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Abstract 

We consider a two-echelon inventory system for service parts. To obtain high service levels 
at a low cost we allow not only for normal supply of parts but also for emergency supply 
options in terms of lateral transhipments and direct deliveries. After presenting the strategy 
we use for satisfying customer demand, we construct an analytical model which we use 
to calculate relevant performance measures. Simulation shows that our model produces 
accurate estimates, and that the performance of the inventory system is insensitive to the 
leadtime distribution. After introducing a cost structure we show that the strategy we 
propose can result in considerable savings when compared to using only normal supply. 

Keywords: inventory control; service parts; emergency supply 

1 Introduction 

After-sales service has become more and more a competitive weapon in the nineties. In various 
kinds of industry, such as car manufacturing, information systems and communication systems, 
aircraft manufacturing and many others, fast and reliable supply of service parts to customers is 
crucial in order to retain current customers or to obtain new customers. Since these customers 
are usually scattered over a large geographical area, many companies use an extensive distribution 
network of inventory locations in order to guarantee a high service level. The investment in 
inventory in such networks can be very high and therefore it could be advantageous to implement 
flexibility_ Examples of such flexibility options are the use of emergency lateral transhipments and 
direct deliveries. Lateral transhipments are used to fill a demand at a local warehouse that is out 
of stock from any other local warehouse that does have stock on hand. Direct deliveries are used 
to fill such a demand from a higher level in the system, e.g., a central warehouse or a plant. The 
trade-off that is associated with the use of these flexibility options is between costs and service 
performance. 

In this paper we present a two-echelon model consisting of a central warehouse supplying 
a number of local warehouses. These local warehouses can also be interpreted as moving car 
stocks with which service engineers visit customer sites to replace failed service parts. The central 
warehouse is supplied from a plant which we assume to have infinite supply. The inventory policy 
applied is one-for-one replenishment. This inventory policy is very common in practice for service 
parts, because of the high price and low demand characteristics of many of these items. In case 
of a demand at a local warehouse, we apply the following strategy for filling this demand: 

1. Fill the demand from stock on hand. The local warehouse where the demand occurs issues 
a replenishment order to the central warehouse. 
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2. If this is not possible, the demand is satisfied by an emergency lateral transhipment (ELT) 
from another, randomly chosen, local warehouse that has stock on hand. We assume that 
the local warehouses are situated in one geographical area such that the ELT time is much 
shorter than the replenishment time from the central warehouse. The local warehouse that 
sources the ELT issues a replenishment order to the central warehouse. 

3. If this is not possible, the demand is satisfied by a direct delivery from the central warehouse 
if it has stock on hand. Here we assume that a direct delivery is much faster than a normal 
replenishment from the central warehouse. The central warehouse issues a replenishment 
order to the plant. 

4. Finally, if this is not possible, the demand is satisfied by a direct delivery from the plant 
which has infinite supply. Note that this last option is equivalent to modeling a lost demand 
or using a source outside the system. 

We analyze the system in two steps. First, we construct an aggregate model that enables us to 
calculate the fraction of demand that is satisfied by a direct delivery from the central warehouse 
and the fraction of demand that is satisfied by a direct delivery from the plant. These fractions 
are identical for all locals, even if they have different demand rates and stock levels. 

Second, we construct a model for every local separately that enables us to estimate the fraction 
of demand satisfied by stock on hand and the fraction of demand satisfied by ELT. In this step 
we apply a technique introduced by Axsiiter [2]. 

The literature on multi-echelon inventory systems for service parts covers over 25 years of 
research. The METRIC model of Sherbrooke [10] is widely considered as the first multi-echelon 
inventory model for service parts. The METRIC model is capable of determining the optimal 
stock levels that minimize the expected backorders at the locals subject to a budget constraint. 
Although METRIC is not an exact model, it gives good results and has been applied in practice by 
many companies. An improved version of METRIC called VARI-METRIC is presented by Graves 
[4]. Muckstadt and Thomas [7] extended the METRIC model with the option of direct deliveries 
from the central warehouse or the plant in case of a stockout situation at the local warehouse. 
They observe that in practice most multi-echelon systems are managed using adaptations of single 
location models. Their main goal is to show that such models can be dramatically inferior to 
models that take advantage of the system's structure. However, they do not investigate explicitly 
in their multi-echelon model the trade off between costs and service performance when using 
direct deliveries from a higher echelon. They also don't allow for lateral transhipments between 
the local warehouses. Moinzadeh and Schmidt [6] investigate the use of emergency replenishments 
for a single-echelon model with deterministic lead times. An emergency replenishment is issued 
when the stock level drops below a certain threshold value and the expected arrival time of the 
:first pipeline order exceeds the emergency transhipment time. They compare their policy with a 
number of other policies. Aggarwal and Moinzadeh [1] conduct a similar policy evaluation study 
for a two-echelon system where the locals can issue an emergency replenishment when the number 
of outstanding orders drops below a certain threshold value. They do not take into account the 
pipeline orders and they do not allow for lateral transhipments between the bases. The central 
location is represented by a production plant that produces to order and therefore has no stock 
on hand. The production plant is modelled as an MIGI! waiting queue where emergency orders 
have priority over normal replenishment orders. 

Lee [5J presents a two-echelon model with one-for-one replenishment in which he allows for 
lateral transhipments between the local warehouses. The local warehouses are supplied from a 
central warehouse which in turn is supplied from the plant which is assumed to have infinite 
supply. The local warehouses are grouped into a number of pooling groups. Within each group 
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the warehouses are assumed to be identical. If demand cannot be satisfied from stock on hand, 
ELT's are used to fill the demand from another warehouse in the same pooling group that has stock 
on hand. If this is not possible, the demand is backordered. Lee derives approximate expressions 
for the fraction of demand satisfied from stock on hand, the fraction of demand that is satisfied 
by ELT, and the fraction of demand that is backordered. He compares his approximations with 
simulation results when different sourcing rules (which local warehouse in the group will source the 
ELT?) are used. The results show that the differences between sourcing rules are not significant 
and that the approximation is accurate for high values of the fill rate (> 0.70). In his paper 
Lee also presents an algorithm for determining optimal stocking levels such that costs (holding, 
backorder, and ELT) are minimized, subject to service level constraints. 

Axsiiter [2] analyzes the same system as Lee does. The local warehouses in each pooling 
group do not have to be identical. He use~ a different modeling approach by concentrating on 
the demand processes at the local warehouses. When stock on hand is positive, the demand 
faced by the local warehouse equals the normal demand plus some ELT demand from other local 
warehouses in the same pooling group. When stock on hand is not positive, the only demand 
faced by the local warehouse is the backordered demand. Steady-state probabilities are derived 
by assuming exponentially distributed replenishment times. The analytical results are compared 
with simulation results. For the case with identical warehouses in each pooling group Axsater 
compares his model with Lee's model and finds better results. Also for the case with nonidentical 
warehouses Axsater's model gives satisfactory results. 

Sherbrooke [11] presents a simulation study in which he investigates the added value of using 
lateral transhipments in a two-echelon depot-base system for repairable items. In contrast with 
Lee and Axsiiter, Sherbrooke allows for delayed lateral transhipments. This means that if a base 
has zero inventory and receives a replenishment order from the depot, this unit may be laterally 
transhipped to another base with a backorder. Sherbrooke assumes that an ELT, normal or 
delayed, is only issued if it will arrive sooner than a pipeline unit. Upper and lower bounds 
for the expected system backorders are derived. Next regression analysis on the simulation data 
is used to derive approximate expressions for the expected system backorders. For depot-only
repairable items Sherbrooke shows that an average backorder reduction of 30-50% is possible (with 
a maximum of 72%) when using ELT's. 

Pyke [9] presents a simulation study for a two-echelon system for repairable parts for electronic 
equipment on military aircraft. His main goal is to investigate the use of priority rules for the 
central repair shop in conjunction with priority rules for allocating repaired items to the bases. 
With regard to lateral transhipments he concludes that the improvement of the performance is 
marginal when decreasing the lateral transhipment times. The major gain is obtained in the limit, 
when the lateral transhipment times go to zero. 

Dada [3] models a two-echelon system with priority shipments which is closely related to our 
model. Demand that can not be satisfied from stock on hand at a local warehouse is satisfied 
through emergency lateral transhipments or a direct delivery from the central warehouse. If this 
is not possible, Dada assumes that any item in transit from the central warehouse to the local 
warehouses can be used to satisfy this demand. Therefore Dada assumes that full information is 
available about items in transit and that these items can be redirected to any other destination 
after arrival at the original destination. Although current information systems make this sort of 
pipeline information more accessible, it is in most practical situations not feasible to apply this 
option. Think for example of boats, planned production situations or trucks of service providers. 
We therefore restrict ourselves to priority shipment options from physical stock locations. Dada 
applies a similar modeling approach in which he first constructs an aggregate model for the local 
warehouses and next presents a disaggregation scheme to find the performance of the individual 
locals. However, Dada assumes in his model that all local warehouses have identical lead times 
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Figure 1: The inventory system 

and stock level one. The analysis of his model is rather complex and the approximation scheme 
he presents for the case of non-identical locals does not always converge. 

This paper is organised as follows. In section 2 we introduce our model and list the assumptions 
and notations. In section 3 we validate our model by means of simulation. Here we also present a 
sensitivity analysis for the lead time distribution. In section 4 we introduce a cost function that we 
use to find optimal stock levels. The use of emergency supply Hexibility in a distribution network 
for service parts is associated with certain costs. We compare the cost results of our model with 
the cost results of the standard VARI-METRIC model which does not include any emergency 
supply Hexibility. Finally, in section 5 we give some concluding remarks and topics for further 
research. 

2 Model description 

2.1 Assumptions and notation 

As presented earlier, our inventory model consists of a number, N, of local warehouses and one 
central warehouse. We will use index i, i ::::: 1, ... , N to denote a specific local warehouse, and 0 
for the central warehouse. Customers are assumed to arrive at local warehouse i according to a 
Poisson process with constant intensity ~i. Furthermore, we let .x denote the total arrival intensity 
of customers, i.e., .x = E~l ~i. The structure of the inventory system and the policy used for 
filling demand is depicted in figure 1. 

We let Si denote the stock level at local warehouse i, and So the stock level at the central 
warehouse. A customer arriving at local warehouse i will receive an item from stock on hand if 
stock is available. By 13i we denote the fraction of the demand ~i that can be met directly from 
stock on hand. Since one-for-one replenishment is used, a customer served from stock on hand 
will trigger a replenishment order from the central warehouse to local warehouse i. 

If a customer arrives at local warehouse i when this warehouse is out of stock, we serve the 
customer by issuing an ELT from a randomly chosen neighbor (local warehouse) with stock on 
hand. The fraction of the demand ~i that is met by ELT is denoted by ai. In principle, this could 
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be seen as a redirection of the customer to another local warehouse. In particular, the central 
warehouse will receive an order for replenishment from the local warehouse sourcing the ELT. We 
assume that the customer initiating the lateral transhipment will wait for this item, although the 
local warehouse could receive items through normal replenishment while the customer is waiting. 
Note that the local warehouses are assumed to form one pooling group, and that the average 
lateral transhipment time, Do, is identical for all transhipments between local warehouses. 

In the case when all local warehouses are out of stock, the central warehouse has stock on hand, 
and a customer arrives at any local warehouse, the customer is served through direct delivery from 
the central warehouse. By 'Y we denote the fraction of the total demand>' that is met in this way. 
It is clear from our assumptions that 'Y is also the fraction of customers arriving at local warehouse 
i that will be served through direct delivery from the central warehouse. As above, we assume 
that a customer initiating a direct delivery from the central warehouse will wait for this item to 
arrive, with an average direct delivery time of D1 . 

If a customer arrives when there is no stock on hand, locally or at the central warehouse, the 
customer is served by direct delivery from the plant. The fraction of the total demand>' that will 
be met in this way is denoted bye. This is also the fraction of customers arriving at any local 
warehouse that will be satisfied through direct delivery from the plant. Again, we assume that 
a customer initiating a direct delivery from the plant will wait for this item to arrive, with an 
average direct delivery time of D2. 

If the central warehouse is out of stock when receiving a replenishment order, the demand 
is backlogged. Demand, including backlogged demand, at the central warehouse is satisfied on 
the basis of first come first served (FCFS). For local warehouse i, the time between placing a 
replenishment order and receiving the ordered item is called the local replenishment leadtime. 
It consists of the transportation time from the central warehouse to local warehouse i plus, in 
case of central stock-out, an additional waiting time for a spare to become available. Since our 
approach will be based on Markov analysis, we assume that the local replenishment leadtimes are 
independent exponentially distributed with mean Li at local warehouse i. The average shipment 
time is denoted Ii and the expected delay denoted A, and thus Li = Ii + A. 

N: number of local warehouses 
Ai: customer arrival rate at local warehouse i 
>.: total customer arrival rate at all local warehouses 

So: stock level at the central warehouse 
St: stock level at local warehouse i 
To: shipment time from the plant to the central warehouse 
Ii: shipment time from the central warehouse to local warehouse i 
A: delay at the central warehouse 
Lt: local replenishment leadtime at local warehouse i 
Do: ELT time between local warehouses 
D1 : direct delivery time from the central warehouse 
D2 : direct delivery time from the plant 
(}:i: fraction of demand at local warehouse i satisfied through ELT 
fit: fraction of demand at local warehouse i satisfied from stock on hand 
'Y: fraction of total demand satisfied through direct delivery from the central warehouse 
e: fraction of total demand satisfied through direct delivery from the plant 

Table 1: List of notation 
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When a customer is served by stock on hand, an ELT or a direct delivery from the central 
warehouse, this will also result in demand at the central warehouse. Consequently, the central 
warehouse issues a replenishment order to the plant. The expected time the central warehouse 
has to wait before it receives the ordered item, we call the central replenishment leadtime. As 
mentioned earlier, we assume that the plant has infinite supply, why the central replenishment 
leadtime equals the shipment time from the plant to the central warehouse, To. In our model, 
we assume that the shipment times are independent and exponentially distributed with mean To. 
A summary of the notation used can be found in table 1. 

2.2 Aggregate model for i and e 
As mentioned earlier, we will use a two-step procedure to find estimates of 1, e, and at and Pi 
for all locals i. As a first step we find estimates of 1, e, and ~, the expected delay at the central 
warehouse which we will need in the second step as described in section 2.3. The approach, which 
follows closely the idea described in Dada [3], is based on the observation that from the central 
warehouse's point of view, the local warehouses will behave as one aggregate warehouse with stock 
level8 Ef::l Si. The idea is then to construct a finite two-state, (j, k), Markov model where 

j = stock on hand at central warehouse, -8::5 j ::5 So 
k = stock on hand at the aggregate local warehouse, 0 ::5 k ::5 8 

In this case, there are three events leading to a change of state: A customer arrives at the aggregate 
local warehouse, a replenishment order arrives at the aggregate local warehouse, or a replenishment 
order arrives at the central warehouse. The rate at which customers arrive at the aggregate local 
warehouse is i The other two rates are denoted 

ji. = the rate at which a replenishment order arrives at the aggregate local warehouse, 
110 the rate at which a replenishment order arrives at the central warehouse. 

It is clear that 110 = liTo, but the rate ji. deserves some further attention. If the shipment times 
are all exponentially distributed with the same mean, i.e. 1i = Tl Vi, then ji. = 11Tl , and the 
model is exact. If this is not the case, we use the following approximation: l' = Ef::l A/Til). 
and ji. = liT. That is, we assume that the rate at which items are being sent from the central 
warehouse to local i is equal to the demand rate Ai. Due to lateral transhipments, this does not 
have to be the case. Moreover, we assume that the shipment time from central warehouse to the 
aggregate local is exponentially distributed with mean T. Note that even if all individual shipment 
times are exponentially distributed but with different means, this will not be the case. 

The state space and corresponding transition rates are depicted in figure 2 for the case when 
So = 2 and 8 = 2. From this picture it is clear how to form the state space for different values 
of So and 8. By solving the corresponding linear equation system together with the normalizing 
constraint E:~-s E:=o 7rjk = 1 we find the steady-state probabilities 

7rjk P[j items on hand at the central and k items on hand at the aggregate local warehouse] 

A negative value of j corresponds to -j backorders at the central warehouse. Having found the 
steady-state probabilities we can find 1, e and ~ as follows: 

SI} 

1 = L 7rjO, 

j=l 

o 
e = L 7rjO, 

j=-5 

1 -1 . 5+i 

~ = (1- 9)A L (-J) L 7rjl: 
j=-s 1:=0 

The expression for ~ is found by applying the well-known result by Little which states that the 
average waiting-time is equal to the expected number of backorders divided by the arrival rate. 
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Figure 2: Aggregate state space model 

2.3 Model for OJ and Pi 
The objective of the second step of our heuristic is to find estimates of O:i and Pi for all locals i. 
Again we will use Markov analysis, following closely the approach described by Axsater [2]. The 
main idea is to adjust the demand rate at a local warehouse by taking into consideration that the 
local warehouse will sometimes be used as a source for ELT's to other locals. 

When local warehouse i has stock on hand, it will face the regular demand Ai, and ELT's from 
other locals with an average rate of ej. (The actual expression for ei is presented later.) When the 
inventory position is zero the demand is zero, since customers arriving in this state are satisfied 
either by an ELT or a direct delivery. Let gj = Aj + ej denote the adjusted demand rate at local i. 
We make the approximation that the demand process at local i is Poisson with rate gj, and that 
the demand processes at different locals are independent. 

gj 

8i - 1 • 0). -------+. -------+. 
Pi 

Figure 3: State space model for local i 

As mentioned previously, we assume that the replenishment lead times for local warehouse i 
are independent and exponentially distributed with mean Li = 11 + .6.. The replenishment rate 
is then Pi = 1/ Li and the corresponding state space is depicted in figure 3. The steady-state 
equations can be solved analytically. Let 

Then, 

p) = P[j items on hand at local warehouse i], 0 ~ j ~ Sj. 

P
i = {~ (g;/ Pi)i }-1 
S. L....t··r 

i=O J. 
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After computing the steady-state probabilities, we can readily find the estimates Pi = 1 - p~ and 
0i = 1 - Pi - 'Y - e. 

Still remaining is the expression for ei. In the case when all local warehouses are identical, and 
a randomly chosen neighbor is used to source an ELT, ei = Oi>'i/P,. Note that ei depends on 0, 
and Pi. Hence, we use an iterative procedure where we alternately update the values for Pi, 0" 
and Ci. However, as Axsater [2] also notes, convergence is obtained after a few iterations. In our 
case, we start by assuming Pi = 1 - 'Y - 8 and OJ = 0, which implies that ei is initially zero for 
all i. 

When the local warehouses are not identical, the expressions for ei become more complicated, 
but the general idea remains the same, i.e, we iteratively solve for Oi, Pi, and ei. If a randomly 
chosen neighbor is used to source an ELT, the general expression for ei looks as follows: 

The second sum is taken over all zero-one vectors of length N - 2, where the components are 
numbered 1, ... ,j - 1, j + 1, ... , k - 1, k + 1, ... , N. If N = 2, this second sum is defined to be 
equal to one, which gives 

When N = 3, 

and analogously for i = 2,3. 
The formulas for ei presented above were based on a random choice of source for an ELT. 

However, we would like to point out that the modeling approach could be used also in the case 
when each local uses a priority list for determining the source of ELTs. If the local warehouse 
looks to all other locals before using a direct delivery from the central warehouse or plant, the 
aggregate model we presented in subsection 2.2 would still apply. In particular, the values for 'Y 
and e would again be exact if the shipment times are exponentially distributed with the same 
mean. The difference is that the formulas for ei change, and thus the values for 0, and Pi. 

3 Model validation 

In this section, we present simulation results in order to show the accuracy of our model. We 
consider a situation with three local warehouses, i.e., N = 3 throughout this section. For each 
simulation run we simulated a minimum of 500,000 thousand customer arrivals at each local 
warehouse. We also test the sensitivity of our model with regard to the leadtime distribution. 

3.1 Simulation results for ai, (3i, I and () 

Since our modeling technique assumes exponential leadtimes, we first consider a benevolent situ
ation when the centralleadtime and the shipment times are drawn from exponential distributions 
with mean To and 7i respectively. 

First, we consider a set of 14 problems for which the three local warehouses are identical. Due 
to direct deliveries, the results from our model can not be compared directly to, e.g., the models 
of Lee [5] and Axsater [2]. However, the parameter values used in the problems are chosen similar 
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I e Pi 
case Ai Si So ESM exp det ESM exp det ESM exp det 

1 0.02 1 1 0.00 0.00 0.00 0.02 0.02 0.02 0.84 0.84 0.84 

2 2 0.00 0.00 0.00 0.01 0.01 0.00 0.92 0.92 0.92 

3 0.06 1 1 0.00 0.00 0.00 0.23 0.23 0.23 0048 0048 0048 
4 2 0.00 0.00 0.00 0.13 0.13 0.13 0.61 0.61 0.61 

5 2 1 0.00 0.00 0.00 0.03 0.03 0.03 0.83 0.81 0.81 

6 2 0.00 0.00 0.00 0.01 0.01 0.01 0.91 0.89 0.89 

7 0.10 1 2 0.00 0.00 0.00 0.32 0.32 0.32 0040 0040 0040 
8 3 0.00 0.00 0.00 0.23 0.23 0.22 0049 0049 0.49 

9 6 0.02 0.02 0'.02 0.06 0.06 0.06 0.67 0.67 0.67 
10 10 0.05 0.05 0.05 0.00 0.00 0.00 0.71 0.71 0.71 
11 2 2 0.00 0.00 0.00 0.09 0.09 0.09 0.71 0.69 0.69 
12 3 0.00 0.00 0.00 0.05 0.05 0.05 0.80 0.78 0.78 
13 3 2 0.00 0.00 0.00 0.01 0.01 0.01 0.90 0.88 0.88 
14 3 0.00 0.00 0.00 0.01 0.01 0.01 0.95 0.93 0.93 

Table 2: Results for identical local warehouses, N = 3, To = 15 and n = 3 

to theirs. The central shipment time, To, equals 15, and the local shipment times, n, are all 
equal to 3. The results from the simulation with exponential distributions (exp) and from our 
emergency supply model (ESM) are shown in table 2 for I, e and Pi. The value for ai can readily 
be obtained from the relationship ai + Pi + I + e = 1. Note that when the shipment times are 
the same for all locals and independent exponentially distributed, the values for I and e should 
be exact, which is indeed the case. 

Second, we also consider a set of 18 problems for which the local warehouses are not identical, 
but have different demand rates Ai, or different shipment times n. The results are shown in table 
3 on page 10 and 11. Again, the I and e values should be exact for the problems marked 'a', 
which they also are. 

For the case with identical locals (table 2) our model gives excellent results. When the local 
stock levels are equal to one our model even yields exact results. For the case with non-identical 
locals (table 3) the model still performs very good. 

3.2 Sensitivity to leadtime distribution 

Our modeling assumptions include exponentially distributed shipment times for normal replenish
ments. However, in practice these shipment times are close to deterministic since they consist of 
transportation times between inventory locations. Therefore, we also simulated the system with 
deterministic leadtimes. The results are also presented in tables 2 and 3 (det). 

An analysis of these results shows that the service performance of the system is almost identical 
for exponential and deterministic shipment times. Apparently the lead time distribution does not 
affect the service performance. In fact, the key METRIC assumption is that Palm's theorem 
for infinite server queues applies to the replenishment process of the local warehouses as well. 
Palm's theorem [8] states that the distribution of parts in resupply is only dependent on the 
replenishment time distribution through its mean. The results indicate that our model is to a 
large extent insensitive to the choice of the leadtime distribution. 
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i e Pi 
case Ai Li Si So ESM exp det ESM exp det ESM exp det 

0.01 3 1 1 0.00 0.00 0.00 0.02 0.02 0.02 0.89 0.88 0.88 
1a 0.02 3 0.84 0.84 0.84 

0.03 3 0.80 0.81 0.81 

0.01 3 1 2 0.00 0.00 0.00 0.01 0.01 0.00 0.95 0.94 0.94 
2a 0.02 3 0.91 0.91 0.91 

0.03 3 0.88 0.89 0.89 

0.02 1 1 1 0.00 0.00 0.00 0.02 0.02 0.02 0.88 0.88 0.87 
1b 0.02 3 0.84 0.84 0.84 

0.02 5 0.82 0.82 0.82 

0.02 1 1 2 0.00 0.00 0.00 0.01 0.01 0.00 0.95 0.95 0.95 
2b 0.02 3 0.92 0.92 0.92 

0.02 5 0.88 0.88 0.88 

0.02 3 1 2 0.00 0.00 0.00 0.13 0.13 0.13 0.69 0.67 0.66 
4a 0.06 3 0.61 0.61 0.61 

0.10 3 0.54 0.56 0.56 

0.02 3 2 1 0.00 0.00 0.00 0.03 0.03 0.03 0.92 0.88 0.88 
5a 0.06 3 0.81 0.80 0.80 

0.10 3 0.72 0.73 0.73 

0.02 3 2 2 0.00 0.00 0.00 0.01 0.01 0.01 0.97 0.94 0.94 
6a 0.06 3 0.90 0.89 0.89 

0.10 3 0.83 0.83 0.83 

0.06 1 1 2 0.00 0.00 0.00 0.13 0.13 0.13 0.68 0.68 0.67 
4b 0.06 3 0.62 0.61 0.61 

0.06 5 0.57 0.57 0.57 

0.06 1 2 1 0.00 0.00 0.00 0.03 0.03 0.03 0.86 0.84 0.84 
5b 0.06 3 0.83 0.81 0.81 

0.06 5 0.80 0.78 0.78 

0.06 1 2 2 0.00 0.00 0.00 0.01 0.01 0.01 0.94 0.92 0.92 
6b 0.06 3 0.91 0.89 0.89 

0.06 5 0.88 0.87 0.87 

0.05 3 I 6 0.02 0.02 0.02 0.06 0.06 0.06 0.73 0.73 0.73 
9a 0.10 3 0.67 0.67 0.67 

0.15 3 0.61 0.62 0.62 

0.05 3 1 10 0.05 0.05 0.05 0.00 0.00 0.00 0.77 0.77 0.77 
lOa 0.10 3 0.71 0.71 0.71 

0.15 3 0.66 0.66 0.66 

Table 3: Results for nonidentical local warehouses, N = 3 and To = 15 
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i a Pi 
case Ai L;. Si So ESM exp det ESM exp det ESM exp det 

0.05 3 2 2 0.00 0.00 0.00 0.09 0.09 0.09 0.79 0.74 0.74 
lla 0.10 3 0.70 0.68 0.68 

0.15 3 0.63 0.63 0.63 

0.05 3 2 3 0.00 0.00 0.00 0.05 0.05 0.05 0.88 0.83 0.83 
12a 0.10 3 0.80 0.77 0.77 

0.15 3 0.72 0.72 0.72 

0.10 1 1 6 0.02 0.01 0.01 0.06 0.06 0.05 0.82 0.81 0.81 
9b 0.10 3 0.69 0.68 0.68 

0.10 5 0.59 0.59 0.59 

0.10 1 1 10 0.05 0.03 0.03 0.00 0.00 0.00 0.88 0.87 0.87 
lOb 0.10 3 0.73 0.72 0.72 

0.10 5 0.63 0.62 0.62 

0.10 1 2 2 0.00 0.00 0.00 0.09 0.09 0.09 0.76 0.73 0.73 
llb 0.10 3 0.71 0.69 0.69 

0.10 5 0.67 0.65 0.65 

0.10 1 2 3 0.00 0.00 0.00 0.05 0.05 0.05 0.86 0.82 0.82 
12b 0.10 3 0.80 0.78 0.78 

0.10 5 0.76 0.74 0.74 

Table 3: cont'd 

4 Economic evaluation 

4.1 Cost structure 

In order to evaluate the performance of the model we need a cost structure that takes into account 
the different operational cost factors. These include: inventory holding costs, normal replenish-
ment costs (to the central warehouse and to the local warehouses), emergency shipment costs 
(ELT, direct delivery from the central warehouse and direct delivery from the plant) and penalty 
costs for customers who have to wait. We need the following cost parameters to make an economic 
evaluation: 

c: unit price of the item 

ho : inventory holding cost at central warehouse per item per time unit expressed as a fraction 
of the unit price 

hi : inventory holding cost at local warehouse i per item per time unit expressed as a fraction of 
the unit price 

TO : normal replenishment cost per item for the central warehouse 

Tj : normal replenishment cost per item for local warehouse i 

eo : emergency replenishment cost for using an ELT per item 

11 



el : emergency replenishment cost for using a direct delivery from the central warehouse per item 

ea : emergency replenishment cost for using a direct delivery from the plant per item 

Zi : penalty cost per time unit for a waiting customer at local warehouse i 

We assume that the cost for using a particular kind of emergency shipment is equal for all locals. 
However, it is possible to differentiate these costs for the different locals. The expected waiting 
time for an arbitrary customer at local i, Wi, can be expressed as follows: 

Given the steady-state probabilities 1rjk and p; we calculated in section 2, we can now formulate 
the total cost TC per time unit as follows: 

50 S N 5; N 

TC = c· ho L Li1rjk + C Lhi Lip; + eo L O:iAi + el,X + eaox 
i=lk=O ;=1 i=l i=1 

N N 

+ro(l- O)X + L ri(1 - (1 -,)X + L Ai Wi Zi 

i=1 

We use this cost function to find the optimal stock levels that minimize the total costs. 

4.2 Numerical evaluation 

In this section we present, for different parameter values, the minimum total cost, TC", and 
associated optimal stock levels, So and S;, resulting from our model and cost structure. We 
assume that we have three identical local warehouses. Our main interest is to investigate the 
influence of certain parameters on the minimum total cost and optimal stock levels, namely: the 
demand rate (Ai), the inventory holding cost fractions (ho, hi), the emergency replenishment costs 
(eo, et, ea) and the penalty cost (z,). The remaining system parameters are fixed as follows (time 
units in days): 

c = 10000, ro = ri = 10, To = 15, T; = 3, Do = 0.5, Dl = 1, D2 = 2. 

The parameters we vary in the experiment are set as follows: 

Ai E {0.02,0.06,0.1O},h i E {0.10/365,O.30/365}, 

eO,1,2 E {(10, 30,100), (30, 90, 3GO)}, Zi E {100, 1000}. 

The inventory holding costs are identical for all stocking locations and are 10% and 30% respec
tively of the unit price c per year. The results are shown in table 4. 

4.3 Comparison with VARI-METRIC 

Table 4 also shows the minimum total cost (TCI)) and the optimal stock levels (S8, Sf) if no 
emergency supply flexibility exists in the system. The cost structure is the same as before except 
for emergency transportation costs that will not occur in this case. We calculated the relevant 
costs using the VARI-METRIC technique as described by Graves [4]. We see that in all the 24 
cases we analyzed, the policy of using emergency supply flexibility as described in this paper 
results in a lower total cost. The right-most column of table 4 shows the relative decrease in costs 
when using emergency supply flexibility. A maximum cost reduction of 43.9% and a minimum of 
13.2% is obtained. The results also show that in many cases the stock levels are lower when using 
emergency supply flexibility. Especially the central stock level shows a significant decrease. 
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0.02 

0.06 

0.10 

eO,1,2 

0.10/365 (10,30,100) 

(30,90,300) 

0.30/365 (10,30,100) 

(30,90,300) 

0.10/365 (10,30,100) 

(30,90,300) 

0.30/365 (10,30,100) 

(30,90,300) 

0.10/365 (10,30,100) 

(30,90,300) 

100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 
100 
1000 

TC· 
8.84 
15.04 
10.03 
15.19 
17.27 
32.03 
20.99 
32.43 
17.22 
24.86 
18.81 
25.08 
30.97 
54.72 
36.89 
55.44 
23.11 
32.03 
25.18 
32.21 

So 
o 
2 
o 
2 
1 
1 
o 
1 
1 
3 
1 
4 
1 
2 
2 
2 
4 
4 
5 
5 

0.30/365 (10,30,100) 100 42.54 2 
1000 71.28 3 

(30,90,300) 100 48.76 3 
1000 71.91 3 

s; 
1 
1 
1 
1 
o 
1 
1 
1 
2 
2 
2 
2 
1 
2 
1 
2 
2 
3 
2 
3 

13.55 
21.01 
13.55 
21.01 
30.76 
48.92 
30.76 
48.92 
23.28 
31.34 
23.28 
31.34 
46.94 
73.90 
46.94 
73.90 
29.01 
38.34 
29.01 
38.34 

2 
2 
2 
2 
1 
3 
1 
3 
3 
5 
3 
5 
4 
5 
4 
5 
6 
7 
6 
7 

2 62.01 5 
3 92.86 6 
2 62.01 5 
3 92.86 6 

Table 4: Cost evaluation 

5 Concluding remarks 

1 
2 
1 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
2 
1 
2 
2 
3 
2 
3 

% 
34.8 
28.4 
26.0 
27.7 
43.9 
34.5 
31.8 
33.7 
26.0 
20.7 
19.2 
20.0 
34.0 
26.0 
21.5 
25.0 
20.3 
16.5 
13.2 
16.0 

2 31.4 
3 23.2 
2 21.4 
3 22.6 

In this paper we presented a two-echelon inventory system with one-for-one replenishment in which 
we modelled a number of supply alternatives. Customers that arrive at the local warehouses in a 
stockout situation are not backordered but satisfied through an emergency lateral transhipment, 
a direct delivery from the central warehouse, or a direct delivery from the plant. We presented 
an approximate model that is solved in two steps. In the first step an exact aggregate model 
is developed that combines all local warehouses into one warehouse. In the second step we use 
an approximate model to calculate the service performance at the various local warehouses. The 
numerical results indicate that the performance of our model is very close to the simulation results. 
Another important observation is that the distribution of the shipment times has a negligible 
impact on the service performance. This is important since we have to assume exponentially 
distributed shipment times in our model analysis. In an economical analysis we compared the 
optimal cost results of our model with the VARI-METRIC cost results. In all cases we found 
major cost reductions, which indicate that using emergency supply flexibility in a distribution 
network for service parts can be very beneficial. 

Some topics for further research could be the modeling of more than one pooling group and 
extending the model to more than two echelons. Another important research question is the 
comparison of different policies. We compared our model with the VARI-METRIC model in 
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which all excess demand is backordered. Comparisons with other policies in which some of the 
above emergency supply alternatives are used (or other alternatives?) can answer the question: 
When to use what kind of emergency supply flexibility in your distribution network? 
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