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. The radiative transfer eguation.

I-1. Introduction.

- m

Investigations carried out on wall-stabilized electric arcs in
nitrogen and argon [1, 2, 3] have shown that radiative energy
transfer is no longer negligible when the central temperature
rises above about 12,000 °k. In particular, the energy transfer

by means of ultra-violet radiation (X < 2000 R), which is subject
to reabsorption in the discharge, plays an important part in the
total energy balance of the discharge.

In the general case, where reabsorption of emitted radiation in

a discharge which is in L.T.E, is not negligible, the calculation
of the radiative energy transfer is based on the stationary radia-

tive transfer equation which is given by [4, 5]:

-> _ \ -
£ grad | = al [va IU] (1)
in which te unit vector § indicates the propagation direction of

the radiation, Iv is the intensity of the radiation with frequency

v, Iu is the intensity of the black body radiation and aG the
(spec%ral) absorption coefficient, corrected for the induced emission.

(aé = o, {1 - exp (=hv/kT) 1) .

- e T ARy e SR A e e -

The contribution made by radiation from all directions to the total
radiative energy balance at a certain point, is obtained by integrating
equation (1) over the total solid angle 4.

With & grad I, = div (41 ), (div & = 0) this gives:

J div (21 ) do = div I &l do = I e do - J a! | d
Y v ho oV by VY b V¥
(2)

in which d is an element of the solid angle around a unit vector ¢

and €, = a6 Iv is the (spectral) emission coefficient,
p



+
The term J Q Ivdﬂ respresents the spectral flux vector av.

by
The two terms on the right-hand side of equation (2) represent respec-

tively the total emitted and the total absorbed radiation energy per
unit volume, time and frequency; these are indicated by e, and a,
respectively.

Obviously (2) can now be written as:

. T
= g - 3 =
div q y v u, (3)
Here the term u is the balance between the emitted and absorbed radi-
ation energy per unit volume, time and frequency.

Assuming that the coefficients ¢ and a, are isotropic, it can be shown

R
that at a point r = 0 the terms av’ a, and e, are given by [2]:

v

3, (r=0) = J j f 8 s, () exp (- Jr a d) Loy ()

0 :
%u=o)=%p=o)j[f%(hem(-ﬂagw)%dv

(5)

e, (r=10) = e (r =0) (6)

One can distinguish two extremes:

a) Where the absorption coefficient a¢ is very large, so that the mean
free path I; of the photons (E; = 1/a¢) is so small]l that at a gliven
point (r = 0) the only radiation arriving will be that from the

immediate neighbourhood of that point, for which €, is practically

constant. Then from equations (4, 5, 6) with €, (F) = ol {r = 0) follows:

>
q, =0 a, = Qnsu; u, =e, -a, =120 {7)

(equilibrium radiation)

b) For very small values of a¢ the situation may occur in which in
a medium of limited extent the absorption per unit volume a, is

negligibly small with respect to the emission per unit volume e,



in determining the radiative energy transfer, a first approximation

will be given by:

div Ev =e, = u, (8)

(optically thin radiation)

If the value of o' lies between the two extremes mentioned above,

v
+ » -

the calculation of q, and 3, at a given point will require inte-

gration over the total volume of the medium emitting the radiation.

> >
The calculation of the total radiative energy flux g quv); the

total emission e ( evdv) and absorption a ( avdv) of radiative
energy per unit volume and time wil) also require integration over
the frequency range of the emitted radiation.

In the special case of cylinder symmetry, we can simplify (6)

and (5) as follows [2]:

e, (rA) =e (TrA) = 4 me (TrA) (9)
i " B(g)
() = ey (e [ e trg) v [ == - dedrg
o oy/ré+r “- 2r,.r_cosg
A Q A Q (10)
"o
in which B{g) is given by: B{g) = [ exp (-g/cose)dse (11)
)
with g/cosé, the optical thickness, given by:
A 1 A
I _ i
—g_cose JQ a) dl = co<h Jp uuds (12)

The variables are shown in figure 1,
The expression for @, in the centre of the discharge (r = 0), can be
considerably simplified because, as a result of the symmetry, the

integration over the angle ¢ in (10) can be carried out directly reading:

%y (rA

R
0) = a! (ry = 0) [ b e, (ry) Blg) drg (13)

o}

Q
with g J aG'(r)dr
o

Despite the cylinder-symmetry, the calculation of a(r) involves a great

deal of work, which can be carried aut properly using a digital computer,



However, it is essential for the calculation of (a)r that the
coefficients €, and aG from equations (10) and (13) are known as
a function of position in the medium. The following two sections

will deal with this in more detail.

\l
A [T maﬂﬁ%_ )
\ i z Fig. 1. Co-ordinates of the source

s
I
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\“*s___+,__-”’ Point Q and the observation point A,

Il. Emission and absorption of radiation in a high pressure discharge.

I1-1. Free-free absorption.

e A - v - -

As early as 1923 Kramers [6] derived the following relationship for the free-
free absorption coefficient for one Ton with charge Z.e and one absorbing
electron, with velocity v, per unit volume:

2 )
=1|'T|' z e 1_ (11‘)

V' 33 hcmg (hnso)av v3

o

where:
h = Planck's constant (6.6256 1El-3}4 I sec)
e = elementary charge (1.60210 1072 ¢)
m.= electron rest mass {9.1091 10-3I kg)
c = speed of light in vacuum (2.9979 108 m sec-1)
e = vacuum permittivity (100/36n 107" F/m)

With n; ifons per unit volume and dn, electrons in the velocity interval



between v and v + dv, assuming L.T.E., Integration over the
Maxwellian velocity distribution of the electrons gives the

following expression for the free-free absorption coefficient [7]:

_ 1672 2%eb e 1
a\) - gff 3/ 3 1/ - (15)
ff 33 he(zmm ) /2 (4me ) (kT)772 3
where k 1s Boltzmann's constant and 9er is the Gaunt factor.
The Gaunt factor takes into account the deviations from Kramers'theory.

An expression for this factor is given by Griem [8). The value of 9¢¢

is usually about unity.

If the distribution of atoms among the excited states is a Boltzmann
distribution, then for hydrogen, the bound-free absorption coefficient
is found as follows [9]:

Kramers' formula {14} is applied to all states with the same principal
quantum number n, and a summation over the lower excited levels and an
integration over the upper excited levels is then carried out. Unsdld
[10] extended the expression which holds for hydrogen to complex atoms.
The structural peculiarities of complex atoms were taken into account
by introducing an effective nuclear charge Z* and a factor Y/UA.

¥ is the ratio of the number of sub-levels in a complex atom for the
gtven principal and orbital quantum numbers n and &, to the analogous
quantity for the hydrogen atom and UA is the partition function of the
complex atom,

The quantity Z° is given by Uns8id as:

*2 T - In

7 = n2 ATk (16)
H
where In 2 corresponds to the actual energy of the level of the complex
]
atom wlth the given quantum numbers n and %, I, and I,, are the ionization

A H
energies of the complex atom and hydrogen atom respectively. Hence the

following expressions for the bound-free absorption coefficients were
obtained [9, 11]:
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2
) 6 2" vkT n
0, = 16 e A exp (- Ip/kT)  [exp(hv/kT)-1]
bf 3/3 (4w50)3 Ua htc3 v3
(17)
v £V
g
7
2 6 YkT n
o = J6m - exp (= I,/kT) lexp(hy_/kT)-1]
Ybf 33 (4re )3 Uy hbcv3 ’
(18)
v oo
g

where Na is the particle density of the complex atoms per unit volume

and Vg is the frequency limit of the close lying terms given by:

Vg = (r - Ig) /h (see figure 2)

b
a ""
K] freestates
c d
I +
Iy
I hvg
el If
Il hVn
jb boundstates
I,
0 groundievel _t
a) free-free absorption b) free-free emission
c) bound-free absorption d) free-bound emission
e) bound-bound absorption f) bound-bound emission

Fig. 2. Schematic diagram of energy states and transitions for

atom, ion or electron,



The absorption coefficient for the whole continuum is obtained from

the expressions for @, by the addition of the free-free absorption
bf
coefficient a, found from equation (15). With the help of the Saha

equation, the Bﬁoduct ning in equation (15) can be expressed in terms
of the number of atoms Ny per unit volume, giving for the continuum

absorption coefficient for complex atoms the following expressions

9, 11]:

*2
2 6 'YZ kT n %
a, = 16m € A exp [{hv - IA)/kT] )
3/3 (hned)s Uy h*c v3
(19)
v v
g
2*%kT
2 6 Y n
o= 16m £ A exp [(hv, - I,)/kT]
3V/3 (hwso)s Uy hic w3 9
(20)
v o> \)g

When L.T.E. applies, the relationship between the emission coefficient

€5 and the absorption coefficient o is given by Kirchhoff's law:

e, = @, I, [1 - exp (-hv/kT) ] = a; l, (21)

P P

in which the term {1 - exp (- hv/kT)} takens into account the effect

of the induced emission; Iv is the intensity of the black body radiation
as given by Planck's formulR: ;

2 hy3 1
vp cZ  exp(hv/kT) - 1

(22)

Application of the law of Kirchhoff results in the following expressions

for the continuum emission coefficient €,
4
2 6 Z kT n
€, = 32m £ Ul ——R exp (- I,/KT)
3/3 (Aneo)3 A h3e3

(23)

ada
-~

This equation is frequently referred to as the Kramers-Uns3ld formula,



2
e - 32”_2 86 ¥ z kT n
v L [exp ({h(v_=v) - I }/kT)]
33 (4ne )3 Ua hic3 9 A
(24)
v o> \)g

As can be seen from equation (23) the continuum emission coefficient

is independent of the frequency for v £ v . For v > vg, £, decreases
proportionally to exp(-hu/kT).

Calculation of the bound-free absorption coefficient for photons whose
energy is greater than the ionization energy of the complex atom (hv > IA),
making use of equation {18) gives rise to considerable deviations [9].

By employing the fact that these photons are mainly absorbed by atoms in
the ground level, the following approximation formula can be derived

for complex atoms [9]:

- 3272 eb
3/3 (4H60)3 h*ev?d

o 4
v

2
hv > IA (25)

2
*
The value of Z° , according to UnsBid [10] and Vitense [12], is of

the order of 4 to 7 for all levels which corresponds to the ground

state of the atoms.
With the help of Kirchhoff's law, we find for the emission coefficient:

*2
= 2 B -
v T kL = ‘Z_ nye Zpe exp(-hv/kT) (26)
3/3 (hweo)s h3c3
hv > I,

It should be noted that the ionization energy I is decreased by an

amount AI , as a result of electric micro-fields in the plasma generated
by charge carriers, This correction must be introduced when calculating

the coefficients o, and €,°

The lowering of the ionlzation energy AIZ can be calculated by means of the

Debye-Hlickel approximation [1]:

AT =2 (Z+1) e3 m T ]
z —— () " (n_+12Z2n) (27)
(hﬂso) /2 kT € L



where:
| -23 o,
k = Boltzmann's constant {1.38 10 J K )
_ e 100 =11 -1
€, = the vacuum permittivity (36TT 10 Fm )
ng = the density of the electrons [m—s]

n., = the density of the particles i with electric charge Zie

(Zi = o for neutrals; Zi = 1 for single ionized particles; etc.)

I1-3. Line_absorption_and emission _coefficients.

- o R e e W e

The dependence, as function of the frequency, of the absorption coefficient

ag of a spectral line is given by the following relationship, derived

from the classical theory [13]:

Ct.\) = mm nJ. fJ.m Q(\)) (1 - exp(-h\)/kT)) (28)
e

where nj is the population density per unit volume of the energy level j;
fjm is the oscillator strength for the transition of the lower level j to
the higher level m and Q(v) is the normalized line shape function

( IQ(v) dv = 1),

The population nj of the energy level ] is given, in the case of L.T.E.,by:
g.
n, =n —ﬁ exp(- Ij/kT) ‘ (29)

where n is the total particle density of the atoms or ions per unit
volume; U is the partition function of the atom; or ions: 9; and Ij are
the statistical weight and excitation energy of level j respectively.
Application of Kirchhoff's law (equation (21) to equation (28) gives for

the emission coefficient sv:

_ 2hvd  se?

€ n, .0 Q (v) exp(- hv/kT) (30)

v 2 J
c (ﬁﬂeo)mec

The line shapes of spectral lines are almost never determined by natural

broadening only.
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Besides natural broadening, Doppler broadening is always present and
dominates the line shapes near the line centre at high temperatures

or fow densities.

However, in a high pressure discharge (pressure some atmospheres), the

two above-mentioned universal line broadening mechanisms are often
negligible, because the iine shapes are strongly influenced by the
interaction of the radiating atoms or ions with surrounding particles.
This broadening mechanism is referred to as pressure broadening. Inter-
action with the radiating atoms or ions can be achieved by either neutral
or charged particles. The effect of charged particles, however, is so much
greater than that of neutral particles that the interaction of the latter
can be neglected as soon as there is any appreciable ionization [14].

(For nitrogen at a pressure of a few atmospheres, this occurs when the
temperature rises above 1('31i k).

Hence there are two main broadening agents, fons and electrons. Because electric
fields are involved, this type of broadening is called Stark broadening.

A fundamental study of pressure broadening has been made by Baranger [14].
Based on this study Griem [15] calculated the Stark broadening of several
elements and tabulated numerical results [16].

The shape of a line broadened by the Stark effect can be described, to

a first approximation by a Lorentz function [17] , which is given in

normalized form by [13]:

(31)

1 1
L) =5 g SR P
‘]+—-._..._m.ﬂ

where vmj is the central line frequency and B is the half-half width
for Stark broadening.

Figure 3 shows a Lorentz function, normalized on unity, as a function of
the normalized frequency deviation (v-vmj)/BS. The earlier mentioned Doppler

broadening results in a Gaussian line shape, which is given in normalized

form by [13]): »
1 T v o= \)m.
G(v) = — ° = exp [- | ——d ] (32)
- Bp Bp

The half-half width of this function is given by [18]:
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B, VT2 = v—'EJ- ZKT 1n2 = 1.48 10720 Wi\ /M (33)
where M is the mass of the emitting atoms.

When the half-half width due to the Stark effect {at high densities

the natural broadening can be entirely neglected} is not appreciably
greater than the half-half width due to the Doppler effect, the resultant
line profile is obtained by folding the two line shapes Ls(u) and GD(v),
that is [19]):

<0

Viv) = fiGD(v‘) L, (v - v') dvt (34)

o]

Fig. 3. Lorentz function.

Thts leads to Voigt profiles, which are available in both tabular and
graphic form for a large number of conditions [20, 21, 22].

Figure 4 shows a number of normalized Voigt profiles as functions of the
normalized frequency deviation k, with the ratio BS/BD = a as a parameter.
The frequency deviation k is defined by: k = (v - vmj)/w, where w is the
effective haif-half width of the Voigt profile.

For a > 0.4 a first approximation for w is given by [21]:

’ 2 2\
w =\[By + Bg (35)

It is appearent from figure 4 that the Voigt functions for large values

of k, i.e. in the 'wings", behave as a Lorentz function., This is a result



_‘]2_

of the fact that the Gauss function at large values of k approaches zero
more rapidly than the Lorentz function.

The influence of the Gauss (Doppler) kernel on the Voigt functions becomes
less as a increases,

For @ > 1, It appears that the Voigt profile, apart from a relatively small
kernel, approximates well to the Lorentz profile.

100

W)
Vmp:' A

10’

Py
\\\\\
Ty
2 NN
10 1 — ‘5'2
"'I& QrcD
i b~ = —=
R
ZIRN N |

i wm k [ ——

10 O Do,

0 4 8 12 16 20 24

Fig. 4. Values of the function V{a,kw)/V(a,0) for some values of a.

V1. . Absorption and emission coefficients for the N! continuum and

Nl, NIl lines.

[11-1, The NI continuum.

kLA S e T e A T o -

Figure 5 reproduces part of the term diagram NI which has been taken from

[23].

It can be seen from figure 5, that the *P.level in the 15225?2p235 system

forms the lower limit of the group of strongly-excited levels, lying close

together.

The lowering of the ionization energy AI, calculated by means of equation

(27), is about 0.4 eV at a pressure of 3 atm.abs. and 0.5 eV at a pressﬁré

of § atm.abs.



The series limit frequency vg corresponding to the 35P level (see
figure 5) 1s then about 9.38 10'" sec™’ (3200 R). The series limit
frequenciés v 1 vgz and vgh corresponding to the levels 2p2P°, ZpZDo
and 2p*$° (ground state) have the values ~2.54 10'° sec-] (1180 R),
-2.82 10'% sec™! (1060 R) and ~3.38 10'5 sec”!

limit) respectively.

(885 B) (principe) series

15 217250 2st2p2np  2s%2pl 04
1, 2.2 (RN
55 7P e "{;—08 44 F2p ;,{ %
PR X ﬁn M{ZU e
of P 2 2
[ Y SE—1.
hy, 4p0 -
9 » hpo: o
. 250
2 Zs!p‘ b
3 P emmp——
107 L
eV
L
huigy
h
Yan
5¢
p g0
TR, M I
. 04 FYLT —

Fig. 5. Part of the term diagram of NI.

The horizontal line at 14.53 eV denotes the ionization energy of N, which is
the series limit of terms belonging to the configuration (1s2) 2s22p2ns,
2522p2np and 2s522p2nd. ‘

The terms going to other limits are given at the right-hand side.

For notation of the terms see [23].

The effect of the different values of the lowering of the jonization energy

AT at the two above-mentioned pressures, has been neglécted in calculating

the series limit frequencies.

The factor y/UA has been calculated making use of the tables of Wiese et al.
[24] (calculation of y) and the tables of Planz et al. [25] {calculation

of UN), the resulting value of the factor y/U, is roughly approximate to unity.
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The effective nuclear charge Z* for the frequency interval v g v

{(9.38 1D]h sec-l) has been calculated from the 2P and “P levels gf the
1522522p2ns system, from the 25°, 2p°, p® and *0° levels of the 1s22522p2np
system ( n > 2) and the 2P, 2D, 2F, “P, “D and "F levels of the 1s22s22p2nd
system, employing equation (16) and is found to be about 1.4.

The effective nuclear charge Z* for the frequency interval v_.s v £ v_  has
been calculated from the 3s“P and from the 2P°, 2p° and 4s° levels ofg

the 1522522p22p system, the resulting value being about 1,7,

If the quantities calculated above are inserted in equations (19) and (20),
the following expressions for the absorption coefficient a, of the Ni

continuum are obtained:

, 6 (1.4)2 kT n
o o Jbm e N oexp [ - (ry - AT)/KT]  exp(hv/kT)
V33 (bwe)® h¥ev?
(36)
vV EV
¥ g
’ 6 (1.7)2 kT n
], = 16m e N exp [- (Iy = 8I)/KT]  exp(hv /KT)
3/3 (hwso)s h*cv3 9
v o> ¥ (37)

In these equations IN is the ionization energy of the nitrogen atom, (14.53 eV).

The corresponding expressions for UG van be obtained by multiplying (36) and

(37) with the term: [1 - exp (- hv/kT)].

it can be shown [26] that at pressures of several atmospheres, the mean
free path of the photons: E; = 1/a\', exceeds 5 10-2 m for that part of the
spectrum where the frequency v is smaller than Yah {principal series limit).
When a high-pressure discharge has a diameter d of a few millimeters, this
means that for the NI continuum (v g Ug ) practically no reabsorption
occurs: in other words, the discharge is optically thin for the NI continuum
(v s vgh).

The balance between the emitted and absorbed radiative energy per unit

volume, time and frequency, uy is then given by:

u,=e,-a = e = hnev (38)
Substitution of the expressions for ¢ found in equations (23) and (24)

*
with the corresponding values for Y/UN » Z and AT in equation (38) and
integration over the corresponding frequency interval, gives the emission

per unit time and volume of radiative energy ¢ which leaves the discharge
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(e = u).
The results of these calculations, as a function of temperature with pressure

as a parameter, are reproduced in figure 6.

11

o - — e — 1
]c.u(wmr’) =Gatm.abs.
{A A
=3atm.abs.
10 ,f//p
10

T oK)
0° —

10 2 1 16 18 20 2240

Fig. 6. Radiative energy per unit volume and time of the
"optically thin" NI continuum (v g vgh) as a function

of the temperature with pressure as a parameter.

The bound-free absorption coefficient @ for high-energy photons
: bf

(hv > I,, = AT) is given, to a first approximation, by equation (25).
N g q

*
Calculation of the effective charge Z , by means, of equation {16) for
the ground level of the nitrogen atom, gives a value of about 2,

Substitution of the numerical values of the constants, e, €t h, ¢ and

*
Z in equation (25) results in the following expression for o

Vbt
2

= N -
o, = 1.264, (I, - AD) - (39)

Yof v3
v > Vgh
Multiplication of equation (39) by the term (1 - exp {- hvw/kT}), which
takes into account the effect of the induced emission, gives the expression

for o
Vbt



Calculation of a! according to (39) as a function of frequency

at pressures of sgteral atmospheres shows values for the mean free
path of the photons f; = 1/a\'} of the order of 1075 m [26]. which
means that the mean free pathbgf the photons E; is of the same order
as or much smaller than the diameter d, (d is several millimeters),

of the discharge. For this part of the NI continuum (v > vgh) re-
absorption of emitted radiation will take place.

This implies that the absorbed radiative energy per unit volume, time

and frequency a, is not equal to zero and therefore u, # e

F1i=-2, The NI and NIl lines.

It is worthwhile to divide the NI and NIl lines, which have been taken

from [24], into two groups:

a) one group for which the central wave length Amj < 2000 R and
b) one group for which X . > 2000 R,

For the lines in group b) we find that at a pressure of several atmospheres
the half-half widths due to tﬁe Doppler effect, as calculated_from équat?on
(33) in a temperature range from about 10% to 2 x 10* °K, are small with
respect to the Stark effect as calculated by Griém [16], (BS/BD > IU)f

In other words, for this group of lines the Stark effect Ts_by far the

most important broadening mechanism with the result that the line shapes:
can be described by a Lorentz function as given by eqﬁat?on (31).
Calculation of the absorption coefficients for the central line frequencies
by means of equation (28), the data on NI .and NI lines'from the tables

of Wiese et al. [24], the half-half widths from Griem's tables I16],;
produces values of the order of < 1 m-I. In other words, in a high pressure
discharge (pressure a few atmospheres) with a diameter of several millt-
meters, no absorption will occur for this group of linés (ﬁ > 2000 B).

The radiative energy per unit volume and time émitted by an m + j
transition which leaves the discharge 1is then indépendent of thé_]iné

shape and is given by:

e . =u .=hv ., A n (40}
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where umj is the balance between the emitted and absorbed radiative
energy per unit volume and time; N is the population of the upper
level m; Amj is the transition probability of the transition from

the upper level m to the lower level j; Vimj is the central line
frequency.

The total radiative energy per unit-volume and -time emitted by the
NI and NIl lines in group b) is obtained by employing equation (40)
to calculate the term emj for each line and subsequently summing them
over all the lines in the group.

The results of these calculations are shown in figure 7 as a function
of temperature with pressure as parameter. The values, required for
these calculations, for the transition probabilities Amj; the central
line frequencies “mj; statistical weights 95 excitation energies Im'
have been taken from the tables of Wiese et al. [24]; the particle

densities ny and nN+_and the partition functions U, and UN+ have been

N
taken from the tables of Pflanz et al. [25].
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Fig. 7. Radiative energy per unit volume and per unit time of the NI and
NI ]ines_(ﬁmj> 2000 R)as a function of temperature.

Solid lines: p = 3 atm.abs.; Dashed lines: p = 5 atm.abs.
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Calcutation of the Doppler half-half widths for the lines in group a)

(Amj < 2000 R), at pressures at several atmospheres and in a temperature
range from about 10% to 2 x 10% 9K, gives values which are of the same
order as the Stark half-half widths calculated by Griem [16]. (8./8, = 1).
This means that the line form is given by a Voigt function as indicated

in figure 4. Calculation of the absorption coefficients for the central
line frequencies aQ ] according to equation (28); values of the Voigt
functions for k = 0"from Posener's tables [21] and data on the NI and NI|
lines from the tables of Wiese et al. [24], gives values of the order of
210 > m-i. tn other words, a high pressure discharge with a diameter of
several millimeters is optically thick for this group of lines for relatively
large values of the frequency deviation k (see figure 4). l
Contribution by a line in this group to the radiative balance Ugj ©an only
take place by means of the ''wings' of this line.

From figure 4 appears that the Voigt functions for o = BS/BD = 1 and
large values of k, i.e. in the ''wings', behave practically as a Lorentz
function. In other words, in calculating the radiative energy transfer by
the NI and NIl tines (lmj <2000 R) in a high pressure discharge, the
required line shape is given to a good approximation by a Lorentz function

with a half-half width w given by equation (35).

IV, Description of the computer programmes for the calculation of the

radiative balance in a cylinder symmetric discharge.

IV-1. Introduction.

i e v -

The radiative balance U, which Ts part of the total energy balance of a
discharge, is the difference between the emission € and the absorption

a of radiative energy per unit time and volume: u = e - a, All three terms
contain contributions from the whole spectrum.

As already stated inthe foregoing chapters, integration over the whole
volume of the discharge is necessary for the calculation of the absorbed
energy per unit time, frequency and volume a at a given point in the
discharge, for that part of the spectrum for which the discharge Is
‘'optically thick''; i.e. the mean free path of the photons E; {s smaller
than the diameter of the discharge. This implies that, for this part of
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the spectrum, the spectral emission and absorption, coefficients £, and

o, must be known for every point in the discharge. Since €, and @, are

known functions of the temperature (Chapter Il and 111) it is sufficient

if the temperature distribution in the discharge is known,

For the calculation of the contribution to the radiative balance for that
part of the spectrum for which the discharge is optically thick a number of
camputer programmes have been developed.

The complete text of these programmes is given in the Appendices II,111 and
IV, The programmes have been written in "ALGOL 60'. These computer programmes

are described in the following sections.

As appears from {10}, the calculation of av(r) requires a four dimensional
integration over r, r., é and 6. The calculation of a(r) requires moreover

Q
an integration over the frequency v. In order to restrict the numver of
integrations to be performed, the exponential integral:
H/Z
Blg) = [ exp (- g/cos0)dd, as a function of g has been calculated
0

only one time. The calculation of the function B(g) has been performed for
0 £g < 15, with the steplengthsof g beingy 0.01. For values of g > 15, B{g)
has been taken equal to zero, this can be employed because in that case B(g)
is smaller than 1077 B(o).
The integration of the exponential function causes some problems owing to
the singular point in the exponent of tae integrand for © = "/2. Therefore, it
is essential to choose an upper limit ‘or the integration and to make an
estimation of the error consequently rade.
81 being the upper limit of the integral for which: 0 < 81 < TT/2 then follows:

/2 o T2

J ‘exp (-g/cosé)ds = J exp (-g/cos@)de + J exp (-g/cos8)de
o o] 61
(41)

m

The upper limit 8

. /2
1 must be choosei such that J exp (-g/cosf)ds g I
8

1
in which I is the permissible error in the estimation. By taking 81 larger or

equal to:
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81 2arc cos A+ (42)
14.85+g = In (arc cos 5;%73)

the error in the estimation of the exponential integral B{g)

is smaller or equal:

-6
10 g
Ig.-—gg arccos (g-lnﬂ.l) (43)
In table | the calculated values for 8, and £, as a function of g, are
shown.
TABLE |,
g 8, [radians] z
0.1 1.5639 7.6869 47
0.5 1.5375 46886 7’
1 1.5067 2,5816 ]0'7
2 1.4512 8.1753 1o 0
4 1.3584 8.9871 10'9
-9
6 1.2827 1.0509 4o
8 1.2193 1.2704 10'10
10 1.1649 1.5683 10'1]
12 1.1176 1.9639 10"2
15 1.0960 8.8678 |,

The text of the programme for calculating the exponential integral
B(g) with 9, as upper limit, in accordance with (42), is given in
Appendix |, The results of the calculations are shown in fig. 8.

The values for B(g), calculated with the aid of procuedure B(g) (see
Appendix I} as a function of g, are supplied by the computer on a

punched tape.



-2]-

Each time a programme is run for the calculation of the radiative

balance, this tape has to be read in.

0
0 e e 2

P B(g):jexp(-glcose)de
10 fﬁ@Y_“| - 0
102 |

W’ o \\

10 . ~\\\\\
165 \\‘
107 2.

0 2 4 6 8 10 12 14

Fig. 8. The exponential integral B(g) as a function of g.

In these programmes (see Appendices 11, IIl and IV} the B(g) table is
processed as follows: \

Each time when, at a defined value of g, the computer asks for the relevant
value for B(g), an appeal is made to the procedure B(g) (see Appendices 11,

FIl and V),
In this procedure it is defined whether the value for g, indicated by the

computer, is in the range for which the B(g) table applies. If not, then the
largest respectively the smallest value of B is supplied if g is too small
or too large. Now, the table can be considered as being the interval on
which B must lie. By dividing this interval into approximately equal parts
and, next determination in which half g lies, the range containing g can
successively be reduced until the interval in which g lies has been reduced

to two successive values in the table:
glil s gs<g [i+ 1] (44)

With the aid of linear interpolation the relevant value of B{g) can be deter-

mined:

_ B[i + 1] - B[i] oo .
B(g) = g[; + ]J - g[;] * (g g[ll) + B['] (45)
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A flow diagram of the procedure B{g) is given in figure 9.

|
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e
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97— X log

l _ Fig. 9. Flow diagram of the method

of lipear interpoclation.

As is shown in chapter Il the spectral emission and absorption coefficients
are known functions of the temperature. The calculation of the coefficlients

as a function of position in a discharge requires the knowledge of the
temperature distribution T(r) in that discharge. This temperature distribution
must be added to the input data to the computor,

Calculation of the temperature at a given value for the radius r takes place
by linear interpolation in this table of radius and relevant temperature values.
This interpolation is performed in the same way as that for B(g) (see section
'v-2).

The dependence as a function of the frequency of the absorption coefficient

a; of a spectral line, in a point ) in a high-pressure, high-temperature

discharge is given to a first approximation by (see chapter Il and 1H1):
1 ' nal : gj EXP[“IJ/kT(rQ)]
y (rg) = o} (Tlrg) = iy - n(T(rg)) - o
1 1 1 ) i
T WlT(rgl) TR, [1 - exp(-hv/kT(rpl}] (46)

' gy



where:

n the density of the atoms or jons

U the partition function of the atoms or ions
A integer

w

the effective half-half width of the Voigt profile.

An expression for w has already been given by (35).
The half-half width due to the Stark effect, BS is given to a first
approximation by [27]:

8g(rg) = Bg(T(ry)) ﬁ; Weap Me(T(rg)) 10727 [sec™!1(47)

where:
Ne density of the electrons
¢ velocity of Tight in vacuum

w reduced half-half width due to the Stark effect [m]

tab
The values of Wiab for the relevant spectral lines are taken from the
tables in [16]. An expression for the half-half width due to the Doppler
effect 8, has already been given by (33).

As can be seen from (46) the frequency deviation Av is given by:

Av = Vnj TV = Aw (T(rA)) (48)

The frequency deviation is thus related to the half-half width w(T(rA))
point ras i.e. that point in the discharge in which we want to calculate
the radiative balance.

The relevant value for the spectral emission coefficient ¢ (r ) is found

by multiplying (46) with the intensity l of a black body radlator, this gives:
vp
_ o 2hv 1
E\.’ (rQ) E\J (T(rQ)) = U-v (T(rQ)) expfhv/kT(rQ)) ]

c2

(49)

The particle densities of the atoms or ions and electrons n, Ne and the
partition functions for the atoms or ions U found in the expressions for
the spectral absorption and emission coefficient must - as a function of

the temperature- be added to the input data to the computer.
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Using the procedure QORTHOPOL these series of values for n, Ng and U

are approximated by systems of orthogonal polynomials, With the pro-

cedure YAPPROX the values of n, Ng and U can be calculated if the
temperature is given. The procedures ORTHOPOL and YAPPROX are standard
procedures of the computer centre of the Eindhoven University of
Technology.

for more information about these procedures reference is made to [28].

The calculation of €, and a& is performed in the procedures written for
that purpose. (Appendix 11 and IV: procedures EPSILONU (R} and

ALPHANU (R); Appendix lll: procedure epsilon (r) and procedure

alpha (r)).

It should be noted that in these procedures the effective half-half width w
is represented by beta 1; BS by beta 2 and BD by beta 3.

The frequency dependence of the spectral absorption and emission coefficients

s calculated in the procedure EEN(A).

T R S N e e e W e S S S e A e e O VD A,

From (13) appears that the calculation of the absorbed radiative energy
per unit volume, time and frequency in the axis of the discharge av(o)
requires a two dimensional integration. The calculation of g Is performed
using the trapezium rule. This is a simple integration method requiring
little execution time. For the integration over g 2 second-order Runge-
Kutta method has been employed:

X2

J f(x)dx =
X

O

[Flx ) + &F(x;) + flx,)] (50)

wijor

where h is an equidistant step length,
This method is also known as the Simpson rule.

Worked out this gives:

*2n+2 h n n
[ Trooen= B trteg) + S Flag) 2 Flg) ¢

)]
k=1 2n+2

2k+1

X0

(51)
An improvement of the accuracy of the calculation process can be achieved

by not taking the radius of the discharge R for the upper limit in the
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integration over ro? but fifteen times the mean free path of the photons
lv , unless this exceeds R. In that case the radius of the discharge is
taken for the upper limit. rQ

For rg equals 15 EQ, g is (g = I a¢(r)dr) of the order 10. From figure 8
then follows that B(g) is of the®  order 10-5 B{0), in other words, the
integration can be terminated. The above is carried out in the procedure
INTEGRAND (a) (see Appendix 11).

Figure 10 represents a flow diagram of this procedure.

After calculation of av(O) and ev(O) there remains the calculation of a(0)}
and e(0) (e = &= Evdv) which requires an integration over the frequency v.
From (46) follows that as, as a function of the frequency deviation

Av = Aw behaves as T:%f ; therefore the integration can be c;rried out
for 0 £ A £ 1000, without essentially influencing the accuracy of the

calculation:

E Vmj+1000w 1000
a= I addv = va;dv = 2w . av(A) dA (52)
| © mj-1000w
P 1000
e = J Loe dv ~ 2w J hrne (AYdA
v v
0 o

The difference between e and a produces the contribution of the spectral
line to the radiative balance.

The integration over the frequency is performed in the procedure TRAPEX (see
Appendices 11, |11 and V).

This procedure is a standard procedure of the computer centre. For detailed
information about this procedure referende is made to [29, 30].

Figure 11 represents, as illustration, sv(A), av(A) and their difference
uv(A) of a spectral line in the axis of the discharge.

The complete text of the programme for the calculation of the contribution
of a spectral line to the radiative balance in te axis of a discharge

is shown in Appendix I,
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Fig. 10. Flow diagram of the procedure INTEGRAND (a).
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Fig. 11, Emission év’ absorption a, and their difference u, as a function

of the frequency deviation A,

IV-5. Calculation of the_contribution_ of a spectral line to the radiative

O e e o - — i 3 - —

From the relation (10) for av(rA) appears that for ry = r, and g = 0 the

integrand in (10) increases very rapidly rA2 + rQ? - ZrAchos¢\= s >0 ).
owing to which numerical integration with the here relatively large step

is no longer possible. To prevent this singular point a constant has been
added to the term s. This constant has the value 1072 E;  (rp) with E; .
the megn free path of the photons with frequency vmj (ceﬂ%ral line m
frequency). By applying this approximation the integration could be carried
out properly.

It appeared that the accuracy of the calculation had not been influenced,
The following method has been applied for the calculation of av(rA):

To achieve a larger accuracy of the calculation process the integration

limits for r. and ¢ have been established as follows:

Q
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variable r.:

Q upper timit rQ =rax-'at 15 Ev(rA)
if Fax »R, then rmax = R
(53)
lower limit: FQ = Tmin = "a " 15 EU(rA)
if Fin £°0, then rin = 0
] 15T (rA)
variable g: upper limit: @ .= arctan A
max ra2-[15% (r,)12"
A v A
if 15 nv(rA) 2 rp, thend ==
lower limit: g . =10
min

The area within the integration limits is divided into four sub-areas
(a, b, c and d) as shown in figure 12.

\\
N\ 7
b 4
J/ \
SN
d \
\
\
\
\
\
\
\
4 \\
\
s a b C \\
d \
1
7 - meal - | ‘I
07— — 13 Prmax/5 : T Mmax |
Froin A R

Fig. 12.

The limits of the variable ) in the sub-area.d are given by:
upper limit:

a* /5 (rpax = 1)
lower limit

(54)
rA = ]/5 (rmax = rmin)
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Each of these four sub-areas is divided in the r and ¢4 direction into

surface elements. The number of surface elements in the sub-areas a, b

and ¢ is determined by staptal; that of sub-area d by staptal 1.

For staptal 1 choosing a value of the order of the value for staptal, achieves
that the sub-area d is divided into much smaller surface elements then the
sub-areas a, b and ¢ resulting in a larger accuracy of the calculation process.
For each surface element the value for g is determined from which with the aid
of procedure B(g) the contribution of each element to the integrand of (10}

is determined. Using procedure SIMPSON all these contributions are summed.

In the calculation of g which is given by (12) the following approximation

is applied (see figures 13 and 1):

——
™~
“
N
AN
. \\
Ptap0) \
' \
\
a S \\
. A
Flg. 13 .O A Atra00) R
A
g = [ ayis)as =3 Taylr + b (r,) s (rg)] (55)

where m is given by:

ro = %\/ZFA2+ ZrQZ- 524\ ‘ (56)

The calculation of av(rQ) is carried out in the procedure anu(a) (See
Appendix 111},

The integration over the frequency is also performed using procedure TRAPEX.
The complete text of the hrogramme for the calculation of the contribution
of a spectral line to the radiative balance in points out of the axis of

the discharge is given in Appendix |11,
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Basically the calculation of the contribution of the bound free continuum
(hv>I) to the radiative balance can be carried out in the same way as the
calculations of the corresponding contributions of the spectrallines provided,
the relevant expressions for the spectral absorption and emission coefficients,
respectively indicated in the expressions (25) and (26), are introduced

with regard to the integration over the frequency the existing programme,

(see Apperidices 11 and I11) have to be changed.

The frequency interval over which integration has to be performed has

v ., as lower limit and v is given as upper limit.
min max
The lower I[?It Voin 'S given by:
v, == (57)

min h

For the upper limit Vmax? ten times Voin has been choosen.
To prevent that the existing programmes have to be changed too drastically,

an imaginary half-half width We has been introduced, which is given by:

v -V

_ max min
We = 7000 (58)
so that:
w v 1000
: max
a = f a dv = J avdu = W I av(A)dA (59)
o v o

min

The integration over the frequency is performed using the TRAPEX

procedure.

It should be noted that this procedure (see Appendix 1V) the imaginary
hatf-half width is represented by BRO.

As an example the complete text of the programme for the calculation of the
contribution to the radiative balance of the bound-free continuum in the

axis of a discharge is represented in Appendix IV,
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V. Radiative losses in discharges in a forced gas flow.

V-1. Temperature_distributions.

- b e . -

In the figures 14, 15 and 16 the radial temperature distributions in discharges
in a forced gas flow for a number of conditions (indicated in the figures) are
shown. These temperature distributions, which are taken from [26] , are deter-
mined by means of the relative side-on intensity distribution of a part of

the NI free-free and free-bound continuum.
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Temperature distributions as function of

the radius, taken from [26].
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In the next section, the radiative energy balance u, will be calculated
as a function of the radius of the discharge, for the three temperature

distributions indicated above.

V-2, The radiative balance,

e ——— -

The cafculation of the contribution to the radiative energy balance

by the NI and NIl lines and the NI continuum for which the discharge

is optically thick are performed by the computer programms indicated

in the appendix.

As already mentioned in chapter ||| are discharges at a pressure of some
atmospheres and a diameter of a few millimeters.optically thick for those
Ni and N1l lines for which the central wave length lmj is shorter than
2000 R and for that part of the NI continuum for which: v > v ., the
.

The Nl and NIl lines under consideration have been taken from tables

L . ’ 15 gh
principal series limit (3.38.10 7 sec

by Wiese et al. [24] and reproduced in table Il, (For multiplets, only

the strongest line is given).

The following procedure was adopted for the calculation of the contribution
of the spectral lines:

First of all, for each line of a multiplet the separate contribution to

the radiative energy balance was calculated for the centre of the discharge
(r = 0). This point was chosen because, as a result of the symmetry, the
integration over the angle ¢ in (10) can be carried out directly, which
involves less work. Next we determined for each-multiplet the factor M,

by which the contribution of the strongest line (u1) must be multiplied

in order to obtain of the whole multiplet to the radiative energy balance.

The factor M is given by:

v u
M= EET£ (60)

where n is the number of lines in the multiplet and Uy the contribution
of line k to the radiative energy balance.

This method can be employed because the lines of a multiplet lie very
close together on the frequency / wave-length scale; it has been carried
out, amongst others, in [31]. By using thé factor M for the muitiplets,
the number of NI and NIl spectral lines to be déalt with was reduced to

that given in table !l (reduction approx., factor 3).



TABLE 1.

NI lines
Multiplet

2p3450-3s4P
2p32p0-3s2p
ZPSHSU_ZPHHP
2p32p0-35'2p
2p32p0-352p
2p32p0-3d2F
2p32p0-3512p
2p32p0_3d20
2p32p0-342p
2p32pP-4s2p
2p32p0-342p
2p32p0-5s2p
2p32p0-4s2p
2p32D0-3d4F
2p32p0_3d2F
2p32p0-5s2p

NIl lines
2p23p-2p33p0
2p23p-2p33p0
2p21D-2p31p0
2p23p-2p33g0
2p21p-2p31p0
2p21p-351p0
2p23p-3s3p0
2p23p-3d3p0
2p21D-3d1F0
2p2ls-2p31p0
2p23p-3d3p0
2p21D-341p?
2p215-34!p0
2p21p-3d1p0

x {R]

1199.55
1492,62
1134,98
1243,17
1742.73
1167.45
411,94
1310.54

1319,72

1176.4
1163.88
1100.7
1326.63
1169.69
1316.29
1231.7

1085.70
916.700
775.957
645,167
660.28
746,976
671.391
533.726
574,650
745.836
529,86
582.15
635.180
572.07

Ij [cm-1]

0.0
19224

0.0
19224
28840
19224
28840
28840
28840
19224
19224
19228
28840
19224
28840
28840

131.3
131.3
15316
131.3
15316
15316
131.3
151.3
15316
32687
131.3
15316
32687
15316
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Im[cm-l]

83366
86221
88110
99663
86221
104883
99663
105144
104615
104227

105144

110082
104227
104718
104811
110029

92238
109218
145189
155130
166766
149189
149077

187493
189336
166766
188858
187092
190121
190121

g
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The results of the calculations of the separate contributions of the
"optically thick'" NI and NIl lines and the NI continuum to the radiative
energy balance, for the three temperature distributions with a central
temperature of 15,000, 16,900 and 21,750 OK, are shown as a function of
the radius in figures 17, 18 and 19 respectively.

The contributions of the part of the spectrum for which these discharges
are optically thin, have already been given as a function of the temperature
with pressure as parameter in figures 6 ('optically thin" NI continuum)
and 7 ("“optically thin" NI and NIl lines).

Combining these with the given temperature distributions, we can derive
the radial distributions of the '"optically thin" contributions to the
radiative energy balance. These results are also shown in figures 17, 18
and 19, The radial distributions of the total radiative energe balance

(utotal
figures 20, 21 and 22 respectively.
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Also included in these figures is the radial distribution of one tenth

of the electrical energy supplied per unit time and volume (0.1 ¢ Ez).
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The electrical conductivity o as a function of temperature an pressure
as a parameter has been taken from [26].
From figures 20, 21 and 22 can be seen that the calculated energy dissipation

by radiation (u ) in the immediate neighbourhood of the centre is about

total
20 percent of the electrical energy supplied, but for greater values of the
radius r (r < R) the importance of this energy dissipation decreases rapidly.

At the boundary of the discharge (r = R} u is seen to become negative,

indicating that at the edge of the dischar;gtalre radiative energy is ab-
sorbed than emitted, but this can be neglected with respect to the supplied
electrical energy.

Calculations of the radial distributions of the radiative energy balance

in '"cascade arcs in nitrogen and argon' carried out by Uhlenbusch [32]‘and

Hermann et al. [33] also produced negative values for u at the

total
boundary of the discharge.

As a conclusion it can be stated that the radiaticn losses which occur
in discharges at pressures of a few atmospheres and central temperatures
of about 20,000 oK, when compared with the electrical energy supplied,

are only of importance in the neighbourhood of the centre of the discharge.
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Lalgol 06265097 boermen, 1 APPENDIX I.
begln real g, bb, theta;

Integer i;

array 4, e[1:L4];

Iibrary INTEGRAL, ARCCOS;

real procedure B(g);

value g; real g;

begin reel bulp, grens;
1f g = O then B := arctan(1) x 2

else begin grens := ARCCOS(g/(114.85 + g — In(ARCCOS(g/(g + 2.3)))));
hulp := exp(-g);

end

-

end B;

- e

e[1] := e[3] := y-5; e[2] = ~T; e[l] := 0;
RUNOUT;
for 1 i= O step 1 unti} 1500 dp
begin g = 1 X y=2; bb := B(gY;
ABSFIXT(2, 2, g); FLOT(10, 1, bb); NLCR;
FIXP(2, 2, g); PUNCH(bb); PUNLCR
end;

RUNOQUT
end

- e

progend
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APPENDIX 1.
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The sequence of the input data.

1. Number of temperature data in the T(r) table.

2. Number of temperature data in the nN(T) c.q. nN*(T);
U(T) and "e(T) tables.

The nN(T) c.q. nN+(T); U(T) and ne(T) tables,

. The values of the constants Amj’ Ij; gj; fjm and Weah®
The exponential integral B(g) as a function of g.

. The T(r) table.

oy v e ow
. .

Qutput data.

See programme text.



Lalgol06265097 boerman
begin comment 4.BOSRMAN,T.H.Z. 7/71,
straling van boogontlading in het centrum,
ingevoerd worden achtereenvolgens:
1.aantal T(r) waarden,
2.aantal (Tyn-u,u-n,n-e) waardsn,
3.tabel (T,n=u,u-n,n-e),
4.lambds,a-1,gi,f-ik,wtabel,
S.in 1500 waarden tabsl: g, B{g) om =n om,
6,1in opgegeven aantal wazrden tabel: r, T om eh om
N.B. d= lastste woarde van deze tabal wordf als voogradius beschouwd;

ipteger TOP, RARMAX,MAX, g1

real LAMBDA, NUQ, NI, 2L, DELTANU, $, 3, h,k, ¢, e2meleps, T 1k, k faktor, hnugedk , e 1gedk , ALFAKTOR, SPSFAKTOR,
a,dINLEES, sXTRA,BETFAKTOR,BRO, pibro;

RARMAX := RZAD; MAX := READ;

pi o= L X aretan(1);

h = 6.62h .34;
k = 1. 58:0‘25:
=2, 998n+81
ezmcheps 1= L25565~5;
begin real ZNJ, =WU1, ANU, UMJ, RG, fi, ReDIUS, R, T, theta, m, n, minr, ALFA, RAMIN, RQMAX, stukanu;
mteger i, 1, J, nne, nnu, d, =;

real array RAR, TRAR] 1 : RARMAX ],
UAR, 34R, TAR, alphae, alphau, betas, betaul1:MAX],
ae, au[0:MAX], delta[=1:MAX],
GAR, B.ap.[o:woo},
UITVOaR[0:3, 1:2C];
library ORTHOPROL, YAPFROX;

real procedure TRAPEX (x, X, a, b, ae, re, orde, m);

valua a, b, re, a2, orde; im,eger arde, m; real x, x, 8, b, a2, re;

e e

APPENDIX II-2.

"Iggg&n comment. De prOc:edure TRAFEX geef‘t cen benadering van de waarde van de integraal van de functie f{x) over het
interval [a, b]. Da procedure benadert deze waardz door extrapolatiss van rativnale functies, gebasserd
op het berekenen van een asantal trapezium—bensderingen. Bij aanroep van de procedure moet de formele parameter
fx vervangen worden door de expressie voor f{x). x treedt op als Jensen parameter. Het maximale aantal
trapezium-henaderingen mcef aan de procedure meegegeven worden met de integer orde. Het proces eindigt als
door twse opesnvolgende extrapolaties T{ml, T{m - 1) voldaan is san abs(T[m - 1] ~ T(m]) < ae + re x abs(T{n))

of als m d> waarde orde heeft bereikt. Wa aflcop van de procedure heeft m als waarde het aantal

berakende frapezium-beraderingen of, indisn niet aan de eindtest voldaan kan worden, de waarde nul;

integer ®n, 1; rgal Y, [2, f2a, 3, Wd, h, Lo, tr, tn;

integer array nlOTorde]; array t0:7;
procedure extr (m); value mj Ipbeger m;
begin integer i, mm; real, u, v, tu, r, , d;

v = o u i= tE0]; troi= tl0] := ta if m> 7 then mn = 7 elss mu = m;

for i =1 ste 1 gx_zgg; 4o
‘g_ggmd: mi/olm = 1); dt=d X d; tv = tr ~ v} tu = tr - u;
ir () then tr &= tr + Lufd x { tustv) -1);

1 -
ir 1 = mn fhen begin v = u; u := v{i] gd; tli} 1= tr;

end

epd 2xtr;



APPENDIX II-3

n{e] := 1; n[1) = 2; n[2] :=3; for 1 :=3 & B 1 until orde do nfi] :=n[i — 2] x 2 ;

hO :=b - 8a; x := a; f1 := fx- CITVOER[d, ] X Pl %X £1; ¥ := b; F1 := {f1 + fx)/2- t[0] := £1 x ho;

X :=a + h0/2; f2a := 2 := fx- UITVOER[d, e + 1] := L x pi x £2;

if d = 1 then ei UITVCER[C, e] := a; UITVCER|O, e+1]-—x, i= e + 2 end;

Tn = (£ + 12 ho/2; extr(‘l) to 1= tr;

for m := ateE 1 until orde dg

begin if m = 2 then begin x = a + hO/j, £3 := IX; X 1= b = hO/3; £3 = £3 + £x; tn := {£1 + £3) X hO/3 end

else begin nn := n[m]; h := ho/nn;
ifm={m: 2)x2
then begin for 1 := 1 step 6 until nn, 5 step 6 until nn do
begin x :=a+ixh° 13 = f5+fxend-
tn 1= {f3 + f2p + f1) % h; f2a := £2

end '
elge begin for i := 18 2 until nn do begin x := a + 1 X h; f2 ;= f2 + fx end;
o= (2 +f1§ xk
. end
end; -
extr(m}; if ab_(_o — tr) < ae + re x abs(tr) then goto end else to := tr
end;
mi= 0;
end: TRAPEX := tr
end TRAPEX ;

real procedure INTEGRAND(a};
value s; real a;
begin real a_'l.pO, alpi, alpil, eps, hsug, g, var, scml, som?;
integer i;
array  INTAR[0:100];
alpl := alp0 := ALPHANU{0); eps := alp0 X EFSFAKTOR X exp(—hnugedk/T),
hsug 1= 15/alp0, if hsug > RADIUS thew hsug := RADI 5; hsug := hsug/100,001;
g := 0; INTAR{O] := BAR[O] x eps;
;_’_g;; i::=1 steg T until 100 do
begin var := 1 X hsug;
lp11 1= ALPHANU{var}; eps ;= alpi1 X EPSFAKT{R x exp{-hnugedk/T);
= g + .5 X hsug X (alpi + alpil);
IN‘I‘AR[i] = B{g} x eps;
alpl := alpil

end;

som i= 0; som2 := Q;

for i := 1 step 2 until 99 do som! := soml + INTAR[i];

for 1 := 2 step ? ntil 98 3o som2 := som? + INTAR[LY;

INTEGRAND := hsug X {INTAR[D] + INTAR[100] + L X soml + 2 x som2)/3
end TNTEGRAND ;



APPENDIX I1I-4

real procedure EPSILONU(R);

value R;resl R;

beEin EPSILDIIU =ALFHANU(R JXEPSFAKTRXexp(-hnugedk /T );
end EPSILONG;

resl procedur e ALPHANU(R);
value Rjreal R-
begin real BETA ,BETAFAKTOR ;
8T(R,T);
BETA ; =BETFAKTORXYAPFRCX (nne, alphae ,betae,ae,T);
BETAFAKTOR : -BETAx(u(axBRD/BETa)Aa)
EXTRA : =ALFAKTURX( exp(—eigedk/T))XYAPPR[D((rmu,alpha.u betsu,au, T }/BETAFAKTOR;
ALPHANU: =EXTRA;
end ALPHANU;

protedure RT(R,T);
va.lue R; real R,T;
begin int.eser og,mg,bg,
og:=1;bg: =RARMAX;
ms =og+{ (bg~0g )z 2);
if R<BAR[mg] then bg:= mg else og:=mg;
if {(bg-og)>1.5 then goto V;
(TRAR[hg]—‘I‘RAR[osiS ZR—RAR[osl)/(RAR{bg]—HAR[og])*’I‘RAR[OE]
end RT-

real procedure B(g);
value &; real g;

begin integer og, mg, bg; ' .
if g > 15 then begin B := O; goto eindbg end;
= 0y bg i= 1500;

Vi mg:=og + ((bg - og):2);

if g < GAR{mg] then bg = mg else og 1= mg;

if (bg - og) > 1.5 - sthen oto V;

B := (BAR[ g} - BARTog]) X (g — GAR[og])/(GAR[bg] — GAR[og]) + BAR[eg);
eindbg: ;



APPENDIX II-5.

real procedure EEN{a);

velue a;real a;
begin NU:=NUG+exBRO;
hnuged: =AU/ k;EPSFAKTOR : =2XxXNUXNUNU/ ( exe )3
EEN:=1
grd EEN;
for I:=1 step 1 until MAX do
begin TARIT J:=READ;UAR[I}:=READ/READ;EAR[I]:=READ
end;
LAMBDA := READ; EI := READ; gi := READ; fik := READ; WINLEES := READ; NUD := c/LAMEDA;
PRINTTEXT(%de invoergegevens zijn:}); CARRIAGE(2);

PRINTTEXT(+ lanbda=3$); FLOP(6, 2, LAMBDA); PRINDTEXT{{ meterd); NICR;
PRINTTEXT(+ n=0 =}); FLOT(6,2, NUO); PRINITEXT(+ hertzd); NICR;
PRINTTEXT(& el  =b); FXe(s5, O, EI); PRINTTEXT(¢ /omb); NLCR;
PRINTTEXT( & gl =b): FIXT(5, 0, gl); NICR;

PRINTTEXT( & fik =d); FIXT(1, 4, fik); NICR;

PRINTTEXT(& wbabel=b); FLOT(6, 2, WINLEES); PRINTTEXT(€ meterd); NICR;
for T := 0 step 1 until 1500 do begin GAR[I] := READ; BAR[I] := READ end;

for I:=1 step ? until RARMAX do begin RAR[I]:=READXy-3;TRAR[I]:=READ end;
REDIUS:=HAR[RARMAY ];

ORTHOPOL{TAR, UAR \ MAY , i, MAY—1 ,elphay, betau, au,delts, delts [ima ) /delta[«1 1<B);
ORTHOPOL (TAR, EAR, MAX, nne ,MAX~1,a1phae,betae,ae,delta, delta[nne }/delta -1 1<p-6);
BETFAKTCR: =2, 598, 1UxWINLEES / { LAMBDAA2 };

T := TRAR[1]; BRO := BETFAKTOR X YAPPRX(nne, alphae, betae, ae, T);

pibro: =BxpixBRO;

eigedk:=1.43855xE1 ; ALFAKT{R : =e2mebepsxgixfik/pi ;

PRINTTEXT(4 RADIUS=}); FLOT(E, 2, RADIUS); PRINTTEXT({ meter}); CARRIAGE(3);
PRINTTEXT (4ernkele ingelezen en verwerkte wasrdent); CARRIAGE(2);
PRINTTEXT{ r t neb); NICR;
PRINTTEXT( & m  kelvin  mh-3}); NLCR;
SPACE(E}; for I := 1 step T until 25 do PRSYM(65}; NLCR;
- | for I :=0 step 1 until 1C do

begin SPACE(5); ABSFINT(1, 2, I X RADIUS x ,428);
RT{I x RADIUS/10, T); ABSFIXT(5, 1, T};
FLOT(5, 2, YAPPRIX(nne, alphae, betme, me, T)}); NICR

end;
CARRIAGE(}L;E
PRINTTEXT{<eukele nuttige gegevensd); CARRIAGE(2);
PRINTTEXT( £ de orden der benaderingspolynomen zijn: 3);
. FIXT{2, O, nnu); FIXT(2, O, nne); NICR;
PRINTTEXT( de halfhaifweardebreedte bedrasgt });
FLOT(6, 2, BRO}; PRINTTEXT(& hertz}); CARRIAGE(2);
PRINTTEXT( < 1/alphanu(0) als functie van de frequentieafwljkingh); FIOR;
PRINTTEXT{& 1 1 /aipnanu{0)b); WICR;

for a := 0, .5, 1, 2, 3, 6.5, 10, 20, 30, 65, 100, 200, 300, 650, 1000 do

—

begin SPACE(8); ABSFIXT(L4, 1, a); FLOT(6, 2, 1/ALPHANU(0)}; NICR end;



BPPENDIX II-G.

begin integer amin,amax;
amin:=1;ANU:=0;ENU:=0;
NEW PAGE; e = 1;
4 := 2; TRAPFEX{ma, EEN{a) x ALPHANU(CQ) x INTBEGRAND(a), O, 1, O, 4, 2, TOP);
d := 1; ENU1 := TRAPEX(a, EEN(a} x EPSILONU(C), O, 1, O, wb, 10, TOP);
ABSFIXT(3, 0, LINE NUMBER);PRINTTEXT({amin,amax, en m in enu ziJn achtereenvolgens +);
ABsFIXT{4, 0, 0); ABSFDXT(L, 0, 1); ABSFIXT(2, 0, TOP); NICR;
for amax:=3,10,30,100,300,1000 do
Degin ABSFIXT{3,0,LINE NUMBER);
PRINTTEXT( n,amax,m in enu, en m in enu zijn achtereenvolgenah);
ABSFIXT{4,0,8min ) ; ABSFIXT{L 0, ammx };
a :=2; ’
ANU := ANU + TRAFEX(s, EEN(a) X ALPHANU{O) x INTEGRAND(a), amin, amex, 0, &, 10, TOP);
ABSFIXT(3,0,TCP);
a :=1;
ENU: =ENU+TRAPEX {a, EEN(a )XEPSILONU(O),amin, amax, O, w5, 10,700 );
ABSFIXT{ 3,0, TCP }; NLCR;
amin:=gmax
end;
TNU := ENU — ANU; CARRIAGE(S);
PRINTTEXT(unu=3) ; FLOT(5,2, pi broxUNU ) ; NLCR;
ENU := ENU + ENU1;
PRINTTEXT(4anu=3); FLOT(5, 2, pibro x ANU); NICR;
PRINTTEXT(4enu=});FLOT(S,2, plbroxENU);
NLCR; PRINTTEXT(duna 183); FIXT(2, 2, UNU/ENUX100 ) ; PRINTTEXT(&procent van enub);

end;
begin for I := 3 step 1 umtil e — 1 do UITVOER[3, 1] := UTTVCER(1, 1] - UrTvCER[2, I];
CERRIAGE(S);
FRINTTEXT( a eny anu unu}); NLCR;
for I := 1 step 1 until e = 1 do
begin ABSFIXT{3, 1, UFTVOER[o, I1); FLOT(S, 3, UITVCER[!, Il); FLOT(5, 3, UITVOER[2, I]);
FLor(s, 3, UITVOER[3, 1]1); NICR
end
end;
£nd;
EIND:;

“'Elé
5 .
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APPENDIX 111.

vk v en m m m om R e D e S AR e e E am Ee am me E m ee E
et o i R e R A A e e S R A A TR S B A S e e e e e e -

The sequence of the input data.

1. Number of temperature data in the T{r) table.

M

. Number of temperature data in the nN(T) c.q. nN+(T);
U(T) and ne(T) tables.

. The magnitudes of staptal and staptal 1.

. The nN(T) c.q. nN+(T); U(T) and ne(T) tables,

. The line identifier and the magnitude of Fpe

. The values of the constants gj, Ij’ fjm’ Amj and Weab

. The exponential integral B(g) as a function of g.
. The T(r) table.

o~ U W

Output data.

See programme text.
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Ia.lfol 06265238 holtz
begin comment Derekening van straling in een boogontlading voor punten buiten de as. T1-71 T.H.E.
Inlees volgorde: aantal wearden van t in t{r) tabel,
santal wearden van t in tabel 2,
.le waarden van staptal en staptall,
de waarden van t,un,un,ne uit tabel 2,
de 1ijn identifier en de waarde van ra,
de waarden van de constanten gi, ei, fik, lambda, wtab,
de vmarden van g en b(g) uit b{g) tebel,
de waarden van t en r uit t{(r) tabel,;
integer numbert, nuwbertr, rij, kolom; reml array tabel[0:3, 1:20];
numbertyr := read; numbert := read;
begin real gi,el,rik,lambdal, thete,r,wtab,pi,c,alpnafakior,t,s,re,betalra,alphira,enu,ara,nus,
&lpharq,
rs, rq, epafaktorl, epsfektor2, radius, lnu, fi, fimex, rmin, rmmx, smax;
integer i, nun, nne, staptal, staptall, lijn;
reai srray un,ne,tt{ 1:numbert j, alplmun,betaun,nlphane betane[1:numbert — 1] aun,ane[o.nunbort. - 11,
delta[~ 1:mumbert - 1], tr, rr(1:numbertr], be, ggl[0:1000];
librery ORTHOPOL,YAPFROX;

real procedure TRAPEX (x, fx, a, b, ae, re, orde, m};
!!}gg &, b, re, se, orde; }.gtgger orde, m; gea.l x, fx, &, b, ae, re;
blgin comment De procedure TRAPIEY gaelft een benadering van de wearde van de integrasl van de functie f{x) over het
interval [a, b). De procedure benadert deze waarde door extrapoleties van raticnale functies, gebaseerd
op het berekenen van een aantal trapesium-~bensderingen. Bij asnroep van de procedure moet de formsele paremeter
fx vervangen worden door de exypressie voor f(x). x treedt op als Jensen parametar. Het maximale santal
trapezium-benaderingen moet aan de procedure meegegeven worden met de integer orde, Het proces eindigt als
door twee opveenvolgende extrapolaties T[m], T({m ~ 1] voldaan is ean abs{T(m - 1] = T{m]} < ae + re x abs{T{ml)
of els m de wearde orde heeft berelkt, Na afloop van de procedure heeft m als waarde hei aantal
berekende t{rapezlum-benaderingen of, indien niet ean de eindtest voldaen kan worden, de waarde nul;
integer nn, i; real f1, f2, f2a, 3, h0, h, to, tr, in;
integer array n[G:ordel; ar array 1:.[0 F
procedure extr (m); value m; Iinteger m;
begin integer 1, mm; real u, v, tu, tv, d;
v 1= 03 u = t[0}; tr = t[O] i= tn 3 if m > 7 then mm := 7 else mm i= m;
for 1 := 1 step 1 EEEE].'”‘QQ
bes_n d = nln?/n[m - i]; dimdxd; tv i= tr = v tu = tr - u;
if tv % 0 then tr := tr + tu/(d x {1 = wu/tv) -1);
I 1 4 mo then begin v := u; u = t{1] end; t[i] = tr;
end
nd extr;
n[O] i= 1; ni1] :=2; nl2] = 3; for i := 3 step 1 until orde do n{i] :=nfi -2 x 2 ;
hO i= b — @} x :=a; 1 := fx; tebel[kolom, rij] i= £1;
X = bj £1 i= (r1 + £x)/2; © [0) := £t X hO; .
X =& + h0/2, :m f2 1= fx; tabelfkolom, rij + 1] := £2;
if kolom = 1 then begin tabel{O, riJ] i= a; tabel[d, rij + 1] = x3 rij = rij + 2 end;
= (£1 + £3) X h0/2; extr(1); to i= tr;
for mi=2 ste;g 1 until orde do
I-)gsig Mas= then beg_n X:i=a+ hO/3; 3 i= £x; x := b = h0f3; £3 := £3 + fx; tn := (f1 + £3) X h0/3 end
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else begin nn := n[m]; h := ho/nn;

ifn-(n.e)xa
thgg beg_n for 1 := 1 step 6 until nn, 5 step 6 until nn do
bgginx'-a-l-ixh, fj .=r5+fxend-
= (f3 + 2 + £1) X h; fom 1= f2
end
elsebeginfori i= 1 step 2 until nn do begin x := & + 1 X h; £2 = £2 + Ix end;

tn o= (f2 + T1) X h

end
end;
extr{m)} it abalio ~ tr) < we + re X sbs(tr) then gotc end glse to = tr
end;
m = O3
end: TRAPEX := ir
end’ TRAPEX;

real edure betal(t);

value t; real 17

begin betal := c X wtab X ,22 X YAPPROX( nne, alphane, betane, ane ,t)/lambde0 A 2;
end betal;

real procedure alpha(r);
u.e r; real r;
beg;n_g ml beta.t,
t := tewp(r); betat := betal(i);
alpha := alphafaktor X YAPPROX(nun,alphaun,betaun,aun,t} X betat/(betat A2+ (ax betalra) A 2)

x exp{{ - 1.L3855 x ei}/t)
end alpha(r);

real Er(_;gedur_o; een{a);

value a; reel 8;

begin real nu;
U tw nud + & X betalra; :
epafaktor] := 2 X 6,624,~34 x nu A 3/ A 2;
epafaktor? iw 6.62U,34 X maf1,30,-2%;
een = 1;

end een;

real procedure epsilon(r);

value 1; resl r;

begl in alharg :o alpha(r), epsilon := alpharg X epsfaktor?l x exp{ - epsfaktor2/t)
end epsilon(r),

resl procedure temp(r);

-

vilue r; resl r;
beg_in inte_ggr o, Bg, L3
o := 1; bg = numbertr;
V: mg :=o0g + {(bg - og) : 2);
if r < rring) then bg 1= mg else og := mz;
if(bg-og)>1 Sthen oto V;
temp := (tr{bg] - trlogl) x (r ~ rriogl)/(rrivg) -rriogl) + triogl;
end temp(r);
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real procedure simmson{x, fx, 8, b, step);
value &, b, step; real a, b, x, x; integer step;
begln resl arysy fxarlO:stepl;
EEE'Z h, scml, som2;
integer 1i;
L :s?b - a)/step;
for i1 i= O step 1 until step do begin x := & + ii X h; fxar{ii] := fx end;
soml = some := (O;
for 11 := 1 step 2 until atep - 1 do soml := somi + fxar[ii];
for 11 := 2 step 2 until step - 2 do som2 := som2 + fxer{ii];
simpson t= hJ3 X (fXAP[0) + b X soml + 2 x som2 + Txar[step]);
end simpson; _

real procedure b(rq);
value Tq; real ry;
begin real g, s; integer og,me,be;
8 = aqrt(ra A2 + Mg A2 ~2Xra xXrqXxcos(fi)); g := 8/2 x (alphara + alpharq);
if g = O then b := O elae
begin if & > 10 then b i« O alse
%13 og := 0; bg := 10003
Vi  mg i=og + ((bg - og) : 2);
if g < galmgl then bg i= mg else og := mg;
if (bg - og) > 1.5 then goto V;

b = ((velbg) - velog]] x (g - eslogl)/(wslbg] ~ selog]) + belogl}/(s + p=2 x lnu};
end;

end;
end b(rgq);

real procedure anu(a);

value a; resl e;
begis centals
alphara := alpha(re);
amex = j0/alphara;
1= re — SWRX; ggminsoy_xggmin = 0
THMBX = 'S + BERX)} gg rmex > rediua Egt_:g reax = radius;
if smex > re then fimex := pi else fimhx i« arctan(smax/sqrt(re A 2 - smx A 2));
rs := anu := L X alphars X )
{ simpson(rq, epeilon(rq) X rq X simpson{fi, b(rq), 0, fimx, staptal), rmin, (4 X ra + rmin)/5, staptal)
+ simpson(rq, epsilon(rq) x rq X simpson(fi, b{rq), 0, fimax/5, staptall),(4 x ra + rmin)/5, (b X ra + rmx)/5,staptall}
+ simpson(rq, epsilon(rq) X rq X simpson(fi, b(rq), fimax/5, fimax, ,8 x staptal),
L x ra + rmin}/5, (4 X ra + rmax}/5, staptal/s)
+ simpson(rq, epsilon(rq) X rq X simpson(fi, b(rq), 0, fimax, staptal), (4 x ra + rmex)/5, rmax, steptal));
end anu{a);
staptal ;= read; ataptall := read;
pi e 3,14159 26535; ¢ = 2,998,+8;
for 1:=1 step | until numbert do
begin t4fI] := reed; un{i] := read/read; ne{i] := read end;
GRTIGPOL( tt, un, numbert ,nun, numbert —1,4lphaun,betaun,aun,delte,deltanun}/deita(-1]
ORTHOPOL( %1, ne, numbert , nne , numbert —1,alphane,betane,ane,delta,deltanne)/deltal~1]

1ATA
3
&
wa
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lijn := read; ra& i= read;

gl := read; ei := read; fik := read; lambda0 := read; wtab := read;
for 1 := O step 1 uptll 1000 do |

begin gg[i] := read; be[i] :="read end;

for 1 := 1 step 1 until numbertr do

begin rrii] i= read X ,-3; tr(i] i= resd end;

alplafaktor := 0.26565,-5 X gi X fik/pi;

nul := ¢/lambdal; redius := rr{numbertr];

betalra := betal(iemp{ra)); a := 2; lnu := 1/alpha{ra);
PRINTTEXT{ fde invoergegevens zijn::I’) : CARRIAGE(2};

FRINTTEXT({deze geevens behoren bij iijn: nl);PRSYM(lijn : 10700); lijn := lijn = 1000 X (lijn :

if 1ijn > 29 then PRINTTEXT{ 4som adb); ABSFIXT{2,0,1iijn - 100 x (iijn : 100)); NLCR;

BFRINTTEXT( lambda=}); FLOT(6, 2, lambdad}; PRINTTEXT(4 meter’); NLCR;
PRINTTEXT( 4 nu-0 =3); FLOM6, 2, c/lambdad); PRIN £ hertzi) ; NLCR;
FRINTTEXT{ ei =$); FIXT{5, 0, el); PRINTTEXT(¥ /cmb); NLCR;
PRINTTEXT{ & gi  =}); FLOF(3, 1, &i); NLCR;

PRINTTEXT{ + fik =}}; FIxm(1, 4, fik); NLCR;

PRINTTEXT{ wiabel=}); FLOT(6, 2, wtab); PRINTTEXT(& meterd); NLCR;
PRINTTEXT( + ra  =}); ABSFIXT{(1, 2, ra X o+3); PRINTTEXT{{ mub); NLCR;
PRINTTEXT{ & t(ra) =}); ABSFIXT(S, 1, temp(im)); PRINTTEXT(& kelvinb); NLCR;
PRINTTEXT(+ rediusel}: FLOT6, 2, radius); PRINTTEXT(E meterd); NLCR;
PRINTTEXT( ¢ lenu =$); FLOT(6, 2, lou); PRINTIEXT(& meterd); NLCR;

CARRIAGE(2); PRINTTEXT( fenkele ingelezen en verwerkte waardend); CARRIAGE(2);
PRINTTEXT{ r t ne nfu $); NLCR;
PRIN'I'I’E‘.X’I’(-k m kelvin wh—33); NLCR;
SPACE(6); for 1 := 1 step 1 until 57 do PRSYM(65); NLCR;
for i := 1 step 1 until 10 do
begin SPACE{5); ABSFIXT(1, 2, i x radius X 100);
ABSFIXT(S, 1, temp{i x radius/10)};
FLOI(5, 2, YAPPROX(nne, alphane, betane, ane, temp(i X radius/10}));
FLOT(5, 2, YAPPROX(nun, siphaun, betaun, sun, temp(i X radius/10)}); NLCR;
énd;
GARRIAGE(}]:;
PRINTTEXT( fenkele nuttige gegevensb}; CARRIAGE(2);
PRINTTEXT + de orden van Ge benaderingspolynomen zijn:});
ABSFIXT(2, 0, nun); ABSFIXT{(2, 0, nne); NLCR;
PRINTTEXT{ & de helf-half-waardebreedte bedraagtd);
FLOT(6, 2, betalra); PRINTTEXT{& hertz}); NLCR;
NLCR; PRINTTEXT{ 4 1/alphanu({ra} als functle van de frequentieafwijking ad); NLCR;
PRINTIEXT(4 a 1/alphanu(ra)}); NLCR;
fora := 0, .5, 1, 2, 3, 6.5, 10, 20, 30, 65, 100, 200, 300, 653, 1000 do
begin SPACE(8); ABSFIXT(4, 1, e); FLOKG, 2, 1/alpha(ra)); NLCR end;
begin integer amin, amex, top; real enul, pils, unu, eanu;
n := 2; aAanu = enu := J; pil = 4 x pi;
NEWPAGE; riJ := 13
kolom := 2; TRAPEX(a, anu{a)}, 0, 2, v, 54, 2, top);
kolom := 1; enul := TRAPEX(a, een(a) x pil x epsilon{ra}), 0, 2, 0, g~l, 7, top};
ABSFIXT{3,0,LINE NUMBER); PRINTTEXT({amin, emex, en m in enu zijn: 1);
SPACE(10); ABSFIXT(L, 0, 0); ABSFIXT{L, 0, 2}; ABSFIXT(3, O, top); NLCR;

1000} 3
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for amex := 3, 10, 30, 100, 300, 1000 do

begin ABSFIXT(3,0,LINE NUMBER);
PRINTTEXT{ famin, awex, m in anu en m in enu zijn: 3
ABSFIXT{L,0,amin); ABSFIXT{4,D,amax);
kolom := 2}
sanu = sanu + TRAPEX(a, anu{a), awmin, amax, 0, p~3, 7, top);
ABSFIXI{3,0,t0p);
kolom := 1;
enu o enu + TRAPEX(a, een(a) X pil X epsilon(ra),emin, amex, 0, ,=4, 10, top);
ABSFIXT(3,0,top}; NLCR;
amin = gmax; ‘

emd;

unu i= enu - aanu; CARRIAGE(S);

PRINTTEXT( 4unu=}$); FLOT(8,2,2 X betalra X unu); NLCR;

enu = enu + enul;

PRINTTEXT( 4enu=3); FLOW( 8,2, 2 X betalra X asnu); NLCR;

PRINTTEXT fenu=}); FLOT(8,2, 2 X betalra X enu); NLCR;

PRINTTEXT{ funy 1s1); FiXD(2,2,unu/enu x 100); PRINTTEXT(4procent van enud);

for 1 i= 1 gtep 1 undil rij - 7 do tabell[3,1] := tabel[1,1] - tabell[2,1];

CARRIAGE(S);

PRINTTEXT( & & enu anu unt); NLCR;

for 1 i= 1 step 1 wntil r1) - 1 do

begin ABSFIXI(3,1,tabel(0,1]); FLOT(S,3,tabell1,1]); FLOT(5,3,tabel{2,1]);
FLDT{5,3,tabel(3,11); NILCR;

end;

end;

end;

-

progend
n

300 305

Q000  .22175p+25  b.52220  1.19g+22
10000  .20398,+25 L.72381  3,12,+22
12000  .152555+25 5,18027 1.2hy+23
thooo L9930k g+ 5.T1250  2,924+23
16000 Jb43159+2%  6.28290  L.50423
18000  .15756p+2%  6.91593  5.1344+23
20000 .556524+25  T.65386 5,054,423
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The sequences of the input data,

Number of temperature data in the T(r} table.

. Number of temperature data in the nN(T) table.
. The value for v .
max
The value for Z%2.
. The nN(T) table.
The exponential integral B(g) as a function of g.

The T(r) table.

~I O \vn & w N -

Qutput data.

See programme text,



0106265097 BOERMAN
begin comment W.BOERMAN T.H.E. T/T
straling van boogon laaing in het centrum; APENDLX IV-II.

integer ~ TOP RARMAX MAX 22
reel N0, NU NUMAX pi h k ¢, hnugedk, EPSFAKTOR, a BRO, pibro;
RARMAX: =READ; MiX: =READ; r ! '
NUMAX := READ; NUO := 3.5,+15; 22 := READ;
PRIIJ’I‘I‘EX'I‘HZZ Az =4y ABSFIXT(2,0,72); NLCR;

pliubxarctan(1 );
h:=6,624,-34;
k:‘=1-38n"25;
c:1=2.998,+;
begin real ENU ANU URU, RQ RADIUS R, T;
Iﬁﬁﬁgsx_' 1 1 J ’'nne_ 'nou’ d, e;
resl array RAR T'RARU f’ARMU(}

- uak EAR TAR alphse alphau betme, betau[1:MAX)
se au[0:1x) 'delta[-]: :MAX]
cAR BAR[0:1500]

UTTYOER[0:3. 1:20];
librery  ORTHOPOL, YAPPROX;

real procedure TRAPEX (x, fx = b ae re orde, m};
vaIue e, b re ae orde' in"beger drae’ m,’real x, fx a b ae  rej
begin egin coment be procedure TRAPEX geef{ een benadering van de waarde van de integranl van de functle £(x) over het
intervel [a_b]. De procedure benmdert deze wmarde door extrapolasties van rationmle f‘lmcties geboseerd
op het beref{enen van een santel trapezium-benaderingen. Bij sanroep van de procedure moet de’ formele parameter
fx vervangen worden door de expressie voor f(x). % treedt op als Jensen parameter. Het maximale eantal
trapezium-benaderingen moet san de procedure meegegeven worden met de integer orde. Het proces eindigt als
door twee opeenvolgende extrapolaties T[m], T{m - 1] voldeen is ean abs(Tm - 1] ~ T[m}) < e + re x 8bs(T[m])
of els m de wearde orde heeft bereikt., Na a.floc)p van de procedure heeft m als waarde het santal
berekende trapezium-benaderingen of indien niet aan de eindtest voldaan kan worden de waarde nul;
integer m_ i; real 1 f2 f2a I3 hO h ta tr, tn;
ger arra n!5°orde’j fo: ’f],
ure ex%r (m)s value %nteger m; -
Eegin integer i mm3 reaI u v tu 'tv d;
0' = 1[0Y; i o= t[O] = tn 3 if m > 7 then mm := 7 else mn := m;
fori:—1 step 1 until mm do - - -
begin d = nlm}/nfm = 1} d7T= A% d; tv 1= tr — v; tu = tr - uj
T if tv 4 O then tr := tr + tu/(dx {1 - tu/tv) ‘1),
I_'f; 14 mm :EH_' begin v := u; u := t[1] end; t[1] := tr;
end

end extr;
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n[0] := 1; nf1] := 2; n{2) = 3; for i := 3 stex_)_ 1 until orde do nf1] :=nl[t1 - 2] x 2 ;
h0 = b - a; x = 8; F1 := fx; UITVOER[d, e] := b X pL X f1; x = b3 f1 := (f1 + fx)/2- t[0] := £1 x ho;

X 1= 8 + h0/2; -=f2-=f'x-U1-1v0ER[& e+ 1] := 4 x pl x £2;
gd_1thenb n UITVOER[O e] =a,UiTv0En[o e+ 1] := xje = e + 2 end;
= (f1+ fE 0/2' extr(l}; to := tr;
for m:=2 3 1 until orde do
begin if m = E n pezin x := 8 + hO/}, £3 := fx3 x := b - hOf3; 3 1= 3 + x5 := (£1 + £3) x hof3 end
= Ise begin nn := nim]; hO/nn,
if m= (m: 2) x 2
‘then begin “for 1 =1 step 6 until nn S s 6 wtil nn do
beEinxna+ix_E7—?5‘=f§ end;
= (f3 + 25 + 1} X h; 2 := f2
end
else—b_gginfgl‘im‘ts 2 until nn do begin x =8 + 1 % hy 2 := £f2 + fx end;
W (f2 4+ Ty xh
end.
end; - :
extr{m); if abs{To -~ tr) < ae + re X abs(tr) then goto end else to := tr
end; -
m 1= ]
end: TRAPEX 1= tr
end TRAPEX;

real procedure INTEGRAND(2);
Velue 83 real 8; !

begin real alpO alpi, alpil, eps, hsug, g var, soml som2;
Tnteger i}
armay  INTAR[0:100];
alpl := alp0 := ALPI-L‘\NU{O), eps := alpd x EPSFAXTOR x exp{-hnugedk/T);
hsyg := 15/alp0; if hsug > RADIUS then hsug := RADIUS; hsug := haug/100.001;
g := 0; INTAR[0] %= BAR[0] x eps;
for 1 := 1 step 1 wtil 100 do
Begin var :="1 x hsugs
alpll := ALPHANU(var); eps := alpit X EPSFAKTOR X exp(-hnugedk/T);
g =g + .5 X hsug ¥ {alpi + clpi1};
INTAR[1] := B(g) x eps;
alpl := alpit

end;
som! := 0 som2 := 03
for i : step 2 until 99 do som! := som! + INTAR[i);

=1
fori =23 ‘beg 2 Wtil 978 do som® := som2 + INTAR[1];
TNTEGRAND := X1 TAR["‘I + INTAR[100] + b x soml + 2 x som2)/3
end INTHGRAND;



real procedure FEPSILONU(R);

value R;reaI R
EPSTLONU : =ALPHANU( R)X EPSFAKTORKexp(~hnugedk /T);
SILOU;

real procedure ALPHANU(R);
Velue R;r R;

begin RT(R 1);
NU := NUD + & % BRD;

ALPHAHU i= 2.865+25 X 72 X YAPPROX(nnu alphau betau au T}/(NU A 3)

end ALPHANU;

og 1= ;bg 1= RARMAX;
mg:=og+{ {bg-0g):2);
if R<RAR[mg] then bg:= mg else og:=ng;
IT (bg-og)>1.5 then goto Vi
. Rg (TmR[bg]-TprraﬁTirn-RAR[og])/(ma[bgl-m[og])wmmog]
en 3

Begln Integer og, mg, bg;
it ¢ > 15 then’ be%in B := 0; goto elndbg end;

O = 0; bg i=

voR 2%&“3’%; °g% e a
en HJ else = H
IT (%2 - og) > then 76 = me elee og = e
:lndbgB = (BAR(bE] - BART‘"‘!)E"‘(g - GAR[og))/(GARIbg) - GAR[og]) + BAR[og];
e ’
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reel procedure FmN(a);
vaIue a;real a;
Tegin NUT=RUC+exBRO;
hnugedk ; =1<NU/k § EPSFAKTOR : = 2x¢hixUCNINU/ { enxce )

: EEN ;=1
end EEN;
Tor I:=1 step 1 mtil MAX do
"Begin TAR[T] := READ; 1ARIT] := READ end;
fo-rsiET-:- O step 1 until 1500 do begin GAR[I] := READ; BAR[I] := READ end;
ToT I:=1 step | until RARMAX 0 DegIn RAR[I]:=READMy-3;TRAR[I):=READ end;
'ﬁKﬁIUs:-i(%AR RARMAXT; (e 1 1ed)
ORTHOPOL( TAR, UAR, MAX nnu MAX-1 alphau betay eu delta delta[mmu]/deltal-1]<y-8);
PRINTTEXT({nnu}); ABSFIXI(2 0'nnu); fiLcr; = ° ’ ~
PRINTTEXT(Jradiuse}); FLOT(5’ 3, RADIUS); NLCR;
BRD := (NUMAX - NUD)/1000.00f;
pibre := 4 3% pi % BRD;

hgsin integer emin amex;
Bmin := 03 AU := 0; ENU := 0;
NEW PAGE; e := 1;
for amex := 10, 100 300 1000 do
“Begin aBsFixrts o Live fumBeRr)y
PRINTTEXT{{amin amx m in anu en m in enu zi4n achtereenvolgensi);
ABSF'IX‘I'(h,O,amin’;ABSf'IXT(h,O,a.m);
d = 2

ANU := ANU + TRAPEX(a  EEN(a) XALPEANU(O) x INTEGRAND(2) emin emax O g4 10 TOP);

ABSFIXF(3,0,TOP);
d = 1;
ENU : = ENU+TRAPEX(&  ERN(a ) EPSILONU(O) amin amex O y-4 10 TOP});
ABSFIXT(3,0, TOP);KLcR;
amin :=Amex
end;
UNU := ENU ~ ANU; CARRIAGE(S);
PRINTTEXT(Junu=3 ) ; FLOT(5 2, pibraxUNU);NLCR;
PRINTTEXT(4anu=3); FLOT(5 "2 pibro x ANU); NLCR;
PRINTTEXT(enus} )3 FLOT(5 2 plvrax®im);
NLCR; PRINTTEXT{4unu 1s3})}FEXT(2, 2 UNU/EN 00 ); PRINTTEXT({procent van enu});
end;
begin for I := 1 step } wntil e - 1 do UITVOER[3 I) := UITVOER[1 I] - UITVOER[2 1I);
oegn R GE(S).;.._E wnill 4 s ; s 14
PRINTTEXT(4 nu enu anu unut); NLCR;
i_‘%zl:-1 ste 1m1:.ile-1‘§g
®gin FLOT(5, 2, WO + (UITVOER[O, I] X BRO)); FIOT(5 3 UITVOER[1, 1});
FLO(5,”3,"vrmvoEr(2, 11); FLoT(5, 3, UITvOER(3,’1l}; micw;
end
end; T
end;

APPENDIX IV-5.
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