TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

On duadic codes

Citation for published version (APA):

Smid, M. H. M. (1986). On duadic codes. (EUT report. WSK, Dept. of Mathematics and Computing Science; Vol. $86-W S K-04)$. Eindhoven University of Technology.

Document status and date:

Published: 01/01/1986

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

TECHNISCHE HOGESCHOOL EINDHOVEN NEDERLAND ONDERAFDELING DER WISKUNDE EN INFORMATICA

EINDHOVEN UNIVERSITY OF TECHNOLOGY THE NETHERLANDS

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE

MASTER'S THESIS
On Duadic Codes
by
Michiel H.M. Smid

AMS subject classification 94B15

EUT Report 86-WSK-04
ISSN 0167-9708
Coden : TEUEDE

Eindhoven
May 1986

We define a class of q-ary cyclic codes, the so-called duadic codes. These codes are a direct generalization of $Q R$ codes. The results of Leon, Masley and Pless on binary duadic codes are generalized. Duadic codes of composite length and a low minimum distance are constructed. We consider duadic codes of length a prime power, and we give an existence test for cyclic projective planes. Furthermore, we give bounds for the minimum distance of all binary duadic codes of length ≤ 241.
List of symbols i
Preface ii
Chapter 1 : Introduction to error-correcting codes 1
Section 1.1 : Definitions 1
1.2 : Cyclic codes 2
1.3 : The idempotent of a cyclic code 3
Chapter 2 : Duadic codes 5
Section 2.1 : Definition of duadic codes 5
2.2 : Examples of duadic codes 10
2.3 : A construction of duadic codes of composite length 11
Chapter 3 : Properties of duadic codes 13
Section 3.1 : Some general theorems 13
3.2 : Splittings and the permutation μ_{-1} 14
Chapter 4 : Duadic codes of length a prime power 19
Section 4.1 : The general upper bound 19
4.2 : The case $z=1$ 20
4.3 : Examples 23
Chapter 5 : Splittings and tournaments 25
Section 5.1 : Introduction 25
5.2 : Tournaments obtained from splittings 26
Chapter 6 : Duadic codes and cyclic projective planes 28
Section 6.1 : Duadic codes which contain projective planes 28
6.2 : An existence test for cyclic projective planes 29
Chapter 7 : Single error-correcting duadic codes 32
Section 7.1 : Binary single error-correcting duadic codes 32
7.2 : An error-correction procedure 35
7.3 : Duadic codes over GF(4) with minimum distance 3 37
Chapter 8 : Binary duadic codes of length ≤ 241 39
Section 8.1 : Bounds on the minimum distance of cyclic codes 39
8.2 : Analysis of binary duadic codes of length ≤ 241 41
8.3 : The table 53
References 58
Index 59

finite field of order q
zero vector
all-one vector
linear code of length n and dimension k
[n, k] code with minimum distance d
dimension of the linear code C
weight of the vector x
weight of the polynomial $c(x)$
distance of the vectors x and y
extended code of the code C
dual code of the code C
inner-product of the vectors x and \underline{y}
polynomial ring over GF (q)
residue class ring $G F(q)[x] \bmod \left(x^{n}-1\right)$
greatest common divisor of a and b
ideal in $\operatorname{GF}(q)[x] /\left(x^{n}-1\right)$ generated by $g(x)$
polynomial $1+x+x^{2}+\ldots+x^{n-1}$
$\left\{c_{1}+c_{2} \mid c_{1} \in C_{1}, c_{2} \in c_{2}\right\}$
orthogonal direct sum of C_{1} and C_{2}
cyclotomic coset containing i
permutation $i \rightarrow a i \bmod n$
number of elements of the set S
multiplicative order of a mod n
(3.2.1)
p divides a
p does not divide a
$p^{z} \mid a$ and $p^{z+1} \nmid a$
(3.2.5)
identity matrix
all-one matrix
transpose of the matrix A

In 1984, Leon, Masley and Pless introduced a new class of binary cyclic codes, the so-called duadic codes. These codes are defined in terms of their idempotents, and they are a direct generalization of quadratic residue codes.

In this thesis, duadic codes over an arbitrary finite field are defined in terms of their generator polynomials. In the binary case, this definition is equivalent to that of Leon, Masley and Pless.
In Chapter 1, we give a short introduction to coding theory. In Chapter 2, duadic codes of length n over $G F(q)$ are defined. We show that they exist iff $q \equiv \square \bmod n$, i.e., if $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m}$ is the prime factorization of n, then duadic codes of length n over $G F(q)$ exist iff $q \equiv a \bmod p_{i}, i=1,2, \ldots, k$. Examples of duadic codes are quadratic residue codes, some punctured generalized Reed-Muller codes, and cyclic codes for which the extended code is self-dual. Furthermore, we give a construction of duadic codes of composite length with a low minimum distance. As an example, if n is divisible by 7 , then there is a binary duadic code of length n with minimum distance 4 .

In Chapter 3, we generalize the two papers of Leon, Masley and Pless on binary duadic codes. We show e.g., that the minimum odd-like weight in a duadic code satisfies a square root bound, just as in the case of quadratic residue codes.

In Chapter 4, we study duadic codes of length a prime power. It turns out that if $p^{2} \|\left(q^{t}-1\right)$, where $t=o r d_{p}(q)$, that duadic codes of length p^{m} ($\mathrm{m} \geq z$) over $G F(q)$ have minimum distance $\leq p^{z}$. If $z=1$, then we can strengthen this upper bound, and we can also give a lower bound on the minimum distance. As a consequence, we can determine the minimum distance of duadic codes of length p^{m} for several values of p. For example, all binary duadic codes of length $7^{m}(m>1)$ have minimum distance 4.

In Chapter 5, we consider tournaments which are obtained from splittings, and we ask whether they can be doubly-regular.
In Chapter 6 , we show that a duadic code, whose minimum odd-like weight satisfies the specialized square root bound with equality, contains a projective plane. Furthermore, we give an (already known) existence test for cyclic projective planes.

Chapter 7 deals with single error-correcting duadic codes. We show that a binary duadic code with minimum distance 4 must have a length divisible by 7. In a special case we give an error-correction procedure. It turns out that most patterns of two errors can be corrected.
In the last section of Chapter 7, we show that if a duadic code of length $n \geq 9$ over $G F(4)$ with minimum distance 3 exists, then n is divisible by 3.
In Chapter 8, we give lower bounds on the minimum distance of cyclic codes. These bounds are used to analyze binary duadic codes of length ≤ 241.
At the end of Chapter 8 , we give a table of all these codes.

In this chapter we give a short introduction to coding theory. For a more extensive treatment the reader is referred to [10,12].

Section 1.1 : Definitions

Let q be a prime power, and let $G F(q)$ be the field consisting of q elements.

A code C of length n over $G F(q)$ is a subset of the vector space $(G F(q))^{n}$. The elements of C are called codewords.
A k-dimensional subspace of ($G F(q))^{n}$ is called a linear code. We call such a code a q-ary [n, k] code.
If \underline{x} is a vector, then the weight $w t(\underline{x})$ of \underline{x}, is the number of its non-zero coordinates. The distance $d(\underline{x}, \underline{y})$ of two vectors \underline{x} and \underline{y}, is the number of coordinates in which they differ. Note that
$d(\underline{x}, \underline{y})=w t(\underline{x}-\underline{y})$.
If C is a code, then the minimum distance d of C is defined as $d:=\min (d(x, y) \mid \underline{x}, \underline{y} \in C, \underline{x} \neq \underline{y})$.
If C is a linear code, then the minimum distance d of C equals the minimum non-zero weight, i.e., $d=\min \{w t(\underline{x}) \mid \underline{x} \in C, \underline{x} \neq \underline{0}\}$.
An [n, k] code with minimum distance d is denoted an [$n, k, d]$ code. A vector x in $(G F(q))^{n}$ is called even-1ike if $\sum x_{i}=0$, otherwise it is called odd-like. If a code contains only even-like vectors, then it is called an even-like code.

If $q=2$, then an even-like vector has even weight, and an odd-like vector has odd weight.
Let C be an $[n, k]$ code over $G F(q)$.
The extended code \bar{C} is the $[n+1, k]$ code defined by
$\bar{c}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \mid\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C, \sum_{i=1}^{n+1} x_{i}=0\right\}$.
Note that $\overline{\mathrm{C}}$ is an even-1ike code.
The dual code C^{\perp} of C is defined as
$C^{\perp}:=\left\{\underline{x} \in(G F(q))^{n} \mid \forall_{\underline{y} \in C}[(\underline{x}, \underline{y})=0]\right\}$, where $($,$) is the usual inner-$
product, $(\underline{x}, \underline{y})=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \cdot C^{\perp}$ is an $[n, n-k]$ code.

If $C C C^{\perp}$, then the code C is called self-orthogonal, and if $C=C^{\perp}$, then C is called self-dual.
A generator matrix for C is a $k \times n$ matrix G, whose rows are a basis for C. A parity check matrix H for C is a generator matrix for C^{\perp}. The matrices G and H satisfy $G \cdot H^{T}=0$.
Note that $x \in C$ iff $\underline{H x}^{\mathrm{T}}=0$.

Section 1.2 : Cyclic codes
A. linear code C of length n is called cyclic if
${ }^{\forall}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C^{\left[\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C\right] .}$
Now make the following identification between $(\operatorname{GF}(q))^{n}$ and the residue class ring $\mathrm{GF}(\mathrm{q})[\mathrm{x}] /\left(\mathrm{x}^{\mathrm{n}}-1\right)$:
$\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \varepsilon_{G}(G F(q))^{n} \neq c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1} \in G F(q)[x] /\left(x^{n}-1\right)$.
Then we can interpret a linear code as a subset of $G F(q)[x] /\left(x^{n}-1\right)$.
(1.2.1) Theorem : A linear code C of length n over $G F(q)$ is cyclic iff C is an ideal in $G F(q)[x] /\left(x^{n}-1\right)$.

We shall only consider cyclic codes of length n over $G F(q)$ where $(n, q)=1$.

Let C be a cyclic code in $(\operatorname{GF}(q))^{n}$, and let $g(x)$ be the unique monic polynomial of lowest degree in C. Then the ideal C is generated by $g(x)$, i.e.,
$C=\langle g(x)\rangle:=\left\{a(x) g(x) \bmod \left(x^{n}-1\right) \mid a(x) \in G F(q)[x]\right\}$.
The polynomial $g(x)$ is called the generator polynomial of C. If C has dimension k, then $g(x)$ has degree $n-k$. Note that $g(x)$ is a divisor of $x^{n}-1$. It follows that there is a polynomial $h(x)$, called the check polynomial of C, such that $x^{n}-1=g(x) h(x)$ (in $G F(q)[x]$). This gives : $c(x) \in C$ iff $c(x) h(x)=0\left(\right.$ in $\left.G F(q)[x] /\left(x^{n}-1\right)\right)$. The dual code of C equals $\langle h(x)\rangle^{*}$, which is obtained from $\langle h(x)\rangle$, by reversing the order of the symbols.

Let α be a primitive n-th root of unity in an extension field of GF(q), and let $S \subset\{0,1, \ldots, n-1\}$. We can define a cyclic code C of length n over $G F(q)$ as follows :
$c(x) \in C$ iff $c\left(\alpha^{i}\right)=0, i \subseteq S$
(and every cyclic code can be defined in this way). The set $\left\{\alpha^{i} \mid i \in S\right\}$ is called a defining set for C. If this set is the maximal defining set for C, then it is called complete.
Note that if A is a complete defining set, we have $\alpha^{i} \in A \Rightarrow \alpha^{q i} \in A$.
(1.2.2) Lemma : If a cyclic code C contains an odd-like vector, then it also contains the all-one vector $j(x)$.

Proof: Let $g(x)$ resp, $h(x)$ be the generator resp. check polynomial of C. Since C contains an odd-like vector, we have $g(1) \neq 0$, and hence $h(1)=0$.

So $j(x)=\frac{x^{n}-1}{x-1}=\frac{h(x)}{x-1} \cdot g(x)$ F.C.

Section 1.3 : The idempotent of a cyclic code
(1.3.1) Theorem : A cyclic code C contains a unique codeword $e(x)$, which is an identity element for C.

Since $(e(x))^{2}=e(x)$, this codeword is called the idempotent of C. Furthermore, the code C is generated by $e(x)$, since all codewords $c(x)$ can be written as $c(x) e(x)$.
(1.3.2) Theorem : If C_{1} and C_{2} are cyclic codes with idempotents $e_{1}(x)$ and $e_{2}(x)$, then
(i) $C_{1} \cap C_{2}$ has idempotent $e_{1}(x) e_{2}(x)$,
(ii) $C_{1}+C_{2}$ has idempotent $e_{1}(x)+e_{2}(x)-e_{1}(x) e_{2}(x)$.

Let α be a primitive $n-t h$ root of unity in an extension field of $G F(q)$, and let C be the cyclic code of length n over $G F(q)$ with complete defining set $\left\{\alpha^{i} \mid i \in S\right\}$.
(1.3.3) Theorem : If $e(x) \in G F(q)[x] /\left(x^{n}-1\right)$, then $e(x)$ is the idempotent of C iff
$e\left(\alpha^{i}\right)=0$ if $i \in S$, and $e\left(\alpha^{i}\right)=1$ if $i \in\{0,1, \ldots, n-1\} \backslash S$.
Proof : (i) Suppose $e\left(\alpha^{i}\right)=0$ if ieS, and $e\left(\alpha^{i}\right)=1$ if $i \in T:=\{0,1, \ldots, n-1\} \backslash S$. Let $g(x):=\prod_{i \in S}\left(x-\alpha^{i}\right)(g(x)$ is the generator polynomial of $C)$.

Then $g(x)$ divides $e(x)$, so $e(x) \in C$.
Let $h(x):=\prod_{i \in T}\left(x-\alpha^{i}\right)=\frac{x^{n}-1}{g(x)}$. Then $h(x)$ divides $1-e(x)$, so there is a polynomial $b(x)$, such that $1-e(x)=b(x) h(x)$. Let $a(x) g(x)$ be a codeword in C. Then $a(x) g(x) e(x) \equiv a(x) g(x) \bmod \left(x^{n}-1\right)$. Hence $e(x)$ is an identity element for C.
(ii) If $e(x)$ is the idempotent of C, then $(e(x))^{2}=e(x)$, and $e(x)$ generates the code.

In this chapter we define duadic codes over GF (q) in terms of their generator polynomials. We show that in the binary case our definition is equivalent to that of Leon, Masley and Pless [6], who defined binary duadic codes in terms of their idempotents.
Furthermore we investigate for which lengths duadic codes exist, and we give some examples. In the last section of this chapter we give a construction of duadic codes of composite length with a low minimum distance.

Section 2.1 : Definition of duadic codes

Let q be a prime power, and let n be an odd integer, such that $(n, q)=1$. If $0 \leqslant i<n$, then the cyclotomic coset of $i \bmod n$ is the set $c_{i}:=\left\{i, q i \bmod n, q^{2} i \bmod n, q^{3} i \bmod n, \ldots\right\}$.

If a is an integer such that $(a, n)=1$, then μ_{a} denotes the permutation $i \rightarrow$ ai $\bmod n$.
(2.1.1) Definition : Let S_{1} and S_{2} be unions of cyclotomic cosets $\bmod n$, such that $S_{1} \cap S_{2}=\emptyset$ and $S_{1} \cup S_{2}=\{1,2, \ldots, n-1\}$. Suppose there is an $a,(a, n)=1$, such that the permutation μ_{a} interchanges S_{1} and S_{2}.
Then $\mu_{a}: S_{1} \stackrel{\rightarrow}{*} S_{2}$ is called a splitting $\bmod n$.

Let α be a primitive n-th root of unity in an extension field of $G F(q)$, and let $\mu_{a}: S_{1} \rightarrow S_{2}$ be a splitting mod n.

Define $g_{1}(x):=\prod_{i \in S_{1}}\left(x-\alpha^{i}\right), g_{2}(x):=\prod_{i \in S_{2}}\left(x-\alpha^{i}\right)$.
Note that $g_{1}(x)$ and $g_{2}(x)$ are polynomials in $G F(q)[x]$, since $g_{k}\left(x^{q}\right)=\left(g_{k}(x)\right)^{q}, k=1,2$.
(2.1.2) Definition : A cyclic code of length n over GF(q) is called a duadic code if its generator polynomial is one of the following: $g_{1}(x), g_{2}(x),(x-1) g_{1}(x)$ or $(x-1) g_{2}(x)$.
(2.1.3) Example : Let n be an odd prime, such that $q \equiv a \bmod n$ (i.e., there is an $x \neq 0 \bmod n$, such that $q \equiv x^{2} \bmod n$; if such an $x \neq 0 \bmod n$ does not exist, then we write $q \equiv \phi_{\text {© }} \bmod n$).
Now take $S_{1}:=\{0<i<n \mid i \equiv n \bmod n\}, S_{2}:=\{0<i<n \mid i \equiv \phi \bmod n\}$. Since $q \equiv a \bmod n$, the sets S_{1} and S_{2} are unions of cyclotomic cosets $\bmod \mathrm{n}$.
Let $a \in S_{2}$. Then $\mu_{a}: S_{1} \vec{\not} S_{2}$ is a splitting mod n, and the corresponding duadic codes are quadratic residue codes (QR codes, cf. [10]).

Now let $\mathrm{q}=2$. We shall show that Definition (2.1.2) is equivalent to the definition of Leon, Masley and Pless in [6].
Let $\mu_{a}: T_{1} \not \mathrm{~T}_{2}$ be a splitting mod n, and define
$e_{1}(x):=\sum_{i \in T_{1}} x^{i}, e_{2}(x):=\sum_{i \in T_{2}} x^{i} \quad$ (these are polynomials in $G F(2)[x]$).
Note that $\left(e_{k}(x)\right)^{2}=e_{k}(x), k=1,2$.
(2.1.4) Definition (Leon, Masley, Pless) :

A binary cyclic code of length n is called a duadic code if its idempotent is one of the following:
$e_{1}(x), e_{2}(x), 1+e_{1}(x)$ or $1+e_{2}(x)$.
(2.1.5) Theorem : A binary cyclic code is duadic according to (2.1.2) iff it is duadic according to (2.1.4).
$\underline{\text { Proof }}$: Let α be a primitive n-th root of unity in an extension field of GF(2).
(i) Let $\mu_{a}: S_{1} \vec{\leftarrow} S_{2}$ be a splitting $\bmod n$, and let C_{k} be the duadic code (according to (2.1.2)) with generator polynomial
$g_{k}(x)=\prod_{i \in S_{k}}\left(x-\alpha^{i}\right), k=1,2$. Suppose the code C_{k} has idempotent
$e_{k}(x)=\sum_{i \in T_{k}} x^{i}, k=1,2$.
Since $C_{1} \cap C_{2}=\left\langle g_{1}(x) g_{2}(x)\right\rangle=<j(x)>$ has idempotent $j(x)$, we have $e_{1}(x) e_{2}(x)=j(x)$.
Now $\operatorname{dim}\left(C_{1}+C_{2}\right)=\operatorname{dim} C_{1}+\operatorname{dim} C_{2}-\operatorname{dim}\left(C_{1} \cap C_{2}\right)=n$,
so $\mathrm{C}_{1}+\mathrm{C}_{2}=(\operatorname{GF}(2))^{\mathrm{n}}$. Comparing idempotents we find $e_{1}(x)+e_{2}(x)+e_{1}(x) e_{2}(x)=1$, and hence $e_{1}(x)+e_{2}(x)=x+x^{2}+x^{3}+\ldots+x^{n-1}$.
It follows that $T_{1} \backslash\{0\} \cap T_{2} \backslash\{0\}=\emptyset$ and $T_{1} \backslash\{0\} \cup T_{2} \backslash\{0\}=\{1,2, \ldots, n-1\}$. It is obvious that T_{1} and T_{2} are unions of cyclotomic cosets mod n. Since $e_{1}\left(\alpha^{a i}\right)\left\{\begin{array}{l}=0 \text { if } i \in S_{2}, \\ =1 \text { if } i \in\{0,1,2, \ldots, n-1\} \backslash S_{2},\end{array}\right.$
we have $e_{2}(x)=e_{1}\left(x^{a}\right)$ (cf. Theorem (1,3,3)).
We have shown that $\mu_{a}: T_{1} \backslash\{0\} \not \mathrm{T}_{2} \backslash\{0\}$ is a splitting mod n, and hence C_{1} and C_{2} are duadic codes according to (2.1.4).
By comparing zeros, we see that the duadic codes generated by $(x-1) g_{1}(x)$ resp. $(x-1) g_{2}(x)$ have idempotents $1+e_{2}(x)$ resp. $1+e_{1}(x)$, and hence they are duadic codes according to (2.1.4).
(ii) Let $\mu_{a}: T_{1} \stackrel{\rightarrow}{\nless} T_{2}$ be a splitting mod n, and let C_{k} be the duadic code (according to (2.1.4)) with idempotent $e_{k}(x)=\varepsilon_{0}+\sum_{i \in T} x^{i}, k=1,2$ ($\varepsilon_{0} \in G F(2)$ is chosen such that $e_{k}(x)$ has odd weight). $i \in T_{k}$
Note that $e_{1}(x)+e_{2}(x)=1+j(x)$.
Suppose the code C_{k} has complete defining set $\left\{\alpha^{i} \mid i \in S_{k}\right\}, k=1,2$. Obviously S_{1} and S_{2} are unions of cyclotomic cosets mod n, and $0 \notin S_{k}$, $k=1,2$.
Since $e_{1}\left(\alpha^{i}\right)+e_{2}\left(\alpha^{i}\right)=1+j\left(\alpha^{i}\right)=1 \quad(i \neq 0)$, we have $S_{1} \cap S_{2}=\emptyset$, and $S_{1} \cup S_{2}=\{1,2, \ldots, n-1\}$.
If $i \in S_{1}$, then $e_{2}\left(\alpha^{a i}\right)=e_{1}\left(\alpha^{i}\right)=0$, so ai S_{2}.
It follows that $\mu_{a}: S_{1} \stackrel{S_{2}}{ }$ is a splitting mod n, so C_{1} and C_{2} are duadic codes according to (2.1.2).
Let C_{1}^{\prime} resp. C_{2}^{\prime} be the duadic code with idempotent $1+e_{2}(x)$ resp. $1+e_{1}(x)$. By comparing zeros we see that C_{k}^{\prime} is the even weight subcode of C_{k}, so C_{k}^{\prime} is duadic according to (2.1.2), $k=1,2$.
(2.1.6) Remark : In [14] Pless introduced a class of cyclic codes over $G F(4)$, called Q-codes, in terms of their idempotents. In the same way as in Theorem (2.1.5) it can be shown that these codes are duadic codes over GF (4) and vice versa.

The next theorem tells us for which lengths duadic codes exist. Again, let q be a prime power.
(2.1.7) Theorem : Let $n=p_{1}^{m_{4}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ be the prime factorization of the odd integer n.

A splitting mod n exists (and hence duadic codes of length n over $G F(q)$) iff $q \equiv a \bmod p_{i}, i=1,2, \ldots, k$.

Before proving this theorem, we give some lemmas.
(2.1.8) Lerma : Let p be an odd prime.

A splitting mod p exists iff $q \equiv \square \bmod p$.

Proof : (i) In (2.1.3) we have seen that a splitting mod p exists if $q \equiv a \bmod p$.
(ii) Suppose a splitting mod p exists.

Let N be the number of non-zero cyclotomic cosets mod p, then N must be even. Let G be the cyclic multiplicative group of $G F(p)$, and let H be the subgroup of G generated by q. Let Q be the subgroup of G consisting of the squares mod p. Note that each coset mod p contains $|H|$ element Then we have $|G|=N .|H|=2|Q|$, and hence $|H|$ divides $|Q|$. Because a cyclic group contains for each divisor d of its order exactly one subgroup of order d, we see that H is a subgroup of Q. We have shown that $q \in Q$, i.e. $q=\square \bmod p$.
(2.1.9) Lemma : Let p be an odd prime, such that $q \equiv 0 \bmod p$, and let $m \geq 1$. Then there is a splitting mod p^{m}.

Proof : The proof is by induction on m.
For $\mathrm{m}=1$ the assertion follows from Lemma (2.1.8).
Now let $\mu_{a}: S_{1} \nleftarrow S_{2}$ be a splitting mod p^{m}, and let $\mu_{a}: T_{1} \neq T_{2}$ be a splitting mod p (remark that both splittings are given by μ_{a}). Define $R_{k}:=\left\{i p \mid i \in S_{k}\right\} U\left\{i+j p \mid i \in T_{k}, 0 \leq j<p{ }^{m}\right\}, k=1,2$.
It is easy to show that $\mu_{a}: R_{1} \nrightarrow R_{2}$ is a splitting mod p^{m+1}.
ㅁ
(2.1.10) Lemma : Let 1 and m be odd integers, $(1, m)=1$, such that splittings mod 1 and mod m exist. Then there is a splitting mod 1 m .

Proof : Let $\mu_{a}: S_{1} \stackrel{\rightharpoonup}{\leftarrow} S_{2}$ mod 1 and $\mu_{b}: T_{1} \stackrel{\vec{*}}{ } \mathrm{~T}_{2}$ mod m be splittings. Define $R_{k}:=\left\{i m \mid i \in S_{k}\right\} U\left\{i+j m \mid i \in T_{k}, 0 \leq j<1\right\}, k=1,2$.
Choose c such that $c \equiv a \bmod 1, c \equiv b \bmod m$ (such a c exists by the Chinese Remainder Theorem). Note that $(c, 1 m)=1$.
Then $\mu_{c}: R_{1} \nLeftarrow R_{2}$ is a splitting mod $1 m$.

Proof of Theorem (2.1.7) :
(i) Suppose $q \equiv 0 \bmod p_{i}, i=1,2, \ldots, k$. From Lemmas (2.1.9) and (2.1.10)
it follows that a splitting mod n exists.
(ii) Let $\mu_{a}: S_{1} \nrightarrow S_{2}$ be a splitting mod n, and let p be a prime, $p \mid n$. Choose m such that $n=p m$.
Now define $T_{k}:=\left\{1 \leq i<p \mid i m \in S_{k}\right\}, k=1,2$. Then $\mu_{a}: T_{1} \stackrel{\rightarrow}{\nmid} T_{2}$ is a splitting $\bmod p$, and then Lemma (2.1.8) shows that $q \equiv 0 \bmod p$.
(2.1.11) Examples : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ be the prime factorization of the odd integer n.
(i) Binary duadic codes of length n exist iff $p_{i} \equiv \pm 1 \bmod 8, i=1,2, \ldots, k$.
(ii) Ternary duadic codes of length n exist iff $p_{i} \equiv \pm 1 \bmod 12$, $i=1,2, \ldots, k$.
(iii) Duadic codes of length n over $G F(4)$ exist for all odd n.
(2.1.12) Theorem : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m} k_{\text {be the prime factorization }}$ of the odd integer n. Let q be a prime power such that $(n, q)=1$. Then $q \equiv \square \bmod n$ iff $q \equiv \square \bmod p_{i}, i=1,2, \ldots, k$.

We shall first prove the following lemma.
(2.1.13) Lemma : Let p be an odd prime such that $p \not q q$, and let $m \geq 1$. If $q \equiv \square \bmod p^{m}$, then $q \equiv a \bmod p^{m+1}$.

Proof : Suppose $q \equiv 0$ mod p^{m}. Then there are integers x and k, such that $q=x^{2}+k p^{m}$. Now choose t such that $2 x t \equiv k \bmod p$ (note that $(p, q)=1$, and hence $(p, x)=1)$. Then $q \equiv\left(x+t p^{m}\right)^{2} \bmod p^{m+1}$.

Proof of Theorem (2.1.12) :
Suppose $q=a \bmod p_{i}, i=1,2, \ldots, k$. Then, by Lemma (2.1.13), we have $q \equiv 0 \bmod p_{i} m_{i} ; i=1,2, \ldots, k$.
So there are integers x_{i}, such that $q \equiv x_{i}^{2} \bmod p_{i}^{m} ; i=1,2, \ldots, k$.
By the Chinese Remainder Theorem, there is an integer x, such that $x \equiv x_{1} \bmod p_{1}^{m_{1}}, x \equiv x_{2} \bmod p_{2}^{m_{2}}, \ldots, x \equiv x_{k} \bmod p_{k}^{m}{ }_{k}$

Then $q \equiv x^{2} \bmod p_{i}{ }^{i} i=1,2, \ldots, k$, and hence $q \equiv x^{2} \bmod n$. The converse is obvious.
(2.1.14) Corollary : Duadic codes of length n over GF(q) exist iff $q \equiv a \bmod n$.

Section 2.2 : Examples of duadic codes

In the last section we saw that $Q R$ codes of prime length over GF (q) are duadic codes. We now give some other examples. For a ist of binary duadic codes the reader is referred to Chapter 8.
(2.2.1) We take $\mathrm{q}=2^{r}, \mathrm{n}=\mathrm{q}-1$.

Remark that each cyclotomic coset mod n contains exactly one element. Now let $S_{1}:=\left\{i \left\lvert\, 1 \leq i \leq \frac{n-1}{2}\right.\right\}, S_{2}:=\left\{i \left\lvert\, \frac{n+1}{2} \leq i \leq n-1\right.\right\}$. Then $\mu_{-1}: S_{1} \neq S_{2}$ is a splitting mod n. The corresponding duadic codes of length n over GF (q) are Reed-Solomon codes with minimum distance $\frac{n+1}{2}$ (cf. [10]).
(2.2.2) Again take $q=2^{r}$. Let m be odd, $n:=q^{m}-1$.

Let $c_{q}(i)$ be the sum of the digits of i, if i is written in the q-ary number system. We define
$S_{1}:=\left\{1 \leq i<n \left\lvert\, c_{q}(i) \leq \frac{m(q-1)-1}{2}\right.\right\}, \quad S_{2}:=\left\{1 \leq i<n \left\lvert\, c_{q}(i) \geq \frac{m(q-1)+1}{2}\right.\right\}$. Since $c_{q}(i)=c_{q}(q i \bmod n)$, the sets S_{1} and S_{2} are unions of cyclotomic cosets mod n.
Since $c_{q}(-i \bmod n)=m(q-1)-c_{q}(i)$, the sets S_{1} and S_{2} are interchanged by μ_{-1}.
Hence we have a splitting $\mu_{-1}: S_{1} \nrightarrow S_{2} \bmod n$.
The corresponding duadic codes are punctured generalized Reed-Muller codes $\operatorname{RM}\left(m, \frac{m(q-1)-1}{2}, q\right)^{*}$ with minimum distance $\frac{1}{2}(q+2) q^{\frac{1}{2}(m-1)}-1$ (cf. [9]).
If we take $\mathrm{m}=1$, then we get the Reed-Solomon codes of (2.2.1). If $\mathrm{q}=2$, we get the punctured Reed-Muller codes $R M\left(\frac{\mathrm{~m}-1}{2}, m\right)$ * with minimum distance $2^{\frac{1}{2}(m+1)}-1$ (cf. [12]).
(2.2.3) Theorem : Let C be a cyclic code of length n over GF(q), and suppose that the extended code \bar{C} is self-dual. Then C is a duadic code, and the splitting is given by μ_{-1}.

Proof : Let α be a primitive n-th root of unity, and let $\left\{\alpha^{i} \mid i \in S_{1}\right\}$ be the complete defining set of C.
If $0 \in S_{1}$, then C is an even-like code, so it is an $\left[n, \frac{n+1}{2}\right]$ self-dual code, which is impossible. Hence $O \notin S_{1}$.
The code C^{\perp} has complete defining set $\left\{\alpha^{-i} \mid i \in S_{2} \cup\{0\}\right\}$, where $S_{2}:=\{1,2, \ldots, n-1\} \backslash S_{1}$.
Let C^{\prime} be the even-like subcode of C. Since \bar{C} is self-dual, we have $C^{\prime} \subset C^{\perp}$, and hence $C^{\prime}=C^{\perp}$ (note that $\operatorname{dim} C^{\prime}=\operatorname{dim} C^{\perp}$).
If we compare the defining sets of C^{\prime} and C^{\perp}, we see that $S_{2}=-S_{1}$ mod n. Hence $\mu_{-1}: S_{1} \not S_{2}$ is a splitting mod n, which shows that C is a duadic code.

Section 2.3 : A construction of duadic codes of composite length

Let $\mu_{a}: T_{1} \nrightarrow T_{2} \bmod 1$ and $\mu_{a}: U_{1} \nrightarrow U_{2}$ mod m be splittings (both splittings are given by μ_{a}).
Let α be a primitive n-th root of unity in an extension field of GF (q), where $\mathrm{n}:=1 \mathrm{~m}$.
Then $\beta:=\alpha^{1}$ is a primitive m th root of unity.
Let C_{0} be the even-like duadic code of length mover GF(q) with complete defining set $\left\{\beta^{i} \mid i \in U_{1} \cup\{0\}\right\}$ and minimum distance d.
We shall construct a duadic code of length n with minimum distance $\leq d$, If we take $S_{k}:=\left\{i, m \mid i \in T_{k}\right\} \cup\left\{i+j m \mid i \in U_{k}, 0 \leq j<1\right\}, k=1,2$, then we have a splitting $\mu_{a}: S_{1} \not \mathrm{~S}_{2} \bmod \mathrm{n}$.
Let C be the duadic code of length n over $G F(q)$ with complete defining $\operatorname{set}\left\{\alpha^{i} \mid i \in S_{1}\right\}$.
(2.3.1) Theorem : The code C has minimum distance $\leq d$.

Proof : Let $c_{0}(x)$ be a codeword in C_{0} of weight d. Then the word $c(x):=c_{0}\left(x^{1}\right) \in \operatorname{GF}(q)[x] /\left(x^{n}-1\right)$ also has weight d.
Note that $c\left(\alpha^{k}\right)=c_{0}\left(\alpha^{k 1}\right)=c_{0}\left(\beta^{k}\right)$.
Let $k \in S_{1}$.
(i) If $k \equiv i m \bmod n$, where $i \in T_{1}$, then $c\left(\alpha^{k}\right)=c_{0}\left(\beta^{i m}\right)=c_{0}(1)=0$.
(ii) If $k \equiv i+j m \bmod n$, where $i \in U_{1}, 0 \leq j<1$, then $c\left(\alpha^{k}\right)=c_{0}\left(\beta^{i}\right)=0$.

It follows that $c(x)$ is a codeword in C.
(2.3.2) Remark : Since the codeword $c(x)$ in the proof is even-like, we see that the even-1ike subcode of C also has minimum distance $\leq d$.
(2.3.3) Theorem : Let 1 and m be odd integers, $(1, m)=1$, and suppose that splittings mod 1 and mod m exist. If an even-like duadic code of length m has minimum distance d, then there is a duadic code of length $\mathrm{n}:=1 \mathrm{~m}$ with minimum distance $\leq \mathrm{d}$.

Proof : Let μ_{a} resp. μ_{b} give splittings mod 1 resp. modm. Choose c such that $c \equiv a \bmod 1, c \equiv b \bmod m$, and continue as on page 11. a
(2.3.4) Examples : (i) Take $q=2$, n divisible by 7 (we suppose that duadic codes of length n exist).
Write $\mathrm{n}=7 \mathrm{k}$, $7 / \mathrm{m}$.
The even-weight duadic code of length 7 has minimum distance 4. According to (2.3.1) and (2.3.2) there is an even-weight duadic code of length 7^{k} with minimum distance ≤ 4. If we apply Theorem (2.3.3) (suppose that $m>1$), we get a duadic code of length n with minimum distance ≤ 4.
(ii) Now we take $q=4$, and n divisible by 3 .

In the same way it can be shown that there is a duadic code of length n over GF(4) with minimum distance ≤ 3.

In Chapter 7 we shall study binary duadic codes with minimum distance 4, and duadic codes over GF(4) with minimum distance 3.

Chapter 3 : Properties of duadic codes

In this chapter we generalize the results about binary duadic codes from [7].

Section 3.1 : Some general theorems

Let $\mu_{a}: S_{1} \stackrel{S_{2}}{ }$ be a splitting mod n, and let α be a primitive n-th root of unity in an extension field of GF (q).

Let C_{k} be the duadic code of length n over $G F(q)$ with defining set $\left\{\alpha^{i} \mid i \in S_{k}\right\}$, and with even-1ike subcode C_{k}^{\prime}. Let $e_{k}(x)$ be the idempotent of $C_{k}(k=1,2)$.
(3.1.1) : Theorem :
(i) $\operatorname{dim} C_{k}=\frac{n+1}{2}, \operatorname{dim} C_{k}^{\prime}=\frac{n-1}{2}, k=1,2$.
(ii) $\mathrm{C}_{1} \cap \mathrm{C}_{2}=\langle\underline{l}\rangle, \mathrm{C}_{1}+\mathrm{C}_{2}=(\mathrm{GF}(\mathrm{q}))^{\mathrm{n}}$.
(iii) $C_{1}^{\prime} \cap C_{2}^{\prime}=\{\underline{0}\}, C_{1}^{\prime}+C_{2}^{\prime}=\left\{\underline{c} \in(G F(q))^{n} \mid \underline{c}\right.$ even-1ike $\}$.
(iv) $C_{k}=C_{k}^{\prime} \perp<1>, k=1,2$ (\perp denotes an orthogonal direct sum).
(v) $e_{1}(x) e_{2}(x)=\frac{1}{n} j(x) \quad\left(\frac{1}{n}\right.$ is the multiplicative inverse of $n=1+1+\ldots+1$ in $G F(q))$. $\leftarrow \mathrm{n} \rightarrow$
(vi) $e_{1}(x)+e_{2}(x)=1+\frac{1}{n} j(x)$.
(vii) C_{1}^{\prime} has idempotent $1-e_{2}(x), C_{2}^{\prime}$ has idempotent $1-e_{1}(x)$.

Proof : (i) is obvious.
(ii) $C_{1} \cap C_{2}$ has defining set $\left\{\alpha^{i} \mid i=1,2, \ldots, n-1\right\}$, which shows that $C_{1} \cap \mathrm{C}_{2}=<\underline{1>}$. From $\operatorname{dim}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)=\operatorname{dim} \mathrm{C}_{1}+\operatorname{dim} \mathrm{C}_{2}-\operatorname{dim}\left(\mathrm{C}_{1} \cap \mathrm{C}_{2}\right)=\mathrm{n}$, it follows that $C_{1}+C_{2}=(G F(q))^{n}$. The proof of (iii) is the same. (iv) Since C_{k} contains odd-like vectors, we have $1 \in C_{k}$, and so $C_{k}^{\prime}+<1>\subset C_{k}$. The code C_{k}^{\prime} contains only even-1ike vectors, so $C_{k}^{\prime} \cap<1>=\{\underline{0}\}$. It follows that $\left.\operatorname{dim}\left(C_{k}^{\prime}+<\underline{1}\right\rangle\right)=\operatorname{dim} C_{k}$.
Since for all $c \in C_{k}^{\prime},(\underline{c}, \underline{1})=0$, we have proved that $C_{k}^{\prime} \perp<1>=C_{k}, k=1,2$.
(v) and (vi) follow from (ii), (iii) and Theorem (1.3.2).
(vii) follows from Theorem (1.3.3).
(3.1.2) Theorem : The codes C_{k} and C_{k}^{\prime} are dual iff μ_{-1} gives the splitting ($k=1,2$).

Proof : Compare the defining sets of C_{k}^{\prime} and C_{k}^{\perp}.
(3.1.3) Theorem : The codes C_{1} and C_{2}^{\prime} are dual iff μ_{-1} leaves them invariant.
$\underline{\text { Proof }}:$ Compare the defining sets of C_{1}^{\perp} and C_{2}^{\prime}.
(3.1.4) Theorem : Let c be an odd-like codeword in C_{k} with weight d. Then the following holds:
(i) $d^{2} \geq \mathrm{n}$.

Now suppose the splitting is given by μ_{-1}. Then
(ii) $\mathrm{d}^{2}-\mathrm{d}+1 \geq \mathrm{n}$,
(iii) if $\mathrm{q}=2$ and $\mathrm{d}^{2}-\mathrm{d}+1>\mathrm{n}$, then $\mathrm{d}^{2}-\mathrm{d}+1 \geq \mathrm{n}+12$,
(iv) if $q=2$, then $d \equiv n \bmod 4$, and all weights in C_{k}^{\prime} are divisible by 4.

Proof : The proofs of (i), (ii) and (iii) are the same as for $Q R$ codes (cf. [10], [17]).
(iv) We know that $n \equiv \pm 1$ mod 8 (from (2.1.11)). From Definition (2.1.4) it follows that the idempotent of C_{k}^{\prime} has weight $\frac{n+1}{2}$ or $\frac{n-1}{2}$. Since this idempotent must have even weight, it follows that it has weight divisible by 4. Using Theorem (3.1.2), we see that C_{k}^{\prime} is self-orthogonal. Hence all weights in C_{k}^{\prime} are divisible by 4.
There is a codeword c^{\prime} in C_{k}^{\prime} such that $c=c^{\prime}+1$ (cf. Theorem (3.1.1)(iv)). So $d=w t\left(c^{\prime}\right)+w t(1)-2\left(c^{\prime}, 1\right) \equiv n \bmod 4$.

In Chapter 6 we shall consider duadic codes for which equality holds in (3.1.4)(ii).

Section 3.2 : Splittings and the permutation $\mu-1$

In this section we investigate when a splitting is given by μ_{-1}, and also when a splitting is left invariant by μ_{-1}. In both cases we know the duals of the corresponding duadic codes by Theorems (3.1.2) and (3.1.3).
(3.2.1) Notations : If a and n are integers, $(a, n)=1$, then ord ${ }_{n}(a)$ denotes the multiplicative order of a mod n.

If p is a prime and m a positive integer, then we denote by $v_{p}(m)$ the exponent to which p appears in the prime factorization of m.

The proof of the following theorem can be found in [8].
(3.2.2) Theorem : Let p be an odd prime, and let a be an integer such that p / a. Let $t:=o r d_{p}(a), z:=v_{p}\left(a^{t}-1\right)$, i.e.
$p^{z_{\|}}\left(a^{t}-1\right)$. Then
ord $\underset{p}{ }(a)\left\{\begin{array}{l}=t \text { if } m \leq z, \\ =t p^{m-z} \text { if } m \geq z .\end{array}\right.$
(3.2.3) Lemma : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ be the prime factorization of the odd integer n (assume that the $p_{i} ' s$ are distinct primes). Let a be an integer such that $(a, n)=1$.

Then the following holds:
(i) $\operatorname{ord}_{n}(a)=1 \mathrm{~cm}\left(o r d_{p_{i}}(a)\right){ }_{i=1}, 2, \ldots, k$,
(ii) $v_{2}\left(\operatorname{ord}_{n}(a)\right)=v_{2}\left(1 \mathrm{~cm}\left(\operatorname{ord}_{p_{i}}(a)\right)_{i=1,2, \ldots, k}\right)$.

Proof : (i) is obvious. The proof of (ii) follows from (3.2.2).

The following trivial lemma will be used several times.
(3.2.4) Lemma : If μ_{a} gives a splitting, then μ_{a} gives the same
splitting if i is odd, and it leaves a gen
the splitting invariant if i is even.
(3.2.5) Remark : Let $\mu_{a}: S_{1} \nleftarrow S_{2}$ be a sp1itting mod n, where $n=k m$, $k>1, m>1$.
Define $S(k):=\{1 \leq i<n \mid(i, n)=k\}$. Since $(a, n)=1$, the permutation μ_{a} acts on $S(k)$, i.e. if $i \in S(k)$, then ai mod $n \in S(k)$. So there are disjoint subsets $S_{i, m}$ of $S(k) \cap S_{i}, i=1,2$, with $S(k)=S_{1, m} \cup S_{2, m}$, which are interchanged by μ_{a}. If m is a prime, this splitting of $S(k)$ looks like a splitting mod m, except that all the elements of $S(k)$ are multiples of k.
(3.2.6) Lemma : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m}$ be the prime factorization of the odd integer n, and let $\mu_{a}: S_{1} \not{ }^{*} S_{2}$ be a splitting mod n. Let $r:=o r d_{n}(a)$. Then the following holds:
(i) r is even,
(ii) μ_{a} gives the same splitting as μ_{-1} iff $r \equiv 2 \bmod 4$,
(iii) if μ_{-1} leaves the splitting invariant, then
$\operatorname{ord}_{p_{i}}(a)=0 \bmod 4, i=1,2, \ldots, k$,
(iv) suppose v_{2} (ord $_{p_{i}}$ (a)) is the same for each i, say v, then μ_{a} gives the same splitting as μ_{-1} if $v=1$, and μ_{-1} leaves the splitting invariant if $v>1$.

Proof : (i) follows from Lemma (3.2.4).
(ii) Suppose $r \equiv 2 \bmod 4$, i.e. $u:=\frac{r}{2}$ is odd. Let $1 \leq i \leq k, p:=p_{i}, m:=m_{i}$. Since μ_{a} gives the same splitting as $\mu_{a}{ }^{u}$, we see that $\mu_{a}{ }^{u}$ interchanges $S_{1, p}$ and $S_{2, p}$ (using the notation of (3.2.5)), and hence $a^{u} \neq 1 \bmod p$.
We know that $a^{2 u} \equiv 1 \bmod p$, so $a^{u} \equiv-1 \bmod p$. Now from $a^{2 u} \equiv 1 \bmod p^{m}$ and since p cannot divide both $a^{u}+1$ and $a^{u}-1$, it follows that $a^{u}=-1 \bmod p^{m}$.
Hence $a^{u} \equiv-1 \bmod n$, and μ_{a} gives the same splitting as μ_{-1}. Conversely suppose that μ_{a} gives the same splitting as μ_{-1}. Suppose $r \equiv 0 \bmod 4$.
By Lemma (3.2.3) (ii), there is an i, such that ord ${ }_{p}(a)=4 \mathrm{w}$ for some w (again $p:=p_{i}$). Now $a^{2 w}=-1 \bmod p$, so $\mu_{a^{2}}$ interchanges $S_{1, p}$ and $S_{2, p}$, since μ_{-1} does. On the other hand (by Lemma (3.2.4)) $\mu_{a}{ }_{2}$ leaves S_{1}, and hence $S_{1, p}$, invariant. So we have a contradiction.
(iii) Suppose μ_{-1} leaves the splitting invariant.

Let $1 \leq i \leq k, p:=p_{i}, s:=o r d_{p}(a)$. We know that s is even, $s=2 t$.
Then $a^{t} \equiv-1 \bmod p$, so $\mu_{a} t^{\text {leaves }} S_{1, p}$ invariant, since μ_{-1} does.
Lemma (3.2.4) shows that t is even, and hence $s \equiv 0 \bmod 4$.
(iv) Suppose $v:=v_{2}$ (ord $_{p_{i}}$ (a)) is the same for each i.

If $v=1$, then by Lemma (3.2.3) (ii) we have $r \equiv 2 \bmod 4$, so μ_{a} gives the same splitting as μ_{-1}.
Suppose $v>1$. For each i there is an odd w_{i} such that ord $m_{i}(a)=2^{v} w_{i}$. It follows that $a^{2^{v-1}} w_{i} \equiv-1 \bmod p_{i}!$
Let $w:=1 \mathrm{~cm}\left(w_{i}\right){ }_{i=1}, 2, \ldots, k$. Then $\quad 2^{v}{ }_{w=o r d}^{n}(a)$, and $a^{2^{v-1}} w_{\equiv-1} \bmod p_{i}^{m}$ for each i.
So $a^{2^{v-1}}=-1 \bmod n$. Since $2^{v-1} w$ is even, μ_{-1} leaves the splitting
(3.2.7) Theorem : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ be the prime factorization of the odd integer n, such that $q \equiv \square \bmod p_{i}, p_{i} \equiv-1 \bmod 4$, $i=1,2, \ldots, k$. Then all splittings mod n are given by μ_{-1}.

Proof : Let μ_{a} give a splitting mod n, and let r:=ord ${ }_{n}(a)$. By Lemma (3.2.6) it suffices to show that $r \equiv 2 \bmod 4$. Let $1 \leq i \leq k, p:=p_{i}$. We saw in (3.2.5) that μ_{a} acts like a splitting on $S\left(\frac{n}{p}\right)$. Hence $s:=\operatorname{ord}_{p}(a)$ is even, and $a^{\frac{1}{2} s} \equiv-1 \bmod p$. Since $-1 \equiv \phi \bmod p$, it follows that $\frac{s}{2}$ is odd.
Then Lemma (3.2.3) (ii) shows that $r \equiv 2 \bmod 4$.
(3.2.8) Theorem : Let n be as in Theorem (3.2.7), except that at least one $p_{i} \equiv 1 \bmod 4$. Then there is a splitting mod n, which is not given by μ_{-1}.

Proof : Suppose that $p_{1} \equiv 1 \bmod 4$.
Let $n_{i} \equiv \emptyset \bmod p_{i}, i=1,2, \ldots, k$.
Let $a \equiv n_{i} \bmod p_{i}^{m_{i}}, i=1,2, \ldots, k$ (such an a exists by the Chinese Remainder Theorem).
Suppose there is an i such that $p_{i} \mid a$. Then $n_{i} \equiv a \equiv 0 \bmod p_{i} ;$ but
$n_{i} \equiv \phi \bmod p_{i}$. So $(a, n)=1$.
Now consider μ_{a} as acting on the non-zero cyclotomic cosets mod n.
Then each orbit of μ_{a} has an even number of cyclotomic cosets:
Let $1 \leq x<n, b$ and m integers such that $a^{b} x \equiv q{ }^{m} x \bmod n$, so we have an orbit of b cosets. Write $x=y z, n=u z,(y, u)=1$. Then $u \neq 1$, and $\left(a^{b}-q^{m}\right) y=0 \bmod u$.
Choose i such that $p_{i} \mid u$, then $\left(a^{b}-q^{m}\right) y \equiv 0 \bmod p_{i}$.
Since $(y, u)=1$, we have $a^{b} \equiv q^{m} \bmod p_{i}$. Since $a \equiv \phi \bmod p_{i}$ and
$q \equiv \square \bmod p_{i}$, we see that b is even.
Hence there are splittings given by μ_{a}.
Let $\mu_{a}: S_{1} \stackrel{\rightarrow}{*} S_{2}$ be such a splitting.
Then μ_{a} interchanges $S_{1, p_{1}}$ and $S_{2, p_{1}}$. Let $k:=o r d_{p_{1}}$ (a).
Then k is even, and $a^{\frac{1}{2} k} \equiv-1$ mod p_{1}. Since $-1 \equiv 0 \bmod p_{1}, \frac{k}{2}$ must be even.
Hence $\mu_{-1}\left(S_{1, p_{1}}\right)=S_{1, p_{1}}$, and μ_{-1} cannot give the same splitting as μ_{a} o
(3.2.9) Theorem : Let $p \equiv 1 \bmod 4$ be a prime, such that $q \equiv 0 \bmod p$, and let $\mathrm{m} \geq 1$.
Then either a $s p l i t t i n g \bmod p^{m}$ is given by μ_{-1}, or it is left invariant by μ_{-1}.

Proof : This follows from Lemma (3.2.6) (iv).
(3.2.10) Theorem : Let $n=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ be the prime factorization of the odd integer n, such that $q \equiv 0$ mod $p_{i}, i=1,2, \ldots, k$. Suppose there is an integer b, such that $n \mid\left(q^{b}+1\right)$. Then $p_{i} \equiv 1 \bmod 4, i=1,2, \ldots, k$, and each splitting mod n is left invariant by μ_{-1}.

Proof : Since $q^{b} \equiv-1 \bmod p_{i}$, we have $-1 \equiv 0 \bmod p_{i}$, and hence $p_{i} \equiv 1 \bmod 4$. Each cyclotomic coset mod n is left invariant by μ_{-1}, so μ_{-1} leaves each splitting mod n invariant.

Chapter 4 : Duadic codes of length a prime power

In this chapter we give an upper bound for the minimum distance of duadic codes of length a prime power. In a special case we can strengthen this upper bound, and also give a lower bound for the minimum distance. As a consequence, we can determine the minimum distance of duadic codes of length p^{m} for several values of p.

Section 4.1 : The general upper bound

Let p be an odd prime, q a prime power, $(p, q)=1$.
Let $t:=\operatorname{ord}_{p}(q)$, and let z be such that $p^{z} \|\left(q^{t}-1\right)$. Then, by Theorem (3.2.2), ord ${ }_{p}(q)=t p^{m-z}$ if $m \geq z$.
Let $\mathrm{m}>\mathrm{z}$.
Now suppose i is an integer such that p / i, and let C_{i} be the cyclotomic coset $\bmod p^{m}$ which contains i, i.e. $C_{i}=\left\{q^{j} i \bmod p^{m} \mid j \geq 0\right\}$.

(4.1.1) Theorem : $C_{i}+p^{2} \equiv C_{i} \bmod p m$.

$\underline{\text { Proof }}:$ Let $j \geq 0$. We shall prove that $q^{j}+p^{z} \in C_{i}$. If k and k^{\prime} are integers such that $q^{k t} \equiv q^{k^{\prime} t} \bmod p^{m}$, then $q^{\left(k-k^{\prime}\right) t} \equiv 1 \bmod p^{m}$, so $t p^{m-z} \mid\left(k-k^{\prime}\right) t$. It follows that $k \equiv k^{\prime} \bmod p^{m-z}$. So the integers $q^{k t}-1, k=0,1,2, \ldots, p^{m-z}-1$, are different mod p^{m}. Now choose integers $a_{k}, k=0,1,2, \ldots, p^{m-z}-1$, such that $q^{k t}-1=a_{k} p^{2}$. Then $a_{k}, k=0,1,2, \ldots, p^{m-z}-1$, are different mod p^{m-z}. Hence there is a k, such that $a_{k} \equiv q^{-j} i^{-1} \bmod p^{m-z} \quad\left(q^{-j}\right.$ and i^{-1} are inverses mod $\left.p^{m}\right)$. Then $q^{k t}-1=a_{k} p^{z} \equiv q^{-j} i^{-1} p^{z} \bmod p^{m}$, and hence $q^{j} i+p^{z} \equiv q^{j+k t} i \bmod p^{m}$.
(4.1.2) Corollary : If $p^{m-z} \gamma_{i}$, then $C_{i}+p^{m-1} \equiv C_{i} \bmod p^{m}$.

Let $\mu_{a}: S_{1} \nleftarrow \mathrm{~S}_{2}$ be a splitting mod n , where $\mathrm{n}:=\mathrm{p}^{\mathrm{m}}$, and let α be a primitive n-th root of unity in an extension field of $G F(q)$. Let C be the duadic code of length n over $G F(q)$ with defining set $\left\{\alpha^{i} \mid i \in S_{1}\right\}$ and with idempotent $e(x)$.

Since $e\left(x^{q}\right)=(e(x))^{q}=e(x)$, we can write $e(x)$ as
$e(x)=\sum_{i} e_{i} \sum_{j \in C} x_{i}^{j}, e_{i} \in G F(q)$, where i runs through a set of
cyclotomic coset representatives.
Now consider the codeword $c(x):=\left(1-x^{p}\right) e(x)$.
Corollary (4.1.2) shows that
$c(x)=\left(1-x^{p^{m-1}}\right) \sum_{i:\left.p^{m-z}\right|_{i}} e_{i} \sum_{j \in C_{i}} x^{j}$. Assume w.1.o.g. that $1 \in S_{1}$.
Since $c\left(\alpha^{a}\right)=\left(1-\alpha^{a p^{m-1}}\right) \neq 0$, we have $c(x) \neq 0$.
It is obvious that $c(x)$ has weight $\leq p^{2}$. We have proved:
(4.1.3) Theorem : Let p be an odd prime, q a prime power, such that $q \equiv 0 \bmod p$. Let $t:=o r d_{p}(q)$, and let z be such that $p^{z_{\|}}\left(q^{t}-1\right)$. Then all duadic codes of length $p^{m}, m \geq z$, have minimum distance $\leq \mathrm{p}^{2}$.

Section 4.2 : The case $z=1$

In this section p is an odd prime, q a prime power, such that $q \equiv 0$ mod p. Furthermore, $t:=o r d_{p}(q)$, and we assume that $p^{2} /\left(q^{t}-1\right)$.
Let $m>1$.
We denote by $C_{i}^{(k)}$ the cyclotomic coset mod p^{k} which contains i.
(4.2.1) Lemma : If $p \nmid i$, then $C_{i}^{(1)} \subset C_{i}^{(m)}$.

Proof : Let $j \in C_{i}^{(1)}$, and let k be an integer such that $j \equiv q^{k} i \bmod p$. Choose integers $a_{s}, s=0,1,2, \ldots, p^{m-1}-1$, such that $q^{s t}{ }_{-1=a_{s}} p$. In the proof of Theorem (4.1.1) we have seen that the integers a_{s}, $s=0,1,2, \ldots, p^{m-1}-1$, are different mod p^{m-1}.
So there is an s, such that $a_{s} \equiv q^{-k i^{-1}}\left(\frac{j-q_{i}}{p}\right) \bmod p^{m-1} \quad\left(q^{-k}\right.$ and i^{-1} are inverses $\bmod \mathrm{p}^{\mathrm{m}-1}$).
Then $q^{k+s t} i=q^{k} i\left(1+a_{s} p\right) \equiv j \bmod p^{m}$, and hence $j \in C_{i}^{(m)}$.

Let $\mu_{a}: S_{1} \vec{\leftarrow} S_{2}$ be a splitting $\bmod n$, where $n:=p^{m}$, and define $S_{k}^{\prime}:=\left\{i \in S_{k} \mid 1 \leq i<p\right\}, k=1,2$.
(4.2.2) Lemma $: \mu_{a}: S_{1}^{\prime} \vec{\not} S_{2}^{\prime}$ is a splitting mod p.

Proof : Let iEs ${ }_{1}^{\prime}$. From Lemma (4.2.1) it follows that $c_{i}^{(1)} \subset c_{i}^{(m)} \subset S_{1}$, so $q i \bmod p \in S_{1}^{\prime}$. Since $C_{a i}^{(1)} \subset C_{a i}^{(m)} \subset S_{2}$, we have ai $\bmod p \in S_{2}^{\prime}$.

Let α be a primitive n-th root of unity in an extension field of $\mathrm{GF}(\mathrm{q})$. Then $\beta:=\alpha^{p^{m-1}}$ is a primitive p-th root of unity. We define
C as the duadic code of length n with defining set $\left\{\alpha^{i} \mid i \in S_{1}\right\}$ and minimum distance d,
C^{\prime} as the duadic code of length p with defining set $\left\{\beta^{i} \mid i \in S_{1}^{\prime}\right\}$ and minimum distance d^{\prime},
and $C^{\prime \prime}$ as the even-like subcode of C^{\prime}, with minimum distance $d^{\prime \prime}$.
(4.2.3) Theorem : We have $d^{\prime} \leq d \leq d^{\prime \prime}$.

Proof : Let $e(x)$ be the idempotent of $C, e(x)=\sum_{i} e_{i} \sum_{j \in C_{i}} x^{j}, e_{i} \in G F(q)$,
i runs through a set of cyclotomic coset representatives.
(i) Consider the codeword (of C)
$c(x):=\left(1-x^{p^{m-1}}\right) e(x)=\left(1-x^{m-1}\right) \sum_{i: p^{m-1} \mid i} e_{i} \sum_{j \in C_{i}} x^{j} \quad$ (cf. page 20).
$c(x)$ has (possibly) non-zeros only on positions $\equiv 0 \bmod p^{m-1}$.
Now define a new variable $y:=x^{m-1}$, and let $c^{*}(y):=c(x)$, a vector in $\operatorname{GF}(\mathrm{q})[\mathrm{y}] /\left(\mathrm{y}^{\mathrm{P}}-\mathrm{l}\right)$.
Let C^{*} be the cyclic code of length p over $G F(q)$, generated by $c^{*}(y)$. If we show that $C^{*}=C^{\prime \prime}$, then we have proved that $d \leq d^{\prime \prime}$.
Since $c^{*}\left(\beta^{i}\right)=c^{*}\left(\alpha^{i p^{m-1}}\right)=c\left(\alpha^{i}\right)=\left(1-\alpha^{i p^{m-1}}\right) e\left(\alpha^{i}\right)\left\{\begin{array}{l}=0 \text { if i i S ; } U\{0\}, ~ \\ \neq 0 \text { if i } \in S_{2}^{\prime},\end{array}\right.$ we have $c^{*} \subset c^{\prime \prime}$.

Let $g(y)$ be the generator polynomial of $C^{\prime \prime}$. Since $\operatorname{gcd}\left(c^{*}(y), y^{p}-1\right)=g(y)$, there are polynomials $a(y)$ and $b(y)$ such that $a(y) c^{*}(y)+b(y)\left(y^{p}-1\right)=g(y)$, so $g(y) \equiv a(y) c^{*}(y) \bmod \left(y^{p}-1\right)$, and hence $C^{\prime \prime} \subset C^{*}$.
(ii) Let $C_{0}:=\left\{\left(c_{0}, c_{p^{m-1}}, c_{2 p^{m-1}}, \ldots, c_{(p-1) p^{m-1}}\right) \mid\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C\right\}$.

If we show that $C_{0}=C^{\prime}$, then we have proved that $d^{\prime} \leq d$.
We know that $C_{i}+p^{m-1} \equiv C_{i} \bmod p^{m}$ if $p^{m-1} \|_{i}(c f$. Theorem (4.1.2)). It follows that the idempotent $e(x)$ of C looks like ($r:=p^{m-1}$)

where the *'s are elements of GF (q).

Let $e^{\prime}(x):=\sum_{i: p^{m-1} \mid i} e_{i} \sum_{j \in C_{i}} x^{j}$, then $e\left(\alpha^{k}\right)=e^{\prime}\left(\alpha^{k}\right), k=0,1,2, \ldots, n-1$.
Again define $y:=x^{p^{m-1}}, e^{*}(y):=e^{\prime}(x) \in \operatorname{GF}(q)[y] /\left(y^{p}-1\right)$.
Since $e^{*}\left(\beta^{k}\right)=e^{\prime}\left(\alpha^{k}\right)=e\left(\alpha^{k}\right)\left\{\begin{array}{l}=0 \text { if } k \in S_{1}^{\prime}, \\ =1 \text { if } k \in S_{2}^{\prime} \cup\{0\},\end{array}\right.$
the polynomial $e^{*}(y)$ is the idempotent of C^{\prime} (cf. Theorem (1.3.3)).
Hence $C^{\prime} \subset C_{0}$.
Now consider $x^{k} e(x)$ on the positions $\equiv 0 \bmod p^{m-1}$, call this vector c_{k} (c_{k} has length p):
a) if $k \neq 0 \bmod p^{m-1}$, then $c_{k} \in<1>$,
b) if $k=b p^{m-1}$ for some $0 \leq b<p$, then $c_{k}=y^{k} e^{*}(y) \in c^{\prime}$.

Since the code C_{0} is generated by the vectors $c_{k}, k=0,1,2, \ldots, n-1$, we have proved that $C_{0} \subset\left\langle C^{\prime}, 1\right\rangle=C^{\prime}$.
(4.3.1) Theorem : Let $p \equiv \pm 1 \bmod 8$ be a prime, such that ord ${ }_{p}(2)=\frac{p-1}{2}$, and suppose that $p^{2} \ell\left(2^{\frac{1}{2}(p-1)}-1\right)$.
Let d be the minimum distance of the binary even-weight $Q R$ code of length p, and let $m>1$.
Then all binary duadic codes of length p^{m} have minimum distance d.

Proof : Since the only duadic codes of length p are $Q R$ codes, Theorem (4.2.3) shows that duadic codes of length p^{m} have minimum distance $d-1$ or d (here we use the fact that the $Q R$ code of length p has minimum distance $d-1$). From Theorem (3.1.4) it follows that this minimum distance must be even.
(4.3.2) Example : All binary duadic codes of length $31^{\mathrm{m}}, \mathrm{m}>1$, have minimum distance 8.

Proof : Duadic codes resp. even-weight duadic codes of length 31 have minimum distance 7 resp. 8. The assertion follows from Theorems (3.1.4) and (4.2.3).
(4.3.3) Remark : Let $q=2$. In Section 4.2 we only consider primes p such that $p^{2} \\left(2^{t}-1\right)$, where $t=o r d p(2)$. This condition is very weak: There are just two primes $p<6,10^{9}$, such that $2^{p-1} \equiv 1 \bmod p^{2}$: $p=1093, t=364,2^{t} \equiv 1 \bmod p^{2}, 2^{t} \equiv 1064432260 \bmod p^{3}$, and
$p=3511, t=1755,2^{t} \equiv 1 \bmod p^{2}, 2^{t} \equiv 21954602502 \bmod p^{3}$ (cf. [15]).
(4.3.4) Take $q=4$. Let n be an odd integer, such that ord $_{n}(2)$ is odd. Then binary and quaternary cyclotomic cosets mod n are equal, i.e. $\left\{2^{j} i_{\bmod } n \mid j \geq 0\right\}=\left\{4^{j}{ }_{i} \bmod n \mid j \geq 0\right\}$ for each i. It follows that a duadic code C of length n over $\mathrm{GF}(4)$ is generated by binary vectors. Pless (cf. [14]) has shown that in this case the code C has the same minimum distance as its binary subcode, which is a duadic code over GF(2).
(4.3.5) Example : All duadic codes of length $7^{m}, \mathrm{~m}>1$, over GF (4) have minimum distance 4 .

Proof : This follows from (4.3.1) and (4.3.4).
(4.3.6) Example : All duadic codes of length $3^{m}, m>1$, over GF(4) have minimum distance 3 .

Proof : Let C be a duadic code of length 3^{m} over GF (4). Theorem (4.2.3) shows that C has minimum distance $d=2$ or 3 . By Theorem (3.1.4), minimum weight codewords are even-like. Then the BCH bound (cf. (8.1.1)) gives $\mathrm{d} \geq 3$.

In this chapter we study tournaments which are obtained from splittings given by μ_{-1}. First we give some theory about tournaments (cf. [16]).

Section 5.1 : Introduction

A complete graph K_{n} is a graph on n vertices, such that there is an edge between any two vertices. If such a graph is directed, i.e. each edge has a direction, then it is called a tournament.
If x is a vertex of a directed graph, then the in-degree, resp. out-degree, of x is the number of edges coming in, resp. going out of x .

A tournament on n vertices is called regular if there is a constant k, such that each vertex has in-degree and out-degree k. It is obvious that in that case $n=2 k+1$. The tournament is called doubly-regular if the following holds. There is a constant t, such that for any two vertices x and $y(x \neq y)$, there are exactly t vertices z such that both x and y dominate z (x dominates z if there is an edge pointing from x to z). In that case the number of vertices equals $n=4 t+3$, so $n \equiv 3 \bmod 4$.

Note that a doubly-regular tournament is also regular.
Let T be a tournament on n vertices. We assume w.l.o.g. that the vertices of T are $\{0,1,2, \ldots, n-1\}$.
Now define the $n x \operatorname{n}$ matrix A by
$A_{i j}:=\left\{\begin{array}{l}1 \text { if i dominates } j, \\ 0 \text { otherwise. }\end{array} \quad(0 \leq i, j<n)\right.$
This matrix is called the adjacency matrix of the tournament. From the definition of a tournament it follows that
(5.1.1) $A+A^{T}+I=J$.
(5.1.2) Lemma : If the tournament is regular, then
(i) $\mathrm{AJ}=\mathrm{JA}=\frac{\mathrm{n}-1}{2} \mathrm{~J}$,
(ii) $A^{T} A=A A^{T}$.

Proof : (i) follows from the definition of a regular tournament, and (ii) follows from (5.1.1).

Proof : Apply the definition, (5.1.1) and (5.1.2).

Section 5.2 : Tournaments obtained from splittings

Let n be odd, q a prime power.
Let $\mu_{-1}: S_{1} \stackrel{\rightarrow}{*} S_{2}$ be a splitting mod $n\left(S_{1}\right.$ and S_{2} are unions of cyclotomic cosets $\left\{i, q i, q^{2} i, \ldots\right\} \bmod n$).
Now define the directed graph T on the vertices $\{0,1,2, \ldots, n-1\}$ as follows:
i dominates j iff $(j-i) \bmod n \in S_{1}$.

The adjacency matrix A of T is a circulant, and
$A_{i j}=\left\{\begin{array}{l}1 \text { if } j-i \in S_{1}, \\ 0 \text { if } j-i \in S_{2} \cup\{0\} .\end{array}\right.$
From the definition of a splitting it follows that T is a regular tournament. If T is doubly-regular, then the splitting is called doubly-regular.
(5.2.1) Example : Let $p \equiv 3 \bmod 4$ be a prime, and let q be a prime power such that $q \equiv 0 \bmod p$.

Let $S_{1}:=\{1 \leq i<p \mid i \equiv \square \bmod p\}, S_{2}:=\{i \leq i<p \mid i \equiv \phi \bmod p\}$.
Then $\mu_{-1}: S_{1} \not S_{2}$ is a splitting mod p. Let A be the adjacency matrix of the corresponding tournament.

The $n x n$ matrix S defined by
$S_{i j}:=\left\{\begin{array}{l}1 \text { if } j-i \in S_{1}, \\ -1 \text { if } j-i \in S_{2}, \\ 0 \text { if } i=j,\end{array}\right.$
is a Paley-matrix and satisfies $S S^{T}=p I-J, S+S^{T}=0$ (cf. [10]). Since $A=\frac{1}{2}(S+J-I)$, it follows that $A A^{T}=\frac{p+1}{4} I+\frac{p-3}{4} J$, and hence the splitting $\mu_{-1}: S_{1} \stackrel{\rightarrow}{\leftarrow} S_{2}$ is doubly-regular.
I have not been able to find any other doubly-regular splittings.
(5.2.2) Theorem : A splitting $\mu_{-1}: \mathrm{S}_{1} \stackrel{\rightarrow}{\leftarrow} \mathrm{~S}_{2} \bmod \mathrm{n}$ is doubly-regular iff $\left|S_{1} \cap\left(S_{1}+k\right)\right|=\frac{n-3}{4}, k=1,2, \ldots, n-1$.

Proof : This follows from Lenma (5.1.3)(ii).

We shall use this theorem to give a nonexistence theorem.
(5.2.3) Theorem : Let p be an odd prime, q a prime power such that $q \equiv \square \bmod p, z$ an integer such that $p^{z} \|\left(q^{t}-1\right)$, where $t=o r d p(q)$. Let $\mathrm{m}>\mathrm{z}$. Then there is no doubly-regular splitting mod p .
$\underline{\text { Proof }}:$ Let $\mu_{-1}: S_{1} \nleftarrow S_{2}$ be a sp1itting mod p^{m}, and define $T_{1}:=\left\{i \in S_{1} \mid i=0 \bmod p^{m-z}\right\}, S_{1}^{\prime}:=S_{1} \backslash T_{1}$.
From Corollary (4.1.2) it follows that $S_{1}^{\prime}+p^{m-1} \equiv S_{1}^{\prime} \bmod p^{m}$.
Therefore $\left|S_{1} \cap\left(S_{1}+p^{m-1}\right)\right| \geq\left|S_{1}^{\prime}\right|=\left|S_{1}\right|-\left|T_{1}\right|=\frac{p^{m}-1}{2}-\frac{p^{z}-1}{2}>$ $>\frac{p^{m}-3}{4}$. Now apply Theorem (5.2.2).

In this chapter we study duadic codes for which equality holds in Theorem (3.1.4) (ii). Such codes "contain" projective planes. We shall explain what we mean by this.
If c is a vector, then the set $\left\{i \mid c_{i} \neq 0\right\}$ is called the support of c. Now if a code contains codewords such that their supports are the lines of a projective plane Π, then we say that the code contains Π. Furthermore, we give an existence test for cyclic projective planes. For the theory of projective planes, the reader is referred to [3].

Section 6.1 : Duadic codes which contain projective planes

Let C be a duadic code of length n over $G F(q)$, and suppose the splitting is given by μ_{-1}.
Let $c(x)=\sum_{i=1}^{d} c_{i}{ }^{\mathrm{e}}{ }^{i}$ be an odd-like codeword of weight d.
We know that $d^{2}-d+1 \geq n$.
(6.1.1) Theorem : If $d^{2}-d+1=n$, then the following holds:
(i) The code C contains a projective plane of order $d-1$,
(ii) C has minimum distance d, (iii) $c_{i}=c_{j}$ for all $1 \leq i, j \leq d$.

Proof : (i) From Theorem (3.1.1)(ii) it follows that there is an A in GF (q), $A \neq 0$, such that $c(x) c\left(x^{-1}\right)=A \cdot j(x)$, so

$$
\sum_{i \neq j} c_{i} c_{j} x^{e_{i}^{-e} j}=A\left(x+x^{2}+\ldots+x^{n-1}\right)
$$

Since $d(d-1)=n-1$, all exponents $1,2, \ldots, n-1$, appear exactly once as a difference $e_{i}{ }^{-e_{j}}$.
So the $\operatorname{set} D:=\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ is a difference set in $2 \bmod n$. Now call the elements of 2 mod n points, and call the sets $D+k$, $k=0,1,2, \ldots, n-1$, lines. Then we have a projective plane of order $d-1$. (ii) Consider the $d x \operatorname{n}$ matrix M, with rows $c_{i}{ }^{-e^{e}}{ }_{i} c(x), i=1,2, \ldots, d$. The 0-th column of M contains nonzero elements.

Since $d^{2}=d+n-1$ and $c(x) c\left(x^{-1}\right)=A . j(x)$, every other column of M contains exactly one nonzero element.
Let C^{\prime} be the even-like subcode of C.
We know that $C^{1}=C^{\prime}$ (cf. Theorem(3.1.2)).
Let $c^{\prime}(x)$ be a codeword of C^{\prime}, and assume w.1.0.g. that $c^{\prime}(x)$ has a nonzero on position 0 . Since every row of M has inner-product 0 with $c^{\prime}(x)$, we see that $c^{\prime}(x)$ has weight $\geq d+1$.
(iii) Consider again the matrix M. Let $1 \leq i<j<k \leq d$. (remark that $d \geq 3$). Every colum of M (except the 0 -th) contains exactly one nonzero element, and all these elements are of the form $c_{r} c_{s}$. Since the sum of the rows of M equals $A . j(x)$, we have $c_{i} c_{j}=c_{i} c_{k}=c_{j} c_{k}=A$, so $c_{i}=c_{j}=c_{k}$.

In [13], pless showed that there is a binary duadic code which contains a projective plane of order 2^{s} if and only if s is odd. Furthermore, she showed in [14], that if s is either odd or $s \equiv 2 \bmod 4$, then there is a duadic code over GF(4) which contains a projective plane of order 2^{s}.

Section 6.2 : An existence test for cyclic projective planes

Consider a cyc1ic projective plane of order n. The incidence matrix of this plane is the $\left(n^{2}+n+1\right) x\left(n^{2}+n+1\right)$ matrix A, which has as its rows the characteristic vectors of the lines of the plane.
Let p be a prime such that $p \| n$, and let $t \geq 1, q:=p{ }^{t}, N:=n^{2}+n+1$. Let C be the cyclic code of length N over $\mathrm{GF}(\mathrm{q})$ generated by the matrix A . Bridges, Hall and Hayden [2] have shown that $\operatorname{dim} C=\frac{N+1}{2}$ and $C^{\perp} \subset C$.
(6.2.1) Theorem : C is a duadic code of length N over GF (q) with minimum distance $n+1$, and the splitting is given by μ_{-1}.

Proof : Let α be a primitive N-th root of unity in an extension field of $\operatorname{GF}(q)$, and let $\left\{\alpha^{i} \mid i \in S_{1}\right\}$ be the complete defining set of C. The rows of the matrix A are odd-like, so $0 \$ S_{1}$.
The code C^{\perp} has complete defining set $\left\{\alpha^{-i} \mid i \in s_{2} \cup\{0\}\right\}$, where $s_{2}:=\{1,2, \ldots, N-1\} \backslash S_{1}$. Since $C^{\perp} \subset C$, we have $S_{1} \subset-S_{2} \cup\{0\}$, and hence $-s_{1}=S_{2}$ (note that $\left|s_{1}\right|=\left|s_{2}\right|$).
So we have a splitting $\mu_{-1}: S_{1} \nleftarrow \mathrm{~S}_{2} \bmod \mathrm{n}$, which shows that C is a
duadic code.
Then Theorem (6.1.1) shows that C has minimum distance $n+1$.
\square
(6.2.2) Remark : If the extended code \bar{C} is self-dual, then $p=2$.

Proof : Let c be a row of the matrix A (so \underline{c} is a codeword in C). Since $\Sigma c_{i}=n+1 \equiv 1 \bmod p$, we have $(c,-1) \in \bar{c}$.
Now ($c,-1$) has inner-product 0 with itself, so $n+1+1 \equiv 2 \equiv 0 \bmod p$. Hence $p=2$.

ㅁ
(6.2.3) Theorem : Suppose a cyclic projective plane of order n exists. Let p and r be primes, such that $p \| n, r \mid\left(n^{2}+n+1\right)$.
Then $p \equiv \square \bmod r$.

Proof : By Theorem (6.2.1) there is a duadic code of length $n^{2}+n+1$ over GF (p), and then Theorem (2.1.7) shows that $p \equiv \square$ mod r.
(6.2.4) Remarks : (i) Theorem (6.2 .3) is a weaker version of a theorem in [1], which says:
Suppose a cyclic projective plane of order n exists. Let p and r be primes, such that $p|n, r|\left(n^{2}+n+1\right), p \equiv \phi \bmod r$. Then n is a square.
(ii) Wilbrink [18] has shown:

If a cyclic projective plane of order n exists, then
a) if $2 \| n$, then $n=2$,
b) if $3 \| n$, then $n=3$.
(iii) In [5], Jungnickel and Vedder have shown:

If a cyclic projective plane of even order $n>4$ exists, then $n \equiv 0 \bmod 8$.

We shall give some examples, which cannot be ruled out with Theorem (6.2.3).
(6.2.5) Examples : (i) Suppose a cyclic projective plane of order 12 exists. Then according to Theorem (6.2 .1) there is a splitting $\mu_{-1}: S_{1} \stackrel{\vec{*}}{\leftarrow} S_{2}$ mod 157, where S_{1} and S_{2} are unions of cyclotomic cosets $\left\{i, 3 i, 3^{2} i, \ldots\right\} \bmod 157$. But $3^{39} \equiv-1 \bmod 157$, so all cyclotomic cosets $\bmod 157$ are left invariant by μ_{-1}. Hence a splitting mod 157 cannot be given by μ_{-1}, and the projective plane does not exist.
(ii) Suppose a cyclic projective plane of order 18 exists. By Theorem (6.2.1) there is a binary duadic code of length $18^{2}+18+1=7^{3}$ with minimum distance 19.
But in Theorem (4.3.1) we have seen that binary duadic codes of length 7^{3} have minimum distance 4. So we have a contradiction.

In this chapter we study binary duadic codes with minimum distance 4 , and duadic codes over GF(4) with minimum distance 3 .

Section 7.1 : Binary single error-correcting duadic codes

Let C be a binary duadic code of length $n>7$ (so $n \geq 17$, cf. Example (2.1.11)). By Theorem (3.1.4) the odd weight vectors in C have weight at least 5 .

Let α be a primitive n-th root of unity, and suppose w.1.0.g. that α is in the complete defining set of C. Then the nonzero even-weight vectors in C have $\alpha^{0}, \alpha^{1}, \alpha^{2}$ as zeros, so their weights are at least 4 by the BCH bound (cf. (8.1.1)). We conclude that the code C has minimum distance at least 4.
(7.1.1) Theorem : Let C be a binary duadic code of length n and minimum distance 4.

Then $n=0 \bmod 7$.

Proof : Let $c(x)=1+x^{i}+x^{j}+x^{k}$ be a codeword in C of weight 4 , and let α be a primitive n-th root of unity such that $c(\alpha)=0$.
If $i+j \equiv k \bmod n$, then $c(\alpha)=\left(1+\alpha^{i}\right)\left(1+\alpha^{j}\right)=0$, so $\alpha^{i}=1$ or $\alpha^{j}=1$, which is impossible. Hence

$$
\begin{equation*}
i+j \not \equiv k, j+k \neq i, k+i \neq j \bmod n . \tag{*}
\end{equation*}
$$

Suppose the splitting is given by μ_{a}. Then $c\left(x^{-a}\right)=1+x^{-a i}+x^{-a j}+x^{-a k}$ is a codeword in C^{\perp}.
It follows that $c(x)$ and $c\left(x^{-a}\right)$ have inner-product 0 , so
$\{i, j, k\} \cap\{-a i,-a j,-a k\} \neq \emptyset$.
The rest of the proof consists of considering all possibilities. We shall only give some examples, showing how these possibilities lead to the theorem.

Suppose aim-i mod n. The vectors $c(x)=1+x^{i}+x^{j}+x^{k}$ and $x^{i} c\left(x^{-a}\right)=x^{i}+x^{2 i}+x^{i-a j}+x^{i-a k}$ have inner-product 0 , so $\{0, j, k\} \cap\{2 i, i-a j, i-a k\} \neq \emptyset$.

Now suppose e.g. that $i \equiv a j \bmod n$, then $i \equiv-j \bmod n$.
Since $c(x)$ and $c\left(x^{-a}\right)$ have inner-product 0 , we have $a k \equiv-k \bmod n$. Also $c(x)$ and $x^{2 i} c\left(x^{-a}\right)$ have inner-product 0 , so $\{0,-i, k\} \cap\{2 i, 3 i, k+2 i\} \neq \emptyset$. Note that $2 i \neq 0,3 i \neq 0 \bmod n$. Because of (*) there are two possibilities:
(i) $-i \equiv k+2 i$ mod n : Then $c(x)=1+x^{i}+x^{-i}+x^{-3 i}$ and $x^{3 i} c\left(x^{-a}\right)=x^{3 i}+x^{4 i}+x^{2 i}+1$ have inner-product 0 , so $\{i,-i,-3 i\} \cap\{2 i, 3 i, 4 i\} \neq \emptyset$.
Since $(2, n)=(3, n)=(5, n)=1$, it follows that $7 i \equiv 0 \bmod n$, so $n=0 \bmod 7$.
(ii) $k \equiv 3 i \bmod n:$ In the same way, $c(x)$ and $x^{3 i} c\left(x^{-a}\right)$ have inner-product 0 , so $\{0, i,-i\} \cap\{2 i, 4 i, 6 i\} \neq \emptyset$. Hence $7 i=0 \bmod n, n \equiv 0 \bmod 7$.
(7.1.2) Remark : We saw in Example (2.3.4) that a binary duadic code of length $\mathrm{n}>7$ and minimum distance 4 exists, if $\mathrm{n}=0 \bmod 7$.

We shall now give complete proofs of some special cases of Theorem (7.1.1).
(7.1.3) Lemma : Binary duadic codes of length $n=2^{m}-1$ exist iff m is odd.

Proof : We apply Theorem (2.1.7).
(i) Let m be odd, p a prime, $p \mid n$. Then $2^{m-1} .2 \equiv 1 \bmod p$, so $2 \equiv \square \bmod p$. (ii) If m is even, then $3 \mid n$, but $2 \equiv \phi \bmod 3$.
(7.1.4) Theorem : Let C be a binary duadic code of length $n=2^{m}-1$ (m odd) and minimum distance 4, and suppose the splitting is given by μ_{3}.
Then $n=0 \bmod 7$.
$\underline{\text { Proof }: ~ L e t ~} c(x)=1+x^{i}+x^{j}+x^{k}$ be a codeword of weight 4 , and let α be a primitive element of $G F\left(2^{m}\right)$ such that $c(\alpha)=0$. Choose an integer b such that $\alpha^{b}\left(1+\alpha^{i}\right)=1$, and define $\xi:=\alpha^{b}, \eta:=\alpha^{b+j}$. Then $\alpha^{b+i}=\xi+1$ and $\alpha^{b+k}=\eta+1$. The codeword $x^{b} c(x)$ has α^{9} as a zero, so $\xi^{9}+(\xi+1)^{9}+\eta^{9}+(\eta+1)^{9}=0$. It follows that $(\xi+\eta)^{8}=\xi+\eta$. Since $\xi+\eta \neq 0$, we find $(\xi+\eta)^{7}=1$.
(7,1.5) Theorem : Let C be a binary duadic code of length n and minimum distance 4. Suppose the splitting is given by μ_{-1}. Then $n \equiv 0 \bmod 7$.

Proof : Let $c(x)=1+x^{i}+x^{j}+x^{k}$ be a codeword of weight 4 . In the proof of Theorem (7.1.1) we have seen that
$i+j \not \equiv k, j+k \neq i, k+i \neq j \bmod n$.
By Theorem (3.1.4), all even weights in C are divisible by 4. Hence $\left(1+x^{i}\right) c(x)=1+x^{j}+x^{k}+x^{2 i}+x^{i+j}+x^{i+k}$ is a codeword of weight 4.
So $|\{0, j, k, 2 i, i+j, i+k\}|=4$. Because of ($*$) there are 4 possibilities: (i) $j \equiv 2 i \bmod n:\left(1+x^{2 i}\right) c(x)=1+x^{i}+x^{k}+x^{3 i}+x^{4 i}+x^{k+2 i}$ is a codeword of weight 4 , so $|\{0, i, k, 3 i, 4 i, k+2 i\}|=4$.

Again because of ($*$), we have two possibilities:
a) $k \equiv 4 i \bmod n:\left(1+x^{3 i}\right) c(x)=1+x^{i}+x^{2 i}+x^{3 i}+x^{5 i}+x^{7 i}$ has weight 4 , so $7 i=0 \bmod n$.
b) $k+2 i \equiv 0 \bmod n:\left(1+x^{3 i}\right) c(x)=1+x^{2 i}+x^{3 i}+x^{4 i}+x^{5 i}+x^{-2 i}$ has weight 4 , so $7 i \equiv 0 \bmod n$.
(ii) $i+j \equiv 0 \bmod n$: In the same way we find $k \equiv 3 i$ or $k \equiv-3 i \bmod n$, and in both cases we get $7 i \equiv 0 \bmod n$.

The cases (iii) $k \equiv 2 i \bmod n$, and (iv) $i+k \equiv 0 \bmod n$, are similar.
(7.1.6) Remark : From the above proof it follows that the codeword $c(x)$ is one of the following:
$1+x^{i}+x^{2 i}+x^{4 i}, 1+x^{i}+x^{2 i}+x^{-2 i}, 1+x^{i}+x^{-i}+x^{3 i}, 1+x^{i}+x^{-i}+x^{-3 i}$, where $7 i \equiv 0 \bmod n$.
(7.1.7) Theorem : Let C be a binary duadic code of length n and minimum distance 4 , and suppose the splitting is given by μ_{-1}. Then C contains exactly n codewords of weight 4 .

Proof : Let $c(x)$ be a codeword of weight 4, w.1.o.g. $c(x)=1+x^{i}+x^{2 i}+x^{4 i}$, where $7 i \equiv 0 \bmod n$.

It is obvious that all shifts of $c(x)$ are different. Hence C contains at least n codewords of weight 4.
Let $d(x)$ be a codeword of weight 4 , such that the coefficient of x^{0} is 1 . We shall prove that $d(x)$ is a shift of $c(x)$.
By (7.1.6) there are four possibilities for $d(x)$:
(i) $d(x)=1+x^{j}+x^{2 j}+x^{4 j}, 7 j \equiv 0 \bmod n$:
$c(x)+d(x)=x^{i}+x^{2 i}+x^{4 i}+x^{j}+x^{2 j}+x^{4 j}$ is a codeword of weight 0 or 4 , so $\{i, 2 i, 4 i\} \cap\{j, 2 j, 4 j\} \neq \emptyset$. In each case we find $c(x)=d(x)$.
(ii) $d(x)=1+x^{j}+x^{2 j}+x^{-2 j}, 7 j \equiv 0 \bmod n$:

Now we find $\{\mathbf{i}, 2 i, 4 i\} \cap\{j, 2 j,-2 j\} \neq \emptyset$.
If $i \equiv j$, then $c(x)+d(x)=x^{4 i}+x^{-2 i}$ has weight 0 , so $6 i \equiv 0 \bmod n$.
A contradiction.
If $i \equiv 2 j$, then $c(x)+d(x)=x^{4 j}+x^{-2 j}$, so $6 j \equiv 0 \bmod n$. A contradiction.
If $i=-2 j$, then $x^{2 j} c(x)=d(x)$.
If $2 i \equiv j$, then $c(x)+d(x)=x^{i}+x^{-4 i}$, so $5 i \equiv 0 \bmod n$. A contradiction.
If $2 i \equiv 2 j$, then $i \equiv j \bmod n$, a contradiction.
If $2 i=-2 j$, then $x^{2 i} d(x)=c(x)$.
If $4 i=j$, then $c(x)+d(x)=x^{2 i}+x^{-i}$, so $3 i \equiv 0 \bmod n$. A contradiction.

If $4 i=-2 j$, then $x^{4 i} d(x)=c(x)$.
(iii) $d(x)=1+x^{j}+x^{-j}+x^{3 j}, 7 j \equiv 0 \bmod n$:

Consider $x^{j} d(x)=1+x^{j}+x^{2 j}+x^{4 j}$, i.e. case (i).
(iv) $d(x)=1+x^{j}+x^{-j}+x^{-3 j}, 7 j \equiv 0 \bmod n$:

Consider $x^{j} d(x)$, i.e. case (ii).

Section 7.2 : An error-correction procedure

In this section we give an error-correction procedure for binary duadic codes with minimum distance 4 and splitting given by μ_{-1}. It turns out that most patterns of two errors can be corrected.

Let $\mu_{-1}: S_{1} \stackrel{\rightarrow}{*} S_{2}$ be a splitting mod n, with corresponding binary duadic codes C_{1} and C_{2} of length n. Suppose the codes C_{1} and C_{2} have minimum distance 4.
Let $c_{2}(x)=1+x^{i}+x^{2 i}+x^{4 i}(7 i \equiv 0 \bmod n)$ be a codeword in c_{2} of weight 4 (cf.(7.1.6)).
(7.2.1) Lemma : Let $c(x)$ be a polynomial of weight 4.

Then $c(x) \in C_{1}$ iff $c(x) c_{2}(x) \equiv 0 \bmod \left(x^{n}-1\right)$.

Proof : (i) Let $c(x) \in C_{1}$. Then $c(x) c_{2}(x) \in C_{1} \cap C_{2}=\{\underline{0}, \underline{1}\}$.
Since $c(x) c_{2}(x)$ has even weight, we have $c(x) c_{2}(x)=0$.
(ii) Let $c(x)=x^{j}+x^{k}+x^{1}+x^{m}$, such that $c(x) c_{2}(x)=0$.

We may assume w.1.o.g. that $j=0$.
Each exponent of $c(x) c_{2}(x)$ must occur an even number of times, e.g. the exponent 0.
Because of symmetry, there are three possibilities:
a) $k+i \equiv 0 \bmod n$: It turns out that $c(x)=1+x^{6 i}+x^{i}+x^{4 i}=x^{i} c_{2}\left(x^{-1}\right) \in c_{1}$, or $c(x)=1+x^{6 i}+x^{5 i}+x^{3 i}=c_{2}\left(x^{-1}\right) \in C_{1}$.
b) $k+2 i \equiv 0 \bmod n$: In the same way we find $c(x)=1+x^{5 i}+x^{i}+x^{2 i}=x^{2 i} c_{2}\left(x^{-1}\right) \in C_{1}$, or $c(x)=1+x^{5 i}+x^{6 i}+x^{3 i}=c_{2}\left(x^{-1}\right) \in C_{1}$.
c) $k+4 i \equiv 0 \bmod n$: Here we get $c(x)=1+x^{3 i}+x^{6 i}+x^{5 i}=c_{2}\left(x^{-1}\right) \in C_{1}$, or $c(x)=1+x^{3 i}+x^{4 i}+x^{2 i}=x^{4 i} c_{2}\left(x^{-1}\right) \in C_{1}$.
(7.2.2) Theorem : Let $e(x)=x^{j}+x^{k}$ be a polynomial of weight 2 .

Suppose that for all $h=0,1,2, \ldots, n-1$, we have
$\{j, k\} \notin\{h, h+3 i, h+5 i, h+6 i\} \bmod n$.
Then the polynomial $e(x) c_{2}(x) \bmod \left(x^{n}-1\right)$ uniquely determines the exponents j and k .

Proof : Suppose $\left(x^{j}+x^{k}\right) c_{2}(x)=\left(x^{1}+x^{m}\right) c_{2}(x), \quad 1 \neq m$.
(i) If $\{j, k, 1, m\}<4$, then $\{j, k\}=\{1, m\}$.
(ii) Suppose $\{j, k, 1, m\}=4$. Then by Lemma (7.2.1) we have $x^{j}+x^{k}+x^{1}+x^{m} \in C_{1}$. Since the only codewords of weight 4 in C_{1} are the shifts of $c_{2}\left(x^{-1}\right)$, there is an integer h, such that $\{j, k\} \subset\{h, h+3 i, h+5 i, h+6 i\}, a \operatorname{contradiction.}$

Now error-correction goes as follows.
Let $c_{1}(x) \in C_{1}$ be sent over a noisy channel, and suppose we receive $r(x)$.
Let $e(x):=r(x)-c_{1}(x)$ be the error-vector.
Since $c_{1}(x) c_{2}(x)$ has even weight and $C_{1} \cap C_{2}=\{0,1\}$, we have $c_{1}(x) c_{2}(x)=0$.
Compute $r(x) c_{2}(x)=e(x) c_{2}(x)$.
(i) If $x(x) c_{2}(x)$ is a shift of $c_{2}(x)$, then we assume that one error has been made. Since all shifts of $c_{2}(x)$ are different, we can determine $e(x)$, and hence $c_{1}(x)$.
(ii) If $r(x) c_{2}(x)$ is not a shift of $c_{2}(x)$, then more than one error has been made.

Suppose $e(x)$ satisfies the conditions of Theorem (7.2.2).
Then we can find $e(x)$, and hence $c_{1}(x)$.

There are $\binom{n}{2}$ ways of making two errors. From the condition of Theorem (7.2.2), we see that at most $\binom{4}{2}$.n patterns of two errors cannot be corrected. Hence with the above procedure we can correct at least $\binom{n}{2}-6 n$ patterns of two errors.

Section 7.3 : Duadic codes over GF (4) with minimum distance 3

Let C be a duadic code of length $n>3$ over $\mathrm{GF}(4)$.
In the same way as at the beginning of Section 7.1 we find that C has minimum distance at least 3 .
(7.3.1) Theorem : Let C be a duadic code of length $n>3$ over $G F(4)$ with minimum distance 3 . Then $\mathrm{n}=5$ or $\mathrm{n}=7$ or $\mathrm{n}=0 \bmod 3$.

Proof : Suppose $n \geq 11$. Let $\operatorname{GF}(4)=\left\{0,1, \omega, \omega^{2}\right\}, \omega^{2}+\omega=1$.
Let $c(x)=1+c_{i} x^{i}+c_{j} x^{j}$ be a codeword of weight 3 .
By Theorem (3.1.4), $c(x)$ is even-like, so $c_{i}+c_{j}=1$. It follows that $\left\{c_{i}, c_{j}\right\}=\left\{\omega, \omega^{2}\right\}$. Take w.1.o.g. $c_{i}=\omega, c_{j}=\omega^{2}$.
Suppose the splitting is given by μ_{a}. Then $c\left(x^{-a}\right)$ is a codeword in C^{\perp}. So $c(x)$ and $c\left(x^{-a}\right)$ have inner-product 0 .

Therefore $\{\mathrm{i}, \mathrm{j}\} \mathrm{n}\{-\mathrm{ai},-\mathrm{aj}\} \neq \emptyset$. We consider all possibilities.
(i) ai $\equiv-i$ mod n : Since $c(x)$ and $c\left(x^{-a}\right)$ have inner-product 0 , we have $a j \equiv-j \bmod n$.
Also $c(x)$ and $x^{i} c\left(x^{-a}\right)$ have inner-product 0 , so $\{0, j\} \cap\{2 i, i+j\} \neq \emptyset$. There are two possible cases:
a) $2 i \equiv j \bmod n: c(x)$ and $x^{i} c\left(x^{-a}\right)$ have inner-product 0 , so $3 i \equiv 0 \bmod n$, and hence $n \equiv 0 \bmod 3$.
b) $i+j \equiv 0 \bmod n:$ In the same way we find $3 i \equiv 0 \bmod n$.
(ii) $a j \equiv-j \bmod n$: In the same way we find $n \equiv 0 \bmod 3$.
(iii) ai¥-j mod n : Since $c(x)$ and $x^{a i} c\left(x^{-a}\right)$ have inner-product 0, we have $\{i,-a i\} \cap\left\{a i, a i+a^{2} i\right\} \neq \emptyset$.
a) $a i+a^{2} i \equiv i \bmod n: x^{a i} c(x)$ and $c\left(x^{-a}\right)$ have inner-product 0 , so $\{a i, i+a i\} \cap\{-a i, i-a i\} \neq \varnothing$.

1) $i \equiv 2 a i \bmod n: \underset{i \equiv 2 a i \equiv 4 a^{2} i}{ } \quad \underset{i}{ }{ }^{2} i=3{ }^{2} i \quad$ so $a^{2} i \equiv 0 \bmod n$, a contradiction.
2) $i \equiv-2$ ai mod n : Let α be a primitive n-th root of unity such
that $c\left(\alpha^{a}\right)=0$, so $1+\omega \alpha^{a i}+\omega^{2} \alpha^{a j}=0$.
Take the square: $1+w^{2} \alpha^{2 a i}+w \alpha^{a i}=0 \quad(2 a j \equiv a i \bmod n)$.
Add these two relations: $\alpha^{a j}=\alpha^{2 a i}$, so $j \equiv 2 i \bmod n$.
Now $c(x)=1+\omega x^{i}+\omega^{2} x^{2 i}$ and $c\left(x^{-a}\right)=1+\omega x^{2 i}+\omega^{2} x^{i}$ have inner-product $1+\omega^{3}+\omega^{3}=1 \neq 0$. Contradiction.
b) $a i \equiv-2 i$ mod $n: c\left(\alpha^{a}\right)=1+w \alpha^{a i}+w^{2} \alpha^{2 a i}=0$, and

$$
\left(c\left(\alpha^{a}\right)\right)^{2}=1+\omega^{2} \alpha^{2 a i}+w \alpha^{4 a i}=0
$$

If we add these equations, then we find $3 i \equiv 0 \bmod n$. But $c(x)=1+\omega x^{i}+\omega^{2} x^{2 i}$ and $c\left(x^{-a}\right)=1+\omega x^{2 i}+\omega^{2} x^{i}$ have inner-product $\neq 0$. Contradiction.
(iv) $a j \equiv-i \bmod n$: This gives in the same way a contradiction.
(7.3.2) Remark : We have proved in Example (2.3.4) that a duadic code of length $n>3$ over GF(4) with minimum distance 3 exists if $\mathrm{n} \equiv 0 \mathrm{mod} 3$.

In this chapter we give some bounds on the minimum distance of cyclic codes. These bounds will be used to analyze binary duadic codes of length ≤ 241.

Section 8.1 : Bounds on the minimum distance of cyclic codes

Let α be a primitive n-th root of unity in an extension field of $G F(q)$. The set $A=\left\{\alpha^{i_{1}}, \alpha^{i_{2}}, \ldots, \alpha^{{ }^{i}}{ }^{\prime}\right\}$ is called a consecutive set of length m, if there is a primitive n-th root of unity β, and an exponent i, such that $A=\left\{\beta^{i}, \beta^{i+1}, \ldots, \beta^{i+m-1}\right\}$.
The proofs of the next two theorems can be found in [10].
(8.1.1) Theorem (BCH bound) : Let A be a defining set for a cyclic code with minimum distance d. If A contains a consecutive set of length $\delta-1$, then $d \geq \delta$
(8.1.2) Theorem (HT bound, Hartmann and Tzeng) :

Let A be a defining set for a cyclic code with minimum distance d. Let β be a primitive n-th root of unity, and suppose that A contains the consecutive sets $\left\{\beta^{i+j a}, \beta^{i+1+j a}, \ldots, \beta^{i+\delta-2+j a}\right\}, 0 \leq j \leq s$, where $(a, n)<\delta$. Then $d \geq \delta+s$.
(8.1.3) Examples : (i) $q=2, n=73$. Let α be a primitive $n-t h$ root of unity, and let C be the duadic code of length n with defining set $\left\{\alpha^{3}, \alpha^{9}, \alpha^{11}, \alpha^{17}\right\}$. The complete defining set of C, i.e. $\left\{\alpha^{i} \mid i \in C_{3} \cup C_{9} \cup C_{11} \cup C_{17}\right\}$, contains $\left\{\beta^{i} \mid 1 \leq i \leq 8\right\}$, where $\beta:=\alpha{ }^{3}$.
So by the BCH bound, the code C has minimum distance ≥ 9.
(ii) $q=2, n=127$. Let C be the duadic code of length n and defining set $\left\{\alpha^{i} \mid i=1,3,5,15,19,21,23,29,55\right\}$ (again α is a primitive n-th root of unity). The complete defining set of the even-weight subcode contains $\left\{\alpha^{i} \mid i=3,12,21,30,39,48,57,66,75,84,93\right\} U$

$$
\left\{\alpha^{i} \mid i=37,46,55,64,73,82,91,100,109,118,0\right\}
$$

Then the HT bound shows that the even-weight subcode of C has minimum distance ≥ 13, hence ≥ 14. Since the splitting is given by μ_{-1}, Theorem (3.1.4) shows that C has minimum distance ≥ 15.

The next bound is due to van Lint and Wilson [11]. First we need a definition.
(8.1.4) Definition : Let S be a subset of the field F. We define recursively a family of subsets of F, which are called independent with respect to S , as follows:
(i) \varnothing is independent w.r.t. S,
(ii) if A is independent w.r.t.S, $A \subset S$, $b \notin S$, then $A \cup\{b\}$ is independent w.r.t.S,
(iii) if A is independent w.r.t. $S, c \in F, c \neq 0$, then $c A$ is independent w.r.t.s.
(8.1.5) Theorem : Let $c(x)$ be a polynomial with coefficients in F, and let $S:=\{a \in F \mid c(a)=0\}$. Then for every $A \subset F$ which is independent w.r.t. S, we have wt $(c(x)) \geq|A|$.
(8.1.6) Example : $q=2, n=73$. Let α be a primitive n-th root of unity, and let C be the duadic code of length n with defining set $\left\{\alpha^{i} \mid i=1,13,17,25\right\}$ and minimum distance d.
The complete defining set of C contains $\left\{\alpha^{i} \mid 49 \leq i \leq 55\right\}$, hence $d \geq 8$ by the BCH bound.

Now suppose $c(x)$ is a codeword of weight 8.
If $c\left(\alpha^{3}\right)=0$, then $c\left(\alpha^{i}\right)=0,48 \leq i \leq 55$, so $w t(c(x)) \geq 9$, a contradiction.
If $\mathrm{c}\left(\alpha^{9}\right)=0$, then $\mathrm{c}\left(\alpha^{i}\right)=0, i=61,62, \ldots, 72,0,1,2$, also a contradiction. So if $S:=\{a \mid c(a)=0\}$, then $\left\{\alpha^{i} \mid i \in C_{3} \cup C_{9}\right\} \cap S=\emptyset$.
The following sets are independent w.r.t. S:
$\emptyset,\left\{\alpha^{65}\right\},\left\{\alpha^{64}\right\},\left\{\alpha^{64}, \alpha^{65}\right\},\left\{\alpha^{61}, \alpha^{62}\right\},\left\{\alpha^{61}, \alpha^{62}, \alpha^{65}\right\},\left\{\alpha^{0}, \alpha^{1}, \alpha^{4}, \alpha^{12}\right\}$, $\left\{\alpha^{63}, \alpha^{64}, \alpha^{65}, \alpha^{67}, \alpha^{2}\right\},\left\{\alpha^{48}, \alpha^{49}, \alpha^{50}, \alpha^{51}, \alpha^{53}, \alpha^{61}\right\}$, $\left\{\alpha^{32}, \alpha^{33}, \alpha^{34}, \alpha^{35}, \alpha^{37}, \alpha^{45}, \alpha^{46}\right\},\left\{\alpha^{61}, \alpha^{62}, \alpha^{63}, \alpha^{64}, \alpha^{65}, \alpha^{66}, \alpha^{1}, \alpha^{2}\right\}$, $\left\{\alpha^{50}, \alpha^{51}, \alpha^{52}, \alpha^{53}, \alpha^{54}, \alpha^{55}, \alpha^{63}, \alpha^{64}, \alpha^{3}\right\}$.
Then Theorem (8.1.5) shows that $w t(c(x)) \geq 9$, a contradiction. We have proved that $d \geq 9$.
(8.1.7) Remark : In [4], Hogendoorn gives a program that searches for sequences of independent sets. In the next section, this program will be used several times.

Section 8.2 : Analysis of binary duadic codes of length ≤ 241

In [7] there is a list of all binary duadic codes of length ≤ 241, defined in terms of idempotents (cf. Definition (2.1.4)).

For each code, the minimum distance, or an upper bound for it, is given.

Since we want to apply the theorems of Section 8.1 to get lower bounds for the minimum distance, the zeros of the idempotents were determined by computer.
The lower bounds were found either by hand, or using a program of Hogendoorn [4], cf. (8.1.7).
In the rest of this section we shall give the details.
In each case, n is the code-length, α is a primitive n-th root of unity, A is a defining set for the binary duadic code C, μ_{a} gives the splitting, d is the minimum distance of C, and d_{0} is the minimum odd weight of C.
(8.2.1) $n=89, A=\left\{\alpha^{i} \mid i=1,9,13,33\right\}, \mu_{-1}$.

Since the complete defining set contains $\left\{\alpha^{i} \mid i=15,30,45,60,75,1,16,31\right\}$, we have $d \geq 9$. Then Theorem (3.1.4) gives $d \geq 12$.
(8.2.2) $n=89, A=\left\{\left.\alpha^{i}\right|_{i=3}, 9,11,19\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, i=19,38,57,76,6,25,44,63$, so $d \geq 9$.
Again Theorem (3.1.4) gives $d \geq 12$.
(8.2.3) $n=119, A=\left\{\alpha^{i} \mid i=3,7,13,51\right\}, \mu_{3}$.

The complete defining set contains $\left\{\alpha^{i} \mid 101 \leq i \leq 105\right\}$, so $d \geq 6$.
Let $c(x)$ be a codeword of weight 6 with zero-set S.
Then $c(\alpha) \neq 0$, since otherwise $c\left(\alpha^{i}\right)=0, i=117,118,0,1,2, \ldots, 10$.
Also $c\left(\alpha^{11}\right) \neq 0$ since otherwise $c\left(\alpha^{i}\right)=0, i=107,108, \ldots, 117,118,0$. The following sets are independent w.r.t. S (we only give the exponents of α):
$\emptyset,\{4\},\{4,5\},\{4,5,6\},\{95,101,102,103\},\{96,100,102,103,104\}$, $\{104,108,109,110,111,112\},\{97,101,102,103,104,105,1\}$.
So wt $(c(x)) \geq 7$, a contradiction. Hence $d \geq 7$. Then Theorem (3.1.4) gives $d \geq 8$.
(8.2.4) Notation : We introduce a notation to abbreviate a sequence of independent sets.
\left. The string (${\underset{-}{0}}^{0}, s_{0}, \underline{a}_{1}, s_{1}, \underline{a}_{2}, s_{2}, \ldots\right)$ has to be interpreted as the following sequence of sets:
$\emptyset,\left\{\alpha^{a_{0}}\right\}, \quad\left\{\alpha{ }^{a_{0}+s_{0}}\right\}, \quad\left\{\alpha^{a_{0}+s_{0}}, \alpha^{a} 1\right\}, \quad\left\{\alpha^{a_{0}+s_{0}+s_{1}}, \alpha^{a_{1}+s_{1}}\right\}$, $\left\{\alpha^{a_{0}+s_{0}+s_{1}}, \alpha^{a_{1}+s_{1}}, \alpha^{a_{2}}\right\},\left\{\alpha^{a_{0}+s_{0}+s_{1}+s_{2}}, \alpha^{a_{1}+s_{1}+s_{2}}, \alpha^{a_{2}+s_{2}}\right\}, \ldots$

As an example, the sequence of independent sets in (8.2.3) is abbreviated as ($4,1, \underline{4}, 1, \underline{4}, 97, \underline{95}, 1,100,8,109,-7, \underline{1}$).
(8.2.5) $n=127, A=\left\{\left.\alpha^{i}\right|_{i=3}, 5,7,11,19,21,23,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{19 i}, 1 \leq i \leq 12$, so $d \geq 13$.
Theorem (3.1.4) gives $d \geq 15$.
(8.2.6) $n=127, A=\left\{\alpha^{i} \mid i=1,3,5,7,9,19,23,29,43\right\}, \mu_{-1}$.

By Theorem (3.1.4), $d_{0} \geq 15$, and by the $B C H$ bound, $d \geq 11$, hence $d \geq 12$. Let $c(x)$ be a codeword of weight 12 .
Then $c\left(\alpha^{11}\right) \neq 0$ by the $B C H$ bound. The following sets are independent w.r.t. the zero-set of $c(x)$: $(11,-1,11,-1,11,-6,11,53,88,9,69,-59,22,2,11,-8,22,2,11,14,44,-15$, $\underline{22}, 63,11)$, so $w t(c(x)) \geq 13$, a contradiction.
Then Theorem (3.1.4) gives $d \geq 15$.
(8.2.7) $n=127, A=\left\{\alpha^{i} \mid i=3,5,7,9,11,23,27,43,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{9 i}, 1 \leq i \leq 8$, so $d \geq 9$. Hence $d \geq 12$, by Theorem (3.1.4).
Let $c(x)$ be a codeword of weight 12 with zero-set S.
By the BCH bound, $c(\alpha) \neq 0$ and $c\left(\alpha^{19}\right) \neq 0$.
Using Hogendoorn's program, the computer showed that the code with defining set $A U\left\{\alpha^{21}\right\}$ has minimum distance at least 13 .
So $c\left(\alpha^{21}\right) \neq 0$. The following sets are independent w.r.t. S :
$(\underline{1}, 84, \underline{2},-62, \underline{1}, 23,25,-2,21,-11,41,34, \underline{1},-22, \underline{1},-53, \underline{4},-8,32,-21,8,-1$, $1,-1,1)$, so wt $(c(x)) \geq 13$, a contradiction.
By Theorem (3.1.4), we have $d \geq 15$.
(8.2.8) $n=127, A=\left\{\alpha^{i} \mid i=9,11,13,15,19,31,43,4763\right\}, \mu_{-1}$.

The code has zeros $\alpha^{90+25 i}, 0 \leq i \leq 13$, so $d \geq 15$.
(8.2.9) $n=127, A=\left\{\alpha^{i} \mid i=3,7,9,13,19,21,29,47,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{100+11 i}, 0 \leq i \leq 13$, so $d \geq 15$.
(8.2.10) $n=127, A=\left\{\alpha^{i} \mid i=3,9,11,15,21,23,27,47,63\right\}, \mu_{-1}$.

The complete defining set of C contains $\left\{\alpha^{3 i} \mid 1 \leq i \leq 10\right\}$, so $d \geq 11$.
Then Theorem (3.1.4) gives $d \geq 12$. Let $c(x)$ be a codeword of weight 12 with zero-set S.
Then $c\left(\alpha^{5}\right) \neq 0$, since otherwise $c\left(\alpha^{3 i}\right)=0,0 \leq i \leq 12$.
The following sets are independent w.r.t. S:
$(\underline{66},-19,66,2,80,-8,66,3,66,-45,33,-3, \underline{33},-3, \underline{33},-3, \underline{33},-3,33,-3,33,-3$, $80,96,66$), so wt $(c(x)) \geq 13$, a contradiction.
Hence $d \geq 15$, by Theorem (3.1.4).
(8.2.11) $n=127, A=\left\{\left.\alpha^{i}\right|_{i=3}, 5,7,19,23,29,43,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{23+5 i}, 0 \leq i \leq 8$, so $d \geq 10$, and hence $d \geq 12$ by Theorem (3.1.4). Let $c(x)$ be a codeword of weight 12 with zero-set S. Then $c\left(\alpha^{9}\right) \neq 0$ (otherwise $c\left(\alpha^{23+5 i}\right)=0,0 \leq i \leq 12$) and $c\left(\alpha^{13}\right) \neq 0$ (otherwise $\left.c\left(\alpha^{76+7 i}\right)=0,0 \leq i \leq 13\right)$.

The following sets are independent w.r.t. S :
$(\underline{9}, 47, \underline{9}, 69,68,-58,68,66, \underline{81},-76,52,53,68,-5,68,-5,68,-5,68,-5,68,-5$, $\underline{9,47,9}$, so wt $(c(x)) \geqslant 13$, a contradiction. Then, by Theorem (3.1.4), $\mathrm{d} \geq 15$.
(8.2.12) $n=127, A=\left\{\alpha^{i} \mid i=1,5,13,15,27,29,31,43,55\right\}, \mu_{-1}$.

The code has zeros $\alpha^{54 i}, 1 \leq i \leq 12$, so $d \geq 13$. Hence by Theorem (3.1.4), $d \geq 15$.
(8.2.13) $n=127, A=\left\{\alpha^{i} \mid i=1,3,7,19,23,29,43,47,55\right\}, \mu_{-1}$.

We know that $d_{0} \geq 15$. Let $c(x)$ be a codeword of even weight ≤ 12 with zero-set S.
(i) $c\left(\alpha^{15}\right) \neq 0$, since otherwise $c\left(\alpha^{97+15 i}\right)=0,0 \leq i \leq 14$.
(ii) Suppose $c\left(\alpha^{5}\right)=0$. Then $c\left(\alpha^{13}\right) \neq 0$, since otherwise $c\left(\alpha^{57+35 i}\right)=0$, $0 \leq i \leq 14$. The following sets are independent w.r.t. $S:$
$(60,-21,60,-10,60,30,60,-40,30,36,35,-10,35,30,35,-10,35,51$, $30,-10,30,-10,30,-10,30)$, so wt $(c(x)) \geq 13$.
Hence $\mathrm{c}\left(\alpha^{5}\right) \neq 0$.
(iii) $c\left(\alpha^{27}\right) \neq 0$, since otherwise we have the following independent sets w.r.t. S:

$$
(\underline{15}, 1,15,71,13,19, \underline{30},-16,15,-12,113,-74,5,-1,40,21,26,33,60,
$$

$$
-1,60,-1,60,-1,60) \text { so wt }(c(x)) \geq 13
$$

 w.r.t. S:
$(\underline{5},-1, \underline{5},-2,5,41,89,50,104,-8, \underline{5},-74,10,-8, \underline{5},-2,13,46,51,-1, \underline{51}$, $-1,51,-1,51)$.

The following sets are independent w.r.t. S:
$(\underline{5},-5,44,3, \underline{5}, 1, \underline{99}, 19, \underline{6},-17, \underline{33}, 84,89,-44,51,2,49,-46, \underline{5}, 89,113,-35$, $15,-55,15)$, so wt $(c(x)) \geq 13$, a contradiction.
We have proved that $d \geq 14$. Then Theorem (3.1.4) shows that $d \geq 15$.
(8.2.14) $n=127, A=\left\{\left.\alpha^{i}\right|_{i=3}, 15,19,21,23,29,47,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{19 i}, 1 \leq i \leq 8$, so $d \geq 9$. Hence $d \geq 12$ by Theorem (3.1.4).
Let $c(x)$ be a codeword of weight 12 with zero-set S.
(i) $c\left(\alpha^{27}\right) \neq 0$, since otherwise $c\left(\alpha^{93+3 i}\right)=0,0 \leq i \leq 11$.
(ii) $c\left(\alpha^{31}\right) \neq 0$, since otherwise $c\left(\alpha^{i}\right)=0,113 \leq i \leq 127$.
(iii) Suppose $c\left(\alpha^{7}\right)=0$.
a) $c(\alpha) \neq 0$, since otherwise $c\left(\alpha^{19+9 i}\right)=0,0 \leq i \leq 12$.
b) $c\left(\alpha^{5}\right) \neq 0$, since otherwise we have the following independent sets w.r.t. $S:$

$$
\begin{aligned}
& (\underline{1}, 64,1,-9,1,-1,64,-9,64,1, \underline{1},-9,1,-1,64,-9,64,1,1,-9,1 \\
& -1,64,-9,1)
\end{aligned}
$$

The following sets are independent w.r.t. S:

$$
(1,-1, \underline{1},-1,1,95,40,1,103,-4,40,34, \underline{5},-16,108,-17,40,20,115,-1,
$$

$$
\begin{aligned}
& \left.115,-1, \frac{108}{7},-17,108\right) \text {, so } w t(c(x)) \geq 13 \text {, a contradiction. } \\
& \text { Hence } c\left(\alpha^{7}\right) \neq 0 .
\end{aligned}
$$

(iv) Suppose $c(\alpha)=0$. Then $c\left(\alpha^{9}\right) \neq 0$, since otherwise $c\left(\alpha^{37+9 i}\right)=0,0 \leq i \leq 12$.

The following sets are independent w.r.t. S :
$(\underline{56},-10,56,19, \underline{56}, 9, \underline{56}, 44, \underline{9},-9, \underline{9},-9, \underline{9},-9, \underline{9},-9, \underline{9},-9, \underline{9},-9, \underline{9},-9$, $\underline{9},-8,9)$. So $\mathrm{c}(\alpha) \neq 0$.

The following sets are independent w.r.t. S:
$(\underline{1}, 81,108,2,102,-81,121,9,121,12,97,76,108,1,1,-8,102,-1,1,-71,1$, $70,1,-8,1)$, so $w t(c(x)) \geq 13$, a contradiction. Hence $d \geq 13$.
Then Theorem (3.1.4) gives $d \geq 15$.
(8.2.15) $n=127, A=\left\{\alpha^{i} \mid i=3,5,9,13,15,19,21,29,63\right\}, \mu_{-1}$.

By the $B C H$ bound we have $d \geq 11$, hence $d \geq 12$ by Theorem (3.1.4).

Let $c(x)$ be a codeword of weight 12 with zero-set S. Then $c\left(\alpha^{31}\right) \neq 0$ and $c\left(\alpha^{11}\right) \neq 0$ by computer (i.e., the computer showed that the codes with defining sets $A \cup\left\{\alpha^{31}\right\}$ and $A U\left\{\alpha^{11}\right\}$ both have minimum distance at least 13 , using Hogendoorn's program).

The following sets are independent w.r.t. S:
$(31,-5,121,24,124,-29,115,45,31,50,79,-3,79,-8,115,-31,22,-1,22,-1$, $22,-1,22,-1,22)$, so wt $(c(x)) \geq 13$.
We have proved that $d \geqq 13$, and hence $d \geq 15$.
(8.2.16) $n=127, A=\left\{\alpha^{i} \mid i=1,3,5,9,15,23,27,29,43\right\}, \mu-1$.

The code has zeros $\alpha{ }^{57+7 i}, 0 \leq i \leq 9$, so $d \geq 11$, and hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 with zero-set S.
Then $c\left(\alpha^{21}\right) \neq 0$, since otherwise $c\left(\alpha^{3 i}\right)=0,0 \leq i \leq 14$.
The following sets are independent w.r.t. S:
$(21,-21,21,24,21,-21,21,24,21,-21,21,24,21,-21,21,24,21,-21,21,24,21$, $-21,21,3,21$), a contradiction.
Then, by Theorem (3.1.4), $\mathrm{d} \geq 15$.
(8.2.17) $n=127, A=\left\{\left.\alpha^{i}\right|_{i=5}, 7,9,13,19,29,31,43,63\right\}, \mu_{-1}$.

Let $c(x)$ be a codeword of even weight ≤ 12.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=3,21,23,47,55$.
The following sets are independent w.r.t. the zero-set of $c(x)$:
$(\underline{3}, 17, \underline{87}, 16,61,-22,59,-1,96,-13,46,-11,55,-46,117,-12,84,42,55,-20$, $\underline{21},-1,21,-1,21)$, so $w t(c(x)) \geq 13$.
Hence, by Theorem (3.1.4), $d \geq 15$.
(8.2.18) $n=127, A=\left\{\left.\alpha_{i}\right|_{i=3}, 11,15,19,23,43,47,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, 43 \leq i \leq 50$, so $d \geq 9$, and hence $d \geq 12$.
Let $c(x)$ be a codeword with weight 12 and zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0, i=5,7,21,27,31$.
The following sets are independent w.r.t. S :
$(\underline{77},-29,102,7,108,14,42,-4, \underline{33},-8, \underline{31},-19,14,-16, \underline{77},-27, \underline{51},-2, \underline{51},-1$,
51, $-1,51,-1,51$, a contradiction.
So $\mathrm{d} \geq 15$, by Theorem (3.1.4).
(8.2.19) $\mathrm{n}=127, \mathrm{~A}=\left\{\alpha^{\mathrm{i}} \mid \mathrm{i}=9,13,15,19,21,29,31,47,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, 119 \leq i \leq 126$, so $d \geq 9$, and hence $d \geq 12$.

Let $c(x)$ be a codeword of weight 12 with zero-set S.
The computer showed that $c\left(\alpha^{i}\right) \neq 0, i=5,11,27$.
The following sets are independent w.r.t. S:
$(77,38,80,47,88,-4,80,-6,77,-6,69,-30,40,-3,77,-39,40,-1,20,-1$,
$20,-1,20,-1,20)$, a contradiction. Hence $\mathrm{d} \geq 15$.
(8.2.20) $n=127, A=\left\{\alpha^{i} \mid i=1,3,5,9,11,15,21,23,27\right\}, \mu_{-1}$.

The code has zeros $\alpha^{3 i}, 1 \leq i \leq 12$, so $d \geq 13$.
Then Theorem (3.1.4) gives $\mathrm{d} \geq 15$.
(8.2.21) $\mathrm{n}=127, \mathrm{~A}=\left\{\alpha^{i} \mid \mathrm{i}=3,9,15,23,27,29,43,47,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{96+3 i}, 0 \leq i \leq 10$, so $d \geq 12$.
Let $c(x)$ be a codeword with weight 12 and zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0$, $i=1,7,21,55$. The following sets are independent w.r.t. S:
$(\underline{2},-3, \underline{2},-3, \underline{2}, 16, \underline{1}, 84,37,-10,56,-3,56,-26, \underline{1},-3, \underline{110},-9, \underline{42},-53, \underline{2},-2$, $1,-1,1$, a contradiction. Hence $d \geq 15$.
(8.2.22) $n=127, A=\left\{\alpha^{i} \mid i=1,3,7,11,19,21,23,47,55\right\}, \mu_{-1}$.

The complete defining set of C contains $\left\{\alpha^{50+17 i} \mid 0 \leq i \leq 11\right\}$,
so $d \geq 13$. Then Theorem (3.1.4) gives $d \geq 15$.
(8.2.23) $n=127, A=\left\{\alpha^{i} \mid i=5,7,11,13,27,31,43,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{103+3 i}, 0 \leq i \leq 7$, so $d \geq 9$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 .
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=3,9,21$.
The following sets are independent w.r.t. the zeromset of $c(x)$:
$(9,26, \underline{9},-2,42,7,84,-18,96,-11,41,-6,36,-9,6,-30,12,-5, \underline{6},-7,12,-1$, $12,-1,12)$, a contradiction. So $\mathrm{d} \geq 15$.
(8.2.24) $\mathrm{n}=127, \mathrm{~A}=\left\{\left.\alpha^{i}\right|_{i=1}, 3,5,11,15,19,23,43,55\right\}, \mu_{-1}$.

We know that $d_{0} \geq 15$. Let $c(x)$ be a codeword of even weight ≤ 12 with zero-set S. By computer, $c\left(\alpha^{i}\right) \neq 0, i=7,13,63$.

The following sets are independent w.r.t. S:
$(26,-1,26,-20,26,-1,52,28, \underline{119},-31,95,-19,67,-10,56,-34,70,-17,7,-3$, ㄱ, $-1, \underline{7},-1,7$), so wt $(c(x)) \geq 13$, a contradiction.
Hence, by Theorem (3.1.4), $\mathrm{d} \geq 15$.
(8.2.25) $n=127, A=\left\{\alpha^{i} \mid i=1,5,7,9,23,27,29,31,43\right\}, \mu_{-1}$.

The code has zeros $\alpha^{89+13 i}, 0 \leq i \leq 11$, so $d \geq 13$.
Then, by Theorem (3.1.4), $\mathrm{d} \geq 15$.
(8.2.26) $n=127, A=\left\{\left.\alpha^{i}\right|_{i=1}, 5,9,11,13,15,19,31,43\right\}, \mu_{-1}$.

The complete defining set of C contains $\left\{\alpha^{5 i} \mid 1 \leq i \leq 10\right\}$, so $d \geq 11$.
Hence $d \geq 12$. Let $c(x)$ be a codeword of weight 12 with zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0, i=21,27,47$.
The following sets are independent w.r.t. S:
$(89,24,89,-70,27,26,54,-1, \underline{51},-42,27,-1,61,-8,54,32,87,-14,74,-1,74$, $-1,74,-1,74)$, a contradiction.
Then Theorem (3.1.4) gives $d \geq 15$.
(8.2.27) $n=127, A=\left\{\alpha_{i}^{i} \mid i=1,3,13,15,21,27,29,47,55\right\}, \mu_{-1}$.

The code has zeros $\alpha^{35 i}, 1 \leq i \leq 14$, so $d \geq 15$.
a) Let $c(x)$ be codeword of weight 15 with zero-set S.
(i) $c\left(\alpha^{9}\right) \neq 0$, since otherwise $c\left(\alpha^{35 i}\right)=0,1 \leq i \leq 15$.
(ii) Suppose $c\left(\alpha^{19}\right)=0$.

Then $c\left(\alpha^{45}\right) \neq 0$, since otherwise the following sets are independent w.r.t. S:

$$
\begin{aligned}
& (9,29,9,39,9,12,34,21,68,-26,68,-13,68,-13,68,-13,68,-13,68,-13 \\
& 68,-13,68,-13,68,-13,68,-13,68,-13,68)
\end{aligned}
$$

The following sets are independent w.r.t. S :

$$
\begin{aligned}
& (17,67,45,36,45,-26,68,-17,106,4,68,-26,68,-13,68,-13,68,-26,68, \\
& -13,68,-13,68,-13,68,-13,68,-13,68,-13,68), \text { so wt }(c(x)) \geq 16, \text { a }
\end{aligned}
$$

contradiction. Hence $c\left(\alpha^{19}\right) \neq 0$.
The following sets are independent w.r.t. S:
$(17,92,17,-15,72,-13,72,50,50,-2,72,-33,17,22,72,21,38,-52,100,29$, $72,-33,17,-35,17,-35,17,-35,17,-35,17$), a contradiction.
We have proved that $\mathrm{d} \geq 16$.
b) Let $c(x)$ be a codeword of weight 16 with zero-set S.
(i) $c\left(\alpha^{9}\right) \neq 0$, since otherwise $c\left(\alpha^{35 i}\right)=0,0 \leq i \leq 15$.
(ii) Suppose $c\left(\alpha^{19}\right)=0$.

Then $c\left(\alpha^{45}\right) \neq 0$, since otherwise the following sets are independent w.r.t. S:

$$
\begin{aligned}
& (68,52,68,-13,68,63,72,17,34,21,68,-26,68,-13,68,-13,68,-13,68, \\
& -13,68,-13,68,-13,68,-13,68,-13,68,-13,68,-13,68) .
\end{aligned}
$$

The following sets are independent w.r.t. S:

$$
\begin{aligned}
& (17,-24, \underline{68},-13,68,-14,18,1,68,-17,106,4,68,-26,68,-13,68,-13,68, \\
& -26, \underline{68},-13,68,-13,68,-13,68,-13,68,-13,68,-13, \underline{68}) . \\
& \text { Hence } c\left(\alpha^{19}\right) \neq 0 .
\end{aligned}
$$

The following sets are independent w.r.t. S:
$(17,57,100,17,34,-4,100,22,17,-13,50,-2,72,-33,17,22,72,21,38,-52$, $100,29,72,-33,17,-35,17,-35,17,-35,17,-35,17)$, so wt $(c(x)) \geq 17$, a
contradiction.
Hence $\mathrm{d} \geq 17$. Then Theorem (3.1.4) shows that $\mathrm{d} \geq 19$.
(8.2.28) $n=127, A=\left\{\alpha^{i} \mid i=5,15,19,23,29,31,43,55,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{71+7 i}, 0 \leq i \leq 7$, so $d \geq 9$.
Hence $d \geq 12$, by Theorem (3.1.4).
Let $c(x)$ be a codeword of weight 12 with zero-set S.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=1,3,7$.
The following sets are independent w.r.t. S:
$(112,-66,112,12,48,-8,96,3,12,-20,4,-4,24,-4,24,-5,14,-23,96,-3,1$, $-1,1,-1,1)$, a contradiction.
Then Theorem ($3,1.4$) gives $\mathrm{d} \geq 15$.
(8.2.29) $n=127, A=\left\{\alpha^{i} \mid i=5,7,9,11,13,19,21,31,63\right\}, \mu_{-1}$.

The code has zeros $\alpha^{7 i}, 1 \leq i \leq 10$, so $d \geq 11$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 .
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=3,23,27,29,55$.
The following sets are independent w.r.t. the zero-set of $c(x)$:
$(3,33,3,-3,46,-2,110,-6,83,-4,101,-3,96,-24,89,-39,51,-13,12,-1,12$, $-1,12,-1,12)$, a contradiction.
We have proved that $d \geq 15$.
(8.2.30) $n=127, A=\left\{\left.\alpha_{i}^{i}\right|_{i=1}, 7,13,21,27,29,31,47,55\right\}, \mu_{-1}$.

The code has zeros $\alpha^{64+19 i}, 0 \leq i \leq 9$, so $d \geq 11$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 with zero-set S.
The computer showed that $c\left(\alpha^{i}\right) \neq 0, i=3,5,15,23,43$.
The following sets are independent w.r.t. S:
$(75,-20,75,-13,114,-7,30,-3,53,-1,65,-10,92,-14,106,-27, \underline{5},-20,5,-3,3$, $-1,3,-1,3$), a contradiction. Then Theorem (3.1.4) gives $\mathrm{d} \geq 15$.
(8.2.31) $n=127, A=\left\{\alpha^{i} \mid i=1,3,7,9,11,23,27,43,47\right\}, \mu_{-1}$.

The code has zeros $\alpha^{87+21 i}, 0 \leq i \leq 13$, so $d \geq 15$.
a) Let $c(x)$ be codeword of weight 12 with zero-set S.
(i) $c\left(\alpha^{5}\right) \neq 0$, since otherwise $c\left(\alpha^{3+21 i}\right)=0,0 \leq i \leq 17$.
(ii) Suppose $c\left(\alpha^{55}\right)=0$.

Then $c\left(\alpha^{19}\right) \neq 0$, since otherwise the following sets are independent w.r.t. S:

$$
\left.\begin{array}{l}
(66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21, \\
66 \\
\hline
\end{array}, 21,66,21,66,42,80,-21,5,-40,5\right) . ~ \$
$$

The following sets are independent w.r.t. S:
$(5,41,5,1,100,12,38,-2,100,51,66,21,66,-64,66,-21,66,9,33,75$, 66,21,66,21,66,21,66,21,66,21,66), a contradiction.
Hence $c\left(\alpha^{55}\right) \neq 0$.
The following sets are independent w.r.t. S:
$(\underline{66}, 21,66,21, \underline{66}, 21,66,-43,66,-42,118,25,91,-46,66,9,33,75,66,21,66$, $21,66,21,66,21,66,21,66,21,66)$, a contradiction.
So $d \geq 16$.
b) Let $c(x)$ be a codeword of weight 16 with zero-set s.
(i) Again $c\left(\alpha^{5}\right) \neq 0$.
(ii) Suppose $c\left(\alpha^{55}\right)=0$.

Then $c\left(\alpha^{19}\right) \neq 0$, since otherwise the following sets are independent w.r.t. S:

$$
\begin{aligned}
& (66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66,21,66, \\
& 21,66,21,66,42,80,-21,5,-85,40,45,5) \text {. }
\end{aligned}
$$

The following sets are independent w.r.t. S:
$(5,41,5,1,100,12,38,-2,100,51,66,21,66,-64,66,-21,66,42,33,-33$, $\left.33,75, \frac{66}{3}, 21,66,21,66,21,66,21,66,21,66\right)$, a contradiction.
Hence $c\left(\alpha^{55}\right) \neq 0$.
The following sets are independent w.r.t. S:
$(\underline{66}, 21,66,21,66,21, \underline{66}, 21,66,-43,66,-42,118,25,91,-46,66,42,33,-33$, $33,75,66,21,66,21,66,21,66,21,66,21,66)$, a contradiction.
So $d \geq 17$.
Then Theorem (3.1.4) gives $d \geq 19$.
(8.2.32) $n=151, A=\left\{\alpha^{i} \mid i=1,3,7,15,35\right\}, \mu_{-1}$.

From Theorem (3.1.4) we know that $d_{0} \geq 15, d_{0}=3 \bmod 4$.
Furthermore, all even weights are divisible by 4.
The code has zeros $\alpha^{61+3 i}, 0 \leq i \leq 8$, so $d \geq 10$. Hence $d \geq 12$.
a) Let $c(x)$ be a codeword of weight 12 or 16 with zero-set S. By computer, $c\left(\alpha^{i}\right) \neq 0, i=5,11,17,23,37$.

The following sets are independent w.r.t. S: $(10,44,10,-3,40,25,139,-5,72,-1,72,-11,37,-7, \underline{5},-26,39,103,29,-22,121$, $-3,5,-41, \underline{40},-50,72,-11, \underline{72},-1,72,-1,72)$, a contradiction.
b) Let $c(x)$ be a codeword of weight 15 with zero-set S.

Again by computer, $c\left(\alpha^{i}\right) \neq 0, i=5,11,17,23,37$.
The following sets are independent w.r.t. S:
$(\underline{5},-1, \underline{5}, 56,36,-1,36,-32,78,-14,119,-7,18,-27,135,-24,119,35,40,-13,80$, $-77,113,-37,119,-11,119,-1,119,-1,119)$, a contradiction.
We have proved that $d \geq 19$.
(8.2.33) $\mathrm{n}=151, \mathrm{~A}=\left\{\alpha^{i} \mid \mathrm{i}=1,3,7,17,35\right\}, \mu_{-1}$.

We know that $d_{0} \geq 15$ and that all even weights are divisible by 4 .
Let $c(x)$ be a codeword of even weight ≤ 12.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=5,11,15,23,37$.
The following sets are independent w.r.t. the zero-set of $c(x)$:
$(120,1,67,-10,67,-14,54,-1,95,-10,134,-1,132,-28,144,-43,72,-10,134$, $-48,72,-1,72,-1,72)$, a contradiction.

Hence $d \geq 15$.
(8.2.34) $n=151, A=\left\{\left.\alpha_{\mid}^{i}\right|_{i=1}, 3,7,11,17\right\}, \mu_{-1}$.

The code has zeros $\alpha^{13+3 i}, 0 \leq i \leq 7$, so $d \geq 9$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 with zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0, i=5,15,23,35,37$.
The following sets are independent w.r.t. S:
$(23,2,94,-4,33,-4,125,-1,107,-3,92,-6,37,-34,40,-8,80,-28, \underline{5},-2$, $\underline{5},-1, \underline{5},-1, \underline{5}$), a contradiction.
Hence, by Theorem (3.1.4), $d \geq 15$.
(8.2.35) $n=161, A=\left\{\alpha^{i} \mid i=5,11,35,69\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, 132 \leq i \leq 138$, so $d \geq 8$,
Let $c(x)$ be a codeword of weight 8 with zero-set S.
Then $c\left(\alpha^{139}\right) \neq 0$ by the BCH bound.
The following sets are independent w.r.t. S:
$(139,-101,131,-52,146,-9,139,-1,139,-1,139,-1,139,-1,139,-1,139)$,
a contradiction.
Then, by Theorem (3.1.4), we have $d \geq 12$.
(8.2.36) n=223, $A=\left\{\alpha^{i} \mid i=1,3,5\right\},{ }_{-1}$.

We know from Theorem (3.1.4) that $d_{0} \geq 19$ and that all even weights are divisible by 4.
The $B C H$ bound gives $d \geq 9$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 or 16 with zero-set S.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=9,13,19$.
The following sets are independent w.r.t. S:
$(50,-4,50,-1,50,-1,83,-3,106,-1,188,-23,19,-11,19,186,81,-47,177,-65$, $175,-5, \underline{89},-47,29,-18, \underline{9},-7, \underline{9},-1, \underline{9},-1, \underline{9}$, a contradiction.
We have proved that $\mathrm{d} \geq 19$.
(8.2.37) $\mathrm{n}=233, \mathrm{~A}=\left\{\alpha^{\mathrm{i}} \mid \mathrm{i}=5,9,17,29\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, 78 \leq i \leq 85$, so $d \geq 9$. Hence $d \geq 12$, by Theorem (3.1.4).
Let $c(x)$ be a codeword of weight 12 with zero-set S.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=1,3,7,27$.
The following sets are independent w.r.t. S:
$(\underline{111},-1,108,-3,183,-4,189,-2,188,-1,4,-7,94,-3,89,-6,86,-1,86,-1$, 86, $-1,86,-1,86$), a contradiction.
Hence $d \geq 16$, by Theorem (3.1.4).
(8.2.38) $n=233, A=\left\{\alpha_{i}^{i} \mid i=1,3,9,27\right\}, \mu_{-1}$.

The code has zeros $\alpha^{i}, 69 \leq i \leq 77$, so $d \geq 10$. Hence $d \geq 12$.
Let $c(x)$ be a codeword of weight 12 or 16 with zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0, i=5,7,17,29$.
The following sets are independent w.r.t. S:
$(49,-2,139,-1,56,-3,208,-5,44,-1,44,-35,93,-23,139,-47,58,-54,41,-48$, $225,-80,147,-3,141,-68,78,-1,78,-1,78,-1,78)$, a contradiction.
Then Theorem (3.1.4) gives $d \geq 17$.
(8.2.39) $n=233, A=\left\{\alpha^{i} \mid i=1,17,27,29\right\}, H_{7}$.

We know that $d_{0} \geq 17$.
The even-weight subcode has zeros $\alpha^{131+17 i}, 0 \leq i \leq 12$, so $d \geq 14$.
Let $c(x)$ be a codeword of weight 14 or 16 with zero-set S.
By computer, $c\left(\alpha^{i}\right) \neq 0, i=3,5,7,9$.
The following sets are independent w.r.t. S:
$(200,-2,138,-3,164,-1,113,-7,164,-1,183,-21,100,-26,56,-9,167,87,123$, $18,31,126,96,-26,177,60,5,-3,3,-1,3,-1,3)$, a contradiction.
Hence $d \geq 17$.
(8.2.40) $n=241, A=\left\{\left.\alpha^{i}\right|_{i=5,9,11,13,25\}, ~}{ }_{11}\right.$.

Theorem (3.1.4) gives $d_{0} \geq 17$.
The even-weight subcode has zeros $\alpha^{41+25 i}, 0 \leq i \leq 16$, so the even-weight subcode has minimum distance ≥ 18.

Hence $d \geq 17$.
(8.2.41) $n=241, A=\left\{\alpha^{i} \mid i=1,5,9,13,25\right\}, \mu_{11}$.

We know that $d_{0} \geq 17$. The even-weight subcode has minimum distance ≥ 22, since it has zeros $\alpha^{232+25 i}, 0 \leq i \leq 20$.
Let $c(x)$ be a codeword of weight 17 with zero-set S.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=3,7,11,21,35$.
The following sets are independent w.r.t. S:
$(\underline{11},-1,196,-1,61,-4,219,-10,102,-15,139,-7,213,-5,48,-21,89,-74,139$, $129,55,79,55,-107,48,-56,131,-24,85,-26,11,-1,11,-1,11)$,
a contradiction.
We have proved that $\mathrm{d} \geq 19$.
(8.2.42) $n=241, A=\left\{\alpha^{i} \mid i=5,7,9,11,13\right\}$, μ_{11}.

We have $d_{0} \geq 17$.
Let $c(x)$ be a codeword of even weight ≤ 14.
Then, by computer, $c\left(\alpha^{i}\right) \neq 0, i=1,3,21,25,35$.
The following sets are independent w.r.t. the zero-set of $c(x):$
$(24,-1,84,-1,120,-3,235,-1,156,-7,73,-20,151,126,71,-3,204,-51,200$, $-96,163,-39,27,-7,12,-1,12,-1,12)$, a contradiction.
Hence $d \geq 16$.

Section 8.3 : The table

In this section we give a table of all binary duadic codes of length ≤ 241. For each code we give
(i) n : the code-length.
(ii) the idempotent : e.g. the duadic code of length 49 has idempotent $x^{0}+\sum_{i \in C_{1}} x^{i}+\sum_{i \in C_{7}} x^{i}$.
(iii) a defining set : e.g. the duadic code of length 49 has defining set $\left\{\alpha^{i} \mid i \in C_{1} \cup C_{21}\right\}$, where α is a primitive 49-th root of unity.
(iv) d : the minimum distance, or bounds for it. Most of the upper bounds are from [7].

Note that binary $Q R$ codes have an odd minimum distance (cf. [10]).
(v) a : the splitting is given by μ a*
(vi) a reference.

n	idempotent	defining set	d	a	reference
7	1	1	3	-1	QR code, [10]
17	0,1	1	5	3	QR code, [7]
23	1	1	7	-1	QR code, [7]
31	1,5,7	1,5,7	7	-1	QR code, [7]
31	1,3,5	1,3,5	7	-1	Reed-Muller code, (2.2.2)
41	0,1	1	9	3	QR code, [7]
47	1	1	11	-1	QR code, [7]
49	0,1,7	1,21	4	-1	(4.3.1)
71	1	1	11	-1	QR code, (3.1.4)
73	0, 1, 3, 5, 11	1,13,17,25	9	-1	(8.1.6)
73	0,1,3,5,13	3,9,11, 17	9	-1	(8.1.3)
73	0,1,5,9,17	1,9,11,13	12	3	[7]
73	0,1,3,9,25	1,3,9,25	13	5	QR code, [7]
79	1	1	15	-1	QR code, [7]
89	0,1,3,5,13	1,9,13,33	12	-1	(8.2.1)
89	0,1,3,5,19	3,9,11,19	12	-1	(8.2.2)
89	$0,1,3,11,33$	1,3,11,33	15	5	[7]
89	0,1,5,9,11	1,5,9,11	17	3	QR code, [7]
97	0,1	1	15	5	QR code, [7]
103	1	1	19	-1	QR code, [7]
113	0,1,9	1,9	15	3	QR code, [7]
113	0,1,3	1,3	18	9	[7]
119	1,13,17,21	1,11,21,51	4	3	BCH bound
119	1,7,11,51	1,13,17,21	6	3	BCH bound
119	1,7,13,17	3,7,13,51	8	3	(8.2.3)
119	1,7,11,17	3,11,21,51	12	3	[7]

n	idempotent	defining set	d	a	reference
127	$\begin{aligned} & 1,3,9,11,13 \\ & 15,21,27,47 \end{aligned}$	$\begin{aligned} & 1,3,5,7,9 \\ & 11,13,19,21 \end{aligned}$	15	-1	Reed-Muller code, (2.2.2)
127	$\begin{aligned} & 1,3,5,9,11, \\ & 13,15,21,27 \end{aligned}$	$\begin{aligned} & 3,5,7,11,19, \\ & 21,23,55,63 \end{aligned}$	15	-1	(8.2.5)
127	$\begin{aligned} & 1,3,9,13,15 \\ & 19,21,29,47 \end{aligned}$	$\begin{aligned} & 1,3,5,7,9,19 \\ & 23,29,43 \end{aligned}$	15	-1	(8.2.6)
127	$\begin{aligned} & 1,3,7,9,11 \\ & 13,19,21,47 \end{aligned}$	$\begin{aligned} & 3,5,7,9,11 \\ & 23,27,43,63 \end{aligned}$	15	-1	(8.2.7)
127	$\begin{aligned} & 1,3,7,9,11 \\ & 13,21,27,47 \end{aligned}$	$\begin{aligned} & 9,11,13,15,19 \\ & 31,43,47,63 \end{aligned}$	15	-1	(8.2.8)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 13,19,21,29 \end{aligned}$	$\begin{aligned} & 1,3,5,15,19 \\ & 21,23,29,55 \end{aligned}$	15	-1	(8.1.3)
127	$\begin{aligned} & 1,3,15,21,23 \\ & 27,29,47,55 \end{aligned}$	$\begin{aligned} & 3,7,9,13,19 \\ & 21,29,47,63 \end{aligned}$	15	-1	(8.2.9)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 19,21,23,29 \end{aligned}$	$\begin{aligned} & 3,9,11,15,21, \\ & 23,27,47,63 \end{aligned}$	15	-1	(8.2.10)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 11,21,23,27 \end{aligned}$	$\begin{aligned} & 3,5,7,19,23 \\ & 29,43,55,63 \end{aligned}$	15	-1	(8.2.11)
127	$\begin{aligned} & 1,3,7,9,11 \\ & 21,23,27,47 \end{aligned}$	$\begin{aligned} & 1,5,13,15,27, \\ & 29,31,43,55 \end{aligned}$	15	-1	(8.2.12)
127	$\begin{aligned} & 1,3,7,9,11 \\ & 19,21,23,47 \end{aligned}$	$\begin{aligned} & 1,3,7,19,23, \\ & 29,43,47,55 \end{aligned}$	15	-1	(8.2.13)
127	$\begin{aligned} & 1,3,7,9,13 \\ & 21,27,29,47 \end{aligned}$	$\begin{aligned} & 3,15,19,21,23 \\ & 29,47,55,63 \end{aligned}$	15	-1	(8.2.14)
127	$\begin{aligned} & 1,3,5,9,15, \\ & 21,23,27,29 \end{aligned}$	$\begin{aligned} & 3,5,9,13,15, \\ & 19,21,29,63 \end{aligned}$	15-16	-1	(8.2.15)
127	$\begin{aligned} & 1,3,9,13,15, \\ & 21,27,29,47 \end{aligned}$	$\begin{aligned} & 1,3,5,9,15 \\ & 23,27,29,43 \end{aligned}$	15-19	-1	(8.2.16)
127	$\begin{aligned} & 1,3,5,9,13 \\ & 15,21,27,29 \end{aligned}$	$\begin{aligned} & 5,7,9,13,19, \\ & 29.31,43.63 \end{aligned}$	15-19	-1	(8.2.17)
127	$\begin{aligned} & 1,3,9,15,21 \\ & 23,27,29,47 \end{aligned}$	$\begin{aligned} & 3,11,15,19,23 \\ & 43,47,55,63 \end{aligned}$	15-19	-1	(8.2.18)
127	$\begin{aligned} & 1,3,9,11,15 \\ & 21,23,27,47 \end{aligned}$	$\begin{aligned} & 9,13,15,19,21 \\ & 29,31,47,63 \end{aligned}$	15-19	-1	(8.2.19)
127	$\begin{aligned} & 1,3,7,9,21, \\ & 23,27,29,47 \end{aligned}$	$\begin{aligned} & 1,3,5,9,11 \\ & 15,21,23,27 \end{aligned}$	15-19	-1	(8.2.20)

n	idempotent	defining set	d	a	reference
127	$\begin{aligned} & 1,3,5,9,13 \\ & 15,19,21,29 \end{aligned}$	$\begin{aligned} & 3,9,15,23,27 \\ & 29,43,47,63 \end{aligned}$	15-19	-1	(8.2.21)
127	$\begin{aligned} & 1,3,9,11,13 \\ & 15,19,21,47 \end{aligned}$	$\begin{aligned} & 1,3,7,11,19 \\ & 21,23,47,55 \end{aligned}$	15-19	-1	(8.2.22)
127	$\begin{aligned} & 1,3,9,15,19 \\ & 21,23,29,47 \end{aligned}$	$\begin{aligned} & 5,7,11,13,27, \\ & 31,43,55,63 \end{aligned}$	15-19	-1	(8.2.23)
127	$\begin{aligned} & 1,3,5,9,15 \\ & 19,21,23,29 \end{aligned}$	$\begin{aligned} & 1,3,5,11,15 \\ & 19,23,43,55 \end{aligned}$	15-19	-1	(8.2.24)
127	$\begin{aligned} & 1,3,11,13,15 \\ & 21,27,47,55 \end{aligned}$	$\begin{aligned} & 1,5,7,9,23 \\ & 27,29,31,43 \end{aligned}$	15-19	-1	(8.2.25)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 11,13,19,21 \end{aligned}$	$\begin{aligned} & 1,5,9,11,13 \\ & 15,19,31,43 \end{aligned}$	15-19	-1	(8.2.26)
127	$\begin{aligned} & 1,3,5,7,11, \\ & 13,21,27,55 \end{aligned}$	$\begin{aligned} & 1,3,13,15,21, \\ & 27,29,47,55 \end{aligned}$	19	-1	(8.2.27)
127	$\begin{aligned} & 1,3,5,7,21 \\ & 23,27,29,55 \end{aligned}$	$\begin{aligned} & 5,15,19,23,29 \\ & 31,43,55,63 \end{aligned}$	15-19	-1	(8.2.28)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 21,23,27,29 \end{aligned}$	$\begin{aligned} & 5,7,9,11,13 \\ & 19,21,31,63 \end{aligned}$	15-19	-1	(8.2.29)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 13,21,27,29 \end{aligned}$	$\begin{aligned} & 1,7,13,21,27 \\ & 29,31,47,55 \end{aligned}$	15-19	-1	(8.2.30)
127	$\begin{aligned} & 1,3,5,7,9 \\ & 11,13,21,27 \end{aligned}$	$\begin{aligned} & 1,3,7,9,11 \\ & 23,27,43,47 \end{aligned}$	19	-1	(8.2.31)
127	$\begin{aligned} & 1,9,11,13,15 \\ & 19,21,31,47 \end{aligned}$	$\begin{aligned} & 1,9,11,13,15 \\ & 19,21,31,47 \end{aligned}$	19	-1	QR code, [12]
137	0,1	1	13-21	3	QR code, (3.1.4)
151	1,3,5,11,17	1,3,7,15,35	19	-1	(8.2.32)
151	1,3,5,11,15	1,3,7,17,35	15-19	-1	(8.2.33)
151	1,5,11,17,37	1,5,11,17,37	19	-1	QR code, [12]
151	1,3,7,11,15	1,3,7,11,17	15-23	-1	(8.2.34)
161	0,1,3,35,69	1,11,23,35	4	-1	BCH bound
161	0,1,3,7,23	1,7,11,69	8	-1	BCH bound, (3.1.4)
161	0, 1, 7, 11,23	1,3,23,35	8	-1	BCH bound, (3.1.4)
161	0,1,7,11,69	5,11,35,69	12-16	-1	(8.2.35)

n	idempotent	defining set	d	a	reference
167	1	1	15-23	-1	QR code, (3.1.4)
191	1	1	15-27	-1	QR code, (3.1.4)
193	0,1	1	15-27	5	QR code, (3.1.4)
199	1	1	15-31	-1	QR code, (3.1.4)
223	1,3,9	1,3,5	19-31	-1	(8.2.36)
223	1,9,19	1,9,19	19-31	-1	QR code, (3.1.4)
233	0,1,7,9,29	1,7,9,29	17-25	3	QR code, (3.1.4)
233	0,1,3,9,27	5,9,17,29	16-29	-1	(8.2.37)
233	0,1,3, 7,27	1,3,9,27	17-29	-1	(8.2.38)
233	0,1,3,5,29	1,17,27,29	17-32	7	(8.2.39)
239	1	1	19-31	-1	QR code, (3.1.4)
241	0,1,3,7,9,21	5,9,11,13,25	17-25	11	(8.2.40)
241	0, 1,3,5, 7,9	1,5,9,13,25	19-30	11	(8.2.41)
241	0,1,7,9,13,21	5,7,9,11,13	16-30	11	(8.2.42)
241	0,1,3,5,9,25	1,3,5,9,25	17-31	11	QR code, (3.1.4)

$\mathrm{n}=217$: There are 88 possibly inequivalent duadic codes of length 217 . All splittings are given by μ_{-1}.

minimum distance	4	≤ 8	≤ 12	≤ 16	≤ 20	≤ 24
number of codes	16	32	240	448	144	144

1. L.D.Baumert, "Cyclic difference sets", Springer Lecture Notes 182 , Berlin, Springer Verlag, 1971.
2. W.G.Bridges, M.Ha11,Jr. and J.L.Hayden, "Codes and designs", J. Combin. Theory Ser.A 31, 155-174 (1981).
3. M.Hall,Jr., "Combinatorial theory", New York/London, Wiley, 1967.
4. R.A.Hogendoorn, "Toepassing van een nieuwe grens voor de minimum afstand van cyclische codes", Dept.of Math., Tech.Univ. of Eindhoven, The Netherlands, Project report, September 1984.
5. D.Jungnickel and K.Vedder, "On the geometry of planar difference sets", Europ.J.Combinatorics 5, 143-148 (1984).
6. J.S.Leon, J.M.Masley and V.Pless, "Duadic codes", IEEE Trans.Inf.Th., IT-30, No.5, 709-714 (1984).
7. J.S.Leon, J.M.Masley and V.Pless, "On weights in duadic codes", to appear in J.Combin. Theory Ser.A.
8. W.J.LeVeque, "Fundamentals of number theory", Reading, Mass., Addison-Wesley, 1977.
9. J.H.van Lint, "Inleiding in de coderingstheorie", MC Syllabus 31, Amsterdam, Mathematical Centre, 1980.
10. J.H. van Lint, "Introduction to coding theory", New York, Springer Verlag, 1982.
11. J.H.van Lint and R.M.Wilson, "On the minimum distance of cyclic codes", IEEE Trans.Inf.Th., IT-32, No.1, 23-40 (1986).
12. F.J.MacWilliams and N.J.A.Sloane, "The theory of error-correcting codes", Amsterdam, North-Holland, 1977.
13. V.Pless, "Cyclic projective planes and binary, extended cyclic self-dual codes", to appear in J. Combin. Theory Ser.A.
14. V.Pless, "Q-codes", preprint.
15. P.Ribenboim, "1093", The Mathematical Intelligencer", 5, No. 2, 28-34 (1983).
16. P. Rowlinson, "On 4-cycles and 5-cycles in regular tournaments", Bull. London Math.Soc. 18, 135-139 (1986).
17. H.C.A.van Tilborg, "On weights in codes", Dept.of Math., Tech. Univ, of Eindhoven, The Netherlands, Rep. 71-WSK-03, December 1971.
18. H.A.Wilbrink, "A note on planar difference sets", J.Combin. Theory Ser.A 38, 94-95 (1985).
adjacency matrix, 25
BCH bound, 39
check polynomial, 2
code, 1
cyclic, 2
duadic, 5
dual, 1
even-like, 1
extended, 1
generalized Reed-Muller, 10
linear, 1
Q-, 7
QR, 6
quadratic residue, 6
Reed-Mu11er, 10
Reed-Solomon, 10
codeword, 1
consecutive set, 39
cyclotomic coset, 5
defining set, 3
complete, 3
distance, 1
minimum, 1
dominate, 25
even-like, l
generator matrix, 2
generator polynomial, 2
graph,
complete, 25
directed, 25
HT bound, 39
idempotent, 3
incidence matrix, 29
in-degree, 25
independent set, 40
length, 1
odd-like, 1
out-degree, 25
Paley-matrix, 27
parity check matrix, 2
self-dual, 2
self-orthogonal, 2
splitting, 5
doubly-regular, 26
tournament, 25
doubly-regular, 25
regular, 25
weight, 1
