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Abstract-A liquid jet originating from a nozzle with radius rt breaks up into droplet; in consequence of 
disturbances of certain frequencies, depending on the fluid properties and the nozzle geometry. A theoretical 
model is developed to describe the growth of these disturbances at the jet surface. The model is based on the 
inviscid and irrotational Bow governed by the Laplace equation together with the kinematical and 
dynamical conditions at the free surface of the jet A comparison is made between the model and 
experimental data from literature. The model predicts a dependence on the disturbance-amplitude of the 
break-off mode. Contrary to other experimental results, the model predicts satellites (i.e. smaller droplets 
between the main larger ones) at wavelengths exceeding a critical value of (10/7)2lIr,*. The disturbances 
gr-ow at wavelengths more than the theoretical bound of 2fIrg. Discrepancies with experimental data are 
possible because of the neglect of the effect of viscosity in the theory. It is shown that the effect of viscosity on 
the jet can be neglected under cetain conditions. 

INTRODUCIION 

A liquid jet originating from a nozzle is sensitive to 
disturbances. Disturbances of certain frequencies 
cause the jet to break up into a series of successive 
droplets. There are two theoretical methods to investi- 
gate the behaviour of a disturbed liquid jet. The 
“spatial-instability” method describes the disturbance 
of the jet surface as a travelling wave in axial direction. 
The “temporal-instability” method describes the sur- 
face disturbance of the jet as a standing wave on an 
infinitely long cylinder with the nozzle at infinity. 

The model presented in this paper is based on 
spatial instability and describes the jet form close to 
the nozzle in the form of travelling waves with har- 
monic influences. The Laplace equation together with 
the dynamical and kinematical boundary condition for 
the free surface are used to describe the radius of the jet 
and the velocity. The model is mathematically simpli- 
fied by neglecting both the effects of viscosity and the 
surroundings. It is possible to approximate the sol- 
ution of the equations for the radius of the jet by the 
solution of a simplified fluid dynamical theory, the 
Cbsserat theory, which is a simplified one-dimensional 
theory. In this article we present an approximation for 
radius and velocity by Taylor series expansions with 
respect to the disturbance-amplitude. 

The break-up process depends on the surface ten- 
sion CT*, density p*, nozzle radius 3 and initia1 dis- 
turbance-amplitude S,*. The disturbances grow with 
time and distance from the nozzle. Piezo-crystals or 
mechanical vibrators can be used as sources when 
applied to the jet surface, the velocity or the pressure 
distribution in the jet. 

Previously published theoretical models are of a 
more limited use as the model presented in this paper, 
either because the stability analysis ignores higher 
harmonic effects or because these models are based on 
a simplified fluid dynamical theory. The spatial-in- 
stability method describes the physical reality better 
than the temporal-instability method does, whereas 
the first method does not impose periodic axial de- 
mands on the jet. The model based on spatial in- 
stability shows that satellites can break up before or 
after a main drop, dependent on the disturbance- 
amplitude. A condition is derived by which the influ- 
ences of the viscosity can be estimated and eventually 
neglected. 

LITERATURE 

The first mathematical model was published by 
Rayleigh (1878). This model was a stability analysis for 
infinitely small disturbances of an inviscid jet based on 
the temporal-instability method. Weber (193 1) and 
recently Sterling and Sleicher (1975) extended this 
analysis to an aerodynamically influenced viscous jet. 
According to these linearized models the only depen- 
dent variable for the break-up process is the break-up 
time. 

By approximately 1960 these linearized theories 
were found inadequate to describe the phenomenon 
accurately. Only the break-up time could be reason- 
ably well compared with experiments. At present the 
formation of satellites is considered to be more charac- 
teristic for the phenomenon than the break-up length 
or break-up time. Yuen (1968) and Lafrance (1974, 
1975) have obtained analytical approximations for an 
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inviscid jet ignoring influences of the environment on 
the basis of temporal instability and mass conser- 
vation for higher harmonic disturbances. They arrived 
at establishing the formation and the existence of 
satellites. Rutland and Jameson (1970) compared 
experimental data with numerical results based on 
Yuen’s model. By coupling the initial and final volume 
of the droplets they succeeded in calculating diameters 
of representative satellites and main drops. They 
concluded that in case of wavelengths 1* 5 (10/7)2lX$ 
no satellites could be formed. With a modified model, 
Lafrance (1974) showed that no satellites were formed 
for 1* 5Z(10/8)2lIrX. These conclusions are certainly 
not correct in the case of viscous jets. Chaudhary and 
Maxworthy (1980a, b) and Chaudhary and Redelcopp 
(1980) used a comparable model and performed ex- 
periments on the jet behaviour and satellite drop 
formation. 

Keller et al. (1973) used spatial instability in combi- 
nation with a stability analysis to describe the break- 
up process of a jet As a result, the description of the 
break-up process is improved. From a mathematical 
viewpoint the disturbances behave like waves pro- 
gressing on the jet surface. Bogy (1978, 1979a, b) 
expanded the Cosserat theory of Green (1976) to 
develop a new analytical model for higher harmonics 
based on spatial instability. The Cosserat theory is a 
one-dimensional theory simplifying the flow in the jet, 
especially in the radial direction. 

The model presented in this paper is an extension of 
the models referred to above. It describes the break-up 
process of a jet with the spatial-instability method and 
mass conservation including higher harmonic effects. 
The jet form is approximated by a Taylor series 
expansion with respect to the disturbance-amplitude. 
The geometry of the jet, the velocity components in it, 
the break-up length and the break-up mode of satel- 
lites before or behind a main drop are calculated with 
our model. Computation of the last mentioned 
phenomenon is not found in earlier published articles. 
The model still has physical limitations on account of 
the neglect of viscosity and environment effects such as 
gravity, mass or heat transfer. 

MATHEMATICAL MODEL 

General description 
A semi-infinite axisymmetric jet with liquid density 

p* and surface tension o* emerges from a nozzle of 

r* v* 
b R%,tl 

nn 

radius ~-2. The uniform velocity UX at the nozzle is 
harmonically disturbed. As a result the radius R* of 
the jet is a function of the axial coordinate Z* and time 
t*. Dimensional variables are indicated with the 
superscript *. Figure 1 shows the geometry of the jet. 
The characteristic length and time are rt and t; 
=r;f/vg, respectively. The break-up process of the jet 
has a characteristic time-scale t: =( p*rg3/o*)“2. The 
characteristic dimensionless number is the Weber 
number which is defined as the quadratic ratio of the 
characteristic time scales t: and tz: 

We=(t~]t~)Z=pr$(v~)Z/a*. (1) 

The influence of the surroundings, viscosity and grav- 
ity are neglected. Rotational symmetry and irro- 
tational flow in the jet are assumed. The flow in the jet 
is described by means of the Laplace equation, a 
pressure continuity condition at the jet boundary and 
a containment boundary condition, in the sense that 
ail liquid remains within the jet surface. The nozzle 
diameter is constant and the axial jet velocity at the 
nozzle is sinusoidally disturbed. 

The local jet radius R* and the velocity potential Q* 
are approximated by series expansions. The non- 
linear differential equations are reduced to a set of 
linear differential equations; these are solved up to the 
third order to enable the description of satellites. 
From the homogeneous differential equations the 
characteristic dispersion relation is derived. The dis- 
persion relation is solved numerically on a mainframe 
Burroughs. The break-up length zz and the local jet 
radius R*(z*, t*) are calculated by the computer. 
These results are compared with the experimental 
data taken from the literature (Chaudhary and 
Maxworthy, 1980a, b). 

Formulation 
aa* 

A velocity potential cb* with u* = 2: and v* = ~ 
&* 

is introduced. All variables are made dimensionless 
with respect to the characteristic time tg = r$/v$ and 
the characteristic length rX_ The Laplace equation in 
terms of dimensionless @ is 

V’@=Q,,+ i@,+Q,.=O (OlrsR, O<z<z,). (2) 

The kinematical boundary condition for free surface of 

main drop 

\* ~ll+b~COS Wi 71 satellite 

Fig. 1. Sketch of the geometry of a Iiquid jet emerging from a nozzle at z*=O. The entrance velocity is 
disturbed sinusoidally. The local jet radius R* is a function of the axial coordinate and time. Under certain 
conditions the jet breaks up into main drops, spaced at wavelength ,I*, and satellites at the break-up 

length 2;. 
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the jet is 

@,=R,+@=R, (r=R). (3) 

The dynamical boundary condition is given by Busker 
(1983): 

iT{ l,[R(l + R,2)“‘] 

-R,,MI+R:)“Zj=;+& (r=R). (4) 

The nozzle diameter is constant: 

R=l (z=O) (5) 

and the jet velocity is disturbed sinusoidally according 
to 

a’,= 1 f60cosw,t (z=O, OsrsR). (6) 

Chaudhary and Redekopp (1980) started from the 
same eqs C(2)-(4)]. Our approach, however, is to seek 
to find solutions of the form 

R=l+R’=1+S,~,+6;~2+6~q3+O(6~) (7) 
and 

Here vi is the ith-order harmonic surface distortion, 
and Qi is the &h-order harmonic velocity potential of 
the main disturbance with i= 1. The derivative of the 
velocity potential on the boundary is transferred to the 
undisturbed jet geometry R = 1 by a re-expansion of 
the velocity potential CD into a series of the boundary 
transformation R’. After substitution of the boundary 
transformation R’ the terms of eqs (2)-(6) can be 
expressed in terms of Si, 66, S$ and S& respectively. 
After that, the equations are separated into powers of 
6,. The zeroth-order solution gives the undisturbed 
cylindrical jet. 

The first-order equations are given by 

v+JJ, = 0 (OS?-5 1) (9) 

QI 1.r --rll,t--‘lI,z=O (r= 1) (10) 

1 
-@*,t-@I,, + &?I +?I,,,)=0 (r= 1) (11) 

with the following nozzle conditions: 

‘I1 =o (z=O) (14 

Q, l.I=COSWlt (z=O, OSrll). - (13) 

From these first-order equations a stability rule, the 
dispersion relation, will be derived in the next para- 
graph. The second-order (6:) and the third-order (6:) 
equations are given by Busker (1983). 

Dispersion relation 
Because of the first-order nozzle conditions [see eqs 

(12) and (13)] and eq. (G) which is defined at r = 0, a 
first-order solution is assumed which has the form 

‘11 = C&ot--*z) 

aI = DI,,(kr)ei(“‘-“*I 

(2, t20) (14) 

(2. t_20, rS1). (15) 

Here, Z,(x) is the modified Bessel function of the first 
kind and nth order. @r is a solution of the Laplace 
equation. 

Substitution of ‘1, and @, into eqs (10) and (11) 
produces the following characteristic equation: 

(m--k)‘= 
k(k2-1) I,(k) 

we ro’ 
0 

(16) 

This equation is called the dispersion relation, because 
it connects the frequency w to the wave-number k at a 
given Weber number. The real part of the wave- 
number is related to the wavelength R by 

Re(k) = y. (17) 

The imaginary part of k determines the rate of growth 
of the disturbance. The dispersion relation has an 
infinite number of solutions for k per w. The solutions 
for k are functions of w and We. Keller et al. (1973) 
gives the zeroth-order solutions for this equation: 

(a--k)‘=O(We-‘) 

leading to k =w +O( We- ‘/‘), and 

(18) 

Z,(k) ~ =O(WeC’) 
1, (4 

leading to k= f~,,n+O(We-‘) with Z,(*i, j,,)=O. 
Keller et al. (1973) gives an approximation for the 

solution of eqs (18) and (19X respectiveIy: 

w(cd - 1) Z,(w) 1 1’2 
k ,,z=~-c we __ 

IO(W) 

+O(WeC’) (20) 

k 3,4n= *ijo,+ 
L(LL+ 1) 

We(w2 +jz_)’ 
Pmj,, T i(w2 -&)I 

+0( We-‘). (21) 

Another solution is (private communication of 
J. Boersma, Department of Mathematics, Eindhoven 
University of Technology) 

(9/8+w-33w2) 
We 

+o(wc2). 

(22) 
Only those solutions of k which have a positive phase- 
velocity c = w/Re(k) > 0 and a positive group-velocity 

am 
%= a[Re(k)] 

>O are valid solutions because only 

then energy is transported downstream and the waves 
are travelling in the same direction. The wave-num- 
bers k,,, come up to these conditions. Here it is 
assumed that the disturbance excitator is at the nozzle 
and therefore energy goes downstream in the same 
manner as the waves. Other assumptions are possible 
depending on the place of the disturbance source 
along the jet but they are beyond the scope of this 
article. A singularity-point exists for w = wS, because 
there is an abrupt change over from complex to real 
wave-number values. The dispersion relation has now 
two equal solutions. For w <CO, the two solutions are 
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conjugate complex (Fig. 2). By approximation we find 
for the singularity-point w, that 

W,Zl-- 
Z,(l) 0.221 

Xl- 
2WeZ,(l) we’ (23) 

Substitution of eq. (23) in eq. (20) gives for k,., the 
expression 

k ,,,=I+ 
z,tu 0.221 

2WeZo(l) 
Al+-. 

We 
(24) 

Moreover the following relations hold: 

lim Im(k,,,)=0; fim aIm(h.2) =+m 

o-+0* -toi am -; 

l im  aImh2) 
ao =o. (25) 

Cal% 
The maximum growth rate occurs at w,r,z 
0.48581/2 x0.6969 for large Weber numbers. 

Eflect of viscosity 
The dispersion relation for a jet with viscosity p 

under the same conditions as an inviscid jet is given by 
Busker (1983): 

(m-k)2= + 
k(k2 - 1) Z,(k) - _ 2i(;;k)k[211- !LE] 

We Z,(k) 

~Zo(~)~,W 
Z,Wo(k) 1 

with 12=k2+i(w-k)Re. 

Z,(k) k In the case of w < 1 and by approximating __ = ~ 
Z,(k) 2 

+O(k’) eq. (26) can be rewritten analogously to 
Weber (193 1) as 

@-W=+ 
k(k’ - 1) Z,(k) 3i(w - k) k2 

we r- 
Re 

- (27) 
0 

The solution for this equation is 

k 

+ 
(3io2 + 2) 

(3iwz - 1)Re 1 . (28) 

The influence of the viscosity might be neglected if the 
influence of the viscous terms are less than 2% of the 
surface tension term, thus 

(3iw2 + 2) We”’ 

(3iw2 - 1)Re 
< 0.02. (2% 

For the examples of the experiment of Chaudhary and 
Maxworthy (1980a, b) this gives in the case of w, 
= 0.4313, We = 922.6 and Re= 1486 a value about 
3.7% and in case of o1 =0.720, We = 330.9 and 
Re = 889.9 a value about 2.8% (see Application). 

First-order solution 
The dispersion relation provides the wave-number 

values k I, 2 for a given dimensionless frequency o1 and 
Weber number which are used in the first-order 
solutions (14) and (15): 

~l=P,cose,+P2cos82 (30) 

~1=QlZ,(k,r)sin8,+Q,Zo(k2r)sin82 (31) 

where 6,=w,t-k,z, @,=w,t-k2z, and P,, P2, Q1 
and Q2 are constant. Substitution into the kinematical 
boundary condition and the nozzle conditions pro- 
duces the following first-order solution: 

P 
r/l=y(cos01-cose2) (32) 

Q, 

1 
= p -(01 --k,Uo(k,r) sin e 

V k,Z,(k,) 
1 

+ 
(01 --k,Vo(kA sine 

kJ,(kd 1 2 . (33) 

Ik’l 

t 

Fig. 2. Solutions of the characteristic dispersion relation at We = 10. The path of wave-number k as a 
function of the frequency w is given. A singularity-point exists at w = w,. In case of w < w, the solutions of k 

are complex conjugated. 
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Here P= Z,(k,)Z,(k,) and V=(o, -k,)Z,(k,)-(o, 
-UZ,(kl). 
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Chaudhary and Redekopp (1980) used a temporal- 
instability model to determine the dimensionless mini- 
mum break-up time 7”. In this article a relation is 
deduced between the theoretical disturbance-ampli- 
tude 6, and the peak voltage V ,* of their experiments. 
The results for the experimental bre&-off mode are 
compared with the predictions of the present model. 
The experimental data are transformed to desirable 
values of ol, We and zs for the spatial-instability 
model with the relationships 

Second- and third-order solutions 
The second- and third-order solutions are derived 

from the second- and third-order differential equa- 
tions together with the nozzle conditions. They consist 
of a particular part and a homogeneous part. The 
particular parts of the second-order boundary differ- 
ential equations are composed of terms with q1 and 
@,. In the case of the third-order equations it is 
composed of terms with ql, @,. q2 and DD,. By 
substituting the lower-order solutions in the particular 
part of the second- and third-order differential equa- 
tions a general form of the particular second- and 
third-order solution is derived. These general forms 
for the second- and third-order solutions are substi- 
tuted in the homogeneous parts of the boundary 
differential equations. The particular solutions are 
then determined. As homogeneous solutions of the ith- 
order (i=2 or 3) are taken: 

# = c, cos 6Ji I+ c, cos fli, (34) 

~=D,ZO(kli) sin Qi, +D,Z,,(k,i)sinBi, (35) 

with ozi = 20, t - kziz and BXi= 3w, t -kaiz. 
kzi and kai come from the dispersion relation with 

#L)=201 and 3a,, respectively. The homogeneous 
solutions are substituted in the boundary differential 
equations. A relationship between ~7 and @y is de- 
duced. The complete solution is found by substitution 
of the homogeneous and particular parts of the sol- 
ution in the nozzle conditions. The equations with 
which all constants necessary for the complete sol- 
ution can be calculated are given by Busker (1983). In 
the case of w, < o, and k, _ 2 values are conjugate 
complex and it is possible to make simplifications in R 
and m. The third-order solution is given in Appen- 
dix 1. 

If necessary the velocity components, pressure dis- 
tribution and volume in the jet could be calculated up 
to the break-up point. The field of interest in this paper 
is restricted to the unstable growth modes of the 
disturbances, i.e. o1 c 0,. Because R(z) is continuous, 
R cannot describe the discontinuous behaviour of the 
jet beyond the break-up point. Therefore only z s zs is 
considered. 

APPLICATION 

Comparing the model with a particular experiment 
Chaudhary and Maxworthy (1980a, b) investigated 

experimentally the break-up process with a piezo- 
element as a disturbance source. This was driven by a 
sinusoida wave at a frequency f * = 100 kHz with a 
peak voltage I/ ,* as amplitude. The jet velocity I$ was 
fitted to reach the desired wavelength R*. It resulted in 
the dimensionless wave-number 

2iTr5 
k=-. 

I’ 

vo* %! n*f * (37) 

(38) 

and 

z,=(We rs)“*_ (39) 

The theoretical value of o1 is found by a variation of w 
in the dispersion relationship at the given Weber 
number to the effect that Re(k,,,)=k. 

The Reynolds number in the jet is given by 

&- o@,* x 
2np*(rX)‘f * 

P’* /i*k . (40) 

Chaudhary and Maxworthy (198Oa) used a water jet 
and varied k between 0.3 and 1. The values of the 
physical quantities are given in Table 1. This resulted 
in values of We in the range of 17&1910 and values of 
Re in the range of 640-2140. A series of experimental 
data have been compared with a series of numerical 
results of our model. The wave-number k =0.4312 
is used which gives We =922.6, Re= 1486 and 
w1 = 0.43 13. Some pictures are given by Chaudhary 
(198Oa). In the case of We= 922.6 the experimental 
amplitude V ,* varied between 1 and 80 V and the 
corresponding minimum break-up length zs between 
860 and 305. A break-up length smaller than 586 
causes a satellite break-up after the main drop, as 
opposed to the break-up before the main drop for 
higher values of zs. The corresponding calculated 
values of zs lead to a range of dimensionless disturb- 
ance-amplitude values 6, between 3 x lo- 5 and 4 
x lo- ’ (Table 2). 

L’: and S, can be written In a Lgarithmic linear 
relation. The constants are calculated by linear regres- 

Table 1. Values of the physical quantities used 
with the experiments of Chaudhary and 

Maxworthy (1980a, b) 

Physical 
quantity 

rS 
Is* 
P’ 
p* 

Value Dimension 

3.048 x 1O-5 
65.3 x 1O-3 E/m 

1002 kg/m> 
9.128 x 1O-4 Pas 
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Table 2. Experimental data of Chaudhary and 
Maxworthy for the peak voltage Vt and the break-up 
length z, compared with the calculated values of tg and 
the .disturbance-amplitude 6, at the dimensionless fre- 

quency o1 = 0.43 13 and Weber .number We = 922.6 

Experiments of Chaudhary Calculated results of 
and Maxworthy the model 

v: =s =tl & 

80 305 298 5x10-3 
70 321 324 4x 10-3 

40 397 399 2 x 1.0-s 
30 437 434 15 X 10-G 
20 497 493 9 X 10-A 
15 533 537 6X 10-4 
LO 586 584 4x 1o-4 
4 703 694 15x 10-S 
2 784 779 7 x to-5 
1 X60 876 3x10-5 

sion leading to 

ln(Y,*)=9.26+0.896ln(6,). (41) 

A second series of experimental data with k = 0.720 
and We= 330.9 is used as a comparison. The exper- 
imental values of za were between 417 and 169. The 
calculated values of 6, with q = 0.720 are in the range 
between 3 x 10e5 and 3 x 10e3 (Table 3). 

The same log-linear relation for V: and 6, does not 
apply when break-up lengths are smaller than 300 
(Fig. 3). 

Break-up mode of main drops and satellites 
Another test criterion for the validity of the model is 

the break-off mode of main drops and satellites at the 
minimum break-up length zBmin. For small amplitudes 

Table 3. Experimental data of Chaudhary and 
Maxworthy for the peak voltage Vf and the break-up 
length zs compared with calculated values of zS and the 
disturbance-amplitude 6, at the dimensionless frequency 

w1 =0.720 and Weber number We=330.9 

Experiments of Chaudhary Calculated results of 
. and Maxworthy the model 

v: =B =s 60 

70 175 173 3 x lo-3 

:: 228 196 231 193 2 1 x x 10-3 1o-3 
20 256 257 6 x 10-d 
15 270 268 5 X 1o-4 
10 291 295 3 x 10-d 

7 311 314 2 X 1o-4 
2 379 379 6 X 10-s 
1 417 417 3 X 10-5 

S, the main drop will break off first of all at the break- 
up length zB =.zBmin followed by the satellite at 
zB-' zBmin. For large amplitudes S, the satellite will 
break off first of all at zB = z~,,.,~” followed by the main 
drop. The jet shape in the surroundings of the break- 
up length zB for small and large 6, values are shown in 
Figs 4 and 5. 

In the case of o1 = 0.43 13 and We =922.6 the ex- 
perimental transition value of the different modes 
occurs for Vf between 4 and 10 V (Chaudhary and 
Maxworthy, 198Oa) corresponding with Se between 
15 x 1O-6 and 4 x 10v4 for the fixed log-linear re- 
lation between k’: and 6c. The analytical model pre- 
died that the transition value for 6, lies between 5 
x10-3 and 6 x 10p3. This discrepancy is probably 

due to the neglect of viscous effects in the jet (Re 

-&l 

100 I I I 1 I .II1l- 
1 2 4 7 10 20 30 40 40 80’ 

-ve* 
0 

Fig. 3. Comparison between calculated values of the break-up length z.( +) with experimental data from 
Chaudhary and Maxworthy (1980a, b) (0). Curve 1 represents values of za in case of We=992.6 and w1 

=0.4313. Curve 2 in case of We= 330.9 and oI =0.720 under the conditions of eq. (41). 
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Fig. 4. Calculated jet shape just before the break-up point zN for small values of the disturbance-amplitude 
6,. The calculated diameters and their lengths of the main drop and satellite are given. 

Fig. 5. Calculated jet shape just before the break-up point zs for large values of the disturbance-amplitude 
6,. The calculated diameters and the lengths of the main drop and satellite are given. 

= 1486). The reason for this is the slow specific 
velocity of the break-up process (~*/p*r-~)r’~, in which 
the viscosity effects cannot be neglected. The model of 
Chaudhary and Maxworthy (198Oa) seems to predict 
the break-off mode. 

The forming of satellites 
Sterling and Sleicher (1975) demonstrated the un- 

stable break-up for viscous liquid jets with aerody- 
namic effects: Their model and the model described in 
this article do not predict the forming of satellites for 
wr 20.7. tafrance (1974) and Rutland and Jameson 
(1970) did not succeed in finding satellites either. 
Figure 6 shows the divergence between the model and 
experiments. 

Consistent with the model of Yuen (1968) our model 
predicts the formation of two satellites for w1 IO.3 as a 
result of the conjugate complex k values for the 
second- and third-order solutions of the dispersion 
relation (Fig. 7). For long wavelengths more than one 
satellite will be formed. When the analytical model is 
extended to higher orders (larger than three) more 
satellites are formed at suitable values of wl_ 

Effect of the disturbance-amplitude on the dimensions of 
sate4lites and the main drop 

The volume of satellites and main drops is depen- 
dent on the disturbance-amplitude 6,. The ratio of the 
maximum diameters of satellites and main drops 
changes the same way as the ratio of their lengths 
changes with 6,. These phenomena can be seen in Figs 
4 and 5. The ratio of the diameters of the sateRite to the 
main drop for 6, = 1 x IO-’ is 0.579 while the ratio of 
the lengths is 1.05. In case of S, = 1 x 10e6 the ratio of 
the diameters becomes 0.479 and the ratio of the 
lengths 0.728. This means that satellites are larger for 
greater values of S,. About this no experimental data 
are available. Because of the limited use of this model, 
this point will not he pursued further. 

Ereak-up length as function of the frequency 
The dependence of the minimum break-up length zg 

on the frequency for several Weber and amplitude- 
numbers is shown in Fig. 8. The plot shows that the 
minimum break-up length over the whole range 
0-z w1 tw, occurs somewhere between w, =0.7 and 
w1 =0.8 for small 6,, and moves towards w, for large 
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R 

I 

Fig. 6. Calculated jet shape at We = 300, w=O.7 and 6, = 1 x 10m4 shows no forming of satellites. 
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Fig. 7. Forming of two satellites under the conditions of We = 300 and 6, = 1 x lo-’ in the case of the 
dimensionless frequency w, =0.3. The calculated wavelength is given. 
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Fig. 8. Values of the break-up length z, as a function of the dimensionless frequency w1 with the 
disturbance-amplitude S, and We as parameters. (1) Lines with We = 100, (2) lines with We = 300, and (3) 

lines with We= 1000. 

6,. It can be expected that an undisturbed jet picking DISCUSSION AND CONCLUSIONS 

up a disturbance from its surroundings will not break The theoretical model of spatial instability provides 
up at the most unstable mode (just below w1 = 0.7) but a good insight into the break-up process in a jet and 
that it breaks up at -frequencies in an interval may be extended_ In some respects the model is in 
0.65 < w1 < 0.8. accordance with the results of experiments published 
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in literature, in other respects it shows discrepancies I’ denominator in eqs (32) and (33) 
therewith. The model describes the physical reality V: experimental voltage, V 
better than models based on temporal instability. Our p*r8(uo*)2 
model and Yuen’s (1968) are analogous and have as We Weber number We= 

CT* 
common features the forming of two satellites for 

\ , 

wi (5 and the absence of satellites for a1 >&. Z dimensionless axial distance 

The model is more extensive than the one-dimen- 
Z* axial distance, m 

sional Cosserat theory because we made use of two- ZB break-up length, m 

dimensional Auid mechanical equations taking ac- ZBmin dimensionless minimum break-up length 
_ 

count of the flow in radial direction. However, by 
comparing the theoretical predictions with available Greek letters c _ 
experimental data, it follows that the discrepancies 00 

exist due to the neglect of the viscosity or higher-order rli 
terms of the solution. Further research could take into 0,,0, 

account the effect of the nozzle shape and the disturb- e2i, e3i 

antes on the break-up mode of the jet. In addition, the 
1* 

effects of gravity, aerodynamical, mass and heat trans- cl* 
fer phenomena could be investigated. P* 

u* 

C 

%l 
C 
c,, c* 
D 

D,, D, 
f* 
I”(X) 

NOTATION 

dimensionless phase velocity 
dimensionless group velocity 
constant of eq. (14) 
constants of eq. (34) 
constant of eq. (15) 
constants of eq. (35) 

dimensionless disturbance-amplitude 
ith-order harmonic surface distortion 
constants of eqs (30), (31), (32), (33) and (42) 
constants of eqs (34), (35) and (42) 
wavelength, m 
viscosity, Pa s 
density, kg/m3 
surface tension, N/m 
dimensionless velocity potential 
ith-order harmonic velocity potential 
dimensionless frequency 
dimensionless frequency with maximum 
growth rate 
singular value of the dimensionless fre- 
quency 

Im (. . .) 
Jo. 
k 

k 1.2 

k 3.4n 
k, 
O(. . .) 
P 

pi,j 

21: 2 
r 
r* 

rt 
R 
R* 
R 

Re 

Ref. . .) 
t* 
tX 
t: 
T9 
U* 
u* 

Vo* 

frequency, I/s 
modified Bessel function of the first kind and 
the &h-order 
imaginary part of an indicated variable 
roots of Z,(i, j,,) =0 
dimensionless wave-number in eqs (14)-( 16), 
(26) and (27) 
dimensionless wave-numbers in eqs (20) (24) 
and (28) 
dimensionless wave-numbers in eq. (21) 
dimensionless wave-number in eq. (22) 
order of terms of the indicated variable 
numerator of eqs (32) and (33) 
constants of eq. (42); subscript i indicates the 
ith order and subscript j the number of the 
constant 
constants of eq. (30) 
constants of eq. (31) 
dimensionless radial distance 
radial distance, m 
nozzle radius, characteristic length, m 
dimensionless local jet radius 
local jet radius, m 
boundarv transformation 

Reynolds number 
p*v$$ 

Re= ~ 
P* > 

real part of the indicated variable 
time, s 
characteristic time, s 
characteristic time-scale, s 
dimensionless minimum break-up time 
velocity component in axial direction, m/s 
velocity component in radial direction, m/s 
uniform velocity at the nozzle, m/s 

Subscripts 
B break-up value 
r derivative with respect to the radial variable r 
t derivative with respect to the time t 
z derivative with respect to the axial variable z 

Superscripts 
H homogeneous part of the solution 
I imaginary part 
R real part 
* dimensional quantity 
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APPENDIX 1 
The third-order solution for the jet surface is 

R=1+26,[P,,,Im(cosO,)] 

+6~Re({P,,,cos8,~+P,,zcos8,,+2Pz,~cos28, 

+6$Im 
(1 

i P,,,cos~,+~ ? cP,.,,cos(gzi+w 
i=1 i=1 

+P,,o+,,~s(g,,--B,)]+2P,.,zco~(3g,) 

+2p,. 14 c0s(28,+e,)+2p,.,,c0s(2e,-eB,) 

+(2p,,,,+p,.,,)OOse,+p,,,,cOse, 
I> 

(42) 

with O,=o,t-k,z and 02=co,t-k2z. 
The subscripts i and j of the constants Pi, j indicate the ith 

order and the number of the constant, respectively. 
To obtain numerical results for the analytical solution of 

the jet-surface it is necessary to calculate the k values for the 
first-, second- and third-order equations using w1 and the 
Weber number as parameters. The calculation of the various 
constants Pf. 1 is the next step. After that the jet surface R can 
be determined for different amplitudes 6, and time t in a 
given distance interval AZ. From these results computer-plots 
can be made. A description of the software is given by Busker 
(1983). 




