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Summary 

In a printer, an image is initially brought onto a belt before it is transferred to a sheet 
of paper. Although the position of this belt is controlled, position errors occur. These 
errors are partly of repetitive nature. Due to these errors, an image is printed too low 
or too high on a sheet of paper. The goal of the research is to design an algorithm 
that predicts the position error of this belt, so that the image can be brought onto the 
belt at an adjusted time, in order to compensate the position error. 

The position of the belt is measured by an encoder and is compared with a 
reference position, resulting in an error. Some experimentally obtained error data 
series are maiysed. Pswerspedra of ihe error data s h u ~  that a sigfiificant pari ?if the 
error power is present at only a few fixed frequencies. Furthermore, these repetitive 
parts of the error signal have a shape similar to a sine wave. 

TWO esntrsi strategies that are able to coiinteract periodic distiiibanees are 
repetitive control and active noise control. Repetitive control uses a memory loop to 
generate periodic signals that can be used for compensation. In order to predict the 
position error of the belt, a repetitive control system is designed and extended with 
some filters. The designed system is tested on the experimentally obtained error 
data. The results show that a reduction in error power can be obtained. Active noise 
controi is a signal processing strategy iii which a digital filter processes a reference 
signal, in order to compensate the error signal. An adaptive algorithm adapts the filter 
coefficients at runtime. An optimised active noise control system is tested on the 
experimentally obtained error data. The results show that a larger error power 
reduction is obtained than with the repetitive control configuration. 

In order to test whether a significant improvement in registration accuracy is 
made, the designed system is tested on an experimental set-up. The choice is made 
to use the active noise control system, because this strategy results in a larger error 
power reduction, requires less computational effort and is easier to implement than 
the designed repetitive control system. The designed algorithm is translated from 
Matlab to the C language and is integrated with the software that runs on the 
experimental set-up. Experiments show that the online performance of the algorithm 
is similar to the offline performance, which means that the algorithm is able to predict 
a part of the position error of the belt. However, using the algorithm to adjust the 
moment of start of page does not influence the registration accuracy significantly. 
The explanation for this is probably that the experimental set-up produces too many 
other disturbances that affect the registration accuracy. 



List of symbols 

Symbol Meanina Unit 

angular frequency 
convergence rate 
mean square error 

mean square error estimate 
frequency of primary noise signal 
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amplitude of reference signal 
amplitude of primary noise signal 
dynamic cempensater 
controller 
disturbance signal 
expectation operator 
servo error I measured error 
compensated error 
transfer functler! 
gain 
number of filter coefficients 
number of frequencies 
number of samples 
sample number 
cross-correlation vector 

process 
signal power 
low-pass filter 
auto-correlation matrix 
reference signal vector 
reference signal 
reference signal 
sampling time 
filter coefficient vector 
filter coefficient 
optimal filter coefficient 
optimal filter coefficient vector 
output signal 
individual output 
variable in the z-transform 
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1. Introduction 

The demands made on the accuracy with which an image is printed on a sheet of 
paper get higher and higher. One of the errors that occur is that an image is printed 
too high or too low on a sheet of paper. This error is partly of repetitive nature. If this 
error can be predicted, the start of page signal can be adjusted, so that the image is 
printed a little earlier or later to compensate the error. 

Figure I. I: Inside of an oc6 printer 

\ transfer 
pinch 

OPC belt 

Figure 1.2: Schematic representation 

In Figure 1 .I a part of the inside of an oce printer is depicted. Two belts are 
visible. The lower belt is the organic photo conductor belt (OPC). The upper is the 
transfer-and-transfuse belt (TTF). Initially a charge is brought onto the OPC belt. 
After that, the charge is exposed in order to create the image in the charge. Next, the 
charge will attract the toner and a visible image is developed. Then the image is 
transferred to the TTF belt and the OPC belt is discharged. Finally, the TTF belt 
transfers the toner image to a sheet of paper. 

Figure 1.2 is a schematic representation of the OPC and TTF belt. The OPC 
belt is driven by the OPC motor and its position is measured by an encoder every 2 
ms. The OPC belt is assumed to be rigid. Although the belt is controlled, position 
errors occur, which are partly repetitive. Possible causes of these errors can be 
eccentric rollers or collision of the paper with the transfuse pinch. Earlier performed 
experiments show that these position errors result in the image being printed either 
too low or too high on the sheet of paper. If one can predict the position error of the 
OPC belt, the print head can bring the image onto the OPC belt a little earlier or later 
in order to compensate this error. 

The goal of the research is to design an algorithm that predicts the position 
error of the OPC beit as accurate as possibie, so that it can be compensated. In 
order to do this, first some error data obtained from an experimental set-up will be 
analysed. The main purpose of this analysis is to determine what part sf the error 
signal is repetitive and what part is random noise. After that, two control strategies 
that are able to counteract periodic disturbances will be treated: repetitive control and 
active noise control. The principles of these strategies will be discussed and the 
strategies will be adapted to the problem. They will be tested and optimised by 
means of simulations performed on error data. Both strategies will be compared in 
order to find the most suitable solution to this problem. Finally the most suitable 
strategy will be implemented on the experimental set-up. Measurements will be made 
in order to determine whether an improvement is made. 



2. Error data analysis 

Before the design of an algorithm that predicts an error can be started, some insight 
into the error signal must be obtained. Especially the frequencies the error signal 
consists of are of great importance. In order to make error prediction possible, a 
significant part of the error power must be present at only a few frequencies. In this 
chapter some experimentally obtained error data series will be analysed. 

In the experimental set-up an encoder measures the belt position with a 
sampling frequency of 500 Hz. The measured position can be compared with a 
reference position, resulting in an error. Ten data series are available, each of one 
minute iengtn. Aii aata series are obtained from the same experimen'lai sei-up on 
diiiereni: days. A straightforward way to analyse the error data is to construct 
powerspectra. Figure 2.1 shows the powerspectra of two arbitrary data series. 
Because nearly aii power is present in frequencies up to 15 i iz,  the powerspectra are 
plotted up to this frequency. It is visible that the powerspectra show peaks at some 
frequencies. The two powerspectra are similar in a way that peaks are visible at the 
same frequencies. However, the heights of the peaks in the two powerspectra differ. 
The same similarity holds for the remaining data series. 

0.1 

0.05 Ol:h , , , , , , -, ,I i ,  , , 1 0 0 
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frequency [Hz] frequency [Hz] 

Figure 2. I: Powerspectra of experimenfally obtained error dafa 

The powerspectra show large peaks at 0.66 Hz. A question that arises is how 
much the error power will decrease if this frequency is filtered out. In order to answer 
it, first the total error power is determined. Sec~nd, the signal is averaged over the 
period corresponding to 0.66 Hz. This is done by dividing the signal in parts of 110.66 
= 1.51 seconds, as illustrated in figure 2.2, adding the individual parts, as illustrated 
in figure 2.3, and dividing the resulting signal by the number of parts. 
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time [s] 

Figure 2.2: Divide signal in parts 
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Figure 2.3: Add individual parts 



Figure 2.4 shows signals that are obtained by averaging the error data of one series 
over the period corresponding to 0.66 Hz and 4.1 5 Hz respectively. One can see that 
the part of the error signal with frequency 0.66 Hz is approximately a sine wave and 
the part with frequency 4.1 5 Hz is almost a perfect sine wave, so the problem might 
very well lay with eccentric rollers. 

time Is] time [s] 

Figure 2.4: Averaged signals 

Finally the averaged signal is subtracted from the original signal and the signal power 
is determined again. Subtracting the over 0.66 Hz averaged signal from the original 
signal and recalculating the signal power results on average in a decrease of 
approximately 25%. If this procedure is repeated for the five most powerful 
frequencies, an error power reduction of approximately 50% is obtained. 



3. Repetitive control 

A control strategy that is able to counteract periodic disturbances is repetitive control. 
It is based on the internal model principle, which states that a model of the 
disturbance should be included in the feedback loop in order to achieve asymptotic 
tracking and disturbance rejection. The main part of a repetitive controller is the 
memory loop, which will be treated first. Second, the general repetitive control 
configuration will be looked at. Third, the repetitive control configuration will be 
adapted to the problem. Repetitive control will be treated in discrete-time because 
the system will use the discrete signal from the encoder. 

3.1 Memory loop filtering 

-. 
I ne main part sf a repetitive controiier is the memory ;oop, which caii be seen as a 
signal generator that will generate arbitrary periodic signals. A memory loop is a 
digital filter that consists of a series of time delays with a positive feedback loop. 
Figure 3.1 shows the configuration of a memory loop. It can generate discrete-time 
signals with fundamental period NT in which T is the sampling time of the digital filter 
and N is an integer representing the number of samples in the memory loop. 

Figure 3.1: Memory loop 

The transfer function of this configuration can be expressed as: 

From the transfer function can be seen that the memory loop has N poles uniformly 
distributed on the unit circle, which implies that the system is on the boundary of 
stability. This is shown graphically in figure 3.2. The figure shows a pole-zero map of 
a memory loop with N = 10 samples delay and a sampling time of T = 0.01 s. The 
magnitude plot of this memory loop is shown in figure 3.3. At the fundamental 
frequency, I INT = 1/(10*0.01) = IOHz, and at its multiples, 'infinite' peaks are visible. 
The variation in height of the peaks is the effect of inaccuracies of the solver. 
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Figure 3.2: Pole-zero map of memory loop 
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Figure 3.3: Magnitude plot of memory loop 



3.2 Repetitive control: general case 

The most commonly used repetitive control configuration is shown in figure 3.4. Here 
the memory loop is connected to the control loop in an add-on manner. This 
configuration is used to either suppress periodic disturbances d or to track periodic 
reference signals r. The blocks P and C represent the process to be controlled and 
the conventional controller respectively. 

Figure 3.4: Basic repetitive control configuration 

The servo error e of the system can be expressed as: 

According to the small gain theorem the system is asymptotically stable if [I]: 

1+CP 

is asymptotically stable and if 

In general this last condition is not satisfied. In order to guarantee stability a dynamic 
compensator b is included in the system, as shown in figure 3.5. 

Figure 3.5: Repetitive control configuration with dynamic compensator 



The servo error (3.2) now becomes: 

Stability condition (3.4) changes into: 

A straightforward way to obtain stability is to take b as follows: 

CP 
with O<k<2. H~bvever, if the transfer function --- contains unstable zeros, these 

1+CP 
zeros will appear as unstable poles in b. Besides that, the differentiating nature of an 
inverse system might amplify high-frequency disturbances [I]. In this case, usually a 
zero-phase cancellation filter is used [2]. 

If a suitable dynamic compensator has been found, stability problems may 
still arise due to unmodelled high-frequency dynamics. In order to overcome these 
problems a low-pass filter q is added. This filter will weaken the effect of the memory 
loop at higher frequencies. The side effect of this extension is that tracking will be lost 
in the high frequency range beyond the passband. The cut-off frequency should thus 
always be chosen a little higher than the signal bandwidth of the periodic signal 
affecting the system. Figure 3.6 shows the repetitive control configuration including 
the low-pass filter 9. 

Figure 3.5: Repefjfjve control configgurafjoon ~wifb dynamjc compensator and bw-pass filter 

The senm error (3.2) changes into: 

Stability condition (3.4) becomes: 



3.3 Application of repetitive control 

In order to use repetitive control for the specific problem of error prediction, the 
general configuration must be adapted. Because the system only has to predict an 
error value, the adapted configuration does not contain a controller C and a process 
P and can be simplified to figure 3.7. 

Figure 3.7: Repetitive control configuration for error prediction 

The input of the system is the measured error e. The memory loop generates a 
signal that compensates for a specific repetitive part of the error signal. The output of 
the system is the compensated error signal ec, which should become zero in the 
optimal case. In fact the system predicts (a part of) the error signal and compensates 
for it. 

The transfer function of this configuration can be written as: 

All poles of the system lie at the origin, so the system is stable. The system's 
performance can be analysed by considering its magnitude plot, which is shown in 
figure 3.7a. Figure 3.7b shows the same plot, zoomed in around magnitude equal to 
zero. The plots are made with N = 50 samples delay and a sampling time T of 0.002 

frequency [Hz] frequency [Hz] 

Figure 3.7a/b: Magnitude plo fs repetitive conirol system for error prediction 



The figures show that the magnitudes of the fundamental frequency (IINT = 10 Hz) 
and its multiples are very small, so these frequencies are suppressed. Furthermore, 
frequencies between multiples of the fundamental frequency have a magnitude 
greater than 1, so these frequencies will be amplified by repetitive control. This might 
be a drawback if the error signal contains frequencies that differ from the 
fundamental frequency or multiples thereof. 

The system is tested with a sine wave as input signal. First a frequency of 10 
Hz is taken. This is the frequency for which the system is designed. Figure 3.8a 
shows the results of the test. As expected, after one period of the sine wave, the 
system has totally converged and the compensated error e, is zero. Next a slightly 
dlfierent frequency of !I Hz Is used (figure M b ) .  The compensated error does not 
converge to zero anymore, but is still smaller than the uncompensated error. Finally a 
frequency of 15 Hz is used as an input signal (figure 3.8~). Now the compensated 
error is even bigger than the uncompensated error. These results agree with the 
conclusions drawn from the magnitude plots. 

0 0.1 0.2 0.3 0.4 0 5  0.6 0.7 0.8 0.9 1 
time [s] 

0.1 0.2 0.3 0.4 0 5  0.6 0.7 0 8  0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
time [sl time [sl 

Figure 3.8a/b/c: Error as a function of time for sine inputs of respectively 10 Hz, I I Hz and 15 Hz 

Now the system is ready to be tested on the real data obtained from the 
experimental set-up. Data analysis performed in chapter 2 showed that 0.66 Hz is the 
most powerful frequency. Therefore the delay in the memory loop is chosen 110.66 
Hz = 1.51 5 s. The sampling time T of the measurements amounts to 0.002 s, so the 
length of the memory loop N is 1.51510.002 = 758 samples. Simulations are 
performed on all available data-series. The resulting compensated error is compared 
with the uncompensated error, with poor results. The power of the compensated 
power is on average even 50% higher than the power of the uncompensated error. 
However, the peak in the powerspectrum at 0.66 Hz has seriously decreased, as can 
be seen from figure 3.9. This figure shows the powerspectrum of one arbitrary data 
series together with its compensated powerspectrum. 



Figure 3.9: Powerspectrum of compensated and uncompensated error signal 

A simple modification of the system is carried out in order to improve the 
results. A gain k is added in the memory loop as shown in figure 3.10. 

Figure 3.10: Repetitive control configuration for error prediction with additional gain 

Transfer function (3.1 0) changes into: 

By adjusting the gain k, the effect of the memory loop can be strengthened or 
weakened. The latter results in a magnitude plot with less high maxima and less low 
minima. The system can be optimised by adjusting the gain until the power of the 
compensated error is lowest. The optimal gain is found to be approximately 0.25. 
Figure 3.1 1 shows the magnitude plot of the transfer function with k = 0.25 together 
with the one with k = 1. It is visible that the system with k = 0.25 suppresses the 
fundamental frequency and its multiples less than the system with k = 1 does. 
However, frequencies betwegn the fundamental frequency and its multiples are less 
amplified. Simulations perforyed on the same data series resuit in a compensated 
error power that is approximately equal to the uncompensated error power. Figure 
3.12 shows the powerspectrq of the uncompensaled error and the eiror 
compensated by the system with k = 0.25. The same data series is used as for figure 
3.9. One can see that the peak at 0.66 Hz is not totally suppressed anymore. 
However, the remaining of the frequency range is less amplified than by the system 
with k = 1 (compare with figure 3.9). Still, the error power is not reduced, only the 
powerspectrum is flattened. 



Figure 3. I I: Magnifude plots for different gains 

frequency [Hz] 

Figure 3.12: Powerspecfrum of error signal 

In order to improve the system's performance, a second modification is made. 
In the powerspectrum one can see that the fundamental frequency 0.66 Hz hardly 
has multiples. However, the designed system does suppress these multiples and 
amplifies the frequencies between them. In order to prevent this, a low-pass filter q(z) 
can be added as shown in figure 3.1 3. The low-pass filter will weaken and finally 
cancel the effect of the memory loop above a certain cut-off frequency. The best 
result will be obtained if the low-pass filter has a sharp cut-off at 0.66 Hz. This way 
the memory loop will only suppress the most powerful frequency and it will not deal 
with higher frequencies. 

Figure 3.13: Configuration wifh additional gain and low-pass filfer 

The chosen low-pass filter is one of the FIR filter type (see chapter 4 for explanation). 
In order to obtain a sharp cut-off, a high order filter must be chosen, especially 
because the sampling frequency (500 Hz) is high in comparison with the cut-off 
frequency (0.66 Hz). Figure 3.14 shows the magnitude plot of a 100" order low-pass 
FIR filter with a cut-off frequency as low as possible (below a certain frequency, 
further decrease of the cut-off frequency has no influence). As can be seen, only 
frequencies above 10 Hz are fully suppressed. The transfer function of the new 
configuration can be written as: 

Again an optimal gain can be searched for. In this case the optimal gain k is found to 
be approximately 0.45. Figure 3.15 shows the magnitude plot of this transfer function 
together with the magnitude plot of the transfer function without the low-pass filter 



(3.11). It can be seen that the magnitude of the system including the low-pass filter 
approaches unity above 10 Hz. 

\, - , 
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frequency [Hz] frequency [Hz] 

Figure 3.14: Magnitude of low-pass filter Figure 3.15: Magnitude of system with low-pass filfer 

Simuiations are repeatea' for tne new system. The resuits show a decrease of error 
power. On average the compensated error power is about 15% lower than the 
uncompensated error power. 

In principle this system can be used. However, a very high order low-pass 
filter is needed in order to obtain satisfactory results. The high order of the filter can 
cause problems in the real implementation. A solution to these problems is 
decreasing the sampling frequency of the system, because the order of the low-pass 
filter will decrease proportionally with the sampling frequency. The choice is made to 
decrease the sampling frequency with a factor 10. This way only a 1 oth order instead 
of a 1 Ooth order low-pass filter is needed to give the same magnitude characteristic. 
However, the sampling frequency of the measurements is still 500 Hz. In order to 
adapt the input signal to the system's sampling frequency, the measured signal is 
averaged over 10 samples each time. Furthermore, the compensation signal must be 
available with a frequency of 500 Hz, so the 50 Hz output signal of the system must 
be changed back to a 500 Hz signal. Interpolating the 50 Hz output signal 
accomplishes this. Simulations show that the decrease of the system's sampling 
frequency does not influence its performance. The explanation for this is that a 
sampling frequency of 50 Hz is still iarge enough to describe the compensation signal 
of 0.66 Hz correctly. 

Instead of decreasing the order of the low-pass filter proportionally with the 
sampling frequency, it can be kept constant as well. This way the magnitude 
characteristic of the filter shows a sharper cut-off (figure 3.1 6), which results in a 
magnitude plot of the system that already approaches unity at 1 Hz instead of 10 Hz 
(figure 3.17). Simulations performed with the corresponding optimal gain show that 
this modification results ir! an extra decrease of error power of a few percents. 
However, the problem of the high order filter is still present. Reducing the sampling 
frequency of the system again could solve the problem, H~wever, a too low sampling 
frequency will result in a poor description of the compensation signal, which yields an 
increase of error power. 
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Figure 3.16: Magnitude of low-pass filfers Figure 3.17: Magnitude of system with low-pass filter 

0.9 

0.8 

0.7 

It's clear that a trade-off must be made in order to tune the system's 
parameters. It can be summarised as follows: The low-pass filter must have a cut-off 
as sharp as possible. This is achieved by either reducing the sampling frequency or 
increasing the filter order. On the one hand reducing the sampling frequency could 
result in a worse description of the compensation signal. On the other hand, 
increasing the filter order can give problems in the real implementation. Trial and 
error will yieId the best system parameters. 

The simulations performed so far predicted (a part of) the error only one 
sample before it was measured. However, in the real implementation the prediction 
and compensation of the error must occur approximately one second in advance. 
Simulations are performed in order to determine whether this influences the results. It 
turns out that this delay does not influence the results significantly. 
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4. Active Noise Control 

Active noise control (ANC) is a signal processing strategy in which additional 
secondary sources are used to cancel noise from the original primary source. It is 
based on the principle of superposition: an anti-noise of equal amplitude and 
opposite phase is generated and combined with the primary noise, resulting in 
cancellation of both noises. 

Two types of noise can be distinguished: broadband and narrowband. 
Broadband noise is totally random, which means that its power is (approximately) 
equally distributed across the frequency spectrum. To cancel this kind of noise 
broadband feedforward AN@ is used. This technique uses a reference sensor close 
to the noise source to measure a signal that gives an indication of the approaching 
noise. Primary noise that correlates with the reference signal will be cancelled 
downstream with a secondary source. Narrowband noise concentrates most of its 
power at specific frequencies. A technique that is effective in reducing this repetitive 
noise is called narrowband feedforward ANC. This technique does not use a 
reference sensor to describe the approaching noise, but uses information about the 
frequencies of the noise signal instead. This information can be obtained offline in 
case of a stationary noise signal or online in case of a time varying noise signal, for 
exampie by a tachometer. if there is no reference sensor or other a priori kno'dzbge 
of the primary noise signal, feedback ANC is used. In this approach only the resulting 
error is fed back in order to cancel the primary noise. 

4.1 Narrowband feedforward ANC 

The problem of compensating the position error of the OPC belt is a typical problem 
for narrowband feedforward ANC. The condition that most of the power of the signal 
is concentrated at specific frequencies is satisfied, because half the signal power is 
present at only five frequencies (see chapter 2). Furthermore, these frequencies are 
known in advance. 

Figure 4.1 shows the configuration of a narrowband feedforward ANC system. 
An ANC system consists of two main parts: a digital filter and an adaptive algorithm. 
The digital filter processes the incoming reference signal rand generates the 
secondary signal y that compensates the primary noise signal e. The adaptive 
algorithm adapts the filter coefficients at runtime in order to minimise the mean 
square value of the output ec. 

r 
digital ec 
filter 

> 

Signal / 

adaptive 
algorithm I 1  

Figure 4.1: Narrowband feedforward ANC configuration 

Usually a Finite Impulse Response (FIR) filter is used, which is schematically 
depicted in figure 4.2. 



Figure 4.2: Block diagram of FIR filter 

Give:: a set of L f lte: ccefficients, v@), ! = 0, 1 ,. . ., L-1 , and a data sequence (r(n) 
r(n-I) . .. r(n-L+1)} (n denotes the sample number), the output signal is computed as: 

If the reference signal vector and weight vector are respectively defined as: 

Then the output signal y(n) can be written as: 

The compensated error signal e,(n) can now be written as: 

e, (n)  = e(n) - y(n) = e(n) - ET (n)p(n) 

4.2 Adaptive algorithm 

The adaptive algorithm updates the coefficients of the digital filter to optimise some 
predetermined performance criterion. Usually the mean square error (MSE) is 
minimised, which is defined as: 

where E [ I  is the expectation operator. Substitution of equation (4.5) in (4.6) results 
in the fo!!owing expression for the MSE: 

{ (n)  - E[e2 (n)] - 2p - y(n)  + y ' ( n ) ~ y ( n )  (4.7) 

where p is the cross-correlation vector from the input error e(n) to the reference 
signal zn) and R is the auto-correlation matrix of the reference signal fin). 



R z ~ [ ~ ( n ) ~ ~  (n)]  (4.9) 

The MSE is a function of the filter coefficients ~ ( n ) .  For each value of the filter 
coefficient vector ~ ( n ) ,  there is a corresponding value of the MSE. The MSE values 
associated with a filter of L weights thus span an (L+l) dimensional space that is 
called the performance surface. For L = 2 this can be presented graphically as is 
shown in figure 4.3. The values woO(n) and wI0(n) are the optimal coefficients of the 
digital filter, which result in a minimum MSE. 

Figure 4.3: Performance surface 

The optimal filter coefficient vector @(n) can be found by differentiating the 
expression for the MSE (equation 4.7) with respect to the filter coefficient vector ~ ( n )  
and nullifying the result: 

Calculating the solution will generally demand a great computational effort. 
Therefore, a recursive method for computing @(n) is used. To minimise the MSE 
one needs to descend along the performance surface by adjusting the filter 
coefficients until the minimum MSE is reached. The steepest descent method is a 
method that reaches the minimum by following the direction in which the 
performance surface has the greatest rate of decrease. This means that the weights 
are updated in the direction of the negative gradient of the performance surface: 

where p is a convergence factor that controls stability as well as the rate of 
convergence to the optimal filter coefficients. The vector V4((n) is the gradient of the 
MSE with respect to the filter coefficient vector ~ ( n ) :  

Substitution of equation (4.12) in (4.1 1) results ir: the final form of the algorithm: 



The weight vector ~ ( n )  is adapted until it has converged to its optimum &(n) so that 
the gradient becomes zero. 

The method of steepest descent requires the statistics of e(n) and r(n) to be 
known. However, in many practical applications these are unknown so the method 
cannot be used directly. As an alternative the instantaneous squared compensated 
error ez  can be used to estimate the mean square error defined in equation (4.6): 

It follows that the gradient of the MSE is estimated by: 

Substitution of equation (4.5) results in the following expression for the gradient 
estimate: 

~ @ ( n )  = -2~(n)e ,  ( n )  (4.16) 

Substituting this in the equation of the steepest descent method (4.1 1 )  gives: 

The above equation is called the least mean square (LMS) algorithm. 
The convergence rate p must be selected in order to obtain stability and 

convergence. A sufficient but not necessary condition for stability is derived in [3]: 

where P, is the signal power of the reference signal r(n). 

4.3 Single frequency ANC 

If a sine wave is applied as the reference input, the LMS algorithm becomes an 
adaptive notch filter. It removes certain frequency components within a small band 
around the reference frequency. The adaptive notch filter is especially useful when 
the interfering sinusoid drifts slowly in frequency. Figure 4.4 shows a single 
frequency ANC system. 



r1 

Sine Wave r0 

Figure 4.4: Single frequency ANC system 

The primary noise signal e(n) is assumed to be a sine wave of the following 
form: 

where A, and q& are respectively the (unknown) amplitude and phase of the primary 
noise signal. a, is the frequency [radlsample] of the signal, which must be known. 
Because the primary noise signal is a sine wave, the reference-input ro(n) is chosen 
to be a sine wave of equal frequency: 

r, (n) = A sin(w , n) (4.20) 

By shifting the input signal 90" a cosine wave rl(n) is generated: 

r, (n) = A co s(w , n) (4.21) 

Correct linear combination of the two waves yields a secondary signal y(n) that is 
equal to the primary noise signal e(n). 

The LMS algorithm for this system is expressed as follows: 

wl (n + 1) = w, (n) + prl (n)e, (n), I = 0,l (4.24) 

Note that equation (4.22) can be obtained from equation (4.4) by taking: 

4.4 Multiple frequency ANC 

A single frequency component can be cancelled by a two weight adaptive filter. The 
cancellation of M frequency components can be achieved by connecting M two 
weight adaptive filters in parallel. The secondary signal y(n) is a sum of M individual 
compensation signals: 



The multiple frequency ANC system is depicted in figure 4.5 for M = 2 frequencies. 
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Figure 4.5: Multiple frequency A NC system 

4.5 Application of ANC 

The ANC signal processing strategy is used to predict the position error of the OPC 
belt. First single frequency AN@ is used to compensate the most powerful frequency 
in the error signal: 0.66 Hz. Before simulations can be performed, the algorithm's 
variables must be initialised. In this case the initial values of the filter weights and the 
convergence rate p must be selected. 

Convergence and initial performance depend on the initial values of the filter 
weights. Because the phase of the disturbance signal is unknown, no well-founded 
initial guess of the filter weights can be made. Therefore, the filter weights are given 
a low i~i t ia l  value of 0.001. 

Selection of the convergence rate ,u can be started by fulfilling the stability 
miidition (4.:8). To do this, the reference slgna! pewer Pr must be ~Cmputed, which 
is defined as: 

The reference signal p(n) is a sine wave with unit amplitude. This results in Pr = 0.5 
mm2. The single frequency ANC system uses two weights, so L = 2. Substitution of 
these values in equation (4.18) gives an upper bound on the convergence rate of 2. 
In order to obtain maximum convergence, the convergence rate should be chosen as 



large as possible, which is in this case 2. However, the prediction and compensation 
of the error must occur approximately 1 second before the error occurs. Therefore, 1- 
second-old filter weights are used to predict the error signal. A large convergence 
rate changes the filter weights very rapidly, so filter weights which are 1 second old 
will deviate a lot from the current filter weights. As a result the compensation signal 
will be bad and performance will be poor. Figures 4.6 and 4.7 show the results of 
simulations with convergence rate of 2 and 0.0003 respectively. Figures a show the 
uncompensated error signal together with the compensation signal and the 
compensated error signal. In these figures the compensation signal is generated 
using the current filter weights. Figures b show the filter weights. Figures c show the 
uncompensated error signal together with the compensation signal and the 
compensated error signal as well. However, in these figures the signals are I second 
ahead and compensated with the same filter weights as in figures a. 
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Figure 4.6aWc: Simulation results with large convergence rate 
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Figure 4,7a/b/c: Simulation results with small convergence rate 

Figure 4.6a shows that a large convergence rate results in fast convergence and 
good instantaneous compensation of the error signal. However the filter weights 
change very rapidly (figure 4.6b) and are therefore no longer valid after 1 second. 
This is visible in figure 4.6~: the compensated error is even larger than the 
uncompensated error. Figure 4.7a shows that a small convergence rate results in 
slow convergence. However, the compensation signal has the shape of a sine wave 
and slowly increases in amplitude. In steady state this sinusoidal part of the error 
sianal will be com~ensated. Fiaure 4.7b shows that the filter weights change a lot 



slower than in figure 4.6b. This results in a better compensation with I-second-old 
filter weights, as can be seen in figure 4.6~. It is clear that a trade off must be made 
between convergence speed and steady state error in order to find the best result. 

To improve convergence speed and maintain small steady state error, the 
convergence rate p is made variable. Initially the convergence rate is large in order to 
obtain fast convergence. After the algorithm has converged, the convergence rate is 
decreased until a final minimum convergence rate is reached. A way of updating the 
convergence rate is discussed in [4]. The value of p is decreased by a factor a if 
p(n - l)e(n) alternates sign on m successive samples. The parameters m and a are 
usually chosen to be 3 and 2 respectively. However, simulations show that a = 1.5 
provides better results in this particular case. The initial and final convergence rate 
must be selected as well. Simulations show that an initial convergence rate of 0.03 
and a final convergence rate of 0.0003 provide best results. 

Figure 4.8 shows the same results as figures 4.6 and 4.7. However, the 
results were obtained using the variable convergence rate algorithm. In figure 4.8b 
an extra line is visible, which represents the convergence rate. One can see that 
initially the filter weights change very rapidly (figure 4.8b), resulting in fast 
convergence (figure 4.8a). After some time the convergence rate decreases, 
resulting in slower changing of the filter weights. The compensation signat then 
becomes a steady sine wave. 
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Figure 4,8a/b/c: Simulation results with variable convergence rate 

Simulations are performed with the variable convergence rate algorithm for all 
ten available data series. The power of the uncompensated error is compared with 
the power of the compensated error using one second old filter weights. In the first 
six seconds of a run, the error power decreases approximately 1 1 % on average. It 
must be noted that the standgrd deviation of this result is lo%, indicating that the 
results of individual simulations vary a lot. 

In Qrder to try to impr~ve performance, the single frequency ANC system is 
extended to a multiple frequency ANC system. First the system is adjusted so that 
the most powerful frequencies (0.66 Hz and 4.15 Hz) can be compensated. Also 
the parameters for the 4.15-Hz-part must be selected. Simulations show that an initial 
convergence rate of 0.01 provides best results. The remaining parameters are 
chosen equal to the parameters of the 0.66-Hz-part. In the first six seconds of a run, 
this new configuration gives an average error power decrease of approximately 17% 
in comparison with the uncompensated error power. The standard deviation of this 
result amounts to '18%. 

Next the system is extended with a part for compensating a third frequency: 
10.29 Hz. After optimising the algorithm's parameters, the error power reduction is 



determined again. On average the error power decreases with approximately 11 % in 
comparison with the uncompensated error power, with a standard deviation of 20%. 
This means that adding the third frequency part worsens the result. The cause of this 
can be that the power at 10.29 Hz is too low for the algorithm to converge well. 

To determine how the algorithm performs after it has converged, simulations 
of one minute length are performed. These simulations are performed with the two 
frequencies ANC system. In the time range from six to sixty seconds an average 
error power reduction of approximately 26% with a standard deviation of 14% is 
obtained. In order to visualise this result, a histogram of the error amplitudes is 
included in appendix a. 

Finally the mbustness for frequency variations is investigated. This is done by 
increasing all reference signal frequencies with one percent. Simulations are 
repeated with the two frequencies ANC system on all available data series. On 
zverage the error poww decreases with appmximately 4% in comparison with the 
uncompensated error power, with a standard deviation of 22%. This result shows that 
the performance of the algorithm is sensitive to changes in frequency. 

The high standard deviations show that the results vary a lot. The deviation is 
mainly the effect of the large deviation of the individual data series. Furthermore, the 
initial convergence plays a role in performance. A coincidental bad initial 
cmverGence c m  lead to bad resu!ts. The large deviation makes it very difficult to 
determine optimal system parameters. However, a few general remarks can be made 
about the optimisation of the system parameters. First, if the error signal contains a 
great part of random noise, the convergence rate should be chosen low. This will 
prevent the system from converging to the random part instead of the repetitive part 
of the error signal. Second, only frequencies that show a clear peak in the 
powerspectrum should tried to be cancelled. Otherwise, the system will not be able to 
converge well, resulting in poor performance. Third, a variable convergence rate 
improves convergence speed and maintains small steady state error and is therefore 
advisable for non-stationary signals. 



5. Comparison of repetitive control with active noise control 

In the past two chapters, two strategies for predicting and compensating repetitive 
errors have been discussed. Both strategies are non-model based, only a repetitive 
part of the error signal is compensated. The strategies are also similar in a way that 
the frequency of the repetitive errors must be known in advance. Each strategy has 
its own advantages and disadvantages. The strategies are here compared on several 
general points as well as suitability for this specific problem. The comparison will 
result in a choice for a strategy to be implemented. 

Chapter 3 discusses the repetitive control strategy. This strategy is especially 
usefui for compensatmg frequencies with higher harmonics, uihich ars very often 
present in mechanical vibrations. Repetitive control uses a memory loop to generate 
a compensation signal, so any arbitrary repetitive error signal with a fixed frequency 
can be compensated. The side effect sf this memory loop is that frequencies 
between multiples of the fundamental frequency are amplified. A repetitive control 
system has fully converged after one period of the fundamental frequency. In order to 
cancel out the effect of the memory loop at higher frequencies, a low-pass filter can 
be added. If only one frequency must be cancelled, a very high order low-pass filter 
is needed, especially if the sampling frequency is high in comparison with the error 
frequency. Another effect of a high sampiirrg frequency in cornparism with the errer 
frequency is a large memory loop and as a result a large data-storage capacity is 
required. 

Active noise control is discussed in chapter 4. This strategy uses a digital filter 
to adapt a reference signal in order to compensate (a part) of the error signal. An 
adaptive algorithm adapts the filter weights. Usually a sine wave is used as a 
reference signal and as a result only error signals with a shape similar to a sine wave 
can be compensated. An ANC system can be extended in order to compensate more 
frequencies. These frequencies need not be multiples of each other. The 
convergence speed of an ANC system depends on the chosen convergence rate as 
well as the amount of noise of other frequencies that is present in the error signal. 
The differences of the two strategies are summarised in the table below. 

Repetitive control 
Any arbitrary repetitive error signal with 
fixed frequency can be compensated 

Full convergence after one period 

Suppression of multiples of fundamental 
frequencies as well 

Amplification of frequencies between 
multiples of the fundamental frequency 
Compuiaiionai effort and required data- 
storage capacity can be high due to low- 
pass filter and memory loop respectively 

Active noise control 
Only (parts of) error signals that are 
(similar to) a sine wave can be 
com~ensated 
Convergencespeed dependson 
parameter settings and the amount of 
noise of other frequencies 
No suppression of multiples of 
fundamental frequency. However, 
possibility to extend system to 
compensate more frequencies 
No amplification of other frequencies 

Low computational e??or? and hardly ne 
data-storage capacity needed 

Table 5. I: Comparison of repefifive confrol with active noise control 

Simulations performed on error data obtained from the experimental set-up 
show that more error power reduction can be obtained using the ANC strategy than 
using the repetitive control strategy. Furthermore, the computational effort and 



memory storage for the ANC system is much lower than for the designed repetitive 
control system. The ANC system is also easier to implement than the repetitive 
control system. For these reasons, the choice is made to implement the ANC 
strategy in the experimental set-up. 



6, Implementation 

To determine whether the designed ANC system improves the accuracy of 
registration significantly, the algorithm must be tested on the experimental set-up. To 
realise this, the algorithm has to be implemented in the C language. This is done by 
first translating the Simulink model to a few Matlab functions and then translating 
these functions to the C language. 

6.1 Composition of the functions 

The designed ANC system can be captured in three finciions: an iisiilalisaiim 
function, a function to update the filter coefficients and a function to predict the error 
of the OPC belt. The initialisation function assigns the initial values to the variables. - 
I his function must be run at the start up of a print session and has no input value. 
The update function receives the measured error from the encoder every 2 ms and 
updates the filter weights in order to minirnise the mean square error. The prediction 
function is run each time a new sheet of paper must be printed. It uses the current 
filter weights to predict what the position error of the OPC belt will be by the time the 
image is transferred to the TTF belt. The input of this function is the amount of time to 
the moment of transfer, which was eariler estimated at one second. The ~utcorne d 
the function is used to correct the time at which the image is printed onto the OPC 
belt. This results in compensation of the error. The described Matlab functions are 
included in appendix B. 

Next the Matlab functions are translated to the C language. There are a few 
restrictions when translating the functions. The algorithm must run very fast on a 
processor that is as cheap as possible (calculations are performed every 2 ms). 
Therefore sine and cosine functions are not allowed. These functions must be 
approached with tables. Furthermore, variables of type 'float' take a great 
computational effort and are therefore not allowed either. This means that only 
integers can be used. In order to preserve accuracy, decimal numbers must be 
scaled. This can be achieved by multiplying them with a large number. An integer 
can take any whole number between -32767 and 32767, so scaling must be done in 
such a way that the resulting number does not exceed these limits. However, the 
resulting number must contain enough digits in order to maintain accuracy. These 
restrictions can cause problems if the variable to be scaled varies in a great range 
and if great accuracy is required as well. 

The final form sf the C program is tested on the experimentally obtained error 
data and its results are compared with the results obtained using the Matlab 
functions. It appears that the results of the C program only slightly differ from the 
results obtained using the Matlab functions. These small differences can be 
attributed to loss of accuracy due to the scaling and approximation of the (co)sine 
functions. Appendix C shows the final C program. The written C functions are 
integrated with the total software that runs on the processor in order to be able to 
perf~rrn experiments. 

6 2  Experimental results 

First, experiments are performed without using the prediction function. Only the 
initialisation function and update function are run. During these experiments some 
data are stored in order to determine whether the algorithm converges well. Several 
data series of twenty seconds length are measured. The results show that the 
algorithm converges in a way similar to the offline simulations. However, some of the 
new powerspectra of the uncompensated error show high peaks at 1.31 Hz that have 
not been seen before. It appears that these peaks slowly appear and disappear 



during a run. These new peaks are probably the effect of mechanical and control 
changes that were made to the experimental set-up after the original powerspectra 
had been measured. Figure 6.1 shows the powerspectra of two data series of twenty 
seconds length obtained at different times during a single run. It can be seen that 
figure 6.1 a does not show a peak at 1.31 Hz and that figure 6.1 b does. 

Figure 6. I db:  Newpowerspectra obtained during a single run 

Because the peak at 1.31 Hz contains a great a part of the error power, it is 
decided to compensate this frequency instead of 4.15 Hz which has a much lower 
peak. The experiments are repeated for the new situation. Several data series are 
measured from the start of a run, in order to determine how the algorithm converges. 
Also, data series are measured some time after the start in order to determine the 
steady state performance. On average the instantaneous error power reduction of 
these new simulations is approximately 25% for the series that are measured from 
the start. The average instantaneous error power reduction of the steady state 
measurements is approximately 60%. Figure 6.2 shows the results of a data series 
that is measured in steady state. In figure 6.2a the uncompensated error signal is 
visible together with the instantaneous compensated error signal as well as the 
compensation signals. One can see that the compensation signals converge to rather 
steady sine waves and that a significant reduction in error amplitudes is 
accomplished. Figure 6.2b shows that the filter weights only change slowly, which 
means that they are still valid after one second. However, it can be seen that the filter 
weights of the 1.31 Hz signal change faster than the filter weights of the 0.66 Hz 
signai. Fossibie expianations for this phenomenon can be the appearance and 
disappearance of the 1 -31 Hz component during a run or the disturbance frequency 
not being exactly equal to 1.31 Hz. 
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Figure 6.2db: Experimental results of algorithm in steady state 
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The experiments performed so far show that online the algorithm behaves in 
a way that is similar to the offline simulations. The next step is to include the 
prediction function in order to adapt the start of page moment. Experiments are 
performed in which the prediction function is run each time that a new sheet has to 
be printed. The predicted error is compared with the real error that occurs. Figure 6.3 
shows the real error and predicted error as well as the difference between the two. 
Figure 6.3a shows the results of the start of a run, whereas figure 6.3b shows the 
results of the algorithm in steady state. One can see that the prediction function 
indeed predictsa part of the error signal. 
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Figure 6,3a/b: Predicted error compared with measured error 

Finally, experiments are performed in which the predicted error is used to 
adjust the start of page moment. Two print sessions of 1500 sheets each are run. 
One session is run using ANC to adjust the start of page moment and one session is 
run without adjusting the start of page moment. Of each run, approximately 150 
sheets are selected and are scanned in order to analyse the registration accuracy. 
These 150 sheets are equally distributed over a run. The reason why 150 sheets are 
selected out of a total of 1500 sheets, instead of printing 150 sheets in the first place, 
is to cancel out the effect of low frequent changes in disturbance level. Earlier 
performed experiments proved the existence of these changes. The results of the 
two print sessions are compared. It appears that no significant change in registration 
accuracy is made using ANC, although the algorithm performs well, as can be 
concluded from the previous figures. The explanation for this is probably that the 
experimental set-up produces too many other disturbances that affect the registration 
accuracy. However, by the time this experimental set-up will be ready for production, 
these other disturbances will be smaller due to improved mechanics and control 
strategies. The experiments should then be repeated in order to determine whether a 
significant improvement in registration accuracy can be made using ANC. 



Conclusions and recommendations 

The goal of this research was to design an algorithm that predicts the position error 
of the OPC belt, so that it can be compensated by adjusting the time at which the 
image is printed onto the belt. In order to realise this, first some experimentally 
obtained error data have been analysed. Next, two control strategies that are able to 
counteract periodic disturbances have been discussed: repetitive control and active 
noise control. Both strategies have been adapted to the problem and have been 
optimised by means of simulations in order to obtain maximum error power reduction. 
The two strategies have been compared on their suitability for solving the problem, 
resuiting in a choice for a strategy to be irnplerneiited in the experimefital set-up. Ir; 
order to implement the chosen algorithm, it has been translated to the C !anguage. 
Finally, experiments have been performed in order to determine whether the 
algorithm performs weii online and whether a significant improvement ir: registration 
accuracy is made. 

Offline analysis of the experimentally obtained error data shows that a 
significant part of the error power is present at only a few fixed frequencies. If the 
most powerful frequency is filtered out by averaging, an average error power 
reduction of approximately 25% is obtained. If this is done for the five most powerful 
frequencies an average errsr power reduction of approximately 50% is obtained. 

Repetitive control and active noise control have been used to predict and 
compensate the position error of the OPC belt. Simulations performed on the 
experimentally obtained error data show that the largest error power reduction can be 
obtained using active noise control. In steady state, this error power reduction is 
approximately 25%. Besides the larger error power reduction, the active noise control 
strategy requires less computational effort and is easier to implement than the 
designed repetitive control system. For these reasons, the choice has been made to 
implement and test this strategy on the experimental set-up. 

Experiments performed on the experimental set-up show that the online 
performance of the algorithm is similar to the offline performance, which means that 
the algorithm performs well. However, using the algorithm to adapt the moment of 
start of page does not change the registration accuracy significantly. This is probably 
the effect of the existence of many other disturbances in the experimental set-up that 
influence registration accuracy. Nevertheless, in a later stage of the development 
these disturbances will be smaller due to improved mechanics and control strategies. 
In combination with the fact that earlier performed experiments show that the position 
errsr sf the OPC belt is directly related to the registration accuracy, it is expected that 
the registration accuracy will then significantly improve by using active noise control. 

It is recommended to repeat the experiments on other experimental set-ups in 
order to test the robustness of the algorithm. The frequencies to be compensated 
must be given a value offline, so the algorithm will only perform if the error 
frequencies of these set-ups are equal to the error frequencies of the first 
experimental set-up. It is expected that these frequencies are indeed equal, because 
the frequencies are mainly a function of the velocity of the OPC belt. This velocity will 
be the same in all set-ups. However, simulations show that the performance of the 
a!goriti?rn strongly depends on the accuracy with which the errar frequencies have 
been estimated. Therefore, the algorithm will probably perform better on different set- 
ups if the error frequencies are determined online. 

The algorithm has to converge each time a new print session is started. 
However, for a certain reason the transfer pinch sometimes has to be opened during 
a run (see figure 1.2 for transfer pinch). This results in an almost instantaneous extra 
displacement of the OPC belt. The effect of this is that the filter weights must 
converge again. It is therefore recommended to restore the convergence rate to its 
initial high value when the transfer pinch opens. 



Appendix A: Histogram error signal 

Figure A.1 shows a histogram of the amplitudes of a compensated and an 
uncompensated error signal. The compensated signal is obtained using the two 
frequencies ANC system with variable convergence rate. Both signals are of one 
minute length. It is visible that the compensated error signal has smaller amplitudes 
than the uncompensated error signal. 

Figure A. I: Histogram error amplitudes 

3500 

3000 

2500 

- 
-1.2000 
S 
0 

3 I500 

1000 

500 

0 
-1.2 

uncompensated emr  
- 

- 

- 

- 

- 

- 

-1 4.8 0 . 6  0.4 4.2 0 0.2 0.4 
amplitude [mm] 



Appendix B: Matlab functions 

Initialisation function 

clear fl £2 mu1 mu2 ec ecv e c w  wl w2 wwl ww2 alf i er flt f2t 
global fl £2 mu1 mu2 ec ecv e c w  wl w2 wwl ww2 alf i er flt f2t 
i=1; %sample counter 
fs=500; %sampling frequency [sample/sl 
flt=0.66; %frequency 1 [periods/sl 
fl=flt/fs; %frequency 1 lperiods/samplel 
f2t=4.151; %frequency 2 [periods/sl 
f2=f2t/fs; %frequency 2 [periods/samplej 
mul=0.03; %initial convergence rate 1 
mu2=0.01; %initial convergence rate 2 
ec=0.001; %initial value corrected error 
ecv=O ; %initial value corrected error one sample earlier 
ecw=O ; %initial value corrected error two samples earlier 
y=O; %initial correction signal 
wl=[0.001; 0.0011; w2=[0.001; 0.0011; %initial filter weights 

Update function 

function ec=updatefunc (e) %input is measured error 
global £1 f2 mu1 mu2 ec ecv e c w  wl w2 wwl ww2 alf i er 

%first frequency 
rl= [sin (2*pi*f l*i) ;cos (2*pi*f l*i) ] ; %reference signal 
sll=sign(ec*sin(2*pi*fl*(i-1))); %convergence rate adaptation criterion 
sl2=sign (ecv*sin(2*pi*fl* (i-2) ) ) ; % "  
sl3=sign (ecw*sin (2*pi*f I* (i-3) ) ) ; %I 
if sll-=s12&s12-=s13&mu1>0.00031 %I I 

mul=l/alf*mul; % I T  

elseif mu1<0.00031 5 1  I 

mu1=0.0003; %I 1 

end % I  I 
wl=wl+mul*rl*ec; %filter weight update 
yl=wll*rl; %computation compensation signal 

%second frequency 
r2= [sin(2*pi*f2*i) ;cos (2*pi*f2*i) 1 ; 
s21=sign (ec*sin (2*pi*f2*(i-1) ) ) ; 
s22=sign (ecv*sin (2*pi*f2* (i-2) ) ) ; 
s23=sign (ecw*sin(2*pi*f2* (i-3) ) ) ; 
if s21-=s22&s22-=s23&mu2>0.00031 

mu2=1/alf*mu2; 
elseif mu2<0.00031 

mu2=0.0003; 
end 
w2=w2+mu2*r2*ec; 
y2=w2'*r2; 

ecw=ecv; 
ecv=ec ; 
ec=e-yl-y2; %computation compensated error signal 
i=i+l; 



Prediction function 

function correc=predictfunc(delay) %input is time from present moment 
%till the point of time of which 
%the error must be predicted [s] 

global fl £2 mu1 mu2 ec ecv e c w  wl w2 wwl ww2 alf i flt f2t 
phasel=2*pi*flt*delay; %conversion delay from seconds to radians 
phase2=2*pi*f2t*delay; % ,  I 
rld= [sin (2*pi*f l*i+phasel) ;cos (2*pi*fl*i+phase 1 ; %adaptation 
r2d=[sin(2*pi*f2*i+phase2);~0~(2*pi*f2xi+phase2)]; %reference signals 
yld=wlt*rld; %computation compensation signal 1 
y2d=w2 *r2d; %computation compensation signal 2 
correc=yld+y2d; %computation total compensation signal 



Appendix C: C functions 

typedef struct { 
int u l  ; /I correction signal 
int u2; I /  " 
int r l  a; /I reference signal 
int r l  b; I1 
int Ra; I/ 'I 

int r2b; /I " 
int e; /I error value 
int ec; /I corrected error value 
int ecv; /I corrected error value 1 sample earlier 
int ecw; /I corrected error value 2 samples earlier 
int w l  a, w l  b, w2a, w2b, mu1 , mu2; /I filter weights and convergence rates 
int i j; /I indices for sin and cosine function 
int correc; /I last correction computed by the predict function 
int d; /I delay for which last correction was computed 

) t-anc-param; 

//prototypes 
int anc-init (t-ancgaram*); 
int anc-updatefunc (t-anc-param*, int); 
int anc-predicthnc (t-anc-param*, int); 

#define ANC-MAXLOGS 10000 
#define pi 3.14159265358979 
#define alf 1.5 
#define f l  t 0.66 
#define w l  ts (int)(2*pi*fl t*l024) 
#define f l  f l  t1500.0 
#define w ls  (int)(Z*pi*f? *1024) 
#define f2t 1.31 
#define w2ts (int)(2*pi*f2t*l024) 
#define f2 f2tl500.0 
#define w2s (int)(2*pi*f2*1024) 

/I number of entries in debug array 

I/ factor of decrease of convergence rate 
// first frequency in cycies/second 
/I scaled version of f l t  
/I first frequency in cycles/sample 
// scaled version of f l  
/I second frequency in cycles/second 
/I scaled version of f2t 
/I second frequency in cycles/sample 
I/ scaled version of f2 

const int sinus[l02] = (0, 64, 128, 192, 255, 316, 377,436, 493, 549, 602, 653, 701, 746, 789, 828, 
865,897,927,952,974,992,1006,101 6,1022,1024,1022,101 6,1006,992, 
974, 952, 927,897, 865, 828, 789, 746* 7Oli 653,602; 549,493: 436,377,316, 
255, 192, 128, 64, 0, -64, -128, -192, -255, -316, -377, -436, -493, -549, -602, 
-653, -701, -746, -789, -828, -865, -897, -927, -952, -974, -992, -1006, -1016, 
-1022, -1024, -1022, -1016, -1006, -992, -974, -952, -927, -897, -865, -828, 
-789, -746, -701, -653, -602, -549, -493, -436, -377, -316, -255, -192, -128, -64, 0, 0); 

static int sintab( int ); I/ sine function with the use of a table 
static int costab( int); /I cosine function with the use of a table 

N stuff for debug array 
static t-anc-param data[ANC-MAX-LOGS]; /I cyclic buffer 



static int data-ind = 0; I1 points to next debug entry to fill 
static int data-full = 0; 11 true if all entries have been filled 
int data-log = 1 ; 11 true if data is being logged 

void anc-add-to-log (t-anc-param *anc) 
{ 

datardata-ind] = *anc; 
data-ind++; 
if (data-ind == ANC-MAX-LOGS) 
{ 
data-ind = 0; 
data-full = I; 

data-log = 0; 
1 

vcid ancdump-data (void) 

int i; 
FILE *fp = NULL; 
data-log = 0; I1 stop logging while saving data 
fp = fopen("logs/anc.dat", "w"); 
if (fp != NULL ) 
{ 

fprintf(fp,"%%ul\tu2\trl a\trl b\tr2a\tr2b\tec\tecv\tecvv\twl a\twl b\tw2a\tw2b\tmu1\tmu2\ti\tj\tcorrec\td\n"); 
if (data-full) 
{ 

for (i=data-ind; i < ANC-MAX-LOGS; i++) 
{ 

fprintf (fp, "%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tY~i\t%i\n", 
data[i].ul, 
data[i].u2, 
data[i].rl a, 
data[i].rl b, 
data[i].r2a, 
data[i].r2b, 
data[i].e, 
data[i].ec, 
data[i].ecv, 
data[i].ecvv, 
data[i].wl a, 
data[i].wl b, 
data[i].w2a, 
data[i].w2b, 
data[i].mul, 
data[i].mu2, 
data[i].i, 
data[i].j, 
data[i].correc, 
data[i].d); 

1 
1 

for (i=O; kdata-ind; i++) 
I 
1 

fprintf (fp, "%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\t%i\t%i\t%i\t%i\n1', 
aata[ij.ul , 
data[i].u2, 
data[i].rla, 
data[i].rl b, 
data[i].Qa, 
data[i].r2b, 
data[i].e, 
data[i].ec, 
data[i].ecv, 
data[i].ecw, 
data[i].wl a, 



data[i].wl b, 
data[i].w2a, 
data[i].w2b, 
data[i].mul , 
data[i].mu2, 
data[i].i, 
data[i].j, 
data[i].correc, 
data[i].d); 

1 
fclose (fp); 

1 
data-full = 0; 
data-ind = 0; 
data-log = 1 ; 

I 
I/ start logging again 

I/ function anc-init () 
int anc-init (t-anc-param* anc-param) 
{ 

ancgaram->mu1 =(int)(0.02*1 O24*64); N initial values 
ancgaram->mu2=(int)(0.02*1024*64); 
anc-param->ec=l ; 
anc-param->ecv=O; 
anc-param-zecw=O; 
anc-param->wl a=anc-param->wl b=anc~param-~w2a=anc~param-~w2b=(int)(0.001 * I  024); 
anc-param->i= I ; 
anc-param->j= 1 ; 
return (1); 

1 

I1 function ec=updatefunc(e) 
int anc-updatefunc (t-anc-param* anc-param, int e) 
I 

int r la ,  rlb, s l l ,  s12, s13, r2a, r2b, s21, s22, s23, ul,u2; 
int i,j; 

// save error for data analysis 
anc-param->e = e; 

11 compute filter for first reference signal 
i = anc-param->i; 

/I convergence rate 1 adaptation criterion 
if (anc-param->ec*sintab(wlsc(i-I)) >0) 
{ 

s l l = l ;  
1 
else 
{ 

s l i = - i ;  
1 

s12 =I;  
1 
else 



s13 = 1; 
I 
else 
{ 

~ 1 3 ~ - 1 ;  
1 

if (sl  1 !=s12 && s12!=s13 && anc-param->mu1 > (int)(O.O003l*l024*64)) 
{ 
anc-param->mu1=(2*( anc-param->mu1)/3): 

I 
else 
if ( anc-param->mu1 c (int)(0.00031*1024*64)) 
! 

I1 filter weight 1 adaptation 
anc-param->wl a=anc-param->wl a+((anc-paramamu I *rl  a)/64*(anc~param~ec/1 024))/1024; 
ancgaram->wl b=anc-param->wl b+((anc-paramamu1 *r l  b)/64*(anc-param>ec/I 024))/1024; 
u l  = anc-param->wl a*rl a11 024 + anc-param->wl b*rl bl1024; I1 correction signal 1 
ancgaram->ul = u l ;  

if (i==758) 11 index update 1 
{ 

anc-param->i=l ; 
I 
else 
{ 

I1 compute filter for second reference signal 
j = anc-param->j; 

I1 convergence rate 2 adaptation criterion 
if ( anc-param->ec*sintab(w2s*(j-l))>O) 
{ 

s21 =I;  
1 
else 
{ 

s21 = -1; 
1 

s22 = 1; 
I 
else 



1 
else 

anc-param->mu2=(int)(2*( anc-param->mu2)/3); } 
else 
if ( anc-param-~mu2~(int)(0.00031 * I  024*64)) 
{ 
anc-param-~mu2=(int)(0.0003*1024*64); 

1 

I/ filter weight 2 adaptation 
anc~aram-~v~2a=anc~param-~~~!2a+~(an~~param-~m~2*r2a)/64*(an~~param~e~/l024))/1024; 
anc~param-~w2b=anc~param-~w2b+((ancCparammu2*r2b)l64*(ancparamec/l024))/1024; 
u2= anc-param->w2a*r2a/l024 + anc-param-zw2b*r2b/l024; //correction signal 2 
anc-param->u2 = u2; 

if (j==382) // index update 2 
{ 

anc-param->j=l ; 
1 
else 
{ 

anc-param->j++; 
1 

I /  save errors for next time 
anc-param->ecvv= anc-param->ecv; 
anc-param->ecv= anc-paramaec; 
anc-param->ec=e*l024-ul -u2; 11 corrected error 

11 log some data for analysis 
if (data-log) 
anc-add-to-log (anc-param); 

return (r2a ); 
1 

// function predictfunc 
I1 d : delay in seconds * 128 
int anc-predicthnc (t-anc-param* anc-param, int d) 
{ 

int i, j; 
int phasel, phase2, rlad, rlbd, r2ad, r2bd, uld, u2d; 

phasel =((wl ts)/64*d) % (int)((2*pi)*(l <<(ANC-T-SCALE+4))); // phasel calculation from delay 
phase2=((~2ts)il28*a) % jinijj(2*pi)*(l ee(AT\jC-T-SCKiE+3)));/lpkase2 calciiaiion from delaj; 

r l  ad=sintab(wls*i+phasel); I/ reference signal I a with delay 
r l  bd=costab(wls*i+phasel); 11 reference signal I b with delay 
u l  d=ancgaram-zwl a*rl ad11 024+anc-param->wl b*rl bdl1024; //correction signal 4 with delay 

r2ad=sintab(w2s*j + phase2); / I  reference signal 2a with delay 
r2bd=costab(w2s*j + phase2);ll reference signal 2b with delay 
u2d=anc~param-~w2a*r2ad/l024+anc~param-~w2b*r2bd/l024; //correction signal 2 with delay 

anc-param-~correc=uld+u2d;// total correction signal 



return (anc-param->correc); 
1 

// function sine 
static int sintab (int phase) 
{ 

int position; 

position = phase 164; 

return (sinus[position]); 
1 

/ I  function cosine 
static int costab (int phase) 
I 

int position; 

position = phase 164; 
if (position<=75) 
{ 

position=position+25; 
1 
else 

return (sinus[position]); 

1 
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