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THE FOVEAL POINT SPREAD FUNCTION AS A 
DETERMINANT FOR DETAIL VISION 

FRANS J. J. BLOMMAERT and JACQUES A. J. Rows 
institute for Perception Research. Den Dolech 2. P.O. Box 513. Eindhoven. The Netherlands 

(Receiced 12 February 1981) 

Abstract-A point spread function, chosen to link contrast sensitivity and stimulus dimensions. can be 
obtained from measured thresholds by assuming small-signal-linearity and peak detection for the visual 
system. To that end a special case of summation of subthreshold signals (perturbation) is used. taking 
specific measures against the effect of sensitivity drift. The basic assumptions are tested simuitaneousl~- 
and confirmed. Other provisional assumptions tike radial symmetry and homogeneity were evaluated 
along a horizontal and a vertical meridian through the fovea. In the fovea no deviation from radial 
symmetry was found. The effect of inhomogeneity within the central fovea. seems to be too small to 
cause a significant change in the point spread function. The validity for predicting thresholds of stimuli 
exposing larger areas is tested. Annuli with varying radii show no significant aberration if probability 
summation is taken into account. Predicted disk thresholds, however, show a large discrepancy with 
experiment for radii larger than 2min arc. A possible extension of the model with multiple-detection 
units having tuned sizes is evaluated. 

INTRODUCfION 

In order to investigate characteristics of detail vision 
stimuli like Landolt C’s, lines or gratings are generally 
used. Sometimes, radially symmetrical stimuli like 
disks and annuli are used to investigate lateral pro- 
cessing over short distances (Fiorentini and Maffei, 
1970; Westheimer, 1967). The spatial processing of the 
visual system is rather inhomogeneously over the 
retina. This is demonstrated by data on visual acuity 
(Le Grand, 1967) and thresholds for disks (Kishto, 
1970; Wilson, 1970). A review is made by van Doorn 
et al. (1972). The effect is also found with thresholds of 
lines (Hines, 1976; Wilson and Bergen, 1979; Limb 
and Rubinstein, 1977). Wilson and Bergen, ibid, 
stressing the importance of local measurement of the 
inhomogeneous system. used line sources instead of 
gratings as stimuli. However, line sources of the usual 
type still stimulate retinal parts with different proper- 
ties. The use of point sources is an obvious further 
step, the more so, since it is not clear how much the 
discrepancy between measured thresholds and predic- 
tion based on a line spread function (e.g. Wilson and 
Bergen, 1979) is disguised by effects of the mentioned 
extension of the lines. 

A point spread or weighting function can be used 
to characterize the effect of a near-threshold-point- 
source on the contrast sensitivity of neighbouring 
retinal points (e.g. van Meeteren, 1973; Kelly, 1975). 
However, the threshold changes which have to be 
measured to obtain such a function are very small. 
Consequently special measures have to be taken to 
eliminate the effects of unavoidable sensitivity drift in 
order to obtain the required precision. 

In this report the results of a technique to obtain a 
point spread function from threshold measurements is 

investigated and the predictive power is tested. This 
point spread function should represent the simple 
processing of the visual system, thus including optical 
effects. We started a first approximation of a model 
based on four plausible assumptions, namely quasi- 
linearity, local homogeneity, local radial symmetry 
and peak detection. On the basis of these assump- 
tions, the spread of the activity of a point source is 
measured by using a special case of subthr~hold 
summation of signals. The response of the test stimu- 
lus is kept so small that it perturbates the signal of the 
probing stimulus. This will be elaborated on, further 
on. A major effort was put in testing the basic 
assumptions. 

Theoretica! formalism 

We assume that detection of quasi-static luminance 
increments can be formalized by using a peak detec- 
tion model. i.e. a stimulus is seen if and only if the 
extreme vatue of the model’s response U(x, _rt exceeds 
a certain level D. The threshold condition can then be 
written as 

extr I C/(x, y)) = D (1) 

Furthermore we postulate that within a smal1 area of 
the fovea the processing is: 

homogeneous 
radially symmetric 
quasi-linear 

The model is visualized in Fig. 1. 
The response to an arbitrary smali stimuius may, 

according to these assumptions be written as a con- 
volution integral with a local point spread hinction 
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Y n+ background probe, the sum of the peak value of its response and 
the response of the teststimulus at a certain distance 
can be brought at threshold level. Since radial sym- 
metry is assumed, the test stimulus at distance r can 
be replaced by a thin annulus with radius r in order 
to increase the effect. 

fixation guidance 

background level 

I I 
I o-r , 
I I , photo sensitive 

If the response of the teststimulus is kept suffi- 
ciently small with respect to that of the probe, one 
might say that the response of the teststimulus pertur- 
bates that of the probe. This is highly analogous to 
the situation in the temporal domain explained in 
detail in Roufs and Blommaert (1981). The spatial 
case is worked out in the Appendix. 

Apparatus and procedure 
I I 
I -r I 
I 

I i 1 
I 

\I 
L----- -----7 x Ifinternal threshold 

I amplitude 0 
L I \ 
IWV 

I 

-point-spread 
-r function “8) 

Fig. 1. Visualized detection model. 

A four-way pseudo Maxwellian view optical system 
was used as is shown in Fig. 2. The subject viewed 
monocularly an 11’ uniform field with a retinal 
illuminance of 1200 td. The stimuli used were super- 
imposed on this field by using prisms. To facilitate 
fixation, four weak fixation lights with a radius of 
2min arc were projected around the stimulus on a 
circle with a dia of 1’. A 2 mm artificial pupil was 
used, which was provided with an entoptic guiding 
system to check the centering of the pupil of the eye 
(Roufs, 1963). The lights were generated by linearized 
glow modulators. The time functions used as an ap- 
proximation of quasi-static presentation of the stimuli 
consisted of pulses of about 500 msec. the beginning 

U&x, _v): 

L-(x, y) = f= VAX - x’, y - y') 
J--P 

x ~/J-(x’, Y') dx’ df (2) 

Here E~~(x’, y’) is the distribution of retinal illumina- 
tion of the stimulus E, being the amplitude parameter 
and U(x, y) is the response of the visual system. 
From this equation it can be seen that, if the unit 
point spread function U, is known, the response to 
an arbitrary stimulus pattern can be calculated. 

As we only deal with radially symmetrical stimuli 
in this paper, it is convenient to use polar coordinates, 
the response to the arbitrary stimulus becomes: 

L:(r) = U&r - r’l)cff(r’)r’ dr’ dJI’ I 

L Ii’!__ _ - 
,I’, 8’ 

x AC/U’(~) = _+--! 
In this equation, U,(r) is again the unit point spread p.+ 
function, which is radially symmetric according to the 
assumptions mentioned above; U’(r) is the unit pat- 
tern response. 1 glow modulator 

At threshold, the increment E/ is given implicitly by 2 condenser 

incorporating this result in equation 1: 3 glass plate (mirror) 
4 photodiode 

EJ extr (U(r)} = D (4) 5 neutral filter 
6 stimulus 

Perturbation approach 7 Maxwellian view lens 
0 50% prism 

The unit point spread function can be determined 9 ocular 

by subthreshold summation. The response of a sub- 
10 2 mm artificial pupil 
11 

threshold pointstimulus can be probed by the re- 
sponse of another point on the basis of the assump- 
tions mentioned above. By varying the intensity of the 

diverging lens 
12 field lens 
13 fixation marks 

Fig. 2. Scheme of the optical apparatus. 

@’ 
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and the end of which were smoothed in order to 
avoid transient phenomena. The luminance levels of 
the stimuli were kept in a constant ratio for reasons 
to be explained furtheron. The luminance levels were 
then simultaneously controlled by a dB step attenu- 
ator, after presetting the chosen ratio. 

Via photodiodes, the luminance levels of the stimuli 
were recorded during the experiment, so that we were 
able to correct the results for minor luminance 
changes which occasionally occurred as a result of 
substantial temperature changes in the control cir- 
cuitry. 

The apparatus was checked for possible straylight 
artefacts by optical inspection of suitable stimuli 
using a microscope. No degeneration of any stimulus 
could be observed, so it was concluded that the op- 
tical spread of the apparatus was negligible compared 
with that of the optics of the human eye. 

The subject had one knob to release the stimulus, 
which had to be detected. Three knobs enabled him 
to answer with “yes”. “ no” or “rejection”. (“Rejection” 
is used if the subject feels he is deprived from the 
stimulus by lack of attention, blinking etc.). 

All experimental data consisted of SoO/, luminance 
thresholds which were determined by the method of 
constant stimuli. At every intensity the detected frac- 
tion of 20 trials was determined. For one threshold, 
usually 3 to 4 different intensities were used, measured 
in random order for one psychometric function. 

EXPERIMENTS 

Experiment I. Measuring a fovea1 point spread function 

For this purpose we used a stimulus configuration 
as is shown in Fig. 3a. It consists of a small point- 
shaped stimulus (radius r = 0.4min arc), surrounded 
by a concentric annulus of radius r,, and width ArO 
( =0.4 min arc). Both of these were superimposed on a 
constant background level of 1200 td. 

In this experimental set-up, the retinal illumination 
of the annulus was chosen in such a way that it was 
always subthreshold (about 0.4 times its threshold 
value). 

Furthermore it was kept in a constant ratio q to the 
retinal illumination of the point source, the technical 
realization of which was explained in the preceding 
section. In the experiment, we measured the threshold 
intensity of the point source in the presence of the 
perturbating annulus, compared with the threshold 
intensity of the point source without annulus. 

It can be derived (see Appendix) from equation (3) 
that a discrete value for the point spread function (for 
one value of r, the radius of the annulus) can be calcu- 
lated from the mentioned thresholds by: 

retinal 
illuminance 

retinal 
illuminance 

1 

YZ 
\ _ -_ 

E =12OOTd _I -_ 

Fig. 3. Schematic drawings of the stimulus configurations 
used in (a) point spread function experiment and (b) test on 

linearity of processing. 

Here, 

U:(r) = the normalized unit point spread function, 
A, = area of the point, 
A, = area of the annulus, 

EP = threshold intensity of the point alone, 

%.a = threshold intensity of the point surrounded 
by the annulus, 

q = constant retinal illuminance ratio of annulus 
and point source 

D = threshold level for the response. 

By using a number of annuli with different radii r, a 
discrete number of values for the point spread. func- 
tion can be found. 

To minimize the effect of sensitivity shifts of the 
subjects’ system on the resulting value of ~5’: accord- 
ing to equation (5) we took the following precautions: 

-The paired thresholds ep and l p.. were always 
measured fast after one another (fast pair). The 
quotient f,/e,*, is then almost independant of sensi- 
tivity shifts of the subject. (For further details on 
technique and statistical analysis see Roufs and 
Blommaert [1981-J. 

-Repetitions of all experimental sessions were car- 
u 

+P‘-P ried out in a counterbalanced order, within the fast 
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pairs and within the complete experiment. to mini- 
mize the effect of systematic sensitivity changes. like 
fatigue. 

Figure 4a shows the data of the normalized point 
spread function for one subject (F.B.). The absolute 
response, expressed in “D” units, can be found by 
multiplying the reduced values by the norm factor 
given in the legend. 

This norm factor is found by averaging the 
threshold ep of the point alone over all 18 sessions 
necessary for the Experiments 1 and 2. In this way we 
tried to acquire an optimal representation of the aver- 
age sensitivity of the subject. Per session, one point of 
the curve containing about 1100 trials, was measured, 
calculated from 8 fast pairs according to equation (5). 
The experimentally determined standard deviation of 
the mean is indicated. The order of measurement with 
respect to the r-axis was randomly chosen. 

Experiment 2. Testing the lineariry hypothesis 

The stimulus configuration is shown in Fig. 3b and 
consists of a point-shaped stimulus superimposed on 
the centre of a subliminal disk on a 1200 td back- 

‘. \ 
UJG !T \ \ 

I \ \ 

ground level. The retinal illumination of the disk was 

again chosen in such a way, that it was always sub- 
threshold. while it was kept in a constant ratio to the 
retinal illumination of the point source. 

This configuration was chosen in order to imitate 
as closely as possible the experimental design of the 
first experiment. We argued that in trying to verify the 
linearity hypothesis. it would be better not to change 
the conditions with respect to the other basic assump- 
tions. 

Again we measured the threshold of a point source, 
the same percept to be detected as before. Instead of 
the ring a perturbating disk with variable diameter 
was used. Again the thresholds of the pointsource 
with and without perturbation were measured in fast 
pairs. 

The result of the experiment can be interpreted 
(since the experiment is carried out for a number of 
disks with different radii) as a radially symmetrical 
negative-going edge spread function. 

If this function is called F(r), it can be calculated 
(see appendix) that: 

subj. FB. 

E = 1200 Td 

norm.factor = 6.17. 10-a Td-‘min.’ 

0. 

i 

f 
\ 
\ 
\ 
\ 
\ 

5 Q’ \. 
1 *2 

3/d 
a I 5d 6 7 ra 

\ 
\lf 

(min of arc) 

(6) 

Fig. 4. Experimental data of (a) normalized point spread function L’!(r) and (b) the response to a disk at 
its centre. with radius rd of the disk as a parameter. The dashed curves are the results of a simultaneous 

computer fit. They exactly obey linearity of processing. 
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Here. 

e, = threshold intensity of point alone, 

cp.4 = threshold intensity in the presence of the 
disk. 

4 = illuminance ratio of disk and point. 

In experiment 2 we determined the response of a 
(negative going) radially symmetrical edge. If linearity 
is true there has to be a close relation with the re- 
sponse of the point-source of Experiment 1. For a 
linear space invariant system the derivative of a 
response to a unit edge equals the response to a unit 
point. The transformation to polar coordinates has 
to be taken into account. In the model this can be 
formaiized by: 

2nrLi,5r) = -$ F*(r) (7) 

The results for the radially symmetrical edge spread 
function, according to equation (6). are shown in 
Fig. 4b. They were measured during 11 sessions. mak- 
ing an average of one point per session. All other 
conditions were the same as for the point spread func- 
tion experiment. The dashed curves are the result of a 
simultaneous fitting to all data of both experiments in 
such a way that the relation of the two curves exactly 
obey equation (7). The curves were obtained by first 
multiplying the data of Fig. 4a by 2xr. Since we ex- 
perienced good results if the fitting was done in the 
frequency domain, the Fourier components of these 
results were averaged with those of df*/dr of Fig. 4b 
(differentiation was carried out in the frequency 
domain). 

Finally, this average Fourier spectrum was trans- 
formed back to U:(r) and F*(r) respectively. AS can be 
seen. both curves are highly consistent. This linearity 
test. which is commonly considered to be sensitive, 
appears to be positive. 

Experiment 3. Testing ~o~oge~eir~ and global radial 
symmetry 

For this purpose, the 50% thresholds of a point 
source (r = 0.4 min arc), were measured as a function 

of eccentricity over a horizontal and a vertica1 meri- 
dian through the fovea over a distance of about 3 . 

In the case of homogeneity. all threshoids in what- 
ever direction and at whichever eccentricity have to 
be the same. In the case of radial symmetry with re- 
spect to a certain point the variation of the threshold 
as a function of the distance to this point has to be 
independent of direction. Resuits with the fovea as a 
centre are shown in Fig. 5 (squarest on a semi-logar- 
ithmic scale. All points are the means of two 
thresholds. Of the four sessions, the first and second 
were used for measuring over the horizontal meridian 
while the third and fourth sessions were reserved for 
the vertical meridian. The order of measurement with 
respect to eccentricity was randomly chosen in the 
first and third sessions. while the order in the second 
was the reversed one of the first and the order of the 
fourth was reversed from the third. 

In order to estimate the effect of short range in- 
homogeneity, the points up to 40’ were averaged over 
all four directions. With this range the change of 
threshold with distance can be described sufficiently 
accurate by a linear function as illustrated in Fig. 6a. 
The standard deviations of the means are also indi- 
cated. The straight line through the data points is the 
result of a regression computation. giving all data 
points the same weight. This tinding was then incor- 
porated in the model by assuming the retina to be 
linear-space-variant. The sensitivity was taken to vary 
with eccentricity according to the reciprocal of this 
threshold function. Since sofar we have no data of 
point spread functions at different eccentricities avail- 
able. we were not able to take the change of the width 
of the point spread function into account. However. 
since the eccentricities used here are small. we do not 
anticipate this to be a considerable effect. estimating 
on the basis of the data of Hines (1976). 

Experiment 4. Testing the threshold prediction of 
extended s~~rnali 

To this end. we measured thresholds for annuii and 
disks with varying diameters and confronted these 
with the predicted thresholds from the model. An im- 

I I / 

-+: VERT MERIDIAN 

: HORIZ. MERIDIAN 

--. : CONE DENSITY 

*loa 0 160 I 
ECCENTRICITY (MIN OF ARC) j 

Fig. 5. Incremental thresholds of a point source along a hc$zontal and a vertical meridian through the 
fovea. For comparison. cone density in N:mmz (from Ostertxrg. 193.5) is plotted as open circles. 
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ECCENTRICITY (MIN OF ARC) 

Fig. 6a. Averaged thresholds of a point source over four directions through the fovea. The straight line is 
a regression fit, giving all points the same weight. 

* Limb and Rubinstein(l977) 

? Hines (1976) 

c F.6. 

7 
lines 

0. 
0 100 200 300 (min of arc) 

eccentricity + 

Fig. 6b. Sensitivity relative to the fovea for point and line stimuli. Sensitivity for points is derived from 
the thresholds as given in Fig. 5. Sensitivity for lines are taken from literature as shown in the legend. 

portant difference with the foregoing experiments is 
that instead of a point larger areas have to be 
detected. 

In Fig. 7 thresholds for annuli are plotted as a func- 
tion of the mean radius. The experimental results are 
averages over two thresholds. The order of measure- 
ment with respect to the radius was randomly chosen 
in the first session and reversed in the second. The 
dashed line is the prediction according to equations 
(1) and (3). 

The predicted values are in the right order of mag- 
nitude. For diameters larger than about 4 mm arc, the 
measured values are about 0.3 log-unit below the pre- 
dicted ones. However, this is not sufficient to violate 
the model since we have not yet taken into account 
the effect of stochastic fluctuations, which are respon- 
sible for the increase of detection probability if the 
stimulus area is enlarged. 

Figure 8 shows a number of experimental results 
for disk thresholds as a function of the radius. All 
data points are averaged over two threshold values. 
By using reversed orders of measurement in different 

;i 
+9 I 

,---+__-___- 

0” 
3 ‘\ ’ /’ ,.i-.* \ I. l ; 
.g 2.5 , 

,,y/ 

s 

‘z 

2 --‘I’ 

-“A._._ _. 

,* . 
/ ! 
I 

l . ...**. 

P / 
2 I 
z I 
_ 
f 2.0 subj. EB. __ 

I 
E ‘1200Td 

I I I 

-0.5 0 0.5 

log radius R Oog,omin 1 
3 

Fig. 7. Thresholds for annuli as a function of the mean 
radius. The dashed curve is the prediction of the model. 
The dotted line gives a correction for probability summa- 
tion of the deterministic prediction. The distance between 
two horizontal bars covers the average difference of two 
thresholds of which the means are indicated by the dots. 
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subj. CB. 
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Ii0 
i 

log radius r (bs, min of arc) 

Fig. 8. 50% thresholds for incremental fovea1 disks as a 
function of the radius. The dashed curve is the determin- 
istic prediction from the model. The dotted line is a correc- 

tion for probability summation. 

sessions, counterbalancing was again used as a tool to 
minimize the effect of systematic sensitivity drift on 
the final result. The dashed line is again the prediction 
from the model. 

Keeping in mind that there is no free parameter, 
the prediction for small diameters is very good. How- 
ever, for diameters larger than about 4 min arc, there 
is a distinct deviation between prediction and experi- 
ment. This will be discussed in greater detail further 
on. 

*Note added in revised text: after submission of this 
paper Barbur and Ruddock (1980) published point spread 
functions obtained with targets moving across spatially 
structured background fields. Their data are quite close to 
ours. 

DISCUSSIOS 

As one can clearly see from Fig. 4, the responses 
measured with perturbation approach are fairly large 
in comparison with the spread. 

The measured point spread function of our subject, 
has about the same shape as Fiorentini and Maffei’s 
(1970) based on the effect of steady annuli with vari- 
able diameters on the incremental threshold of a 
small disc (dia 1.7 min arc). They also concluded for 
an excitatory centre surrounded by an inhibitory 
region. However. the spatial extension of our point 
spread function is somewhat less (width of centre of 
about 4 min arc against 7 min arc for Fiorentini and 
Maffei), which is probably due to our adaption level 
of 1200 td against 100 td in their experiments*. A dif- 
ference of about a factor 2 due to these different adap- 
tation levels, is to be expected on the basis of visual 
acuity data as a function of adaptation level (see for 
instance Nakane and Ito, 1978). 

It is of some interest to compare the present point 
spread function with line spread functions from litera- 
ture assuming an infinite length. linearity and hom- 
ogeneity. Using Hankel and Fourier algorithms, 
transformed data of Hines, 1976; Kulikowski and 
King-Smith, 1973: Limb and Rubinstein, 1977 are 
drawn in Fig. 9. Although one has to take into 
account the effect of inhomogeneity, different line 
lengths and background levels used, the differences in 
the obtained point spread functions suggest that this 
kind of transformation is too simple to obtain a satis- 
factory point spread function. 

According to Fiorentini et al. (1972), who found no 
summation if a disk is presented to one eye and an 
annulus to the other, the described interaction 
between signals of different retinal elements has to 
take place at a location before binocular convergence 
of signals occurs. 

Furthermore, it is noteworthy that the width of the 
excitatory centre at this relatively high background 
level is not much larger than the optical spread given 

authors subject adaptation ISVOI line length 

Hines (1976) / MN 3OCdi 2 m 1.6’ 

Kulikowski 

and King-Smith . . . . ..- J.J.K. 5 “d/ml 2.5’ 
(1973) 

Limb and raised cosine 

Ftubinstcin ___ _ J0.L. cd/ 2 17 m halt- width 
(1977) 1.6” 

\ this paper -.- FB. 1200 Td 

\‘. 
, ‘w__ 5 10 

‘\ 

.\./ 

*;.w= ::A- ---~*:.;; . . . . y-. 

- r (min of arc) 

Fig. 9. Normalized point spread functions derived from line spread functions measured by different 
authors and calculated on the basis of assumptions, mentioned in the text. For comparison the measured 

point spread function of Fig. 4 is shown. 
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by Vos er ai. (1976) for human eyes with pupil dia of 
3 mm. This could mean that from the excitatory 
lateral processing in the fovea, the spread of the op- 
tical system is at least an important part. This prob- 
ably is not the case at low levels of adaptation or in 
the periphery, as will be shown in a subsequent paper. 

Figure 4 shows that. within measuring precision. ail 
experimental points lie on the dashed curves, which 
obey the basic linearity and peak detection postulates 
exactly. Linear lateral processing seems to be a good 
approximation in this case. 

Looking at the three-dimensional plots of point- 
and disk-responses computed from the model, as 
shown in Fig. 10, it can be appreciated why F*(r) of 
Fig. 4b becomes zero for large values of r: For small 
disk radii the core of the point spread function deter- 
mines the integrating effect; for large radii the inhibit- 
ing part gradually diminishes the effect. 

From Fig. 5, which shows the results for thresholds 
of a point source as a function of eccentricity, it can 
be seen that there is no significant difference between 
the results on the vertical and the horizontal meri- 
dian. Since we did not measure in oblique directions, 
aberrations from radial symmetry of this eccentricity 
effect cannot be excluded. The magnitude of the 
threshold variations are compatibie with findings of 
Kishto (1970) and of Wilson (1970). who measured 
with disks. 

Note from Fig. 5 that the effect follows very closely 
the density oj: cones as a function of eccentricity as 
reported by Osterberg (1935), although the connec- 
tion is not obvious since other mechanisms take part. 
Compared with the effect of eccentricity on sensitivity 
as measured with lines (Hines, 1976; Wilson and 
Bergen, 1979 and Limb and Rubinstein, 1977). ours is 
more pronounced {Fig. 6b). One reason is probably 
that the spatial extension of lines flattens out the 
actual retinal inhomogeneity. Another is that our 
background luminance is higher. 

One aspect of the measurement should not be left 
unmentioned, i.e. the possible effect of involuntary eye 
movements on the results of the experiments. As can 
be seen from Fig. 5, the fovea itself looks like some 
sort of singular point. Because of eye movements, the 
real singularity may very well be flattened out by the 
averaging effect that involuntary eye movements have. 
According to Ditchbum (l973), the magnitude of the 
eye movements in a situation where good fixation is 
maintained, can be described roughly by a normal 
distribution with a u-value of 2 to 3 min arc. This 
would apply to our conditions (self release by subject 
after fixation; fixation periods of less than a second) 
and indicates a possible smoothing of the real inhom- 
ogeneity as a result from averaging within a gaussian 
window of 2-3 min arc. 

Concerning the perturbation experiments, it should 
be kept in mind that small saccades are not likely to 
interfere much with the results of the experiment 
because the relative position of point- and perturba- 
tion-stimulus is not affected by eye movements. 

The data of Fig. 5 were averaged over all four di- 
rections and replotted for a limited range in Fig. 6a. 

The increase of threshold as a function of eccentri- 
city can be well approximated by a straight line over 
a distance of 40min arc from the fovea. Taking the 
effect of inhomogeneity into account, the original 
model was transformed to a spatial variant one in 
such a way. that the norm factor of the point spread 
function decreases with the distance to the fovea as 
the reciprocal of the values prescribed by the straight 
line of Fig. 6a. 

It turned out that in view of the distances involved 
the corrections to be applied to the point and edge 
spread function were small with respect to the experi- 
mental error. 

In Fig. 7. the experimental thresholds for annuli are 
compared with the prediction of the model. Taking 
into account the effect of daily sensitivity variations, 
the prediction of thresholds of annuli with small radii 
is not bad. For radii larger than about 2 min arc there 
seems to be some discrepancy. However, this can be 
explained by threshold decrease caused by the in- 
crease of probability of detection of larger areas, the 
so called probability summation. 

A rough estimation of the effect was carriCd out by 
treating the problem as a discrete one. It was assumed 
that fovea1 areas of 1 min’ had an independent chance 
of reaching a stochastic threshold value. On the basis 
of this, it was calculated how many independent areas 
annuius responses had in comparison to a point re- 
sponse (which, by definition, consisted of one area). 
By using stochastic calculations based on the slope of 
the measured psychometric functions (cf. Roufs, 1974) 
the effect of increased probability on the 507; 
threshold was then calculated and the corrected 
values are shown as dotted lines in Fig. 7. It was 
found from calculations based on integration areas of 
0.5 and 2 min’. not shown here, that for the present 
stimulus dimensions the effect does not depend 
heavily on the knowledge of the exact integration 
area. 

For disks, Fig. 8 gives the experimental thresholds, 
together with prediction. Now, for radii larger than 
2 min arc, a substantial difference is observed between 
prediction and experiment, which increases as the di- 
ameter of the disk increases. A similar discrepancy 
between model and experiment is reported by investi- 
gators who work with line spread functions: if 
thresholds for bars are compared with theoretical 
thresholds from a single-unit model, the experimenta 
thresholds are usually lower than the predicted ones 
(Kulikowsky and King-Smith, 1973; Hines, 1976). 
There just seems to be more integration by the visual 
system than is expected on the basis of point or line 
spread functions. With lines the results may be dis- 
torted by the effect of their extension over a relatively 
large part of the inhomogeneous retina. Using a point 
spread function, which would provide a clearer pic- 
ture in that aspect the discrepancies found (for disks) 
are even larger. 
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Fig. IO. Top: three-dimensional plot of the point spread function of Fig. 4a. Bottom: intersection of 3D 
plot of calculated response of the model on a disk with radius r, = 3.6 min arc. 
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One approach to deal with this partial disaccor- 
dance has been provided by among others: Sperling 
(1970). Thomas (1970). Koenderink and van Doorn 
(1978) and Wilson and Bergen (1979). These authors 
have propositions for the visual system in common, 
which consist of an ensemble of units (receptive fields 
or line spread functions) working at one spatial 
coordinate of the retina and that vary in extension 
and sensitivity. Bagrash’s (1973) psychophysical evi- 
dence for size-tuning seems to support this idea. The 
most detailed model is worked out by Wilson and 
Bergen (1979) which has four line spread mechanisms 
working at each retinal eccentricity that differ in 
width and sensitivity and contains probability sum- 
mation. which is formalized in an algorithm put for- 
ward by Quick (1974). 

Exploring the potentialities of such a multiple unit 
model we assumed 4 isomorphic point spread mech- 
anisms. the narrowest being equal to the measured 
one. The width of every next mechanism is increased 
by a factor 2 and the amplitude is fitted to the disk 
threshold data as shown in Fig. 11. Such an extension 
of the model is apparently able to account for the disk 
data. If the mechanisms are independent or weakly 
dependent like in the Wilson and Bergen model this 
does not alter the point and the edge spread functions 
nor does it change the prediction of the thresholds of 
annuli. (A test in relation with other stimulus shapes 
will be reported in a subsequent paper). 

In view of the scatter in receptive field sizes found 
electrophysiologically in the retina (Fischer. 1973) and 
in the striate cortex (Hubel and Wiesel. 1974) a four 
mechanisms model seems rather artificially. On the 
other hand it might be a way to approximate a more 
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Fig. Il. Illustration of fitting a “four-mechanism modei” to 
disk thresholds as a function of the radius. The smatlest 
mechanism (1) is described completely by the measured 
point spread function. probability summation included. 
Mechanisms (2). (3) and (1) have the same shape but in- 
crease in width with a factor 2. The dashed curves are the 

predictions from the individuai mechanisms. 

natural but also more difficult to handle modei as the 
one proposed by Koenderink and van Doorn (1978). 
having a contmuous receptive field size distribution. 

Point and edge spread functions determined by 
using a point source as a probe are quantitatively 
mutually consistent. 

If the point spread function is used to predict 
thresholds of larger stimuli the effect of increased de- 
tection probability extending the stimulus area does 
effect a non neglectable threshold decrease. 

Quantitative correction based on independent area 
elements seems to be adequate for slim stimuli. How- 
ever, “probability” summation cannot explain the 
threshold lowering for more “square” stimuli. 

A multi-mechanism model, including probability 
summation can account for our results but is not 
necessarily the best one. 
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APPENDIX 

For a small stimulus, approximating a point source with 
retinal illuminance ep and radius r,, the response pattern 
of the visual system can, according to equation 3, be 
written as 

C,(r) = cp r’U,(lr - r’l) dr’ d+‘. 

Due to the basic assumptions for determining threshold 
and assuming that the point is situated foveally. only the 
response for r = 0 is of interest, so 

r'Ud(r') dr’ d$’ . 

If r. is taken sufficiently small, this can be approximated 
by 

C,,(O) 2 e,+$~&O), 

where A, is the area of the point. 
The threshold condition of a point may now be 

formalized as 

epApUd(0) = D (8) 

If perturbation of a point response is applied with an 
arbitrary shape, equation (8) changes into 

E ,.,,,,A,uXO) + u,,,,(O) = f) (9) 

Here u,,(O) is the response in the origin of the 
perturbating stimulus. E,,.~~,~ is the retinal illumination 
of the point source necessary for detection of the 
combination. 

Of course, equation (9) is valid only if the retinal 
illuminance of the perturbation is so small that detection 
is always governed by the extremum of the point response. 
Since D is in fact a stochastic magnitude, the intensity 
of the test stimulus should also be kept small in order 
to avoid a substantial contribution of its response to the 
detection chance. 

In the first experiment we used an annulus with mean 
radius r,, and width Ar,. It can easily be verified from 
equation (3) that for Ar, 6 r. its response in the origin 
can be approximated by 

u,,(O) = c.2nr,Ar,Ll,,(ro) = e.A,,L’&.) 

If e&p.0 = q, where ep,. is the threshold of the point- 
annulus configuration, we can write for the threshold 
condition of this combination 

As pointed out above, 4 should be small. Comparing 
the threshold with and without annulus E,,. and tp we 
are able to derive for the normalized point spread function 

Ut(r, 1 

We can again find the absolute response by multiplying 
UI: with its absolute value u,(O) expressed in “D” units, 
which can be computed from equation 5b. 

In the second experiment we used a disk with radius 
r,, as perturbation. 

It can be seen from equation (3) that for the response 
pattern of a uniform disk at r = 0 we can write 
(subscript “8’ for disk) 

Lid(O) = 2Re4 rU,(r) dr 

If e&,d = 17, this leads to the threshold condition 

~p.d 
{ 

A,ua(O) + W 
I 

r. 
rU,(r) dr = D. 

0 1 

From the threshold change we can derive for the re- 
sponse F*(r,) on a negative-going radial symmetrical edge. 

F*(rd) = 2~ (10) 

By using disks with different radii rd, we will find a 
discrete number of samples for F*(rd), which has a unique 
relationship with the normalized point spread function 
U:(r) as is expressed in equation (7). 


