

Cancellation for periodic disturbances

Citation for published version (APA):
Bonsel, J. H. (2002). Cancellation for periodic disturbances. (DCT rapporten; Vol. 2002.056). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2002

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/3891832d-d07c-4b55-83bf-f651f460316c

Cancellation of periodic disturbances

J.H. Bonsel

DCT-2002-56

Internship at Oce-Technologies B.V.
Department Research & Development

Coach: Dr. ir. B.B. Goeree (Oce-Technologies B.V.)
Supervisor: Prof. dr. H. Nijmeijer (TU Eindhoven)

Venlo, July 2002

De schrijver werd door Oce-Technologies B.V. in staat gesteld een onderzoek te verrichten dat mede aan dit rapport
ten grondslag ligt. O&-Technologies B.V. aanvaardt geen verantwoordelijkheid voor de juistheid van de in dit rapport
vermelde gegevens, beschouwingen en conclusies, die geheel voor rekening van de schrijver komen.

Summary

In a printer, an image is initially brought onto a belt before it is transferred to a sheet
of paper. Although the position of this belt is controlled, position errors occur. These
errors are partly of repetitive nature. Due to these errors, an image is printed too low
or too high on a sheet of paper. The goal of the research is to design an algorithm
that predicts the position error of this belt, so that the image can be brought onto the
belt at an adjusted time, in order to compensate the position error.

The position of the belt is measured by an encoder and is compared with a
reference position, resulting in an error. Some experimentally obtained error data
series are maiysed. Pswerspedra of ihe error data s h u ~ that a sigfiificant pari ?if the
error power is present at only a few fixed frequencies. Furthermore, these repetitive
parts of the error signal have a shape similar to a sine wave.

TWO esntrsi strategies that are able to coiinteract periodic distiiibanees are
repetitive control and active noise control. Repetitive control uses a memory loop to
generate periodic signals that can be used for compensation. In order to predict the
position error of the belt, a repetitive control system is designed and extended with
some filters. The designed system is tested on the experimentally obtained error
data. The results show that a reduction in error power can be obtained. Active noise
controi is a signal processing strategy iii which a digital filter processes a reference
signal, in order to compensate the error signal. An adaptive algorithm adapts the filter
coefficients at runtime. An optimised active noise control system is tested on the
experimentally obtained error data. The results show that a larger error power
reduction is obtained than with the repetitive control configuration.

In order to test whether a significant improvement in registration accuracy is
made, the designed system is tested on an experimental set-up. The choice is made
to use the active noise control system, because this strategy results in a larger error
power reduction, requires less computational effort and is easier to implement than
the designed repetitive control system. The designed algorithm is translated from
Matlab to the C language and is integrated with the software that runs on the
experimental set-up. Experiments show that the online performance of the algorithm
is similar to the offline performance, which means that the algorithm is able to predict
a part of the position error of the belt. However, using the algorithm to adjust the
moment of start of page does not influence the registration accuracy significantly.
The explanation for this is probably that the experimental set-up produces too many
other disturbances that affect the registration accuracy.

List of symbols

Symbol Meanina Unit

angular frequency
convergence rate
mean square error

mean square error estimate
frequency of primary noise signal
-L--- ...-:...-.-. , m-:m- n:P.*-l
p i i"9G "i p i i t i i"i y i i " ' 9 C 9 i y i i"i

amplitude of reference signal
amplitude of primary noise signal
dynamic cempensater
controller
disturbance signal
expectation operator
servo error I measured error
compensated error
transfer functler!
gain
number of filter coefficients
number of frequencies
number of samples
sample number
cross-correlation vector

process
signal power
low-pass filter
auto-correlation matrix
reference signal vector
reference signal
reference signal
sampling time
filter coefficient vector
filter coefficient
optimal filter coefficient
optimal filter coefficient vector
output signal
individual output
variable in the z-transform

Contents

Summary

List of symbols

1. Introduction

2. Error data analysis

3. Eepetitive control
3.1 Memory ioop filtering
3.2 Repetitive control: general case
3.3 Appiieatisn sf repetitive eontroi

4. Active noise control
4.1 Narrowband feedforward ANC
4.2 Adaptive algorithm
4.3 Single frequency ANC
4.4 Lluiiipie fi-equeii~y ANC
4.5 Application of ANC

5. Comparison of repetitive control with active noise control

6. Implementation
6.1 Composition of the functions
6.2 Experimental results

Conclusions and recommendations

Appendix A: Histogram error signal

Appendix B: Matlab functions

Appendix C: C functions

iii

References

1. Introduction

The demands made on the accuracy with which an image is printed on a sheet of
paper get higher and higher. One of the errors that occur is that an image is printed
too high or too low on a sheet of paper. This error is partly of repetitive nature. If this
error can be predicted, the start of page signal can be adjusted, so that the image is
printed a little earlier or later to compensate the error.

Figure I. I: Inside of an oc6 printer

\ transfer
pinch

OPC belt

Figure 1.2: Schematic representation

In Figure 1 .I a part of the inside of an oce printer is depicted. Two belts are
visible. The lower belt is the organic photo conductor belt (OPC). The upper is the
transfer-and-transfuse belt (TTF). Initially a charge is brought onto the OPC belt.
After that, the charge is exposed in order to create the image in the charge. Next, the
charge will attract the toner and a visible image is developed. Then the image is
transferred to the TTF belt and the OPC belt is discharged. Finally, the TTF belt
transfers the toner image to a sheet of paper.

Figure 1.2 is a schematic representation of the OPC and TTF belt. The OPC
belt is driven by the OPC motor and its position is measured by an encoder every 2
ms. The OPC belt is assumed to be rigid. Although the belt is controlled, position
errors occur, which are partly repetitive. Possible causes of these errors can be
eccentric rollers or collision of the paper with the transfuse pinch. Earlier performed
experiments show that these position errors result in the image being printed either
too low or too high on the sheet of paper. If one can predict the position error of the
OPC belt, the print head can bring the image onto the OPC belt a little earlier or later
in order to compensate this error.

The goal of the research is to design an algorithm that predicts the position
error of the OPC beit as accurate as possibie, so that it can be compensated. In
order to do this, first some error data obtained from an experimental set-up will be
analysed. The main purpose of this analysis is to determine what part sf the error
signal is repetitive and what part is random noise. After that, two control strategies
that are able to counteract periodic disturbances will be treated: repetitive control and
active noise control. The principles of these strategies will be discussed and the
strategies will be adapted to the problem. They will be tested and optimised by
means of simulations performed on error data. Both strategies will be compared in
order to find the most suitable solution to this problem. Finally the most suitable
strategy will be implemented on the experimental set-up. Measurements will be made
in order to determine whether an improvement is made.

2. Error data analysis

Before the design of an algorithm that predicts an error can be started, some insight
into the error signal must be obtained. Especially the frequencies the error signal
consists of are of great importance. In order to make error prediction possible, a
significant part of the error power must be present at only a few frequencies. In this
chapter some experimentally obtained error data series will be analysed.

In the experimental set-up an encoder measures the belt position with a
sampling frequency of 500 Hz. The measured position can be compared with a
reference position, resulting in an error. Ten data series are available, each of one
minute iengtn. Aii aata series are obtained from the same experimen'lai sei-up on
diiiereni: days. A straightforward way to analyse the error data is to construct
powerspectra. Figure 2.1 shows the powerspectra of two arbitrary data series.
Because nearly aii power is present in frequencies up to 15 i iz, the powerspectra are
plotted up to this frequency. It is visible that the powerspectra show peaks at some
frequencies. The two powerspectra are similar in a way that peaks are visible at the
same frequencies. However, the heights of the peaks in the two powerspectra differ.
The same similarity holds for the remaining data series.

0.1

0.05 Ol:h , , , , , , -, ,I i , , , 1 0 0
0 5 10 15 0 5 10 15

frequency [Hz] frequency [Hz]

Figure 2. I: Powerspectra of experimenfally obtained error dafa

The powerspectra show large peaks at 0.66 Hz. A question that arises is how
much the error power will decrease if this frequency is filtered out. In order to answer
it, first the total error power is determined. Sec~nd, the signal is averaged over the
period corresponding to 0.66 Hz. This is done by dividing the signal in parts of 110.66
= 1.51 seconds, as illustrated in figure 2.2, adding the individual parts, as illustrated
in figure 2.3, and dividing the resulting signal by the number of parts.

I 1 I I

0.4 I I I I

400 401.5151 403.0302 404.5453 406.0604
time [s]

Figure 2.2: Divide signal in parts

' 0 4 ' , I
404.6 404.8 405 405.2 405.4 405.6 405.8 406

time [s]

Figure 2.3: Add individual parts

Figure 2.4 shows signals that are obtained by averaging the error data of one series
over the period corresponding to 0.66 Hz and 4.1 5 Hz respectively. One can see that
the part of the error signal with frequency 0.66 Hz is approximately a sine wave and
the part with frequency 4.1 5 Hz is almost a perfect sine wave, so the problem might
very well lay with eccentric rollers.

time Is] time [s]

Figure 2.4: Averaged signals

Finally the averaged signal is subtracted from the original signal and the signal power
is determined again. Subtracting the over 0.66 Hz averaged signal from the original
signal and recalculating the signal power results on average in a decrease of
approximately 25%. If this procedure is repeated for the five most powerful
frequencies, an error power reduction of approximately 50% is obtained.

3. Repetitive control

A control strategy that is able to counteract periodic disturbances is repetitive control.
It is based on the internal model principle, which states that a model of the
disturbance should be included in the feedback loop in order to achieve asymptotic
tracking and disturbance rejection. The main part of a repetitive controller is the
memory loop, which will be treated first. Second, the general repetitive control
configuration will be looked at. Third, the repetitive control configuration will be
adapted to the problem. Repetitive control will be treated in discrete-time because
the system will use the discrete signal from the encoder.

3.1 Memory loop filtering

-.
I ne main part sf a repetitive controiier is the memory ;oop, which caii be seen as a
signal generator that will generate arbitrary periodic signals. A memory loop is a
digital filter that consists of a series of time delays with a positive feedback loop.
Figure 3.1 shows the configuration of a memory loop. It can generate discrete-time
signals with fundamental period NT in which T is the sampling time of the digital filter
and N is an integer representing the number of samples in the memory loop.

Figure 3.1: Memory loop

The transfer function of this configuration can be expressed as:

From the transfer function can be seen that the memory loop has N poles uniformly
distributed on the unit circle, which implies that the system is on the boundary of
stability. This is shown graphically in figure 3.2. The figure shows a pole-zero map of
a memory loop with N = 10 samples delay and a sampling time of T = 0.01 s. The
magnitude plot of this memory loop is shown in figure 3.3. At the fundamental
frequency, I INT = 1/(10*0.01) = IOHz, and at its multiples, 'infinite' peaks are visible.
The variation in height of the peaks is the effect of inaccuracies of the solver.

-1 0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1
real axis

Figure 3.2: Pole-zero map of memory loop

0 10 20 30 40 50 60 70 80 90 100
frequency [Hz]

Figure 3.3: Magnitude plot of memory loop

3.2 Repetitive control: general case

The most commonly used repetitive control configuration is shown in figure 3.4. Here
the memory loop is connected to the control loop in an add-on manner. This
configuration is used to either suppress periodic disturbances d or to track periodic
reference signals r. The blocks P and C represent the process to be controlled and
the conventional controller respectively.

Figure 3.4: Basic repetitive control configuration

The servo error e of the system can be expressed as:

According to the small gain theorem the system is asymptotically stable if [I]:

1+CP

is asymptotically stable and if

In general this last condition is not satisfied. In order to guarantee stability a dynamic
compensator b is included in the system, as shown in figure 3.5.

Figure 3.5: Repetitive control configuration with dynamic compensator

The servo error (3.2) now becomes:

Stability condition (3.4) changes into:

A straightforward way to obtain stability is to take b as follows:

CP
with O<k<2. H~bvever, if the transfer function --- contains unstable zeros, these

1+CP
zeros will appear as unstable poles in b. Besides that, the differentiating nature of an
inverse system might amplify high-frequency disturbances [I]. In this case, usually a
zero-phase cancellation filter is used [2].

If a suitable dynamic compensator has been found, stability problems may
still arise due to unmodelled high-frequency dynamics. In order to overcome these
problems a low-pass filter q is added. This filter will weaken the effect of the memory
loop at higher frequencies. The side effect of this extension is that tracking will be lost
in the high frequency range beyond the passband. The cut-off frequency should thus
always be chosen a little higher than the signal bandwidth of the periodic signal
affecting the system. Figure 3.6 shows the repetitive control configuration including
the low-pass filter 9.

Figure 3.5: Repefjfjve control configgurafjoon ~wifb dynamjc compensator and bw-pass filter

The senm error (3.2) changes into:

Stability condition (3.4) becomes:

3.3 Application of repetitive control

In order to use repetitive control for the specific problem of error prediction, the
general configuration must be adapted. Because the system only has to predict an
error value, the adapted configuration does not contain a controller C and a process
P and can be simplified to figure 3.7.

Figure 3.7: Repetitive control configuration for error prediction

The input of the system is the measured error e. The memory loop generates a
signal that compensates for a specific repetitive part of the error signal. The output of
the system is the compensated error signal ec, which should become zero in the
optimal case. In fact the system predicts (a part of) the error signal and compensates
for it.

The transfer function of this configuration can be written as:

All poles of the system lie at the origin, so the system is stable. The system's
performance can be analysed by considering its magnitude plot, which is shown in
figure 3.7a. Figure 3.7b shows the same plot, zoomed in around magnitude equal to
zero. The plots are made with N = 50 samples delay and a sampling time T of 0.002

frequency [Hz] frequency [Hz]

Figure 3.7a/b: Magnitude plo fs repetitive conirol system for error prediction

The figures show that the magnitudes of the fundamental frequency (IINT = 10 Hz)
and its multiples are very small, so these frequencies are suppressed. Furthermore,
frequencies between multiples of the fundamental frequency have a magnitude
greater than 1, so these frequencies will be amplified by repetitive control. This might
be a drawback if the error signal contains frequencies that differ from the
fundamental frequency or multiples thereof.

The system is tested with a sine wave as input signal. First a frequency of 10
Hz is taken. This is the frequency for which the system is designed. Figure 3.8a
shows the results of the test. As expected, after one period of the sine wave, the
system has totally converged and the compensated error e, is zero. Next a slightly
dlfierent frequency of !I Hz Is used (figure M b) . The compensated error does not
converge to zero anymore, but is still smaller than the uncompensated error. Finally a
frequency of 15 Hz is used as an input signal (figure 3.8~). Now the compensated
error is even bigger than the uncompensated error. These results agree with the
conclusions drawn from the magnitude plots.

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 1
time [s]

0.1 0.2 0.3 0.4 0 5 0.6 0.7 0 8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [sl time [sl

Figure 3.8a/b/c: Error as a function of time for sine inputs of respectively 10 Hz, I I Hz and 15 Hz

Now the system is ready to be tested on the real data obtained from the
experimental set-up. Data analysis performed in chapter 2 showed that 0.66 Hz is the
most powerful frequency. Therefore the delay in the memory loop is chosen 110.66
Hz = 1.51 5 s. The sampling time T of the measurements amounts to 0.002 s, so the
length of the memory loop N is 1.51510.002 = 758 samples. Simulations are
performed on all available data-series. The resulting compensated error is compared
with the uncompensated error, with poor results. The power of the compensated
power is on average even 50% higher than the power of the uncompensated error.
However, the peak in the powerspectrum at 0.66 Hz has seriously decreased, as can
be seen from figure 3.9. This figure shows the powerspectrum of one arbitrary data
series together with its compensated powerspectrum.

Figure 3.9: Powerspectrum of compensated and uncompensated error signal

A simple modification of the system is carried out in order to improve the
results. A gain k is added in the memory loop as shown in figure 3.10.

Figure 3.10: Repetitive control configuration for error prediction with additional gain

Transfer function (3.1 0) changes into:

By adjusting the gain k, the effect of the memory loop can be strengthened or
weakened. The latter results in a magnitude plot with less high maxima and less low
minima. The system can be optimised by adjusting the gain until the power of the
compensated error is lowest. The optimal gain is found to be approximately 0.25.
Figure 3.1 1 shows the magnitude plot of the transfer function with k = 0.25 together
with the one with k = 1. It is visible that the system with k = 0.25 suppresses the
fundamental frequency and its multiples less than the system with k = 1 does.
However, frequencies betwegn the fundamental frequency and its multiples are less
amplified. Simulations perforyed on the same data series resuit in a compensated
error power that is approximately equal to the uncompensated error power. Figure
3.12 shows the powerspectrq of the uncompensaled error and the eiror
compensated by the system with k = 0.25. The same data series is used as for figure
3.9. One can see that the peak at 0.66 Hz is not totally suppressed anymore.
However, the remaining of the frequency range is less amplified than by the system
with k = 1 (compare with figure 3.9). Still, the error power is not reduced, only the
powerspectrum is flattened.

Figure 3. I I: Magnifude plots for different gains

frequency [Hz]

Figure 3.12: Powerspecfrum of error signal

In order to improve the system's performance, a second modification is made.
In the powerspectrum one can see that the fundamental frequency 0.66 Hz hardly
has multiples. However, the designed system does suppress these multiples and
amplifies the frequencies between them. In order to prevent this, a low-pass filter q(z)
can be added as shown in figure 3.1 3. The low-pass filter will weaken and finally
cancel the effect of the memory loop above a certain cut-off frequency. The best
result will be obtained if the low-pass filter has a sharp cut-off at 0.66 Hz. This way
the memory loop will only suppress the most powerful frequency and it will not deal
with higher frequencies.

Figure 3.13: Configuration wifh additional gain and low-pass filfer

The chosen low-pass filter is one of the FIR filter type (see chapter 4 for explanation).
In order to obtain a sharp cut-off, a high order filter must be chosen, especially
because the sampling frequency (500 Hz) is high in comparison with the cut-off
frequency (0.66 Hz). Figure 3.14 shows the magnitude plot of a 100" order low-pass
FIR filter with a cut-off frequency as low as possible (below a certain frequency,
further decrease of the cut-off frequency has no influence). As can be seen, only
frequencies above 10 Hz are fully suppressed. The transfer function of the new
configuration can be written as:

Again an optimal gain can be searched for. In this case the optimal gain k is found to
be approximately 0.45. Figure 3.15 shows the magnitude plot of this transfer function
together with the magnitude plot of the transfer function without the low-pass filter

(3.11). It can be seen that the magnitude of the system including the low-pass filter
approaches unity above 10 Hz.

\, - ,
0 5 10 15 20 25 10.' I o0 10' 1 o2

frequency [Hz] frequency [Hz]

Figure 3.14: Magnitude of low-pass filter Figure 3.15: Magnitude of system with low-pass filfer

Simuiations are repeatea' for tne new system. The resuits show a decrease of error
power. On average the compensated error power is about 15% lower than the
uncompensated error power.

In principle this system can be used. However, a very high order low-pass
filter is needed in order to obtain satisfactory results. The high order of the filter can
cause problems in the real implementation. A solution to these problems is
decreasing the sampling frequency of the system, because the order of the low-pass
filter will decrease proportionally with the sampling frequency. The choice is made to
decrease the sampling frequency with a factor 10. This way only a 1 oth order instead
of a 1 Ooth order low-pass filter is needed to give the same magnitude characteristic.
However, the sampling frequency of the measurements is still 500 Hz. In order to
adapt the input signal to the system's sampling frequency, the measured signal is
averaged over 10 samples each time. Furthermore, the compensation signal must be
available with a frequency of 500 Hz, so the 50 Hz output signal of the system must
be changed back to a 500 Hz signal. Interpolating the 50 Hz output signal
accomplishes this. Simulations show that the decrease of the system's sampling
frequency does not influence its performance. The explanation for this is that a
sampling frequency of 50 Hz is still iarge enough to describe the compensation signal
of 0.66 Hz correctly.

Instead of decreasing the order of the low-pass filter proportionally with the
sampling frequency, it can be kept constant as well. This way the magnitude
characteristic of the filter shows a sharper cut-off (figure 3.1 6), which results in a
magnitude plot of the system that already approaches unity at 1 Hz instead of 10 Hz
(figure 3.17). Simulations performed with the corresponding optimal gain show that
this modification results ir! an extra decrease of error power of a few percents.
However, the problem of the high order filter is still present. Reducing the sampling
frequency of the system again could solve the problem, H~wever, a too low sampling
frequency will result in a poor description of the compensation signal, which yields an
increase of error power.

0 -
5 10 15 20 25 I 0.' 1 0" I 0' 1 o2

frequency [Hz] frequency [Hz!

Figure 3.16: Magnitude of low-pass filfers Figure 3.17: Magnitude of system with low-pass filter

0.9

0.8

0.7

It's clear that a trade-off must be made in order to tune the system's
parameters. It can be summarised as follows: The low-pass filter must have a cut-off
as sharp as possible. This is achieved by either reducing the sampling frequency or
increasing the filter order. On the one hand reducing the sampling frequency could
result in a worse description of the compensation signal. On the other hand,
increasing the filter order can give problems in the real implementation. Trial and
error will yieId the best system parameters.

The simulations performed so far predicted (a part of) the error only one
sample before it was measured. However, in the real implementation the prediction
and compensation of the error must occur approximately one second in advance.
Simulations are performed in order to determine whether this influences the results. It
turns out that this delay does not influence the results significantly.

-

1 on

'r,

-

-

-
A

U - -
c

'?

10.'

0.6

d
. 0.5
m
2 0.4

0.3

0.2

\
\

0.1

-

-

-

-

-

- - sample frequency 500Hz
- sample frequency 50Hz

\
\
!
\
\
\
\
!
\
\
\

\
\

\

\,
\

\

- ,

4. Active Noise Control

Active noise control (ANC) is a signal processing strategy in which additional
secondary sources are used to cancel noise from the original primary source. It is
based on the principle of superposition: an anti-noise of equal amplitude and
opposite phase is generated and combined with the primary noise, resulting in
cancellation of both noises.

Two types of noise can be distinguished: broadband and narrowband.
Broadband noise is totally random, which means that its power is (approximately)
equally distributed across the frequency spectrum. To cancel this kind of noise
broadband feedforward AN@ is used. This technique uses a reference sensor close
to the noise source to measure a signal that gives an indication of the approaching
noise. Primary noise that correlates with the reference signal will be cancelled
downstream with a secondary source. Narrowband noise concentrates most of its
power at specific frequencies. A technique that is effective in reducing this repetitive
noise is called narrowband feedforward ANC. This technique does not use a
reference sensor to describe the approaching noise, but uses information about the
frequencies of the noise signal instead. This information can be obtained offline in
case of a stationary noise signal or online in case of a time varying noise signal, for
exampie by a tachometer. if there is no reference sensor or other a priori kno'dzbge
of the primary noise signal, feedback ANC is used. In this approach only the resulting
error is fed back in order to cancel the primary noise.

4.1 Narrowband feedforward ANC

The problem of compensating the position error of the OPC belt is a typical problem
for narrowband feedforward ANC. The condition that most of the power of the signal
is concentrated at specific frequencies is satisfied, because half the signal power is
present at only five frequencies (see chapter 2). Furthermore, these frequencies are
known in advance.

Figure 4.1 shows the configuration of a narrowband feedforward ANC system.
An ANC system consists of two main parts: a digital filter and an adaptive algorithm.
The digital filter processes the incoming reference signal rand generates the
secondary signal y that compensates the primary noise signal e. The adaptive
algorithm adapts the filter coefficients at runtime in order to minimise the mean
square value of the output ec.

r
digital ec
filter

>

Signal /

adaptive
algorithm I 1

Figure 4.1: Narrowband feedforward ANC configuration

Usually a Finite Impulse Response (FIR) filter is used, which is schematically
depicted in figure 4.2.

Figure 4.2: Block diagram of FIR filter

Give:: a set of L f lte: ccefficients, v@), ! = 0, 1 ,. . ., L-1 , and a data sequence (r(n)
r(n-I) . .. r(n-L+1)} (n denotes the sample number), the output signal is computed as:

If the reference signal vector and weight vector are respectively defined as:

Then the output signal y(n) can be written as:

The compensated error signal e,(n) can now be written as:

e, (n) = e(n) - y(n) = e(n) - ET (n)p(n)

4.2 Adaptive algorithm

The adaptive algorithm updates the coefficients of the digital filter to optimise some
predetermined performance criterion. Usually the mean square error (MSE) is
minimised, which is defined as:

where E [I is the expectation operator. Substitution of equation (4.5) in (4.6) results
in the fo!!owing expression for the MSE:

{ (n) - E[e2 (n)] - 2p - y(n) + y ' (n) ~ y (n) (4.7)

where p is the cross-correlation vector from the input error e(n) to the reference
signal zn) and R is the auto-correlation matrix of the reference signal fin).

R z ~ [~ (n) ~ ~ (n)] (4.9)

The MSE is a function of the filter coefficients ~ (n) . For each value of the filter
coefficient vector ~ (n) , there is a corresponding value of the MSE. The MSE values
associated with a filter of L weights thus span an (L+l) dimensional space that is
called the performance surface. For L = 2 this can be presented graphically as is
shown in figure 4.3. The values woO(n) and wI0(n) are the optimal coefficients of the
digital filter, which result in a minimum MSE.

Figure 4.3: Performance surface

The optimal filter coefficient vector @(n) can be found by differentiating the
expression for the MSE (equation 4.7) with respect to the filter coefficient vector ~ (n)
and nullifying the result:

Calculating the solution will generally demand a great computational effort.
Therefore, a recursive method for computing @(n) is used. To minimise the MSE
one needs to descend along the performance surface by adjusting the filter
coefficients until the minimum MSE is reached. The steepest descent method is a
method that reaches the minimum by following the direction in which the
performance surface has the greatest rate of decrease. This means that the weights
are updated in the direction of the negative gradient of the performance surface:

where p is a convergence factor that controls stability as well as the rate of
convergence to the optimal filter coefficients. The vector V4((n) is the gradient of the
MSE with respect to the filter coefficient vector ~ (n) :

Substitution of equation (4.12) in (4.1 1) results ir: the final form of the algorithm:

The weight vector ~ (n) is adapted until it has converged to its optimum &(n) so that
the gradient becomes zero.

The method of steepest descent requires the statistics of e(n) and r(n) to be
known. However, in many practical applications these are unknown so the method
cannot be used directly. As an alternative the instantaneous squared compensated
error ez can be used to estimate the mean square error defined in equation (4.6):

It follows that the gradient of the MSE is estimated by:

Substitution of equation (4.5) results in the following expression for the gradient
estimate:

~ @ (n) = -2~(n)e , (n) (4.16)

Substituting this in the equation of the steepest descent method (4.1 1) gives:

The above equation is called the least mean square (LMS) algorithm.
The convergence rate p must be selected in order to obtain stability and

convergence. A sufficient but not necessary condition for stability is derived in [3]:

where P, is the signal power of the reference signal r(n).

4.3 Single frequency ANC

If a sine wave is applied as the reference input, the LMS algorithm becomes an
adaptive notch filter. It removes certain frequency components within a small band
around the reference frequency. The adaptive notch filter is especially useful when
the interfering sinusoid drifts slowly in frequency. Figure 4.4 shows a single
frequency ANC system.

r1

Sine Wave r0

Figure 4.4: Single frequency ANC system

The primary noise signal e(n) is assumed to be a sine wave of the following
form:

where A, and q& are respectively the (unknown) amplitude and phase of the primary
noise signal. a, is the frequency [radlsample] of the signal, which must be known.
Because the primary noise signal is a sine wave, the reference-input ro(n) is chosen
to be a sine wave of equal frequency:

r, (n) = A sin(w , n) (4.20)

By shifting the input signal 90" a cosine wave rl(n) is generated:

r, (n) = A co s(w , n) (4.21)

Correct linear combination of the two waves yields a secondary signal y(n) that is
equal to the primary noise signal e(n).

The LMS algorithm for this system is expressed as follows:

wl (n + 1) = w, (n) + prl (n)e, (n), I = 0,l (4.24)

Note that equation (4.22) can be obtained from equation (4.4) by taking:

4.4 Multiple frequency ANC

A single frequency component can be cancelled by a two weight adaptive filter. The
cancellation of M frequency components can be achieved by connecting M two
weight adaptive filters in parallel. The secondary signal y(n) is a sum of M individual
compensation signals:

The multiple frequency ANC system is depicted in figure 4.5 for M = 2 frequencies.

Sine Wave

- '-2
' 1

90"

Ed-+
Sine Wave 2 r:

Figure 4.5: Multiple frequency A NC system

4.5 Application of ANC

The ANC signal processing strategy is used to predict the position error of the OPC
belt. First single frequency AN@ is used to compensate the most powerful frequency
in the error signal: 0.66 Hz. Before simulations can be performed, the algorithm's
variables must be initialised. In this case the initial values of the filter weights and the
convergence rate p must be selected.

Convergence and initial performance depend on the initial values of the filter
weights. Because the phase of the disturbance signal is unknown, no well-founded
initial guess of the filter weights can be made. Therefore, the filter weights are given
a low i~i t ia l value of 0.001.

Selection of the convergence rate ,u can be started by fulfilling the stability
miidition (4.:8). To do this, the reference slgna! pewer Pr must be ~Cmputed, which
is defined as:

The reference signal p(n) is a sine wave with unit amplitude. This results in Pr = 0.5
mm2. The single frequency ANC system uses two weights, so L = 2. Substitution of
these values in equation (4.18) gives an upper bound on the convergence rate of 2.
In order to obtain maximum convergence, the convergence rate should be chosen as

large as possible, which is in this case 2. However, the prediction and compensation
of the error must occur approximately 1 second before the error occurs. Therefore, 1-
second-old filter weights are used to predict the error signal. A large convergence
rate changes the filter weights very rapidly, so filter weights which are 1 second old
will deviate a lot from the current filter weights. As a result the compensation signal
will be bad and performance will be poor. Figures 4.6 and 4.7 show the results of
simulations with convergence rate of 2 and 0.0003 respectively. Figures a show the
uncompensated error signal together with the compensation signal and the
compensated error signal. In these figures the compensation signal is generated
using the current filter weights. Figures b show the filter weights. Figures c show the
uncompensated error signal together with the compensation signal and the
compensated error signal as well. However, in these figures the signals are I second
ahead and compensated with the same filter weights as in figures a.

- eompmsdion signal - Nerweim 2
4.4

376 377 378 379 380 381 382 31 376 377 378 379 380 381 382 38: 376 377 378 379 380 381 382

Figure 4.6aWc: Simulation results with large convergence rate

4.3 -

time [sl lime [sl lime [sl

Figure 4,7a/b/c: Simulation results with small convergence rate

Figure 4.6a shows that a large convergence rate results in fast convergence and
good instantaneous compensation of the error signal. However the filter weights
change very rapidly (figure 4.6b) and are therefore no longer valid after 1 second.
This is visible in figure 4.6~: the compensated error is even larger than the
uncompensated error. Figure 4.7a shows that a small convergence rate results in
slow convergence. However, the compensation signal has the shape of a sine wave
and slowly increases in amplitude. In steady state this sinusoidal part of the error
sianal will be com~ensated. Fiaure 4.7b shows that the filter weights change a lot

slower than in figure 4.6b. This results in a better compensation with I-second-old
filter weights, as can be seen in figure 4.6~. It is clear that a trade off must be made
between convergence speed and steady state error in order to find the best result.

To improve convergence speed and maintain small steady state error, the
convergence rate p is made variable. Initially the convergence rate is large in order to
obtain fast convergence. After the algorithm has converged, the convergence rate is
decreased until a final minimum convergence rate is reached. A way of updating the
convergence rate is discussed in [4]. The value of p is decreased by a factor a if
p(n - l)e(n) alternates sign on m successive samples. The parameters m and a are
usually chosen to be 3 and 2 respectively. However, simulations show that a = 1.5
provides better results in this particular case. The initial and final convergence rate
must be selected as well. Simulations show that an initial convergence rate of 0.03
and a final convergence rate of 0.0003 provide best results.

Figure 4.8 shows the same results as figures 4.6 and 4.7. However, the
results were obtained using the variable convergence rate algorithm. In figure 4.8b
an extra line is visible, which represents the convergence rate. One can see that
initially the filter weights change very rapidly (figure 4.8b), resulting in fast
convergence (figure 4.8a). After some time the convergence rate decreases,
resulting in slower changing of the filter weights. The compensation signat then
becomes a steady sine wave.

- uncompensated WTW
4.4 - compmsated e m
- compensation signal

4.5
376 377 378 379 380 381 382 31

time [s]

- mcmpensated mw
4A - cmpmsaled em
- compensation signal

45 b

: 376 37l 378 379 380 381 382 383
time [s]

Figure 4,8a/b/c: Simulation results with variable convergence rate

Simulations are performed with the variable convergence rate algorithm for all
ten available data series. The power of the uncompensated error is compared with
the power of the compensated error using one second old filter weights. In the first
six seconds of a run, the error power decreases approximately 1 1 % on average. It
must be noted that the standgrd deviation of this result is lo%, indicating that the
results of individual simulations vary a lot.

In Qrder to try to impr~ve performance, the single frequency ANC system is
extended to a multiple frequency ANC system. First the system is adjusted so that
the most powerful frequencies (0.66 Hz and 4.15 Hz) can be compensated. Also
the parameters for the 4.15-Hz-part must be selected. Simulations show that an initial
convergence rate of 0.01 provides best results. The remaining parameters are
chosen equal to the parameters of the 0.66-Hz-part. In the first six seconds of a run,
this new configuration gives an average error power decrease of approximately 17%
in comparison with the uncompensated error power. The standard deviation of this
result amounts to '18%.

Next the system is extended with a part for compensating a third frequency:
10.29 Hz. After optimising the algorithm's parameters, the error power reduction is

determined again. On average the error power decreases with approximately 11 % in
comparison with the uncompensated error power, with a standard deviation of 20%.
This means that adding the third frequency part worsens the result. The cause of this
can be that the power at 10.29 Hz is too low for the algorithm to converge well.

To determine how the algorithm performs after it has converged, simulations
of one minute length are performed. These simulations are performed with the two
frequencies ANC system. In the time range from six to sixty seconds an average
error power reduction of approximately 26% with a standard deviation of 14% is
obtained. In order to visualise this result, a histogram of the error amplitudes is
included in appendix a.

Finally the mbustness for frequency variations is investigated. This is done by
increasing all reference signal frequencies with one percent. Simulations are
repeated with the two frequencies ANC system on all available data series. On
zverage the error poww decreases with appmximately 4% in comparison with the
uncompensated error power, with a standard deviation of 22%. This result shows that
the performance of the algorithm is sensitive to changes in frequency.

The high standard deviations show that the results vary a lot. The deviation is
mainly the effect of the large deviation of the individual data series. Furthermore, the
initial convergence plays a role in performance. A coincidental bad initial
cmverGence c m lead to bad resu!ts. The large deviation makes it very difficult to
determine optimal system parameters. However, a few general remarks can be made
about the optimisation of the system parameters. First, if the error signal contains a
great part of random noise, the convergence rate should be chosen low. This will
prevent the system from converging to the random part instead of the repetitive part
of the error signal. Second, only frequencies that show a clear peak in the
powerspectrum should tried to be cancelled. Otherwise, the system will not be able to
converge well, resulting in poor performance. Third, a variable convergence rate
improves convergence speed and maintains small steady state error and is therefore
advisable for non-stationary signals.

5. Comparison of repetitive control with active noise control

In the past two chapters, two strategies for predicting and compensating repetitive
errors have been discussed. Both strategies are non-model based, only a repetitive
part of the error signal is compensated. The strategies are also similar in a way that
the frequency of the repetitive errors must be known in advance. Each strategy has
its own advantages and disadvantages. The strategies are here compared on several
general points as well as suitability for this specific problem. The comparison will
result in a choice for a strategy to be implemented.

Chapter 3 discusses the repetitive control strategy. This strategy is especially
usefui for compensatmg frequencies with higher harmonics, uihich ars very often
present in mechanical vibrations. Repetitive control uses a memory loop to generate
a compensation signal, so any arbitrary repetitive error signal with a fixed frequency
can be compensated. The side effect sf this memory loop is that frequencies
between multiples of the fundamental frequency are amplified. A repetitive control
system has fully converged after one period of the fundamental frequency. In order to
cancel out the effect of the memory loop at higher frequencies, a low-pass filter can
be added. If only one frequency must be cancelled, a very high order low-pass filter
is needed, especially if the sampling frequency is high in comparison with the error
frequency. Another effect of a high sampiirrg frequency in cornparism with the errer
frequency is a large memory loop and as a result a large data-storage capacity is
required.

Active noise control is discussed in chapter 4. This strategy uses a digital filter
to adapt a reference signal in order to compensate (a part) of the error signal. An
adaptive algorithm adapts the filter weights. Usually a sine wave is used as a
reference signal and as a result only error signals with a shape similar to a sine wave
can be compensated. An ANC system can be extended in order to compensate more
frequencies. These frequencies need not be multiples of each other. The
convergence speed of an ANC system depends on the chosen convergence rate as
well as the amount of noise of other frequencies that is present in the error signal.
The differences of the two strategies are summarised in the table below.

Repetitive control
Any arbitrary repetitive error signal with
fixed frequency can be compensated

Full convergence after one period

Suppression of multiples of fundamental
frequencies as well

Amplification of frequencies between
multiples of the fundamental frequency
Compuiaiionai effort and required data-
storage capacity can be high due to low-
pass filter and memory loop respectively

Active noise control
Only (parts of) error signals that are
(similar to) a sine wave can be
com~ensated
Convergencespeed dependson
parameter settings and the amount of
noise of other frequencies
No suppression of multiples of
fundamental frequency. However,
possibility to extend system to
compensate more frequencies
No amplification of other frequencies

Low computational e??or? and hardly ne
data-storage capacity needed

Table 5. I: Comparison of repefifive confrol with active noise control

Simulations performed on error data obtained from the experimental set-up
show that more error power reduction can be obtained using the ANC strategy than
using the repetitive control strategy. Furthermore, the computational effort and

memory storage for the ANC system is much lower than for the designed repetitive
control system. The ANC system is also easier to implement than the repetitive
control system. For these reasons, the choice is made to implement the ANC
strategy in the experimental set-up.

6, Implementation

To determine whether the designed ANC system improves the accuracy of
registration significantly, the algorithm must be tested on the experimental set-up. To
realise this, the algorithm has to be implemented in the C language. This is done by
first translating the Simulink model to a few Matlab functions and then translating
these functions to the C language.

6.1 Composition of the functions

The designed ANC system can be captured in three finciions: an iisiilalisaiim
function, a function to update the filter coefficients and a function to predict the error
of the OPC belt. The initialisation function assigns the initial values to the variables. -
I his function must be run at the start up of a print session and has no input value.
The update function receives the measured error from the encoder every 2 ms and
updates the filter weights in order to minirnise the mean square error. The prediction
function is run each time a new sheet of paper must be printed. It uses the current
filter weights to predict what the position error of the OPC belt will be by the time the
image is transferred to the TTF belt. The input of this function is the amount of time to
the moment of transfer, which was eariler estimated at one second. The ~utcorne d
the function is used to correct the time at which the image is printed onto the OPC
belt. This results in compensation of the error. The described Matlab functions are
included in appendix B.

Next the Matlab functions are translated to the C language. There are a few
restrictions when translating the functions. The algorithm must run very fast on a
processor that is as cheap as possible (calculations are performed every 2 ms).
Therefore sine and cosine functions are not allowed. These functions must be
approached with tables. Furthermore, variables of type 'float' take a great
computational effort and are therefore not allowed either. This means that only
integers can be used. In order to preserve accuracy, decimal numbers must be
scaled. This can be achieved by multiplying them with a large number. An integer
can take any whole number between -32767 and 32767, so scaling must be done in
such a way that the resulting number does not exceed these limits. However, the
resulting number must contain enough digits in order to maintain accuracy. These
restrictions can cause problems if the variable to be scaled varies in a great range
and if great accuracy is required as well.

The final form sf the C program is tested on the experimentally obtained error
data and its results are compared with the results obtained using the Matlab
functions. It appears that the results of the C program only slightly differ from the
results obtained using the Matlab functions. These small differences can be
attributed to loss of accuracy due to the scaling and approximation of the (co)sine
functions. Appendix C shows the final C program. The written C functions are
integrated with the total software that runs on the processor in order to be able to
perf~rrn experiments.

6 2 Experimental results

First, experiments are performed without using the prediction function. Only the
initialisation function and update function are run. During these experiments some
data are stored in order to determine whether the algorithm converges well. Several
data series of twenty seconds length are measured. The results show that the
algorithm converges in a way similar to the offline simulations. However, some of the
new powerspectra of the uncompensated error show high peaks at 1.31 Hz that have
not been seen before. It appears that these peaks slowly appear and disappear

during a run. These new peaks are probably the effect of mechanical and control
changes that were made to the experimental set-up after the original powerspectra
had been measured. Figure 6.1 shows the powerspectra of two data series of twenty
seconds length obtained at different times during a single run. It can be seen that
figure 6.1 a does not show a peak at 1.31 Hz and that figure 6.1 b does.

Figure 6. I db: Newpowerspectra obtained during a single run

Because the peak at 1.31 Hz contains a great a part of the error power, it is
decided to compensate this frequency instead of 4.15 Hz which has a much lower
peak. The experiments are repeated for the new situation. Several data series are
measured from the start of a run, in order to determine how the algorithm converges.
Also, data series are measured some time after the start in order to determine the
steady state performance. On average the instantaneous error power reduction of
these new simulations is approximately 25% for the series that are measured from
the start. The average instantaneous error power reduction of the steady state
measurements is approximately 60%. Figure 6.2 shows the results of a data series
that is measured in steady state. In figure 6.2a the uncompensated error signal is
visible together with the instantaneous compensated error signal as well as the
compensation signals. One can see that the compensation signals converge to rather
steady sine waves and that a significant reduction in error amplitudes is
accomplished. Figure 6.2b shows that the filter weights only change slowly, which
means that they are still valid after one second. However, it can be seen that the filter
weights of the 1.31 Hz signal change faster than the filter weights of the 0.66 Hz
signai. Fossibie expianations for this phenomenon can be the appearance and
disappearance of the 1 -31 Hz component during a run or the disturbance frequency
not being exactly equal to 1.31 Hz.

- filter weight 2 of 0.66 Hz signal
- filterweight I dl.31 Hz signal
- filter weiqht 2 of 1.31 Hz signal

-0.6

-0.8 - 7 1 " ' L " ' " i
0 2 4 6 8 I 0 12 14 16 18 20

time Is]

Figure 6.2db: Experimental results of algorithm in steady state

-

1 2 3 4 5

- uncanpensated e m - canpensated e r a
- 0.66 Hz compensation signal - 1.31 Hz canpensation signal

6
time Is]

The experiments performed so far show that online the algorithm behaves in
a way that is similar to the offline simulations. The next step is to include the
prediction function in order to adapt the start of page moment. Experiments are
performed in which the prediction function is run each time that a new sheet has to
be printed. The predicted error is compared with the real error that occurs. Figure 6.3
shows the real error and predicted error as well as the difference between the two.
Figure 6.3a shows the results of the start of a run, whereas figure 6.3b shows the
results of the algorithm in steady state. One can see that the prediction function
indeed predictsa part of the error signal.

0.4
- predicted e m
- measured errw

0.3
- l

- difference

-0.3
0 2 4 6 8 10 12 14 16 18 20

time [s]

-0.51 ' " ' ' ' ' ' '
0 2 4 6 8 10 12 14 16 18

time [s]

Figure 6,3a/b: Predicted error compared with measured error

Finally, experiments are performed in which the predicted error is used to
adjust the start of page moment. Two print sessions of 1500 sheets each are run.
One session is run using ANC to adjust the start of page moment and one session is
run without adjusting the start of page moment. Of each run, approximately 150
sheets are selected and are scanned in order to analyse the registration accuracy.
These 150 sheets are equally distributed over a run. The reason why 150 sheets are
selected out of a total of 1500 sheets, instead of printing 150 sheets in the first place,
is to cancel out the effect of low frequent changes in disturbance level. Earlier
performed experiments proved the existence of these changes. The results of the
two print sessions are compared. It appears that no significant change in registration
accuracy is made using ANC, although the algorithm performs well, as can be
concluded from the previous figures. The explanation for this is probably that the
experimental set-up produces too many other disturbances that affect the registration
accuracy. However, by the time this experimental set-up will be ready for production,
these other disturbances will be smaller due to improved mechanics and control
strategies. The experiments should then be repeated in order to determine whether a
significant improvement in registration accuracy can be made using ANC.

Conclusions and recommendations

The goal of this research was to design an algorithm that predicts the position error
of the OPC belt, so that it can be compensated by adjusting the time at which the
image is printed onto the belt. In order to realise this, first some experimentally
obtained error data have been analysed. Next, two control strategies that are able to
counteract periodic disturbances have been discussed: repetitive control and active
noise control. Both strategies have been adapted to the problem and have been
optimised by means of simulations in order to obtain maximum error power reduction.
The two strategies have been compared on their suitability for solving the problem,
resuiting in a choice for a strategy to be irnplerneiited in the experimefital set-up. Ir;
order to implement the chosen algorithm, it has been translated to the C !anguage.
Finally, experiments have been performed in order to determine whether the
algorithm performs weii online and whether a significant improvement ir: registration
accuracy is made.

Offline analysis of the experimentally obtained error data shows that a
significant part of the error power is present at only a few fixed frequencies. If the
most powerful frequency is filtered out by averaging, an average error power
reduction of approximately 25% is obtained. If this is done for the five most powerful
frequencies an average errsr power reduction of approximately 50% is obtained.

Repetitive control and active noise control have been used to predict and
compensate the position error of the OPC belt. Simulations performed on the
experimentally obtained error data show that the largest error power reduction can be
obtained using active noise control. In steady state, this error power reduction is
approximately 25%. Besides the larger error power reduction, the active noise control
strategy requires less computational effort and is easier to implement than the
designed repetitive control system. For these reasons, the choice has been made to
implement and test this strategy on the experimental set-up.

Experiments performed on the experimental set-up show that the online
performance of the algorithm is similar to the offline performance, which means that
the algorithm performs well. However, using the algorithm to adapt the moment of
start of page does not change the registration accuracy significantly. This is probably
the effect of the existence of many other disturbances in the experimental set-up that
influence registration accuracy. Nevertheless, in a later stage of the development
these disturbances will be smaller due to improved mechanics and control strategies.
In combination with the fact that earlier performed experiments show that the position
errsr sf the OPC belt is directly related to the registration accuracy, it is expected that
the registration accuracy will then significantly improve by using active noise control.

It is recommended to repeat the experiments on other experimental set-ups in
order to test the robustness of the algorithm. The frequencies to be compensated
must be given a value offline, so the algorithm will only perform if the error
frequencies of these set-ups are equal to the error frequencies of the first
experimental set-up. It is expected that these frequencies are indeed equal, because
the frequencies are mainly a function of the velocity of the OPC belt. This velocity will
be the same in all set-ups. However, simulations show that the performance of the
a!goriti?rn strongly depends on the accuracy with which the errar frequencies have
been estimated. Therefore, the algorithm will probably perform better on different set-
ups if the error frequencies are determined online.

The algorithm has to converge each time a new print session is started.
However, for a certain reason the transfer pinch sometimes has to be opened during
a run (see figure 1.2 for transfer pinch). This results in an almost instantaneous extra
displacement of the OPC belt. The effect of this is that the filter weights must
converge again. It is therefore recommended to restore the convergence rate to its
initial high value when the transfer pinch opens.

Appendix A: Histogram error signal

Figure A.1 shows a histogram of the amplitudes of a compensated and an
uncompensated error signal. The compensated signal is obtained using the two
frequencies ANC system with variable convergence rate. Both signals are of one
minute length. It is visible that the compensated error signal has smaller amplitudes
than the uncompensated error signal.

Figure A. I: Histogram error amplitudes

3500

3000

2500

-
-1.2000
S
0

3 I500

1000

500

0
-1.2

uncompensated emr
-

-

-

-

-

-

-1 4.8 0 . 6 0.4 4.2 0 0.2 0.4
amplitude [mm]

Appendix B: Matlab functions

Initialisation function

clear fl £2 mu1 mu2 ec ecv e c w wl w2 wwl ww2 alf i er flt f2t
global fl £2 mu1 mu2 ec ecv e c w wl w2 wwl ww2 alf i er flt f2t
i=1; %sample counter
fs=500; %sampling frequency [sample/sl
flt=0.66; %frequency 1 [periods/sl
fl=flt/fs; %frequency 1 lperiods/samplel
f2t=4.151; %frequency 2 [periods/sl
f2=f2t/fs; %frequency 2 [periods/samplej
mul=0.03; %initial convergence rate 1
mu2=0.01; %initial convergence rate 2
ec=0.001; %initial value corrected error
ecv=O ; %initial value corrected error one sample earlier
ecw=O ; %initial value corrected error two samples earlier
y=O; %initial correction signal
wl=[0.001; 0.0011; w2=[0.001; 0.0011; %initial filter weights

Update function

function ec=updatefunc (e) %input is measured error
global £1 f2 mu1 mu2 ec ecv e c w wl w2 wwl ww2 alf i er

%first frequency
rl= [sin (2*pi*f l*i) ;cos (2*pi*f l*i)] ; %reference signal
sll=sign(ec*sin(2*pi*fl*(i-1))); %convergence rate adaptation criterion
sl2=sign (ecv*sin(2*pi*fl* (i-2))) ; % "
sl3=sign (ecw*sin (2*pi*f I* (i-3))) ; %I
if sll-=s12&s12-=s13&mu1>0.00031 %I I

mul=l/alf*mul; % I T

elseif mu1<0.00031 5 1 I

mu1=0.0003; %I 1

end % I I
wl=wl+mul*rl*ec; %filter weight update
yl=wll*rl; %computation compensation signal

%second frequency
r2= [sin(2*pi*f2*i) ;cos (2*pi*f2*i) 1 ;
s21=sign (ec*sin (2*pi*f2*(i-1))) ;
s22=sign (ecv*sin (2*pi*f2* (i-2))) ;
s23=sign (ecw*sin(2*pi*f2* (i-3))) ;
if s21-=s22&s22-=s23&mu2>0.00031

mu2=1/alf*mu2;
elseif mu2<0.00031

mu2=0.0003;
end
w2=w2+mu2*r2*ec;
y2=w2'*r2;

ecw=ecv;
ecv=ec ;
ec=e-yl-y2; %computation compensated error signal
i=i+l;

Prediction function

function correc=predictfunc(delay) %input is time from present moment
%till the point of time of which
%the error must be predicted [s]

global fl £2 mu1 mu2 ec ecv e c w wl w2 wwl ww2 alf i flt f2t
phasel=2*pi*flt*delay; %conversion delay from seconds to radians
phase2=2*pi*f2t*delay; % , I
rld= [sin (2*pi*f l*i+phasel) ;cos (2*pi*fl*i+phase 1 ; %adaptation
r2d=[sin(2*pi*f2*i+phase2);~0~(2*pi*f2xi+phase2)]; %reference signals
yld=wlt*rld; %computation compensation signal 1
y2d=w2 *r2d; %computation compensation signal 2
correc=yld+y2d; %computation total compensation signal

Appendix C: C functions

typedef struct {
int u l ; /I correction signal
int u2; I / "
int r l a; /I reference signal
int r l b; I1
int Ra; I/ 'I

int r2b; /I "
int e; /I error value
int ec; /I corrected error value
int ecv; /I corrected error value 1 sample earlier
int ecw; /I corrected error value 2 samples earlier
int w l a, w l b, w2a, w2b, mu1 , mu2; /I filter weights and convergence rates
int i j; /I indices for sin and cosine function
int correc; /I last correction computed by the predict function
int d; /I delay for which last correction was computed

) t-anc-param;

//prototypes
int anc-init (t-ancgaram*);
int anc-updatefunc (t-anc-param*, int);
int anc-predicthnc (t-anc-param*, int);

#define ANC-MAXLOGS 10000
#define pi 3.14159265358979
#define alf 1.5
#define f l t 0.66
#define w l ts (int)(2*pi*fl t*l024)
#define f l f l t1500.0
#define w ls (int)(Z*pi*f? *1024)
#define f2t 1.31
#define w2ts (int)(2*pi*f2t*l024)
#define f2 f2tl500.0
#define w2s (int)(2*pi*f2*1024)

/I number of entries in debug array

I/ factor of decrease of convergence rate
// first frequency in cycies/second
/I scaled version of f l t
/I first frequency in cycles/sample
// scaled version of f l
/I second frequency in cycles/second
/I scaled version of f2t
/I second frequency in cycles/sample
I/ scaled version of f2

const int sinus[l02] = (0, 64, 128, 192, 255, 316, 377,436, 493, 549, 602, 653, 701, 746, 789, 828,
865,897,927,952,974,992,1006,101 6,1022,1024,1022,101 6,1006,992,
974, 952, 927,897, 865, 828, 789, 746* 7Oli 653,602; 549,493: 436,377,316,
255, 192, 128, 64, 0, -64, -128, -192, -255, -316, -377, -436, -493, -549, -602,
-653, -701, -746, -789, -828, -865, -897, -927, -952, -974, -992, -1006, -1016,
-1022, -1024, -1022, -1016, -1006, -992, -974, -952, -927, -897, -865, -828,
-789, -746, -701, -653, -602, -549, -493, -436, -377, -316, -255, -192, -128, -64, 0, 0);

static int sintab(int); I/ sine function with the use of a table
static int costab(int); /I cosine function with the use of a table

N stuff for debug array
static t-anc-param data[ANC-MAX-LOGS]; /I cyclic buffer

static int data-ind = 0; I1 points to next debug entry to fill
static int data-full = 0; 11 true if all entries have been filled
int data-log = 1 ; 11 true if data is being logged

void anc-add-to-log (t-anc-param *anc)
{

datardata-ind] = *anc;
data-ind++;
if (data-ind == ANC-MAX-LOGS)
{
data-ind = 0;
data-full = I;

data-log = 0;
1

vcid ancdump-data (void)

int i;
FILE *fp = NULL;
data-log = 0; I1 stop logging while saving data
fp = fopen("logs/anc.dat", "w");
if (fp != NULL)
{

fprintf(fp,"%%ul\tu2\trl a\trl b\tr2a\tr2b\tec\tecv\tecvv\twl a\twl b\tw2a\tw2b\tmu1\tmu2\ti\tj\tcorrec\td\n");
if (data-full)
{

for (i=data-ind; i < ANC-MAX-LOGS; i++)
{

fprintf (fp, "%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tY~i\t%i\n",
data[i].ul,
data[i].u2,
data[i].rl a,
data[i].rl b,
data[i].r2a,
data[i].r2b,
data[i].e,
data[i].ec,
data[i].ecv,
data[i].ecvv,
data[i].wl a,
data[i].wl b,
data[i].w2a,
data[i].w2b,
data[i].mul,
data[i].mu2,
data[i].i,
data[i].j,
data[i].correc,
data[i].d);

1
1

for (i=O; kdata-ind; i++)
I
1

fprintf (fp, "%i\t%i\t%i\t%i\t%i\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\tYoi\t%i\t%i\t%i\t%i\t%i\t%i\t%i\n1',
aata[ij.ul ,
data[i].u2,
data[i].rla,
data[i].rl b,
data[i].Qa,
data[i].r2b,
data[i].e,
data[i].ec,
data[i].ecv,
data[i].ecw,
data[i].wl a,

data[i].wl b,
data[i].w2a,
data[i].w2b,
data[i].mul ,
data[i].mu2,
data[i].i,
data[i].j,
data[i].correc,
data[i].d);

1
fclose (fp);

1
data-full = 0;
data-ind = 0;
data-log = 1 ;

I
I/ start logging again

I/ function anc-init ()
int anc-init (t-anc-param* anc-param)
{

ancgaram->mu1 =(int)(0.02*1 O24*64); N initial values
ancgaram->mu2=(int)(0.02*1024*64);
anc-param->ec=l ;
anc-param->ecv=O;
anc-param-zecw=O;
anc-param->wl a=anc-param->wl b=anc~param-~w2a=anc~param-~w2b=(int)(0.001 * I 024);
anc-param->i= I ;
anc-param->j= 1 ;
return (1);

1

I1 function ec=updatefunc(e)
int anc-updatefunc (t-anc-param* anc-param, int e)
I

int r la , rlb, s l l , s12, s13, r2a, r2b, s21, s22, s23, ul,u2;
int i,j;

// save error for data analysis
anc-param->e = e;

11 compute filter for first reference signal
i = anc-param->i;

/I convergence rate 1 adaptation criterion
if (anc-param->ec*sintab(wlsc(i-I)) >0)
{

s l l = l ;
1
else
{

s l i = - i ;
1

s12 =I;
1
else

s13 = 1;
I
else
{

~ 1 3 ~ - 1 ;
1

if (sl 1 !=s12 && s12!=s13 && anc-param->mu1 > (int)(O.O003l*l024*64))
{
anc-param->mu1=(2*(anc-param->mu1)/3):

I
else
if (anc-param->mu1 c (int)(0.00031*1024*64))
!

I1 filter weight 1 adaptation
anc-param->wl a=anc-param->wl a+((anc-paramamu I *rl a)/64*(anc~param~ec/1 024))/1024;
ancgaram->wl b=anc-param->wl b+((anc-paramamu1 *r l b)/64*(anc-param>ec/I 024))/1024;
u l = anc-param->wl a*rl a11 024 + anc-param->wl b*rl bl1024; I1 correction signal 1
ancgaram->ul = u l ;

if (i==758) 11 index update 1
{

anc-param->i=l ;
I
else
{

I1 compute filter for second reference signal
j = anc-param->j;

I1 convergence rate 2 adaptation criterion
if (anc-param->ec*sintab(w2s*(j-l))>O)
{

s21 =I;
1
else
{

s21 = -1;
1

s22 = 1;
I
else

1
else

anc-param->mu2=(int)(2*(anc-param->mu2)/3); }
else
if (anc-param-~mu2~(int)(0.00031 * I 024*64))
{
anc-param-~mu2=(int)(0.0003*1024*64);

1

I/ filter weight 2 adaptation
anc~aram-~v~2a=anc~param-~~~!2a+~(an~~param-~m~2*r2a)/64*(an~~param~e~/l024))/1024;
anc~param-~w2b=anc~param-~w2b+((ancCparammu2*r2b)l64*(ancparamec/l024))/1024;
u2= anc-param->w2a*r2a/l024 + anc-param-zw2b*r2b/l024; //correction signal 2
anc-param->u2 = u2;

if (j==382) // index update 2
{

anc-param->j=l ;
1
else
{

anc-param->j++;
1

I / save errors for next time
anc-param->ecvv= anc-param->ecv;
anc-param->ecv= anc-paramaec;
anc-param->ec=e*l024-ul -u2; 11 corrected error

11 log some data for analysis
if (data-log)
anc-add-to-log (anc-param);

return (r2a);
1

// function predictfunc
I1 d : delay in seconds * 128
int anc-predicthnc (t-anc-param* anc-param, int d)
{

int i, j;
int phasel, phase2, rlad, rlbd, r2ad, r2bd, uld, u2d;

phasel =((wl ts)/64*d) % (int)((2*pi)*(l <<(ANC-T-SCALE+4))); // phasel calculation from delay
phase2=((~2ts)il28*a) % jinijj(2*pi)*(l ee(AT\jC-T-SCKiE+3)));/lpkase2 calciiaiion from delaj;

r l ad=sintab(wls*i+phasel); I/ reference signal I a with delay
r l bd=costab(wls*i+phasel); 11 reference signal I b with delay
u l d=ancgaram-zwl a*rl ad11 024+anc-param->wl b*rl bdl1024; //correction signal 4 with delay

r2ad=sintab(w2s*j + phase2); / I reference signal 2a with delay
r2bd=costab(w2s*j + phase2);ll reference signal 2b with delay
u2d=anc~param-~w2a*r2ad/l024+anc~param-~w2b*r2bd/l024; //correction signal 2 with delay

anc-param-~correc=uld+u2d;// total correction signal

return (anc-param->correc);
1

// function sine
static int sintab (int phase)
{

int position;

position = phase 164;

return (sinus[position]);
1

/ I function cosine
static int costab (int phase)
I

int position;

position = phase 164;
if (position<=75)
{

position=position+25;
1
else

return (sinus[position]);

1

References

[I] T. de Hoog, "Stability and performance of memory loop filtered control
systems", Pato course, 1998

[2] M. Tomizuka, "Zero phase error tracking algorithm for digital control", Trans.
of ASME Journal of dynamic systems, Measurement and control, Vol. 109,
March 1987, pp 65-68

[3] S.M. Kuo, D.R. Morgan, "Active Noise Control Systems", Chichester: Wiley-
Interscience, 1996

[4] R.W. Harris, D.M. Chabries, F.A. Bishop, "A variable step (VS) adaptive filter
algorithm", iEEE Trans. aeoust., speech, signal piocessiiig, ASSP-34, pp
309-31 6, April 1 986

[5] O.G. Smink, "Practical application of repetitive control", Oce-Technologies
B.V. R&D internal report, 2002

[6] B. Widrow, S.D. Stearns, "Adaptive signal processing", London: Prentice Hall,
I985

[7] H. Schildt, "C++ The Complete Reference", London: Osborne McGraw-Hill,
1995

	Voorblad
	Summary
	List of symbols
	Contents
	1. Introduction
	2. Error data analysis
	3. Repetitive control
	4. Active noise control
	5. Comparison of repetitave control with active noise control
	6. Implementation
	Conclusions and recommendations
	Appendices
	Appendix A
	Appendix B
	Appendix C

	References

