the resulting value of the factor y/UN is roughly approximate to unity. 
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The effective nuclear 
14 -1 (9.38 10 sec ) has 

* charge Z for the frequency interval v ~ v 
g 

been calculated from the 2p and "p levels of the 

lS22s22p2ns system, from the 25 0
, 200

, "po and "Do levels of the ls22s22p2np 

system ( n > 2) and the 2p, 20, 2F, "P, "0 and "F levels of the ls 2is22p2nd 

system, employing equation (16) and is found to be about 1.4. 

* The effective nuclear charge Z for the frequency interval v ~ v ~ v has 
g gh 

been calculated from the 3s"P and from the 2po, 200 and "So levels of 

the ls22s22p22p system, the resultIng value being about 1.7. 

If the quantities calculated above are inserted in equations (19) and (20), 

the following expressions for the absorption coefficient a of the NI 
v 

continuum are obtained: 

a 
v 

v > v 
g 

exp [ - (IN - AI) /kT] exp (hv/kT) 

(36) 

exp [- (IN - AI)/kT] 

(37) 

In these equations IN is the ionization energy of the nitrogen atom, (14.53 eV). 

The corresponding expressions for a' van be obtained by multiplying (36) and 
v 

(37) with the term: [1 - exp (- hv/kT)]. 
It can be shown [26] that at pressures of several atmospheres, the mean 

1 -2 free path of the photons: I = la' exceeds 5 10 m for that part of the v v 
spectrum where the frequency v is smaller than v (principal series limit). 

9h 
When a high-pressure discharge has a diameter d of a few millimeters, this 

means that for the NI continuum (v $ v ) practically no reabsorption 
gh 

occurs: in other words, the discharge is optically thin for the NI continuum 

(v I> v ). 
gh 

The balance between the emitted and absorbed radiative energy per unit 

volume, time and frequency, u is then given by: 
v 

e = 41TE 
v V 

(38) 

Substitution of the expressions for EV found in equations (23) and (24) 

with the corresponding values for Y/UN ' Z* and AI in equation (38) and 

integration over the corresponding frequency interval, gives the emission 

per unit time and volume of radiative energy e which leaves the discharge 
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(e " u). 

The results of these calculations, as a function of temperature with pressure 

as a parameter, are reproduced in figure 6. 

fe.uIW/nf) ~ rJl: 5atm.abs. 

v.' I L 
/ 

1 V p:3atmabs. 
/ 

I ,f 

'IL 

T IDK) -
12 14 16 18 20 

_3 
22.10 

Fig. 6. Radiative energy per unit volume and time of the 

"optically thin" NI continuum (v '$ vgh ) as a function 

of the temperature with pressure as a parameter. 

The bound-free absorption coefficient a for high-energy photons 
"bf 

(h" > IN -. ~) is given, to a first approximation, by equation (25). 
* Calculation of the effective charge Z , by means,of equation (16) for 

the ground level of the nitrogen atom, gives a value of about 2. 

Substitution of the 

* Z in equation (25) 

43 = 1.2610 

numerical values of the constants, e, e , h, c and 
o 

results in the following expression for a 
"bf 

Multipl ication of equation (39) by the term (1 - exp {- h,,/kn), which 

takes into account the effect of the induced emission, gives· the expression 

for a' 
"bf 
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Calculation of a' according to (39) as a function of frequency v
bf at pressures of several atmospheres shows values for the mean free 

path of the photons T = l/a , of the order of 10- 3 m [261. Which 
v v

bf 
_ 

means that the mean free path of the photons t is of the same order 
v 

as or much smaller than t·he diameter d, (d is several millimeters). 

of the discharge. For this part of the NI continuum (v > v
gh

) re-

absorption of emitted radiation will take place. 

This implies that the absorbed radiative energy per unit volume. time 

and frequency a is not equal to zero and therefore u ~ e . 
v v v 

It is worthwhile to divide the NI and NI I lines. which have been taken 

from [241. into two groups: 

a) one group for which tbe central wave 

> 2000 ~. 
length A . < 2000 ~ and 

mJ 
b) one group for which A . mJ 

For the lines in group b) we find that at a pressure of several atmospheres 

the half-half widths due to the Doppler effect. as calculated from equation 

(3) ina temperatu re range from about 104 to 2 x 104 OK. are sma 11 wi th 

respect to the Stark effect as calculated by Griem I16l. (as/aD' 10): 
In other words. for this group of lines the Stark effect is oy far the 

most important broadening mechanism with the result that the 1 ine s·napes· 

can be described by a Lorentz function as given ,by equation OJ). 
Calculation of the absorption coefficients for the central line frequencies 

by means of equation (28). the data on Nland Nil lines from the tables 

of Wiese et al. [241. the half-half widths from Griem's tables II6J. 
produces values of the order of ~ 1 m- 1• In other words. In a high pressure 

discharge (pressure a few atmospheres) wIth a diameter of several milli-

meters, no absorption wi 11 occur for. th I 5 group of 1 ines (). > 2000 R). 
The radiative energy per unit volume and tl·me emitted by an m->- J 
transition which leaves the d i 9charge is then independent of the Hne 

shape and is given by: 

(40) 
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where u . is the balance between the emitted and absorbed radiative 
mJ 

energy per unit 

level m; A . is 
mJ 

the upper level 

frequency. 

volume and time; nm is the population of the upper 

the transition probability of the transition from 

m to the lower level j; vmj is the central line 

The total radiative energy per unit-volume and -time emitted by the 

Nl and NI I lines in group b) is obtained by employing equation (40) 

to calculate the term e . for each line and subsequently summing them 
mJ 

over all the lines in the group. 

The results of these calculations are shown in figure 7 as a function 

of temperature with pressure as parameter. The values, required for 

these calculations, for the transition probabilities A ;; the central 
mJ 

line frequencies v .; statistical weights g ; excitation energies I , 
mJ m m 

have been taken from the tables of Wiese et al. [24J; the particle 

densities nN and nN+. and the partition functions UN and UN+ have been 

taken from the tables of Pflanz et al. [25J. 
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Fig. 7. Radiative energy per unit volume and per unit time of the NI and 

NI I lines (~ .> 2000 ~)as a function of temperature. . mJ 
Solid lines: p = 3 atm.abs.; Dashed lines: p = 5 atm.abs. 
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Calculation of the Doppler half-half widths for the lines in group a) 

(A . < 2000 ~), at pressures at several atmospheres and in a temperature 
mJ 

range from about 104 to 2 x 104 oK, gives values which are of the same 

order as the Stark half-half widths calculated by Griem [16]. (SS/SD ~ 1). 

This means that the line form is given by a Voigt function as indicated 

in figure 4. Calculation of the absorption coefficients for the central 

line frequencies ~I according to equation (28); values of the Voigt v . 
functions for k = Omfrom Posener's tables [21] and data on the NI and NI I 

lines from the tables of Wiese et al. [24], gives values of the order of 
5 -1 

~10 m . In other words, a high pressure discharge with a diameter of 

several millimeters is optically thick for this group of lines for relatively 

large values of the frequency deviation k (see figure 4) . 

Cont ri but i on by a line in this group to the radiative balance u mj can only 

take place by means of the "wings" of this line. 

From figure 4 appears that the Voigt functions for ~ = SS/SD ~ 1 and 

large values of k, i . e. in the Ilwings", behave pract i ca II y as a Lorentz 

function. In other words, in calculating the radiative energy transfer by 

the NI and Nil lines (Amj < 2000 ill in a high pressure discharge, the 

required line shape is given to a good approximation by a Lorentz function 

with a half-half width w given by equation (35). 

IV. Description of the computer programmes for the calculation of the 

radiative balance in a cylinder symmetric discharge. 

The radiative balance U, which is part of the total energy balance of a 

discharge, is the difference between the emission e and the absorption 

a of radiative energy per unit time and volume: u = e - a. All three terms 

contain contributions from the whole spectrum. 

As already stated inthe foregoing chapters, integration over the whole 

volume of the discharge is necessary for the calculation of the absorbed 

energy per 

d i scha rge, 

unit time, frequency 

for that part of the 

and volume a at a 
v 

spectrum for which 

given point in the 

the dis6harge is 

"optically thick"; i.e. the mean free path of the photons T 1s smaller .. v 
than the diameter of the discharge. This im~lies that, for this part of 
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the spectrum, the spectral emission and absorption, coefficients E and 
\> 

a must be known for every point in the discharge. 
\> 

known functions of the temperature (Chapter I I and 

Since E and a are v v 
I I I) i tis s u f f i c i en t 

if the temperature distribution in the discharge is known. 

For the calculation of the contribution to the radiative balance for that 

part of the spectrum for which the discharge is optically thick a number of 

computer programmes have been developed. 

The complete text of these programmes is given in the Appendices 11,1 I I and 

IV. The programmes have been written in "ALGOL 60". These computer programmes 

are described in the following sections. 

As appears from ('0), the calculation of a (r) requires a four dimensional 
\> 

integration over r, r
Q

, ¢ and S. The calculation of a(r) requires moreover 

an integration over the frequency v. In order to restrict the numver of 

integrations to be performed, the exponential integral: 

71/2 

B(g) = f 0 exp (- g/cos6)d6, as a fJnction of g has been calculated 

only one time. The calculation of the function B(g) has been performed for 

o ~ g ~ '5, with the steplengthsof g bein'J 0.0'. Fo.r values of g > '5, B(g) 

has been taken equal to zero, this can be employed because in that case B(g) 

is smaller than '0- 7 B(o). 

The integration of 

the singular point 

the exponential function causes some problems 

in the exponent of tne integrand for e = 71/2. 

owi ng to 

Therefore, it 

is essential to choose an upper limit ,'or the integration and to make an 

estimation of the error consequently Clade. 
1f 

6, being the upper I imi t of the integral for which: o < 6, < /2 then follows: 

7I1z ill 71/2 

f 0 
exp (-g/cosS)dS = f exp (-g/cosS)dS + f exp (-g/cos6) d6 

0 

The upper limit 6, must be choose~ such that 

6, 

(4') 
71 / 

f 2 exp (-g/cosS)d6 ~ E 
6, 

in which E is the permissible error in the estimation. By taking S, larger or 

equal to: 
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8
1 

>.arc cos [g ,1 
t4.85+9 - In (arc cos 9'+h~ 

(42) 

the error in the estimation of the exponential integral B(g) 

is smaller or equal: 

( 43) 

In table I the calculated values for 81 and L, as a function of g, are 

shown. 

TABLE I. 

g 81 [radians] L 

O. 1 1.5639 7.6869 
-7 

10 

0.5 1.5375 4.6886 -7 
10 

I 1.5067 2.5816 -7 
10 

2 1 .45 12 8.1753 
-8 

10 

4 I .3584 8.9871 
-9 

10 

6 1.2827 1.0509 -9 
10 

8 1.2193 I .2704 
-10 

10 

10 1. 1649 1.5683 
- I I 

10 

12 I . I I 76 1.9639 
-12 

10 

15 I .0960 8.8678 
-14 

10 

The text of the 

6(g) with 81 as 

Append i x I. The 

programme for calculating the exponential integral 

upper limit, in accordance with (42), is given in 

results of the calculations are 

The values for B(g), calculated with the aid of 

shown in fig. 8. 

procuedure B(g) (see 

Appendix I) as a function of g, are supplied by the computer on a 

punched tape. 
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Each time a programme is run for the calculation of the radiative 

balance, this tape has to be read in. 

10
0 

10 'PKr-- rr/2 :J 
B(g), J e.p (.g Icos e) de 

0 

2 , 

; ----t "" -- -

"" I 
f-----

~ 
I'-.. 

10 

" " 
-.!L. ............ 

'" 2 6 8 10 12 14 

Fig. 8. The exponential integral 6(g) as a function of g. 

In these prograrrunes (see Appendices I I, I I I and IV) the 6(g) table is 

processed as follows: 

Each time when, at a defined value of 9, the computer asks for the relevant 

value for 6(g), an appeal is made to the procedure 6(g) (see Appendices II, 

III and IV). 

In this procedure it is defined whether the value for g, indicated by the 

computer, is in the range for which the 6(g) table applies. If not, then the 

largest respectively the smallest value of 6 is supplied if 9 is too small 

or too large. Now, the table can be considered as being the interval on 
, 

which 6 must lie. 6y dividing this interval into approximately equal parts 

and, next determination in which half 9 lies, the range containing 9 can 

successively be reduced until the interval in which 9 lies has been reduced 

to two successive values in the table: 

g[i1 s 9 s 9 [i + 1] (44) 

With the aid of linear Interpolation the relevant value of 6(g) can be deter

mined: 

6(g) = .:..6 r,[ i~+ -;1;-;.1_-.-::-6 r,[ i;+l • (g - 9 [ i]) + 6 [ i 1 
g[i + 11 g[11 (45) 
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A flow diagram of the procedure B(g) is given in figure 9. 

x, X Img)>>=_-, 

, .. 
bg-og as 

Fig. 9. Flow diagram of the method 

of linear interpolation. 

As is shown in chapter II the spectral emission and absorption coefficients 

are known functions of the temperature. The calculation of the coefficients 

as a function of position in a discharge requires the knowledge of the 

temperature distribution T(r) in that discharge. This temperature distribution 

must be added to the input data to the computor. 

Calculation of the temperature at a given value fqr the radius r takes place 

by linear interpolation in this table of radius and relevant temperature values. 

This interpolation is performed in the same way as that for B(g) (see section 

IV-2). 

The dependence as a function of the frequency of the absorption coefficient 

a~ of a spectral I ine, in a point rQ in a high-pressure, high-temperature 

discharge is given to a first approximation by (see chapter I I and III): 

" 
1 + 

9j ~xp[-Ij/kT(rQ)l 

U 

(46) 

f .• 
Jm 
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where: 

n the density of the atoms or ions 

U the partition function of the atoms or ions 

A integer 

w the effective half-half width of the Voigt profile. 

An expression for w has already been given by (35). 

The half-half width due to the Stark effect, as is given to a first 

approximation by [27]: 

where: 

c 

"mj 

ne density of the electrons 

c velocity of light i·n vacuum 

wtab reduced half-half width due to the Stark effect [m] 

. -1 
[sec ] (47) 

The values of w b for the relevant spectral lines are taken from the ta 
tables in [16]. An expression for the half-half width due to the Doppler 

effect aD has already been given by (33). 
As can be seen from (46) the frequency deviation ~v is given by: 

(48) 

The frequency deviation is thus related to the hal,f-half width w(T(r
A

» in 

point rA; i.e. that point in the discharge in which we want to calculate 

the radiative balance. 

The relevant value for the spectral emission coefficient EV(rQ)is found 

by multiplying (46) with the intensity I of a black body radiator, this gives: 
vp . 

2hv 3 1 
EV (rQ) = EV (T(rQ» = a~ (T(rQ». ~ exp(hv/kT(r

Q
}} _ 1 

(49) 

The particle densities of the atoms or ions and electrons n, ne and the 

partition functions for the atoms or ions U found in the expressions for 

the spectral absorption and emission coefficient must - as a function of 

the temperature- be added to the input data to the computer. 
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Using the procedure ORTHOPOL these series of values for n, ne and U 

are approximated by systems of orthogonal polynomials. With the pro

cedure YAPPROX the values of n, ne and U can be calculated if the 

temperature is given. The procedures ORTHOPOL and YAPPROX are standard 

procedures of the computer centre of the Eindhoven University of 

Technology. 

For more information about these procedures reference is made to [28]. 

The calculation of C
v 

and ~~ is performed in the procedures written for 

that purpose. (Appendix I I and IV: procedures EPSILONU (R) and 

ALPHANU (R); Appendix I I I: procedure epsilon (r) and procedure 

a I pha (r)). 

It should be noted that in these procedures the effective half-half wrdth w 

is represented by beta 1; Ss by beta 2 and 80 by beta 3. 

The frequency dependence of the spectral absorption and emission coefficients 

is calculated in the procedure EEN{A). 

IV-4.· £~!SY!~!!2~_2f_!b~_S2~!r!~Y!!2~_2f_~_~~~S!r~!_!!~~_!2_!b!_r~~l~!!~! 
balance in the axis of the dischar~e. 
---------------------------.-------~-

From (13) appears that the calculation of the absorbed radiative 

per unit volume, time and frequency in the axis of the discharge 

energy 

a to) 
v 

requi res a two dimensional integration. The calcula·tion of g is performed 

using the trapezium rule. This is a simple integration method requirlnq 

little execution time. For the integration over rQ a second-order Runge

Kutta method has been employed: 

x2 

f f{x)dx ~ J [f{xo) + 4f{x1) + f{x2)] 
xo 

where h is an equidistant step length. 

This method is also known as the Simpson rule. 

Worked out this gives: 

I
X2n+2 h 

f{x)dx= -
x 3 

o 

n 

f{x2k+1) + 2~=1 

(50) 

(51) 

An improvement of the accuracy of the calculation process can be achieved 

by not taking the radius of the discharge R for the upper limit in the 
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integration over rQ, but fifteen times the mean free path of the photons 

I ,unless this exceeds R. In that case the radius of the discharge is 
" taken for the upper limit. rQ 

For rQ equals 15 I", g is (g = J 0.' (r)dr) of the order 10. From figure 8 
o " -5 then follows that 6(g) is of the order 10 6(0), in other words, the 

integration can be terminated. The above is carried out in the procedure 

INTEGRAND (a) (see Appendix II). 

Figure 10 represents a flow diagram of this procedure. 

After calculation of 0. (0) and E (0) there remains the calculation of a(O) 

and e(O) (e = 4rr fE"d") which re~uires an integration over the frequency". 

From (46) follows that o.~, as a function of the frequency deviation 

6" = Aw behaves as 1+!2; therefore the integration can be carried out 

for 0 ~ A ~ 1000, without essentially influencing the accuracy of the 

ca I cui at i on: 
00 "mj+l000w 1000 

a = f avd" ~ f a' 'd" = 2w L a (A) dA (52) 
" " 0 "mj-l000w 

00 1000 

e = L 4rrE d" ~ 2w f 4rrE,,(A)dA 
" 0 

The difference between e and a produces the contribution of the spectral 

line to the radiative balance. 

The integration over the frequency is performed in the procedure TRAP EX (see 

Appendi ces II, III and IV). 

This procedure is a standard procedure of the computer centre. For detailed 

information about this procedure referende is made to [29, 30]. 

Figure 11 represents, as 

u (A) of a spectral line 
" 

illustration, E (A), a (A) and their difference 
" " in the axis of the discharge. 

The complete text of the programme for the calculation of the contribution 

of a spectral line to the radiative balance in ~e axis of a discharge 

is shown in Appendix I I. 



9 : =0 
RQ: =0 

h ._....!L 
sug. - a.V(Q) 

hSU<l 
ARQ'=~ . 100 

g: =g + 
RQ + ARQ 

+ Ja.V(R) dR 
RQ 

£; =£ (RQ) 
8:=8(g) 

£x8 

no 

-26-

• 

I 

· 

• 

ARRAY (0:100) 

yes 

r------ -------
I 
I 50Ml:= I 
I L ARRAY (i) 
I 

i: =1.1.99 I 
I 
I 
I 
I 50M2: = I 

L ARRAY (i) 
i: =2.1.98 , 

h sug 
a.V(O)X 3 x 
(4x50M1 + 2x50M 2 + 
+ARRAY(Ol+ARRAY(lOOl) 

L- _______ ------ -

dV 

Fig. 10. Flow diagram of the procedure INTEGRAND (al. 

.., 5 
I 

M 
P 
5 
o 
N 
I 
N 
T 
E 
G 
R 
A 
T 
I 
o 

....J N 



-
10 

lav ~ 3 tv 

'\ 
I. 

5 ~ 
a 

i0 6 

7 A\ 

10 

10 

10 

-
3 10 30 100 

-27-
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Fig. 11. Emission e" , absorption a and their difference u as a function v v v 
of the frequency deviation A. 

IV-S. £2!£~!2!le~_ef_!~~_se~!rl~~!leQ_ef_~_~e~£!r~!_!IQ~_!e_!~~_r~21~!ly~ 

~~!~~~~_!~_~~!~!~_~~!_~f_!~~_~~!~_~f_~_~!~~~~!9~: 

From the relation (10) for a)rA) appears that for rQ " r
A 

and !IS ".0 the 

integrand in (10) increases very rapidly (V rA
2 + rQ2 - 2rArQcos!lS'= s ~ 

owing to which numerical integration with the here relatively large step 
is no longer possible. To prevent this singular point a constant has been 

added to the term s. This constant has the value'10- 2 I (rA) with I v . v . 
(ce~ira I line mJ the mean free path of the photons with frequency v . 

o ). 

frequency). By applying 

out properly. 

this 
mJ 

approximation the integration could be carried 

It appeared that the accuracy of the calculation had not been influenced. 

The following method has been applied for the calculation of av(rA): 

To achieve a larger 

I imits for rQ and !IS 

accuracy of the calculation process 

have been established as follows: 

the integration 
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rQ = r = rA + 15 T (r
A

) rna x v 

if r ~R, then r = R 
max max 

rQ = rmin = rA - 15 Tv(rA) 

i f r " n ,,' 0, then r. = 0 m min 

(53) 

1ST (r A) 
!is , .. a rc tan -;==:=:=:=:v=:~==="" 

max I/r 2-[15~ (r )]2' 

if 15 T)rA) 

!is. = 0 min 

V A v A 

>. r
A

, then !is = IT 
max 

The area within the integration limits is divided into four sub-areas 

(a, b, c and d) as shown in figure 12. 

o / 

Fig. 12. 
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sub-area, dare given by: 

rAJ 

r min) 
(54) 



-29-

Each of these four sub-areas is divided in the rand ¢ direction into 

surface elements. The number of surface elements in the sub-areas a, b 

and c is determined by staptal; that of sub-area d by staptal I. 

For staptal I choosing a value of the order of the value for staptal, achieves 

that the sub-area d is divided into much smaller surface elements then the 

sub-areas a, band c resulting in a larger accuracy of the calculation process. 

For each surface element the value for g is determined from which with the aid 

of procedure 8(g) the contribution of each element to the integrand of (10) 

is determined. Using procedure SIMPSON all these contributions are summed. 

In the calculation of g which is given by (12) the following approximation 

is applied (see figures 13 and 1): 

Fig. 13. 

g = r a~(s)ds " t [a~ (r A) + 4a I (r ) +a~ (r Q) 1 v m 
P 

(55) 

where rm is given by: 

r = ",V 2r 2+ 2r 2_ 2 \ s m A Q 
(56) 

The calculation of av(rQ) is carried out in the procedure anu(a) (See 

Appen d i x I I I ) • 

The integration over the frequency is also performed using procedure TRAPEX. 

The complete text of the programme for the calculation of the contribution 

of a spectral line to the radiative balance in points out of the axis of 

the discharge is given in Appendix I II. 
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IV-6. Calculation of the contribution of the bound-free continuum (hv>Il -----------------------------------------------------------------

Basically the calculation of the contribution of the bound free continuum 

(hv>I) to the radiative balance can be carried out in the same way as the 

calculations of the corresponding contributions of the spectrallines provided, 

the relevant expressions for the spectral absorption and emission coefficients, 

respectively indicated in the expressions (25) and (26), are introduced 

with regard to the integration over the frequency the existing programme, 

(see Appendices I I and III) have to be changed. 

The frequency interval over which integration has to be performed has 

Y. as lower limit and y is given as upper limit. min max 
The lower I iJ'it Ymin is given by: 

Y mi n = 'ii (57) 

For the upper limit v ,ten times Y. has been choosen. 
max min 

To prevent that the existing programmes have to be changed too drastically, 

an imaginary half-half width wf has been introduced, which is given by: 

'V -\I. 
max ml n 

1000 
(58) 

so that: 
~ v 1000 

J aydv J 
max 

J a = = a dv = wf a (A)dA y v (59) 
0 v . 0 min 

The integration over the frequency is performed using the TRAP EX 

procedure. 

It should be noted that this procedure (see Appendix IV) the imaginary 

half-half width is represented by BRO. 

As an example the complete text of the programme for the calculation of the 

contribution to the radiative balance of the bound-free continuum in the 

axis of a discharge is represented in Appendix IV. 
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V. Radiative losses in discharges in a forced gas flow. 

V-I. !~~~~r~~~r~_gl~~r12~~i2Q~~ 

In the figures 14, 15 and 16 the radial temperature distributions in discharges 

in a forced gas flow for a number of conditions (indicated in the figures) are 

shown. These temperature distributions, which are taken from [26] , are deter

mined by means of the relative side-on intensity distribution of a part of 

the NI free-free and free-bound continuum. 
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In the next section, the radiative energy balance u, will be calculated 

as a function of the radius of the discharge, for the three temperature 

distributions indicated above. 

The calculation of the contribution to the radiative energy balance 

by the NI and NI I lines and the NI continuum for which the discharge 

is optically thick are performed by the computer programms indicated 

in the appendix. 

As already mentioned in chapter I I I are discharges at a pressure of some 

atmospheres and a diameter of a few millimeters.optically thick for those 

NI and Nil lines for which the central wave length A . is shorter than 
mJ 

2000 ~ and for that part of the NI continuum for which: v > v
gh 

the 

principal series limit 0.38.10 15 sec-I). 

The NI and NI I lines under consideration have been taken from tables 

by Wiese et al. [24] and reproduced in table II. (For multiplets, only 

the strongest line is given). 

The following proce~ure was adopted for the calculation of the contribution 

of the spectral lines: 

First of all, for each line of a mUltiplet the separate contribution to 

the radiative energy balance was calculated for the centre of the discharge 

(r = 0). This point was chosen because, as a result of the symmetry, the 

integration over the angle ¢ in (10) can be carried out directly, which 

involves less work. Next we determined for each· multiplet the factor M, 

by which the contribution of the strongest line (u1) must be multiplied 

in order to obtain of the whole multiplet to the radiative energy balance. 

The factor M is given by: 
n 
Y uk 

M=
u1 

(60 ) 

where n is the number of lines in the multiplet and uk the contribution 

of line k to the radiative energy balance. 

This method can be employed because the lines of a multiplet lie very 

close together on the frequency / wave-length scale; it has been carried 

out, amongst others, in [31]. By using the factor M for the multiplets, 

the number of NI and NI I spectral lines to be dealt with was reduced to 

that given in table II (reduction approx. factor 3). 
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TABLE II. 

NI lines 

A [~l -1 -1 8 -1 Multiplet I. [em 1 Im[em 1 9j 9m 
A .[10 see If. 

J mJ Jm 

2p34 SO-3s4p 1199.55 0.0 83366 4 6 5.5 0.18 

2p 32 00 - 352 P 1492.62 19224 86221 6 4 5.3 O. 12 
2p34S0_2p44p 1134.98 0.0 88110 4 6 2.2 0.064 

2p 320O-3s'20 1243.17 19224 99663 6 6 4.3 0.10 

2p32pO-3s2p 1742.73 28840 86221 4 4 1.8 0.082 

2p 320O-3d2F 1167.45 19224 104883 6 8 1.1 0.030 

2p32pO-3s· 20 1411 .94 28840 99663 6 10 0.52 0.026 

2p32pO-3d20 1310.54 28840 105144 4 6 1.3 0.050 
2p32pO-3d2p 1319.72 28840 104615 4 4 1.1 0.029 

2p 320P-4s 2p 1176.4 19224 104227 6 4 0.95 0.013 

2p 32 0O-3d20 1163.88 19224 105144· 6 6 0.43 0.0087 

2p 320o-5s 2P 1100.7 19228 110082 10 6 0.33 0.0036 
2p32pO-4s2p 1326.63 28840 104227 4 4 0.15 0.0040 

2pFoO-3d4F 1169.69 19224 104718 6 8 0.030 0.00082 

2p32pO-3d2F 1316.29 28840 104811 4 6 0.025 0.00096 
2p32pO-5s 2p 1231. 7 28840 110029 2 ·2 0.022 0.0005 

N II lines 
2p23p-2 p3300 1085.70 131 .3 92238 5 7 5.7 0.14 
2p23p_2p33pO 916.700 131 .3 109218 5 5 13 0.17 

2p21 O-2p 31 0O 775.957 15316 144189 5 5 49 0.45 
2p23p-2p33S0 645.167 131 .3 155130 5 3 62 0.23 
2p21 O_2p31pO 660.28 15316 166766 5 3 77 0.30 

2p21 O-3s 1po 746.976 15316 149189 5 3 20 0.10 

2p23p-3s3po 671.391 131 .3 149077 5 5 9.9 0.067 

2p23p-3d 30O 533.726 191 .3 ·187493 5 7 36 0.22 

2p21 O-3d 1Fo 574.650 15316 189336 5 7 35 0.24 

2p21 S_2p31pO 745.836 32687 166766 3 16 0.40 

2p23p-3d 3po 529.86 131 .3 188858 5 5 15 0.062 

2p21 O-3d 1OO 582.15 15316 187092 5 5 13 0.064 

2p21 S-3d 1po 635.180 32687 190121 3 18 0.32 

2p21 O-3d 1po 572.07 15316 190121 5 3 0..97 0.0029 
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The results of the calculations of the separate contributions of the 

"optically thick" NI and NI I lines and ,the NI continuum to the radiative 

energy balance, for the three temperature distributions with a central 

temperature of 15,000, 16,900 and 21,750 oK, are shown as a function of 

the radius in figures 17, 18 and 19 respectively. 

The contributions of the part of the spectrum for which these discharges 

are optically thin, have already been given as a function of the temperature 

with pressure as parameter in figures 6 ("optically thin" NI continuum) 

and 7 ("optically thin" Nl and Nil 1 ines). 

Combining these with the given temperature distributions, we can derive 

the radial distributions of the "optically thin" contributions to the 

radiative energy balance. These results are also shown in figures 17, 18 

and 19. The radial distributions of the total radiative energe balance 

(u t I)' i.e. the sum of all the separate contributions, are given in to a 
figures 20, 21 and 22 respectively. 

R , 1=250A 

0 '\ p=3 atm. abs, 
T(Q)= 15,000 oK 

~ 1=650A 

Itulw/mJ, \NIlines 
p=3atm. abs. 

TIOl= 16,900 0 K 

U(W/m3) \ r--k \ 
3 U 

\NIlines 

~ont. 
\ 
\ 

I" -" 
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, I 
r---L 1\ t-NI,Nn lines \ r\l ~~nd NI C~r-1 --r-- "- I 

i ' 

2 3.2 

, , 
r-Io....... 1\ .. ~ N I.Nlllines Nlllines 

~ ~ ~nd Nlcont. --
rimm, -

a a 

~, I~,. ,\ I , 
NIlline~ \ " 

" 1".:- .. 
I\.. ""' 

17 rlmm) 

1.6 

a .5 15 a .5 15 2 

Fig. 17 Fig. 18. 

Also included in these figures is the radial distribution of one tenth 

of the electrical energy suppl ied per unit time and volume (0.1 a E2). 
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FIgures 17 to 19: 

Radial distribution of the 

contributions of the NI and NI I 

I ines and the NI cont i nuum to the 
radiative energy balance. 
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Fig. 20. 

Radial distribution of 

the radiative energy balance. 
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The electrical conductivity cr as a function of temperature an pressure 

as a parameter has been taken from [26]. 

From figures 20, 21 and 22 can be seen that the calculated energy dissipation 

by radiation (u 1) in the immediate neighbourhood of the centre is about 
tota 

20 percent of the electrical energy supplied, but for greater values of the 

radius r (r < R) the importance of this energy dissipation decreases rapidly. 

At the boundary of the discharge (r ~ R) u lis seen to become negative, 
tota 

indicating that at the edge of the discharge more radiative energy is ab-

sorbed than emitted, but this can be neglected with respect to the supplied 

electrical energy. 

Calculations of the radial distributions of the radiative energy balance 

in "cascade arcs in nitrogen and argon" carried out by Uhlenbusch [32f and 

Hermann et al. [33] also produced negative values for Uti at the to a 
boundary of the discharge. 

As a conclusion it can be stated that the radiation losses which occur 

in discharges at pressures of a few atmospheres and central temperatures 

of about 20,000 oK, when compared with the electrical energy supplied, 

are only of importance in the neighbourhood of the centre of the discharge. 
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~!i2! 06265097 boeruan,l 
2;~!2 ~;~! g, bb, theta; 

!2~~6~~ i; 
~tt!~ d, e[1:4l; 
H2~~ INTEGRAL, ARCCOS; 
~;~! ~~2£;~~; B(g); 
value g; real g; 

end 

§~6!5 ~;~1-hUlp, grens; 
if g = ° then B := arctan(l) x 2 

end B; ---

-- ~1~~ 2;5!2 grens := ARCCOS(gf(14.05 + g - In(ARCCOS(g/(g + 2.3))))); 
hulp := exp(-g); 
B := hulp X INTEGRAL(theta, exp(-gfcos(theta))/hulp, 0, grens, 

end 

e[l] := e[3] := ,,-5; e[2] := ,,-7; e[~l := 0; 
RUNOUT; 
!2~ i := ° ~~;E 1 ~~!! 1500 d2 
2;i!2 g := i X ,,-2; bb := B(g); 

ABSFIXT(2, 2, g); FLOT(10, 1, bb); NLCR; 
FIXP(2, 2, g); PUNCH(bb); PUNLCR 

end; 
ROOUT 

Er§i;~ 

APPENDIX I. 
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APPEND 1 XII. 

!~~~_~f_~b~_E[~gr~~~~_f~r_~b~_~~l~~l~~l~Q_~f_~b~_~~Q~r12~~1~Q_~f 

~_~E~~~r~1_11Q~_s~_~b~_r~gl~~1~~_2~1~Q~~_lQ_sb~_~~1~_~f_~_gl~~b~rg~~ 

The sequence of the input data. 

1. Number of temperature data in the T (r) table. 

2. Number of temperature data in the nN (T) c.q. nN+(T) ; 

U(T) and netT) tables. 

3. The nN(T) c.q. nN+(T); U (T) and ne (T) tab 1 es. 

4. The 

5. The 

values of the constants A ., I.; gJ'; f. and W b' mJ J Jm ta 
exponential integral 6(g) as a function of g. 

6. The T(r) table. 

Output data. 

See programme text. 



L~!S2106265097 bJerman 
2~s!!! £~!!~ Ii. BQ ~RMiu"1' , T.H.:i;. 'r /71 , 

straling van boogontlading in het centrum, 
ingevoerd worden achtereenvolgens; 
1 .aantal 'IX r) 'oI8arden, 
2.aantal (T,n-u,u-n,n-e) <oI8arden, 
3.tabel (T,n-u,u-n,n-e), 
4.1ambda,e-i,gi,f-ik.wtabel, 
5.1n 1500 waarden tabel: g, B{g) am en an, 
6. in opgegeven santal waarden tabel: r, r om en om 

N.B. de laatste waarde van dez.e wbel -.Jordt als boogradius beschouwd; 

TOP,RARMAA,MAX,gij 
LAMBDA,NUO)NU,:?I,DELTANlJ,pi,p,h,k,c,e2mc4-eps,f1k,kfaktor,hnugedk,eigedk,ALFAK'IDR,SPSFAK'IOR, 
a, 'tt'INLSES, ~XTRA,BE'IF AK'IOR ,BRO, pibro; 

RARMAX := R~j MAX := ~E:AD; 
pi := 4 X arctan(,); 
h :""'" 6.624r34; 
k ,= 1.38.-23; 
c ,= 2.9<:B",S; 
e2mc4eps := .26565~5; 

real E:N\J, :!NUl, ANU, UNU, RQ, fi, Rl1DIUS, H, T, theta, m, 
~gt~g~r 1, I, J, nne, nnu, d, ej 
r~~ ~r~~~ RAR. TRAR[I,RAeMAX], 

UAR, 3AR, fAE, alphae, alphau, betae, betau{l :MAX], 
ae, au[O:MAX], delta[-l :MAX], 
GAB, B,m[O:1500], 
UITVO>R[O'3. 1,2C]; 
iJRTHOfOI.., YAPFROX; 

r~~ ~2£~~~~ ~nAPEX (x, fx, a, b, 13-e, re, orde, m)j 

n, minr, ALFA, RQMIN, RQMAX, stukanu; 

APPENDIX 11-2. 

!~-!.~~ a, b. re, a;!t Orde; ~E;!::.~a~! oroe. m; !~~l x. fx, a, b. Be. rei 
!?:5ei!!! £2!!~!!~ De procedure TR}\F~ geeft een benadering van de waarde van de integraal van de functie f( x) OVer bet 

interval [a, b]. De procedure benadert deze ·,.,aard:: dOOr extrapolaties van rat ivnale functies, gebaseerd 
op het berekenen van een aantal trapezium-4:lenaderingen. BiJ aanroep van de procedure lOOet de formele pa.rameter 
fx vervangen '<lOrden door de expressie voC.r rex). x treedt op als Jensen p3.ratneter. Het maximale santal 
trapezium-benaderlngen meet aan de procedure meeg~geven worden met de integer oroe. Ret proces elndigt als 
do~r L"<!e opeenvolgende extrepolaties T[m]. '-['[m - 1) voldaan is aan abs( T[IIl - 1] - T{mj) < Be + re x abs( T[m]) 
of als m d~ · ... aarde orde heeft bereikt. Na aflcop van de procedure heeft III sIs oI8arde het aantal 
berekend~ trapezium-beIlad=ringen of, indlen niet aall de eiootest voldaan kan ",'0rden, de waarde nul; 

i~!:.~s.~!. nn, i; r!!~l n, f2, f2a, f3, hO, h, to, tr, tn; 
!.!!~~a~~ ~!:!:~l. nrO:orde]; ~!:~~l t{a;(]; 
E!;2£~~5 extr (m); ~±~~ IDj ~!!~sg~!: Ill; 

2~8~~ !.!!~~6~r t, mm; [~l u, v, tu, ~v, d; 
v ;== v; ;..; :: t[O]; tr':== t[O] :== ttl; if m> 7 then n:m ,- 7 !::.-!.~~ tmli ;== m; 
for i := 1 stet! 1 until mID do -- ----
~~8~E d :== nrm)/n[m-:-I]; d-7~ d X d; tv := tr - Vj tu :== tr - Uj 

!.£ tV,lo t.!!::~ cr :== tr + Lu/(d x (1 - lou/tv) -1); 
!.£ i ~ mm t~~!! ~~g~!! v := u; u := ttl) ~L~j t(l) := ~r; 



" 

APPENDIX II-3 

n[O] := 1j n[1] := 2; n[2] := 3; f2!: i :c 3 ate\. 1 ~ orde ~ neil := n(i - 2] X 2 ; 
hO := b - fl; X := aj fl := !Xj UITVOER[d, e]:= X pi X flj x := b; fl := (fl + fx)/2; teo] .- fl X hOi 
x := a + hO/2j f2a := f2 := fx; UITVOER[d, e + 1] := h X pj X £2; 
if d == 1 then ,egin UITVOEH[O, e] :== a; UITVOER[O, e + , J := x;e := e + 2 end; 
tn := (f,-;-f2 X hO/2; extr(l)j to := trj --
~ m := 2 step 1 ~ orde 2:2 
begin 1£ m = 2 ~ begin x := a + hO/3; f3 := fXi x := b - hO/3; f3 := f3 + fx; tn :~ (f, + f3) X hO/3 ~ 

~ begin nn := n[m]; h := hO/lU1; 
if m = (m : 2) X 2 
then begin-for i := , step 6 ~ nn, 5 step 6 ~ nn 22 

begin x := a + i X h; f3 := f3 + fx end; 
tn:-; (f3 + f2a + f1) X hi f2a := £2-

end 
~ begin !2!: i := , ste) 2 ~ nn 2£ begin x :'" 

tn := (f2 + fl X h 
end 

end; -
11 absrto - tr) .'5 ae extr(m); 

end' -' m := 0; 
end: TRAPEX := tr 
~ TRAPEX; 
~ procedure INTEGRAND(a); 
~aj~aj 

+ re X abs(tr) ~ goto end ~ to := tr 

begin~ e.lpO, alpi, alpil, eps, hsug, g, var, 80m', 80m2; 
integer ii 
array INTAR[O: l00J; 

a + i X h; f2 := 

alpi := alpO := ALPHANu(a); epa := alpO X EPSFAKTOR x exp(4mugedk!T); 
hsug := 15/alpOj 1! haug > RADIUS ~ hsug := RADIoS; hsug := hsug/100.('I{)lj 
g := 0; INTAR[aJ := BAR[aJ X eps; 
!s: i := 1 step 1 ~ 100 .:!£ 
besin var := i X hsugj 

alp! 1 := ALPHANU(var); epa := Rlpi 1 X EPSFAKTOR X exp(-hnugedk/T)j 
g := g + .5 X hsug X (alpi + alpil); 
INTAR[l] := B(g) X eps; 
alp! : = alpi 1 

end· -' soml := 0; 80m2 := OJ 
!2!: i := 1 step 2 ~ 99 do som1 := 80m' + INTAR[i]; 
for i := 2 step 2 until 98 do 80m2 := 80m2 + INTAR{il; 
oo&;RAND := hsug X (INTAll[Q1 + INTAR[100] + 4 X soml + 2 X som2)/} 

~ INTEGRAND; 

£2 + ex !!!2; 
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real ~~~~.EPSILONU(R); 
~e" 
begin mill; "ALl'l!AJt/lJ( IR )"EPSFAKTOR><e,:p( --hmlge<Ik/T); 
~ EPSILDNUj 

~ procedure ALPHANU(R) j 
value Rjreal Rj 
begin realBETA,BETAFAKTORj 

RT(R,T); 
BETA:=BETFAKTORxYAPPROX(nne,alphae,betae,ae,T)j 
EETAFAKTOR:=BETAX(l+(axBRO/BETA)k2); 
EXTRA: =ALFAKTOR>«exp(-eigedk/T))XYAPPROX(nnu,alphau,betau, au,T)/BETAFAKTOR; 
ALPHANU: ::EXTRAj 

~ ALPHANUj 

proCedure RT(R,T)j 
value R;real'R,T; 
begin int'e'6er og,IDgJ bgj 

og:::l jbg: ::R.ARMAXj 
V: 1lI!:=og+( (bg-og):2); 

g R~AR[mgl then bg::: 118 ~ og:::ngj 
if (bg-og»1.5 then ,)'r V; 
T:=(TRAR[bg]-JI'RAR[og X R-RAR[og] )/(RAR[bg]-RAR[og] )+TRAR[og] 

2 RT; 

~ procedure B{g); 
value gj real gj 
begin integer og, ItS, bgj 

.!! g > 15 ~ begin B ::: OJ goto eindbg ~j 
og := OJ bg ::: 1500; 

V: Ill! := og + ((bg - og) : 2); 
if g < GAR[mg] then bg-::: mg else og :c ms; 
If (bg - og) > "'f':""5 then gote v;-
B:= (BAR[bg] - BARTQgJ) X g - GAR[og] )/(GAR[bg].- GAR [og] ) + BAR[og]; 

eindbg: 
~B; 

APPENDIX 11-4 
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~ procedure EEN(a); 
value ajreal aj 
begin NU:=N1io+axBRO; 

hnugedk: 'hXNU/k;EPSF=OR: =2xhXNlb<Nlb<NU/ (cxc ); 
EEII:=l 

end EEN; 
'for 1:=1 rtjP 1 until MAX do 
bOgin TAR I :=REAii;(iAR[I]:;;ji'EAD/READ;EAR[I]:=READ 
~j 
LAMBDA := READ; E1 := READj g5. := READ; :fik := READ; WINLEES := READ; NUO := c/LAMBDA; 
PRUll'TEXT(-bie invoergegevens Zijn::J..); CARRIAGE(2); 
PRINTTEXT(<: 1_00=).); FWl'(6, 2, LAMBDA); PRINTl'EXT(<: meter).); NLCR; 
PRINTTEXT(<: nu-O =).); FWl'(6,2, NUO); PRIIITTEXT(<: hertz:>); NLCR; 
PRINTTEXT(<: ei =).); FIXT(5, a, EI); PRINTl'EXT(<: /cm:!-); NLCR; 
PRINTTEXT(<: gi =).); FIXT(5, 0, gi); NU;R; 
PRINTTEXT(<: fik =:>); FIXT(l, 4, fik); NLCR; 
PRINTTEXT(<: wtabel=).); FWl'(6, 2, WINLEES); PRIN'ITEXT(<: meted); NLCR; 
!2!: I := a atep 1 ~ 15aa!!£ begin GAR[I] := READ; BAR[I] := READ ~; 
!2:: 1:=1 st[p 1 until RARMAX ~ begin RAR[I]:=READx,,-3jTRAR[I]:=READ ~; 
RADIUS:=RAR RARIlAXJ; 
OHTHOPOL(TAR,UAR,MAX,nnu,MAX-l,alphau,betau,au,delta,delta(nnu]jdelta(-'15w-B)j 
ORTHOPOL(TAR,EAR,MAX,nne,MAX-l,alphae,betae,ae,delta,delta[nne]/delta[-l]<u-6); 
BETF=DR: =2. 998"..14XWINLEES/ (LAMBDM2); -
T := THAR[l]; BRG := BETFAKTOR X YAPPRIJX(nne, alphae, betae, ae, T)i 
pibro:=8xpiXBROj 
eigedk:=1.4}855XEI ;ALF=OR:=e2mc4epaXgixfik/P1; 
PRINTTEXT(<: RADIUS=).); FWl'(6, 2, RADIUS); PRIN'ITEXT(<: meter:»; CARRIAGE{}); 
PRIWITEXT( .(enkele ingelezen en ver\olerkte waardenJ,.); CARRIAGE ( 2); 
PRINTTEXT« r t ne»' NLCR; 
PRIN'ITEXT(<: mm kelv1n ~}!); NLCR; 
SPACE(6); !£!: I := 1 step 1 ~ 25 !!£ PRSYM(65); NLCR; 
for I := 0 (t;p 1 until 10 do 
begin SPACE 5 ; ABSFIXT ( 1, 2, I X RAD IUS X .,+2); 

RT(I X RADIUS/la, T); ABSFIXT(5, 1, T); 
FLOT(5, 2, YAPPROX(nne, alphae, betae, ae , T)); NLCR 

~; 
CARRIAGE(}) ; 
PRINTTEXT(~nkele nuttige gegeven8~)j CARRIAGE{2); 
PRINTTEXT(~ de orden der benaderingspolynomen zijn: »; 
FIXT(2, 0, nnu); FIXT(2, 0, nne); ULCRj 
PRINTTEXT(<: de half'halfYM.rdebreedte bedraegt »; 
FLOr(6, 2, BRO); PRINTTEXT(<: hertz»; CARRIAGE(2); 
PRINTl'EXT« l/alphanu(o) alB f'unctie van de frequentieafw:l.jk1ng:!.); NLCR; 
PRINTl'EXT(<: a 1/.1phanu(O»); Nl.CR; 
for a := 0, .5, 1, 2, 3. 6.5, 10, 20, 30, 65, 100, 200, 300, 650, 1000 do 
bOg1n SPACE(8); ABSFIXT(4, 1, a); F1.or(6, 2, l/ALPlIAIIU(a)); NLCR~; -
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begin integer a.m1n,8lII!I.X; 
amin:=l ;ANU:=OjENU:...oj 
NEW PAGE; e := 1; 
d :~ 2; TRAPEX(Il, EEN(Il) X ALPlIANU(o) x INTEXlRAND(B), 0, 1, 0, .,.-4, 2, TOP); 
d := 1; ENUl := TRAPEX(B, EEN(Il) X EPSILDNU(O), 0, " 0, .,.-4, 10, TOP); 
ABSFIXT(3, 0, LINE NUMBER);PRINTTEXT(<am1n,amax, en m in enu ziJn achtereenvolgens »; 
ABSFIXT(4, 0, 0); ABSFlXT(4, 0, 1); ABSFIXT(2, 0, TOP); NLCR; 
for amax:=3, 10,30, 100,300, 1000 do 
begin ABSFlXT(3,0,LlNE NUMBER);-

end: 

PRINI'I'EXT(.t8m1n,amx,m in e.nu, en m in enu zijn achtereenvolgens>),; 
ABSFlXT(4,0,amin);ABSFlXT(4,0,amox); 
d := 2; . 
ANU := ANU + 'ffiAPEX(Il, EEN(a) X ALPIIANU(O) X INTEXlRAND(a), amin, 8lII!IX, 0, .,.-4, 10, TOP); 
ABSFlXT(3,0,TOP); 
d := 1; 
ENU:=ENU+TRAPEX(Il,EEN(,,)XEPSILDNU(0),amin,omox,0,.,.-4,10,TOP); 
ABSFIXT{3,0,TDP);NLCR; 
amin:=BDBX 

UNU := ENU - ANU; CARRIAGE (5 ); 
PRINTTEXT(~u=»;FLDT(5,2,pibraxUNU);NLCR; 
ENU := ENU + ENUl; 
PRINTTEXT(<anu=>); FLDT(5, 2, pibro X ANU); NLCR; 
PRINTTEXT(~nu=»;FLDT(5,2,pibroxENU); 
NLCR;PRINTTEXT( <\l.'lU is>);FlXT{2 ,2, UNU/ENlb(100) ;PRINTTEXT( .(procent van enu»; 

!2Sj 
begin!2!: I := 1 step 1 ~ e - 1 22 UITVDER[3, IJ := UITVOER[1, II - UITVCJER[2, II; 

CARRIAGE(5}; 

end--' EIND:; 

PRINTTEXT ( .( a enu anu unu> ); NLCR; 
for I :11' 1 st(p 1 until e - 1 do 
begin ABSFIXT 3, 1-;-ur-TVOER[O,Ill; =(5, 3, UITVCJER[1, Ill; FLDT(5, 3, UITVDER[2, Il); 

FLDT(5, 3, UITVCJER[3, II); NLCR 

~ 

end 
p;:r,gend 
3 
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APPENDIX III. 

I~~!_2f_!b~_er2gr~~~~_f2r_!b~_~~1~~1~!12~_2f_!b~_~2~!r1~~!12~ 

2f_~_~e~~!r~1_11~~_!2_!b~_r~21~!1~~_~~1~~~~_1~_e21Q!§2~!_2f 

!b~_~~1~_2f_~_21~~b~rg~~ 

The sequence of the input data. 

1. Number of temperature data in the T(r) table. 

2. Number of temperature data in the nN (T) c. q. nN+ (T) ; 
U(T) and ne (T) tables. 

3. The magnitudes of s tapta I and staptal 1. 

4. The nN (T) c.q. nN+(T); U (T) and ne (T) tab I es. 

5. The line identifier and the magnitude of rA• 

6. The values of the constants g .• I .• f. • "mj and wtab · J J Jm 
7. The exponen t i a I integral B (g) as a function of g. 

8. The T (r) tab Ie. 

Output data. 

See programme text. 



APPENDIX 111-2. 

l&~ol 062652~8 holtz 
2~iI5-£2~~~ Berekening van atraling in een boogontlading voor punten buiten de as. 11-71 T.R.E. 

Inlees volgorde: santal waarden van t in t(r) tabel, 
aantal waarden van t in tabel 2 • 
. Ie waarden van sta ptal en ata ptall , 
d~ waa.rden van t,un,un,ne uit tabel 2, 
de l1jn identifier en de waarde van ra, 
de waarden van de eonstanten gi, ei, fik, lambda, vtab, 
de wu.rd.m van g en b( g) ui t b( g) tebel, 
d. waarden van t en r uit t(r) tabel.; 

!l!!:"..II!!: numbert, nUlllbertr, rij, kolom; !!!!! !!~ tebel[O:~, 1 :20]; 
numbertr :_ re&a.; nwabert :c read; 
2!i!2 £!!~ gi,e1,f1k,1&mbdaO,theta,r,vtab,pi,c,alph&faktor,t,a,ra,betalra,&lphara,enu,&ra,nuO, 

alpharq, 
ra, rq, epafaktorl, epsfaktor2, radius, lnu, t1, t1.Jmt.x, rain, l"ID!l.X, sax; 

!n~i!!: 1, nun, JUle, .taptal, staptall, 11Jn; 
!:!!:~ !!!:&..l Wl,ne, tt[ 1 :numbert],alphB:un,betaun,alphane, betane[ 1 :nuabert - 1] ,a.un,ane[ O:nUllbert - 1], 

ddta[-l:nUlllbert -1], tr, rr[l:nWlbertr], be, gg[o:loool; 
!-ib~ OR'i'llOPOL, YAPPROX; 

£!!~ ~~~ TRAPEX (x, lx, a, b, ae, rei orde, 11); 
!!~!:!! A, b, re, ae, ord.e; ~~;r oroe, m; ~! X, fx, &, b, ae, rei 
2!i!!! 22!!!!!l~ De procedure TRAPEX geeft een benader1ng van de waarde van de integraal van de JUnette t{ x) over het 

interval [&., b1. De prOcedure benadert deze waa.rde door extrapolaties van rationale tuneties, gebaaeerd 
op het berekenen van een aantal trapezium-benader1ngen. BiJ aanroep van de procedure moet de for.le pa.,ruaeter 
fx vervangen worden door de express1e voor f{x}. x treedt op ala Jensen parameter. Het maximale aantal 
trapez1~benader1ngen meet aan de procedure meegegeven worden met de 1nteger orde. Het procea eindigt ala 
door two. opeenvolgende extrapolat1es T[m], T[m - 1] voldaan is ean aba(T[m - 1] - T[m]) ~ as + re x aba(T[m]) 
of ala m de waarde orde heeft bere1kt. Na afloop v,an de procedure heeft m als waarde het aantal 
berekende trapezium-benad.er1ngen of, indien niet aan de eindteat voldaan kan worden, de vaarde nul; 

1nteier nn, 1; real t1, f2, f2a, £3, hO, h, to, tr, tn; 
!!!~e~ !!!!!!l nrO:orde]; !!~ t[O:7]; 
E2£!2~ extr (m); ~!~:. m; !ll~ii!:: m; 
2!i!!! !ll:::.a!::: 1, mil; E!!! u, v, tu, tv, d; 

v :- 0; u :c t[O]; tr :- t[O] != tn ; if m > 7 then mm :- 7 =-1!! mm :- mj 
for 1 :- 1 stee 1 until mm do -- ----
§!a!U d :1:1 iiIii]/n[m-:-I]; d-:. d x dj tv: ... tr - v; tu :- tr - u; 

!! tv O~!! tr := tr + tu/(d x (1 - ~ujtv) -1); 
!! 1 ~ om ~2~!! 2~~!2 v :- u; u :- t[1] ~!!~; t[i] :- tr; 

!D2 extr; 
nro] := 1; n[l] :- 2; n[2] :- 3; for i :- 3 .tee 1 until orde ~e n[1] :- n[i - 2] x 2 
hO :- b - &i x := &; fl :- fx; tabei[kolom, rIjJ :.-ri;-
x :- b; f1 :- (f1 + rx)/2; t [0] := 1'1 x hO; 
x := a + hO/2; f2a :- rc :- fx; tabel[kolom, r1j + 1] :_ £2; 
if kolo .. - 1 then be~in tabel[O, r1j] :- a; tabel[O, rij + 1] :- X; r1j :- rij + 2 ~Ee; 
til := (fl + f2}X h5i'2i-extr( 1); to :- tr; 
!e!: II : - 2 !~e 1 l!!!ll~ orde ~e 
2!6!!! !! m - 2 ~2;!! 2!i!!! x :- a + hO/~; f3 :- fx; x := b - hO/~; f~ :_ f3 + fx; tn :- (fl + f3) x hO/3 ~~ 



!!e..! 2!£!! rm :- n[II]; h :- hO/nn; 
if II - (II : 2) x 2 
~!!! 2~iS!!!-!2r i. :- 1 !~I? 6 l!!!~g rm, 5 ~~~I! 6 l!!!~!! rm ~2 

b!lln x :- a + i x h; f3 :~ t3 + fx end; 
in ,= (t} + f2a + tl) x h; f2a :- (2---

end 

APPENDIX 111-3. 

!:!!! 2!i!!! !E! 1 (::CII 1 !~e 2 ~~!~ rm ~2 2!i!!! x :- a + 1 X h; t2 : .. t2 + tx !~; 
tn:- f2+fl)Xh 

!!!! 
end; 

extr(_); !! aba-rto - tr) ~ ae + re x ab8{tr) ~!!! 52~ end !!!: to :- tr 
end; 
.:- 0; 
cmAPEX :- tr 

~ ~~ betal(t); 
value t; real. t; 
~i!!! bet&17_ eX wtab x .-22 x YAPPROX( rme, alphane, betane, ane ,t)/luIbdaO '" 2; 
!!*! betal; 

~! 1!tO-£!~~! alpba(r); 
w..i.'Ue r; real r; 
~Li!! t!'!rbetat; 

t :_ tamper); betat := betal(t); 
alpha :. alphataktor X YAPPROX(nun,alphaun,betaun,aun,t) x betat/(betat '" 2 + (a X betalra) '" 2) 

X exp« - 1.4}855 X e1)/t) 
!!!!! alpha(r); 

£!!! l!t2e~ een(a); 
val.ue a; real a; 
~!IS!!! £!&_rnu; 

nu :- nUO + a x betalraj 
epataktorl :- 2 x 6.624.-}4 x nu '" }/e '" 2; 
epsfo.ktor2 :- 6.624.-}4 X nujl.3S.-2}; 
een :- 1; 

!!!e een; 

!!'!! ~edur! epsilon( r) ; 
:!!!!!! r; ~ r; 
2!iS!!! alilarq :- alpba(r); epsilon := alpharq x epsfaktorl x exp( - epsraktor2/t) 
~!!!! epsilon( r) ; 

r~! 1!£2£~"! temp( r) ; 
~= x; !!!! rj 
b~i!! !!!J:e..er og, mg, ba; 

og :... 1; bg :- nurabertr; 
V: DIg:. og + «bg - og) : 2); 

if r < rr[mg)·then bg := mg else og :_ ~; 
If (bg -cg) > i75then a0to Vi--
temp :- (tr[bg] - trtOslY-x (r - rr[ogl)/(rr[bgJ -rr[ogJ) + tr[og]; 

!!!!! tempe r ) ; 



£!!! F~£~~~..2 silrmson{x, fx, El, b, step); 
Y!!~ a, h, step; ~l 8., b, X, fx; !2~=5~:: stePi 
2"..lP.:!! ~l !!!!i: fxarrO:otep); 

real h, soml, a0m2; 
Inte'er 11; 
E-,: (S - a)/atep; 
!~ 11 :- 0 step 1 ~!~ step ~ 2:i!~ x :- a + 11 X hi fxar[11] := rx ~~~; 
80ml := 80m2 :- 0; 
tor 11 := 1 Bt~ 2 unt1l atep - 1 do som1 := 80ml + fxar[il1; for 11 := 2 s~ 2 uniTI step - 2 do som2 := som2 + fxar[11); 
jj!ii,pson :- hT3 X (fxarr5) + 4 X semi + 2 X 80m2 + fxar[ step]); 

!!!2 simpson; 

!:!!~ ~2l'~~l!!:~ b( rq); 
~!~ rq; ~! rq; 
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bei1n real g, s; 1nt!d!r og,~,bg; 
-- -.:: sqrt(rO:-;r; 2:;: rq A 2 - 2 X ra X rq X eos(n)); g:~ S/2 X (alplJar&. + o.lpharq); 

1f g D 0 then b != 0 else 
bei1!! !! g->"10 :2!2 S-,= 0 ~~! 

~!! og :- 0; bg :- 1000; 

end' 
!!!!! b( ;:q); 

V: mg:- og + «bg - og) : 2); 
if g < gg[mg] then bg :- IIIg else og := mg; 
If (bg - og) >-;:5 then ioto-vi-
S-:- «be[bg] - be[ogl) x-rs - gg[og)/(gg[bg) - gg[og) + be[og))/(s + .-2 X lnu); 

end' ---' 

!:!!!~ ~c~ur-! anu( a) ; 
~~l!! a; ~ ,,; 
2~!!! een\8.,j 

alplJar&. := alpha(ra); 
smax :- 10/alplJarO.; 
rmin :- re. - smxj if rain < 0 then rmin :- OJ 
nax :- ra + BlIILX.j If rmx :; radiU; then rmax :- radius; 
1t smax > ra then fimax :- pi el •• fImOi :- arctan(smax/sqrt(ra A 2 - .max ! 2»); rs ! -= anu :.. 4)(-alphara x ----
( s11111'son(rq, epsilon(rq) X rq X Simps0l1(fi, b(rq), 0, fimax, staptal), nain, (4 X ra + nain)/5, .taptal) 
+ s1mpson(rq, eps11on(rq) X rq X s1mpson(fi, b(rq), 0, f1max/5, staptal1),(4 x ra + rm1n)/5, (4 x ra + rmax)/5,staptal1) 
+ s1mpson(rq, epsilon(rq) x rq x simpson(fi, b(rq), fimax/5, f1max, .0 x staptal), 

(4 x re + rm1n)/5, (4 x ra + rmax)/5, staptsl/5) 
+ s1I1jl8on(rq, eps11on(rq) x rq x sillpson(fi, b(rq), 0, fimax, staptal), (4 x ra + nax)/5, rmax, staptal»); 

end anu(,,); 
at&ptal. :_ readj IStaptall :-= read; 
pi :.3.1415926535; c :- 2.990.+8; 
tor 1;-1 steE 1 unt1l numbert do 
~ tt[il-:a reaai-un[i] := read/read; ne[i] := read end; 
ORWOPOL{ tt, WlJnumbert,nWl,numbert -1 ,alphaun, betaun,auii;deltaJdelta[nun]/delta[-l] < 13-6) i 
ORTHOPOL(tt,ne,numbert,nne,numbert -l,alphane,betane,ane,delta,delta[nne]/delta[-l) ~ .-6); 



l1jn := read; ra :- read; 
g1 := read; ei : ... read; f1k := read; lambdaO :_ read; vtab !Q read; 
!2!: i :- 0 !~11 1 !!!!l:!! 1000 ~ 
2!ii~ gg[i] := read; be[i] := read ~~; 
!2!: 1 : = 1 !~1? 1 !:!!!~ll numbertr s!2 
2~i~~ rr[i] := read x .-3; tr[i] := read ~~; 
alpllat'aktor := 0.26565.-5 X gi X t'1k/pi; 
nuO := c/la.ml:xlaO; radius :_ rr{numbertr]; 

APPENDIX 111-5 

betalra := betal(temp(ra)); a := Qi lnu := l/alpha(ra); 
PRIN'lTl>XT( ilie invoergegev.ns zijn:~); CARRIAlJE( 2); 
PRINTTEXT(ilieze g •• vone beheren bij lijn: nJ);PRSYM(lijn: 1080); lljn :- lijn - 1000 x (lijn " 1000); 
it liJn > 99 then PRI~T(isom ad»; ABSFIXT(2,0,lijn - ioo x (lijn : 100)); N~R; 
PRINTTEXT(~ ----lambda.~); FLOT(6, 2, lambdaO); PRINTTEXT(~ meter~)'-NLCR; 
PRIN=T( < nu-o.:!.); FLOT( 6, 2, c/ lambdaO); PRIIITTEXT( < hertz!); NLCR; 
PRINTTEXT« oi =~); FIXT(5, 0, ei); PRIIITTEXT(.!: /c~); IILCR; 
PRIIITTEXT(t gi -~); FLOT(3, 1, gil; NLCR; 
PRINTTEXT« fik =~); FlXT(l, 4, fik); NLCR; 
PRINTTEXT« vta.bel-~); FLOT(6, 2, "tab); PRINTTEXT« meter~); IILCR; 
PRINTIEXT« ra _~); ABSFIxT(l, 2, re x .+3); PRINTTEXT« ...J); NLCR; 
PRINTTEXT« t(ra) =~); AlEFlxT(5, 1, temp(ra)); PRINTTEXT« kelvin:J.); NLCR; 
PRINTTEXT« radius-~); FLOT(6, 2, radiue); PRINTTEXT« ... ter~); N~R; 

PRINTTEXT« l-nu =~); FLOT(6, 2, lnu); PRINTTEXT« meted); NLCR; 
CARRIAGE(2); PRINTTEXT(tenkele ingelezen en verwerkte waarden:J.); CARRIAGE(2); 
PRIliTTEXT( < r t ne nju ~); NLCR; 
PRINTTEXT« rom kelvin ~3~); NLCR; 
SPACE(6); !2!: i :- 1 !~~11 1 !!!!l:!! 37 ~2 PRS~65); N~R; 
for 1 :- 1 stel? 1 until 10 do 
~!i!~ SPACE(5); ABSFiXT(l, 2; i x radius x 100); 

ABSFIXT(5, 1, temp(i x radius/10)); 
Fwr(5, 2, YAPPROX(nne, alphana, batane, ene, temp(i X radius/l0))); 
FWr( 5, 2, YAPPROX(nun, alphaun, betaun, aun, temp( i x r&diue/l0))); NLCR; 

~!!e; 
CARRIAGE( 3); 
PRINTTExT( <enkele nuttige gegevena:!.); CARRIAGE(2); 
PRINTTEXT« de orden v&n de benaderingspolynomen Zijn:~); 
AI£FIXT(2, 0, nun); AlEFIXT(2, 0, nne); NLCR; 
PRINTTEXT« de halt-halt'-waardebreedte bedraagt:!.); 
FIm(6, 2, betalra); PRINTTExT(i: hertd); NLCR; 
NLCR; PRINTTEXT« l/alphanu(ra) a18 functie van de frequentieafvijking a~); NLCR; 
PRINTTEXT(.t a l/alphanu(ra)~); NLCR; 
tor a :- 0, .5, 1, 2, 3, 6.5, 10, 20, 30, 65, 100, 200, 300, 650, 1000 do 
~eiiin 6PACE(il); AlEFIXT(4, 1, aJ; FIm(6, 2, l/alpha(ra)); NLCR ~~; --
2!i!!! !!!~F-!: amin, 8.JIIlX, top; !::!! enul, pi4, unu, aanu; 

&Ddn := 2; &anu :- enu := 0; pi4 := 4 x pi; 
NEWPAGE; riJ :... 1; 
kolom :- 2; TRAPEX(a, a.nu(a.), 0, 2, ,J, 1')-4, 2, top); 
kolom :- 1; enul := TRAPEX(a, een{a} X p14 x epsilon(ra), 0, 2, 0, .-4, 7, top); 
AB5FIXT(3,O,LINE NUMBER);- PRINT'IEXT(..fam1n, amx, en m in enu zijn: :J.); 
SPACE(10); ABSFIXT(4, 0, 0); ABSFIXT(4, 0, 2); ABSFIXT(3, 0, top); NLCR; 



" 

for a.m.x :=}, 10, 30, tOO, 300, 1000 do 
beoi!! ABSFIXT(),a,UNE NUMBER); --

PRlNTlEXT(.J:imin, 8.JI&X, min anu en m in enu zijn: »; 
ABSFIXT(4,O,am1n); ABSFIXT(4,o,amax); 
kolom := 2; 
aanu :a aanu + TRAPEX{a, anu(a), amin, amax, 0, "-3, 7, top); 
ABSFIXT(),O,top); 
kolom ;"- 1; 

APPENDIX 111-6. 

enu :a enu + TRAPEX{a, een{a) X pi4 X epsilon{ra),amin, &max, 0, .-4, 10, tOP)l 
ABSFIXT(),O,top); NLCR; 

end 
~!!!!2 
371 7 
30 30; 

e.m1n :- am&LXl ' 
!!~; . 
'WlU :- enu - aanu; CARRIAGE{ 5) j 
PRlNTlliXT(1:unu=:J.); Fwr(8,2,2 X bet&lra X unu); NLCR; 
enu ;- enu + enul; 
PRIN'l'ltXT( ianll?:J.); FLOT( 8,2, 2 X betal ra X aanu); NLCR; 
PRIN'.l'l'!;X'1'(i:enu-:J.)· =(8,2, 2 X betalra X enu); NLCR; 
PRINTl'EXT( ~unu is!) I FIXT(2,2, unufenu X 100); PRIN'I'l'EXT( ~procent van enu:J.); 
!2£ i :~(1 ~~E 1 ~~!! riJ - 1 22 tabel!),i] ;- tobel!l,1] - tabel!2,1); 
CARRlAG<: 5); 
PRlIi=( ~.. enu ana Wlu:J.); NLCR; 
!2E 1 := 1 ste~ 1 ~~!! r1J - 1 22 
bei!!! ABSFIXTI),l,tabel!o,1]); FLDT(5,3,tabel!l,i]); FLOT(5,3,tabel!2,i); 

~'Im(5,3,tabel[3,iJ); NLCR; 
!!!'.!; 

9000 .Z2175.+25 4.5Z220 
4.72381 
5.18927 
5.71250 
6.28290 
6.91593 
7.65386 

1.19.+Z2 
3. 12.+Z2 
1.24.+23 
2.92.+23 
4.50.+23 
5.13.,+2} 
5.05.+23 

1 0000 .20398»+25 
12000 .15255.+25 
14000 .93841.+24 
16000 .43159»+24 
18000 .15756.+24 
20000 .55652.+23 



I V-l 

APPENDIX IV. 

!~~!_Qf_!Q~_~rQgr9~~_fQr_!Q~_~91~~19!lQQ_Qf_!Q~_~QQ!rl2~!lQQ 

!Q_!Q~_r~g19!1~~_2~1~Q~~_Qf_!Q~_2Q~Qg:fr~~_~QQ!lQ~~~_1Q~~fl 

SQ_S~~_r~gl~!1~~_2~!~Q~~_lQ_!~~_~~1~_Qf_~_gl~~~~rg~, 

The seguences of the input data. 

l. Number of temperature data in the T (r) table. 

2. Number of temperature data in the nN(T) tab 1 e. 

3. The value for v . 
max 

4. The value for Z*2. 

5. The nN (T) table. 

6. The exponential integra 1 B (g) as a function of g. 

7. The T (r) table. 

Output data. 

See programme text. 



Ia1nl06265097 EOERM\N . 
beg comment W.EOERM\N T.H.E. 7/71 
-. strallng kn boogont.laAing in het centrum; 

integer 'lllP PA_X MIX Z2; 
real NUo' NU ~X pi h k, c, lmugedk, EFSFAKTOR, a, BRO, plbro; 
RA_X:~RJil\D;J4..X:~kE:AD; , , , 
!lUMA.X := RJil\D; NUD := 3.5.+15; Z2 := RJil\Dl 
PRIN'ITEXT(",' 4- 2 = of); ABSFIXT(2 0 Z2); NLCR; ".. , , 
p1:.4xarctan(1 ); 
h:=Ii.624.-34; 
k:=1.38.-23; 
c:=2.998.+il; 

begin real mu ANU, UNU, RQ, AADIUS, R, T; 
Integer i t J nne nnu d ej 
reararray BAR 'TRAR[1 : !>A_X] , 
- UA~ EAR TAR alpke alphau betae betau[ 1 ·I¥.X)" 

ae ~u[O:W.X] 'delta[-I:l¥.x]' , ., 
GA~ BAR[O:1500] , 
UI~DER[O:3 1:20]; 

library DRTHOPaL, yAPPRDX; 

real procedure TRAPEX (x fx a b ae re orde m); 
~- , " , , J' , 
va~ue a b re ae orde; in~ger orde m; real x fx a b ae rei 

APENDIX IV-II. 

-"L' - l -"'!,I begin cOIllD.ent lie procedure TPAPEX geeft. een benadering van ae waarde van de Integre.al van de t'Unc tie f( x) over het 
interval [a b]. De procedure benadert deze vaarde door extrapolaties van rationale tuncties gebaseerd 
op het berekenen van een aantal trapezl~benader1ngen. Blj aanroep van de procedure meet de'formele panameter 
fx verval1gen vorden door de expressie voar f(x). x treedt op als Jensen ~rameter. Ret Il'Rxlll'81e aantal 
trapezl~benaderingen moet aan de '·procedure meegegeven worden met de integer orde. Ret proces elndigt als 
door twee opeenvolgende extrapolaties T[rn] 'r[m - 1] voldaan is aan abs(T[rn - 1] - T[rn]) < ae + re X abs(T[rnJ) 
of als m de waarde orde hee:ft bereikt. Ne .ifloop van de procedure heeft m als 'W8.B.rde het aantB.I 
berekende trapez1~benaderlngen of, indien niet aan de eindtest voldaan ken worden, de waarde ~ulj 

integer nn, 1; real 1'1 f2,:f2a f3 hO, h, to, tr, tn; 
integr arra{ nro;orde); arra1 40[0:7]; 
,;race ure ex r (m); value mj nteger m; . 

egin Integer 1 nnnj real u v tu tv dj 
-- v' := o;-u-T= t[O~;·t~ :='t[O] := tn; if m:> 7 then nnn:= 7 ~ nun:= m; 

for i := 1 Sr,1 until mm do - --

~ extr; 

begin d := n m /n[m:-I]; d:= d X d; tv := tr - v; tu := tr - u; 
- if tv 0 then tr := tr + tuf(d X (1 - tuftv) -1); 

TI' 1 ~ rmn!&!! begin v := U; U := t[i] ~; t[i] := tr; 
end 



n[O] :~ 1; n[1] :~ 2; n[2] := }; for i := } step 1 until oroe do n[i] := n[i - 2] X 2 ; 
hO := b - a; x :_ a; rl := fx; UITVOER[d e] :~ 4 X pi X fl; x-;= b; rl := {fl + fx}/2; t[O] :~ rl X hOI 
x :- a + ho/2; f2a :~ f2 :~ fx; UITVOER[a e + 1] :~ 4 X pi X f2; . 
if d = 1 then ),,§ili UITVOER[O e] := a; UiTVOER[O e + 1] := x;e := e ... 2 end; 
tii :~ {fl+t'2 X 0/2; extr{i}; to := tr;' -
for m != 2 s~p 1 until orde do 
l)egin if m ~ then begt x :;;-a + hal}; f} := fx; x := b - hal}; f} := f} + fx; tn := {fl + f}} X hOI} end 
-- - else beg n nn := n[m]; h := hO/nn; 

-- if m = {m : 2} X 2 
~ begin-for i :~ 1 step 6 until nn, 5 step 6 until nn ~ 

begin x ! = a + i X h'i'f3 : = f3 + x erur;--
tn :~ {r} + f2a + fl} X h; f2a := f2-

end; 

end 
~ begin !2! i := 1 ~ 2 ~ nn ~ b"§in x 

tn:= {f2 +-mx h 

~ 

:= a + i X h; f2 := f2 + fx end; 

extr{m}; 
~; 

!! abS\to - tr} < ae + re X abs{tr} ~ goto end ~ to := tr 

m := 0; 
end: TRAPEX :c tr 

end TRAPEXj 
- real procedure INTIDRAlID{a}; 

value B.j real aj 
begin rear- alpO alp1 alpil eps, hsug, g, var, soml, som2j 

I'iiteger lj' , , 
~ IN~R[O:100]; 
alp! := alpO := ALPIIANU(O}; epa := alpO X l\l'SFAKTOR X exp{-hnugedk/T); 
hsug := 15/alpO; !! h.ug > RADIUS ~ hsug := RADIUS; hsug := hsug/l 00. 001 ; 
g := 0; IN~R[O] := BAR[O] X eps; 
for i := 1 s-,p 1 until 100 do 
oegin var:= X hsug; -
-- alpil :~ AIPlIANU{var}; eps := alpil X l\l'SFAK'IDR X exp{-hnugedk/T}; 

g := g + .5 X hsug X {alpi + ~lpil}; 
INTAR[1] := B{g} X eps; 
alpi := alpil 

~; 
sornl := 0; som2 := OJ 
for i := 1 step 2 until 99 do sornl := scml + INTAR[ i J; 
fOr i := 2 steE 2 until 98 110 som2 := som2 + IN~R[i]; 
IiiTlIlRAllD := hsug X {INTAR[01 + IN~R[100J + 4 X soml + 2 X som2}/} 

~ lNTEI}RAND; 

APPENDIX Iv-3 



real procedure EPSILONU(R); 
value R; real R; 
b&!\ EPSffiiru :=ALPIIANU( R)XEPSFAK'IO~exp( -hnugedk/T) ; 
!!l.. SIt..crru; 

reBl procedure ALPIIANU( R); 
value R;real R; 

begin. RT(R, T); 
NU :- NUn + a X BOO; 
ALPIIANU :. 2.86.+25 X Z2 X YAPPRIJX(rmu alphau, betau, au, T)/(NU 4- 3) 

end ALPIIANU ' - ; 

procedure RT( R T); 
value R; real R'T; ...-.- - , 
~ integer og 118 bg; 

og:al;bg:-~~x; 
V: 118:..og+«bg-og):2); 

if R<RAR[II8) then bg:= ~ eloe og:=II8; 
1l' (lig-og»l .5t1ien ,)x( V; 
T:"-(TRAR[bg]-TPA'RTOg H-RAR[og] )/(RAR[bg ]-RAR[ og] )+TRAR[og] 

~ Rr; 

real procedure B(g); 
vaIUe g; real g; 
beglil integ.;;: og l!i'; bg; 

!! g > 15 then'b~1n B := 0; gote e1ndbg ~; 
og :_ 0; bg ::11 1 ; 

V: l!i';:- og + «bg - og) : 2); 
if g < GAR[l!i';) thenbg-:= 118 else og := mg; 
1l' (bg - og) > Wthen §o( v;-
'B:a (llt.R[bg) - !lI<R[ogJ) X g - GAR[og])/(GAR[bg] - GAR[og]) + BAR[og]; 

eindbg: 
~ B; 

APPENDIX IV-4 



real procedure EEN{a); 
value ajree.l 8; 
begin NU~BRa) 

hnugedk :elo<NU/k) H'SFAK'roR:=2X!o<Nlb<Nlb<NU/ (exc ); 
Em:-1 

end EENj 
!'OF 1:-1 5tH 1 until HlX do beg¥, n'lR :-READ; UARITl :. ROO> end; 
ror :. 0 step 1 until 1500 do bg;I:i GAR[rl :- REO.D; BAR[Il :- READ end; 
!'OF r:·l Stl: 1 unmIiARHlX dO ~ RAR[rl:-REA])(.,..3)TRAR[I]:eREAD ena:; 
AA'iiIUS:-RAR RARM\xJl - -
ORl'lIDPOL(~R lIAR HlX nnu HlX-l alpbsu betau au delta delta[nnul/delta[-1 l<.-8») 
PRiliTTElCI'(1nf,,,,,;fj) ADsFrkr(2 O'nnu); Nr.cR;" , -
PRINTrEXT({rad1us-;fJ; FI.Or(5'3'RADIUS); NLCR) 
BRa :- (NUHlX - NUO)/1 000. 001;' 
pibre :_ 4 X pi X BID'; 

bE:§in integer am1n anaxj 
amin :a 0; ANu := 0; ENU := 0; 
N~ PAGE; e :a 1; 
for allJ3.X :a 10 100 300 1000 do 
begin ABSFIXTt3 0 LniE mooER)1 

PRINTTEXTt <j"8.m1n allBX m in anil en m in enu z1jn achtereenvolgens;f); 
ABSFIXT(4 0 am1nl;ABsfTXT(4 0 ~max)l 

end; 

d :a 2j J J , , 

ANU :- ANU + TRAPEX(a Em(a) XALPlIANU(O) X rNTIDRAND(a) amin amax 0 .... 4, 10, '!UP); 
ABSFIXT(3 0 '!UP)' ' , , " 

" ' d : .. 1 j 
ENU:-ENU+TRAPEX(a Em(a)xH'SIr.rnu(O) amin amax 0 ... 4 10 '!UP») 
ABSFIXT(} 0 IDP)·Nr.cRo "" , , 

" ' J amin:-a1lBX 

iiiiU := ENU - ANU; CARRIAGE(5); 
PRiliTTEXT(t.unue~») FI.Or( 5 2 pibrco<UNU );NLCR) 
PRIlITTEXT( n11=») FWT(~ '2 pibrox ANU») NLCR) 
PRiliTTEXT( en,... ); FI.Or( 5 2 "l. br<1><ENU); 
NLCR)PRINTTEXT( unu is:!)lnXT(2 2 UNU/EIiIb<l00»)PRIlITTEXT(fprocent van enu:f») 

end" ' , 
-' bg;in ror I :- 1 ster 1 ~ e - 1 ~ UITVOER[3, r] :- UITVOER[l, rl - UITVOER[2, Il; 

CARRIAGE(5 ») 
PRiliTTEXT( f nu enu anu unu:f l; NLC R) 
for I :-, r~p 1 until e - , do 
bg;in FWT 2 NUO + (UITVOER[O Il X BRa»); FWT(5 3 UITVOER[l Il») 
~ FI.Or(5,'3,'UITVOER[2, Il») F1m(5, 3, UITVOER[3,'Ilj; NLCR; , 

~; 

~ 
&INn!; 
end' . 
j?i"Ogend 

APPENDIX IV-S. 
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