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SAMPLED-DATA MODELLING AND SIMULATION OF

CYCLICALLY SWITCHED CONVERTERS

1 Introduction

Models for the dynamics of power electronic circuits are of crucial importance in many ap
plications, both for assessing stability and for designing compensators to enhance stability
and performance.

A general sampled-data representation of power electronic circuit dynamics is presented
in this report. It leads, via compact and powerful notation, to disciplined modelling for
large-signal numerical simulations and to the derivation of small-signal linear models that
describe perturbations about a nominal cyclic steady state.

Thus, starting from fundamental state-space techniques, the following approach has
been chosen:

Section 2 and Section 3 introduce a general formulation aiming at a straight
forward discrete-time system description of cyclically switched converters. These
two sections draw on the ideas in [1].

Next, Section 4 places emphasis on an analytical method, through which
the derivation of the system matrices can be carried out systematically, being
especially suited to be used within the context of computer-aided analysis and
design software tools such as MATLAB. The development in this section is close
to the work in [3]-[4].

Numerical techniques which complement the proposals in Section 4 are
briefly sketched in Section 5. The back-ground for the formulations can be
found in [2].

Section 6 refers to application examples. By taking the properties of a simple
dc/dc converter under different control strategies explicitly into account, the
details related to the sampled-data modelling methodology are made clear.

Supplementary techniques are summarized in appendices. MATLAB m-files
are also provided to be considered along with the application examples.

Nomenclature:
Notational distinction is made between scalars, for instance x, and vectors, for instance'!'..
Matrices are represented by upper-case names, such as ~, or given between brackets [ ].

Appendix A introduces functions like [(x), J(:::J, [(:::J and their derivatives. If a lower

case name represents a variable that may be time dependent, such as (continuous-time)
3'(t) or (discrete-time) X(tk), then the corresponding upper-case name, X in this case, is
normally used to denote the nominal periodic steady-state value related to this variable.
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2 Power Electronic Circuits as Cyclically Switched
Systems

A general sampled-data representation of power electronic circuit dynamics is presented
in this section. State-space techniques are employed to derive an equivalent nonlinear
discrete-time model that describes the circuit exactly.

2.1 Continuous-time description of circuit operation

We consider a power electronic system model that is characterized as follows. The system
operates cyclically. In the k-th cycle, extending from time t = tk to time t = tk+h the
n-dimensional state vector x (t) of the system is governed by a succession of N linear
time-invariant state-space equations of the form

dx (t)
at = J!c;~(t) + I!.;~(t); tk +T;-l,k < t ~ tk +T;,k, (1)

one for each of the N switch configurations in the k-th cycle. The state ~(t) is continuous
across each change in switch configuration, i.e., the final state in one configuration is the
initial state in the next.

The index i in Eq.(l) runs from one to N, with

TO,k = 0

tk+l tk +TN,k

as illustrated in Fig. 1. It goes without saying that TN,k is the duration of the k-th cycle.

tk
_____ -----lIst conf. I 2nd conr. r -l i-th conf.

tk+l
N-th conf.

I-----~-----
t

Figure 1: Transition times at which the switch configuration changes, related to the begin
ning of the k-th cycle.
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The variables Ti,k in Fig. 1 may be termed (relative) transition times, and they will be
collected into the N -vector '[k, with

The m-dimensional vector'!. (t) is a vector of time functions that typically represents

sources acting on the circuit, and J!ci and Iii in Eq.(l) are n X nand n x m matrices,
respectively.

For a given '!:(tk) the evolution of the system in Eq.(l) in the k-th cycle is completely
determined by the source waveforms and the transition times at which the switch configu
rations change. In the cases of interest to us these source waveforms and transition times
are in turn governed, directly or indirectly, by a set of independent determining variables.
Some of the determining variables serve to impose directly all the source waveforms in
the vector'!. (t) for the k-th cycle. Aiming at notational simplicity, it is advantageous to
assemble all the independent determining variables into a vector labeled l!.k.

The transition times Ti,k depend on external control action and on the system state.
Therefore, they are essentially of two types. One type of transition may be directly con
trolled by external control action; this is usually the situation when, for example, thyristors
are turned on or transistors are turned on or off (the exceptions correspond to those thyris
tors or transistors for which these particular operations have been made functions of the
system state and are thus no longer direct functions of external control action). The cor
responding transition times are then directly and explicitly determined by some of the
determining variables.

The other type of transition only occurs when the system state reaches particular
boundary's or threshold conditions; this is the ~ase with, for example, thyristors turning
off (threshold condition: zero thyristor current) or diodes turning on (threshold condition:
zero diode voltage) or off (threshold condition: zero diode current). This type of transition
is thus only indirectly or implicitly controlled by the determining parameters via the effect
of external control action on the state trajectories of the system.

The expressions that give the'!. (t) in the the k-th cycle in terms of the entries of l!.k are

typically simple and explicit. Those that give the Ti,k in terms of the entries of l!.k can range
from simple and explicit to complicated and implicit; simple explicit expressions are to be
expected for the directly controlled transitions, while complicated implicit expressions are
the norm for the indirectly controlled transitions.

Despite the distinction between the two types of transition times, the equations relating
the N-vector '[k of transition times to the vector l!.k of the determining variables, for both
the directly and indirectly controlled cases and for any given,!: (tk), can be seen to be
RUl11Inarized in a set of N equations that has the form

(2)

From now on we shall refer to this set as the constraint equation for the system.
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Note that the compact notation .~J,., .) is actually

[

Ci(':"') ]
ct· ..)= .- ' , .,

CN(-, " .)

where each of the e;(-, " .) is a scalar function of three vector arguments, which determines
the transition time Tk ,;.

2.2 Large-signal sampled-data description

On integrating the governing description given by Eq.(l) over the interval from tk to tk+i
and noting that':!. (t) in the k-th cycle is directly determined by Ek, a sampled-data de
scription of the form

(3)

is obtained. Again note that the symbol L(-, ".) is being used to denote an n-veetor, each
of whose entries is a scalar function of three vector·arguments.

For given :::.(tk) and specified determining variables P'k the constraint Eq.(2) may be

used to determine '[k , typically by an iterative numerical computation (since some of the

component functions of Eq.(2) will typically be implicit non-linear equations). Substitution
of the resulting '[k in Eq.(3) then yields the the state :::.(tk+,) at the beginning of the next

cycle. The process is then continued forward. We thus have in Eqs.(2-3) an exact large
signal sampled-data description of the dynamics of any power electronic circuit that can
be modelled via Eq. (1).

It is often the case that one also wants to model the evolution of certain variables
other than the state variables. For example, one may wish how the average value of some
variable, taken over a cycle, varies as one goes from cycle to cycle, or one may be interested
in the dynamic evolution of the peak value in each cycle of some variable. Any auxiliary
variable in which the value for the k-th cycle is determined entirely by system behavior in
the k-th cycle is completely determined by :::. (tk), P'k and '[k. Collecting all such auxiliary
variables of interest into a vector lLk, one can obtain an equation of the form

to be considered along with Eq.(2) and Eq.(3). Again, the constraints in Eq.(2) can be
used to eliminate 1.'.k from Eq.(4) as needed. Note as before that the notation h (".,.)

represents a vector function of three vector arguments.
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3 Perturbations Around a Nominal Cyclic Steady State

Finding the operating point is usually the first step in the analysis of power electronic
circuits. After this has been accomplished, it is possible to linearize the system about
its equilibrium state to obtain a linear discrete-time model for small-signal performance
evaluations, such as stability and transient response.

3.1 Periodic operating point

If a power electronic system model of the form given by Eq.(l) has a nominal cyclic oper
ating point, then

(5)

and

(6)

for the functions [(.,.,.) and ~(.,.,.) defined in Eqs.(2-3), where the vectors p. and T
denote the periodic steady-state values of the determining variables and transition times:

l!.k-I = l!.k = l!.k+1 = ... = p.,

'.[k-l '.[k='.[k+l=···='.[,

(with corresponding constant cycle duration TN,k = TN) and

(7)

(8)

(9)

The conditions in Eqs.(5-6) follow from the fact that a cyclic steady state is characterized by
values of the determining variables and initial state such that the system, after excursions
and changes of switch configuration, returns at the end of the cycle to the same state.

3.2 Dynamics of perturbations from steady state

For the purpose of analyzing the dynamics of variations about a particular nominal cyclic
st.eady state, we shall use the following notation to represent perturbations of the various
system variables from their steady-state values in Eqs.(7-9):

'£k x(tkl-x- -

(lk l!.k -l!. (10)

Tk '.[k-'.['

Note that the perturbation in the duration of the kth cycle, Tk,N - TN, is actually the last
component of !:-k.
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From Eqs. (2-3) we then get

(11)

with

(12)

Carrying out (multivariable) Taylor series expansions in Eqs.(1l-12), retaining only linear
terms, and using Eq.(10) yields what is essentially the small-signal model (though still in
implicit form):

(13)

and

(14)

The compact notation makes things look simple, but rower over the symbols requires
understanding them completely. The (Jacobian) symbol lal/a'!:.] is been used to denote
the partial derivative of the vector f(·,·,·) with respect to its first vector argument (see

App. A and App. B) evaluated at the cyclic steady state specified by '!:., E, and I. Similar
definitions hold for the other matrices of derivatives in Eq.(13) and Eq.(14). Note that

[a!:/aI] is a N x N square matrix.

The results in Eq.(13) and Eq.(14) can be combined by solving for r k from Eq.(14) and
substituting the resulting expression in Eq.(13) to get

(15)

where

(16)

and

(17)

This constitutes the final form of the linear time-invariant sampled-data model for pertur
bations of the system away from a cyclic steady state. In particular, the periodic stea.dy
state is locally asymptotically stable (without further control action) iff all eigenvalues of
~o have magnitude less than one.

Perturbations of the auxiliary variables in Eq. (4) around their steady-state values 'iL =

!::.('!:.,E, '[) can also be readily modeled. By defining in analogy to Eq.(16)

(18)
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it follows that (by the same procedure of Taylor expansion in Eq.(4), truncation at linear
terms, and by using Eq.(14))

(19)

where

(20)

and

(21)
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4 Looking for the Cyclic Steady State

A cyclic steady state of the power electronic circuit model is characterized by the conditions
established at Eqs.(5-6). Since the elements of E. (the determining variables) are supposed
to be well known, the problem of finding a periodic operating point can be stated as one
of finding stationary solutions ~ and I, for which both equations

(22)

(23)

are fulfilled simultaneously.

The solution of Eq.(22) and Eq.(23) can be obtained by iterative computation using
the Newton formula (see App. B). Hence, starting with initial values ~D and I D

, the m +1
iteration step is given by

(24)

where J is the Jacobian and R the residue of the set of Eqs.(22-23) :- -

and

_[L-~]R- .- c

The solution of Eq.(22) and Eq.(23) is found when

II~II < f, a small number.

(25)

(26)

Notice that the submatrices of the Jacobian also provides the basis for the descrip
tion of perturbations about the steady state, Eqs.(15-21). Therefore, solving the steady
state problem by the Newton method implies that the small-signal model will be partially
constructed.

Numeric algorithms for determining the cyclic steady state (and the partial derivatives
in Eq.(25)) are well established [2]. However, a better insight of cyclic power electronic
converters will be acquainted if the expressions of the Jacobian matrix are determined
through an analytical formulation. For this reason, an analytical approach aiming at
determining the derivatives in Eq.(25) will be discussed in the following.

8



4.1 Sensitivity matrices

As it will be clear in the next section, for the purpose of evaluating analytically the Jacobian
matrix in Eq.(25), we have to deal with the dependency of the state vector at the transient
time T; from variations in the state vector at the transition time Tj , and from variations
in the transition time Tj self. Otherwise stated, it is necessary to look for expressions for
the derivatives

and

(Note: since we focus on the steady-state environment, from now on the absolute time
tk will be chosen equal to zero, and the inessential subscripts k will be dropped, without
further loss of generality).

In order to compute such derivatives, it is advantageous to introduce a sensitivity matrix
'!?;(t), which is obtained by differentiating the state vector within a switch configuration
with respect to the initial state value:

(27)

By rewriting Eq.(I) in its integral form,

(28)

where

it follows that'

(29)

ox(t) rt
Ox (T;-d - Jr.-I

0fl;(~, 11:., T)

Ox
(30)

COlliparing Eq. (27) to Eq. (30) leads to

d'l>;(t)
=dt

. '!?i( t);
~(T;_,)

'l>i(Ti-d = 1.- - (31)

1 Hint: Leibniz's theorem for differentiation of an integral:

d 1'(') 1'(') 8f(x c) db da
-d' f(x,c)dx = 8' dx +f(b,c)-d -f(a,c)dc'

C a(c) a(c) C C

9



In view of Eq.(29)

89.i(,£,'!:,t)
8x = 1i,

'£ (T,_d

(32)

and the solution of Eq.(31) is found to become (see App. C) :

~i(t) = exp{1i' (t - Ti-d}; Ti_1 < t :::; Ti,1 :::; i :::; N.

Consider now the expression for the derivative

(33)

8,£ (Ti)

8x (Tj l' with i > j.

Since the final state in one switch configuration is the initial state in the next, by using the
chain rule of differentiation, and in view of Eq.(27), the above derivative can be expanded
to

8,£ (Tj+l )

8,£(Tj) ,

= ~;(T;)· ~i-I (T;-d' .... <l> j+1 (Tj+l);

o:::; j < N, j < i :::; N. (34)

Another relation of importance to us is the one which describes the dependency of the
state vector from variations in the transition times, that is,

ax (T;)
aT .

J

Now the distinction between i = j and i > j is conceptually relevant. If i = j, then Ti has
to be seen as an upper limit time, and the system is supposed to present no perturbations
until (and including) the transition time previous to T;. Hence, with regard to Eq.(28),

which implies'

(35)

'See footnote 1.
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If i > j, then Tj has to be considered as a transition time inside the history of the system,
and the effects of variations in Tj propagate until the upper limit time Ti. Once again the
chain rule of derivation can be used:

ax (Ti) a:::. (Ti) a:::. (Ti-d
=aTj a:::. (Ti-d a:::. (Ti- 2 )

(36)

In view of Eq.(28), and from the fact that a variation in Tj has influence in two circuit
topologies, the latest derivative in Eq.(36) is found to become3

:

(37)

Finally, the results from Eqs.(35-37) yield

Obviously, for j > i, both Eq.(34) and Eq.(38) are identical Q.

4.2 Analytical evaluation of Jacobian matrices

Aiming notational clarity, we shall rewrite Eq.(25) as follows:

(39)

because

emphasizes more sharply that we are focusing on the state vector at the beginning and at
the end of the cyclic steady-state period.

In view of Eq.(34)

(40)

and with this, the computation of the upper left submatrix in Eq.(39) is determined.

3See footnote I.
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The right upper submatrix in Eq.(39) can also be evaluated by using Eq.(38). Its i-th
column is found to become

For the submatrix [8~/8'~JO)] the chain rule also applies. The i-th row of this submatrix
can be expressed as being:

8e;
8~(O)

8e;
8x(T;) . ~;(T.)· ~i-l(T;-d' .... ~l(Td; 1 ~ i ~ N. (42)

The derivation of the remaining submatrix, which also depends on the function ~, is

a little more subtle. With regard to the results in Eq.(38), this last submatrix is a lower
triangular one, whose ij-elements are of the form:

8c;j8T!T=Ti +
+ [8e;/8~(T.)1· 9.i(~,1!:, T.); 1 ~ i ~ N, j = i

8e;/8TIT=T, +
+ [8c;/8~(Ti)] . ~i(Ti)' ~'-l(T'-l)' .... ~j+l(Tj+d'

'[-[lj+l(~'1!:,Tj)+;li(~'1!:,Tj)]; 2~i~N, 1 ~j<i

o; 1 ~ i < N, j > i.

(43)

It is worthwhile to notice that in all submatrices only the sensitivity matrix ~., the
functions [l' and the derivatives of the function ~ appears. Therefore the Jacobian can be .
evaluated very easily, and moreover by steps.

12



5 Numerical Evaluation of Derivatives

Once the cyclic steady-state operation point has been found, the sensitivity of the solution
to changes in the determining variables (circuit element values, for instance) should be
determined for the purpose of constructing the small-signal model (Eqs.(15-21)).

By differentiating Eqs.(22-23) with respect to one determining variable Pj at a time, it
follows that

oi _[oi_I] ox [:i] oT- - (44)
OPj

._- ,ox - OPj OPj

oc
- [:~]

ox
[:~]

oT- - - (45)
OPj

= ._- ,
OPj OPj

where the matrices between [ ] are supposed to be evaluated at the operating point. In
fact, in view of the results of the previous sections, these matrices are already available.
Therefore, the problem reduces on finding

ox ox (0)
----
OPj - fJPj

fJT
and

fJp/
(46)

i.e, the dependency of the state vector and transition times at the steady state from vari
ations in the parameter Pj.

An analytical solution for Eq.(46) is not always straightforward in account of the switch
ing sequence. For this reason we will propose a numerical resolution.

A classical approach for computing derivatives consists on perturbating the parameter
Pj by !:>Pj and finding the resultant variations in '!: or r... (you are right, dear reader: for
each determining variable at a time, a new periodic steady state has to be computed after
each perturbation !:>Pj, according to the procedure in Section 4, indeed!). Obviously, it is
a brute-force evaluation of the derivatives, where it is important to select the appropriate
increments !:>Pj. Some experimentation with the increment size is advisable, since the
accuracy of the partial derivatives depends on it. If the function varies rapidly, a very small
increment is clearly required. On the other hand, if the increment is chosen needless small,
then the accuracy decreases because of numerical computation errors; i.e., a difference
quotient assumes numerically the value close to 0/0. Study on the increment size and its
effect on the results also has physically significant implications. If the linearized system
shows high sensitivity to incremental size, then this points out that the non-linear system
changes its behavior rather rapidly as it moves alway from its equilibrium, and the result
obtained for the linearized system is only valid for very small perturbations about the
equilibrium.

Of course, a similar numerical approach could be followed, aiming at the determination
of the cyclic steady state (and the partial derivatives related to it) [2]. However such a
formulation results in high computational costs if compared to the analytical method of
Section 4.

13



6 Application Examples

In this section the methodology presented in the preceding sections for modelling cyclically
switched systems will be highlighted through step-by-step examples concerning a simple
dc/dc converter. First, the method will be applied to the particular case of open-loop duty
ratio control of an up/down converter. Next, the sampled-data modelling approach will
be demonstrated by operating the same converter under feed-forward control and current
mode control. In all cases, general equations for steady-state and dynamic performance
are obtained. The resulting equations yield discrete recurrence relationships which can be
readily used for circuit simulation with the MATLAB software program. Numerical results
from simulations are provided, together with the corresponding m-files.

Parameter values for the converter under consideration have been taken from [5], which
is a good reference book on modelling techniques in Power Electronics. The reader is
encouraged to compare the results presented here to the examples in [5J, where the same
converter is used several times to illustrate various aspects of dynamic modelling and
control design.

6.1 UP/down converter

For the purpose of illustrating the proposed modelling procedure, an up/down (or buck/boost)
converter will be considered. The power circuit is build according to the circuit schematic
in Fig. 2, with the following component values

L = 250/,H, C = 220/,F, and R = 211, (47)

being operated at a fixed switching frequency of 50kHz, which implies a period of T, =
20/,s. The nominal input voltage and output power are

U, = 12V and Po = 40W. (48)

As a first approximation, it is assumed that the transistor and the diode function as ideal
switches, and that there is no parasitics or other non-linearities in the lumped components.

We will only take into consideration the so-called continuous-conduction mode in which
the instantaneous inductor current does not fall to zero at any instant. Therefore, on the

+ + +

L ue C R

Figure 2: Up/down converter.
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+

U,

+

cL Ue

+

U,

(a) (b)

Figure ;3: Operating modes of the circuit in Fig. 2, under the assumption of ideal switches;
(aJ transistor on, (b) transistor off.

assumption of ideal switches, there will be only two different circuit topologies, as shown
in Fig. 3, which also implies two transition times within the switching period. Fig. 4 shows
typical time wave-forms over a generic period. The definition of the duty ratio per cycle is
shown, as well.

6.2 Duty-ratio control

If the transistor in Fig. 2 is turned on periodically and operated with constant duty-ratio
D, then it follows from the Vs-balance for the inductor L that, in the case of constant
input voltage u,(t) == U" the average output voltage Uo is given by

D
Uo = (ue(t)) = - D' U" (49)

where D' = 1 - D (note the polarity reversal in Eq.(49)). Therefore, the duty ratio must
be set at a nominal value of

(50)

in order to obtain a desired average output voltage Uo = Ur < O. For instance, in order to
establish the nominal operation conditions in Eq.(48), which implies Ur = -9V, the duty
ratio for the transistor in Fig. 2 should be set to D = 0.43.

Certainly, if the duty ratio is changed, or perturbations occur at the input voltage, the
voltage at the output will reach another average value after a transient.

6.2.1 Basic modelling equations

It is customary and convenient in electrical networks to adopt inductor currents and ca
pacitor voltages as state variables. In the case of the circuit in Fig. 2, the natural choice
for the state-space vector is then

[

iL(t)].
x (t) =

ue(t)
(51)
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Figure 4: Typical wave-forms over a switching period for an up/down converter In

continuous-conduction mode. Notice that the capacitor voltage is negative.

The matrices related to the set of state-space differential equations for the two possible
circuit configurations in Fig. 3 are found to be, in view of Eq.(I),

-it [
0 0 ], ./it~Jt) = [ 1/L ] u,(t) = !?tU,(t)i

o -I/Re 0

[ 0 l/L] ./i21!,(t) = [00] u,(t) = Q.
-lie -liRe '

(52)

(53)

The switching frequency is supposed to be held constant, but the duty ratio d is normally
a directly controlled parameter. Also the input voltage u,(t) in Fig. 2 can be seen as an
independent parameter. Therefore, to keep the notation proposed in Sec. 2.1, the set of
transition times and determining variables under consideration will be

(54)

where dk denotes the duty ratio of the transistor at each switching period and U,(tk) is the
value of the input voltage at the beginning of a switching cycle.
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According to Eq.(2) and with regard to Fig. 4, the constraint equation for the system
can be expressed as being

= O. (55)

Notice that both transition times are directly controlled by external control action.

6.2.2 Large-signal model

Under the supposition that eventual perturbations in the input voltage can be modelled
by step changes that take place only at the beginning of a switching period, the exact
discrete-time solution for the set of differential equations given by Eqs.(51-55) is found to
be (cr. App. C) :

'£ (Ti.k) = ! i (Ti,k),£ (tk) +~l u,( tk) dkT"

'£ (T2,k) !2(T2,k),£ (Ti,k), '£ (tw) = '£ (T2,k),

with

!l (Ti,k) exp {~lTi,k}' Ti,k = dkT"

!2(T2.k) = exp {~2 .(T2,k - Ti,k)} , T2,k = T,.

(56)

(57)

(58)

(59)

Eqs.(56-59) provide then a complete and exact large-signal recurrence description for
the up/down converter under open-loop duty-ratio control. A MATLAB file is given in
App. D, based on the discrete equations above, for the purpose of simulating the dynamics
of the system subject to step variations in the input voltage U,(tk) or in the duty ratio dk.

6.2.3 Nominal operating condition

Let us now concentrate on the steady-state solution for Eqs.(56-59), that is, :lO,(tk+d =
,£(tk) = ,£(0), which is found to be (with all inessential subscripts k dropped):

(60)

Although an exact analytical description for Eq.(60) is possible (cf. App. C), we will
keep things simple if we notice that the output time constant of an up/down converter is
normally large enough (product Re = 440l's >> 201'8 in Fig. 2) that the steady-state
output voltage at the beginning of a switching period uc(O) can be approximate by its
average value within the switching period. Hence, in view of Eq.(49),

D
1Ic(0) "" - D' Us'

17
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Under steady-state operation and taking also the approximation in Eq.(61) into account,
the voltage across the inductor L is then a square wave symmetrical about zero. Therefore,
the steady-state value of the inductor current at the beginning of the switching period is
found to be, after some calculations,

. (0)"" (1 - Ts /2 D12)~ !- U
'L L/R D'2 R s·

6.2.4 Small-signal model

(62)

The small-signal model describing perturbations around a nominal cyclic steady state fol
lows from Eqs.(15-21) as being

~O~k +Ci09.k,

1!..o~k + I£o9.k,

where

~o [ai/a~] - [ai/aI] [a~/aIr [a~/a~] ,

Cio [ai/aE] - [ai/aI] [a~/aIr [a~/8E] ,

1!..0 = [a~/a~] - [a~/aI] [a~:f8Ir [a~/a~] ,

/£0 [a~/aE] - [a~/8I] [a~/8Ir [a~/aE] .

(63)

(64)

(65)

(66)

(67)

(68)

After evaluating ancillary matrices (again without inessential subscripts) for a given nom-
inal operation point, .

~,(Td

<I>2(T2)
~,(Td

91(Td
92(Td

= exp{~,TI} = exp{~1 DTs },

exp{~2 (T2- Td} = exp{~2 D'T,} ,
= ~1~(0) +~l UsDT"

~I~ (Td +QI U"
~2~ (TIl, [l2(T2)= -i2~ (0),

(69)

(70)

(71 )

(72)

(73)

with x'(O) = [iL(O) uc(O)] calculated from Eqs.(61-62), the Jacobians related to the small
signal model follow:
a) from Eq.(40):

a~(T2)

[ai/a~] = a~(O) = ~2(T2)~I(Td;

b) from Eq.(41):

(74)

[aL/aI]
aj /aT,
ai/aT2

[aL/aT, ai/8T2],
~2(T2) [-[l2(Td +[l,(T,)],
[l2(T2);
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c) from Eq.(42):

(78)

d) from Eq.(43):

(79)

e) from Eqs.(44-45):

(80)

(81)

where

which can be derived from the steady-state version of Eq.(55), and

[8 /8 ] = [8i L (0)/8Us 8iL (0)/8D]:>: p. 8uc(0)/8Us 8uc(0)/8D '

with, after differentiation of Eqs.(61-62),

(82)

(83)

8uc(0) /8Us

8uc(0)/8D

(84)

(85)

(86)

(87)

For the purpose of observing only the output voltage, we write then

fLo [8~/8:>:] = [0 1],
f'{o = 0.

(88)

(89)

It is worthwhile to emphasize that only the computation of the matrices exponential
in Eq.(52) asks some amount of labour. However, MATLAB has sound algorithms for the
purpose of solving these matrices numerically.
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6.2.5 Simulation results

By inputing the nominal determining variables given by Eqs.(47-48), which are Us = 12V
and D = 0.43, into Eqs.(69-87), and after substitution of the resulting matrices in Eqs.(65
68), yields

fo =
[ 0.9988 0.0442 ] G _ [ 0.0339 1.6792 ]

-0.0513 0.9544 _0 - -0.0014 0.6550

(90)

1£0 = [ 0 I ] [£0 = [ 0 o ]

In App. E a m-file is given based on the recurrence equations (63-64) with the numerical
values from Eq.(90). Fig. 5 shows simulation results from a step change in the input voltage
from 12V to 8V, while Fig. 6 presents results concerning a step change in the duty ratio
from 0.43 to 0.5. In both cases, data from the exact large-signal model are also given for
the purpose of comparison.

On the basis of MATLAB tools, it is then straightforward to get the input-to-output
transfer functions in the z-domain. By assuming uo(t) ~ Uc(tk), it follows from Eq.(90)
that

uo(z)
us(z)
uo(z)
d(z)

-000 (z +0.2208)
. 14( )(.)'z - 0.9766 - jO.0421 z - 0.9766 +JO.0421

O65 0
. (z - 1.1302)

+. 5 ( .)( .).z - 0.9766 - JO.0421 z - 0.9766 +JO.0421

(91)

(92)

As expected, the system poles in Eqs.(91-92) are complex and stable. Notice also
a system zero outside the unit circle in Eq.(92), which explains the non-minimal phase
behavior in Fig. 6.

6.3 Feed-forward control

A feed-forward approach to achieve immunity with respect to perturbations at the input
consists of forcing the duty ratio to change dynamically according to Eq.(50), that is,

(93)

By doing so, the steady-state average voltage at the output will be independent of the
voltage value at the input.

The large-signal behavior of the system under feed-forward control can be easily simu
lated in MATLAB by using Eq.(93) in combination with Eqs.(56-59). Fig. 7 shows numerical
results when a step change occurs at the input voltage.

Although the steady-state value of the output voltage remains constant in Fig. 7, the
system transient is not better than under open-loop control, which is to be expected since
the feed-forward action has no influence upon the system poles. This can be concluded
from the small-signal model, Eqs.(63-64), as follows.
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By defining l/k = U,(tk) - U" a linear approximation for small variations in the duty
ratio is found from Eq. (93) to be

(94)

Substitution of Eq.(94) into Eq.(63) yields

~k+l = F'..o~k + qO~Ol/k, with ~o = [ U
r
/(_~ +U,)2 ] , (95)

which implies a linear system with the same poles as in Eq.(91).

Fig. 7 also shows numerical results from Eq.(95), that are in good agreement with the
large-signal data.

6.4 Current-mode control

In Sec. 6.2.3 we obtained an approximate sampled-data model for an up/down converter,
with the duty ratio as the control variable. In current-mode control, however, the controller
specifies a peak switching current ip ( t) in each cycle rather than the duty ratio. The switch
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T,

Figure 8: Wave-forms over a switching period for an up/down converter under current
mode control; with stabilizing ramp.

may be turned on regularly as earlier, but it is turned off when the inductor current reaches
a threshold value, as illustrated in Fig. 8. The duty ratio becomes now an indirectly
determined auxiliary variable, the peak inductor current i p { t) being the primary control
variable.

As suggested in Fig. 8, the threshold current signal is build up as the sum of two signals:
a slowly varying signal i p { t) determined by the controller on the basis of the discrepancy
between the actual and nominal average output voltages; and a regular sawtooth ramp of
slope -S at the switching frequency, termed a stabilizing ramp for reasons that will be
clear when analyzing the stability aspects of this control approach.

6.4.1 Basic modelling equations

The state-space vector :z:. (t) and the system matrices 1.1>1.2 andlJ.! remain the same, being

given by Eqs.{51-.52).

Under current-mode control, the determining variables vector becomes

(96)

where ip{tk) is the value of ip{t) in beginning of the k-th cycle; along with the constraint
equations vector

(97)
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(98)

6.4.2 Large-signal model

In order to simulate the large-signal behavior of the system, it is convenient to rewrite
Eq.(97) as

iL(tk) + d
k[' U,(tk) = ip(tk) - SdkT"

resulting then the duty ratio at each k-th cycle

(99)

Eq.(99) in combination with Eqs.(56-59) provide a complete and exact large-signal
recurrence description for simulating the up/down converter under current-mode control.
A MATLAB m-file is given in App. F for the purpose of simulating the dynamics of the
system subject to step variations in the input voltage U,(tk) or in the peak inductor current
reference ip(tk).

6.4.3 Nominal operating condition

If the steady-state solution for the duty ratio is found on the basis of Eq.(99), the cyclic
steady-state values for the state variables can be readily obtained from Eqs.(61-62).

In order to find an analytical expression for the duty ratio under steady-state operation,
one should consider again the Vs-balance for the inductor L, which implies the following
relationships between averaged state variables

D
(uc(t)) = - D'U" D'(idt )) = _ (uc(I)),

R .
(100)

and, from Eq.(98),

(iL(I)) + ~DT, ~ = Ip- SDT,.

The combination of Eqs.(lOO-lOl) yields

where

(101)

(102)

(
LS) T/2,= 1 +2 U, L/R

RIp
and r=-.u, (103)

An (approximate) explicit solution for D as described by Eq.(102) is found to be, after
some calculations,

D "" (3/4) [1- 1+ r ~ (3/4h]'
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which provides the the duty ratio as function of the circuit parameters and the steady-state
determining variables Us and Ipo

For building the small-signal model in the next section, it is necessary to compute the
partial derivatives of the nominal cyclic operation point with respect to the steady-state
determining variables. By using D as an auxiliary variable, it follows

oiL(O) oiL(O) aD oiL(O) I
(105)= aD oU

s
+ aU u=u.,oUs

ouc(O) ouc(O) aD auc(O) I
(106)= aD oUs + aU .u=u"oUs

OiL(O) OiL(O) aD
(107)

alp aD oJ'p
ouc(O)

=
ouc(O) aD

(108)
alp aD oJ'p

Analytical expressions for oiL(O)/oD and ouc(O)/aD have been already calculated in
Eqs.(86-87); while, with regard to Eqs.(84-85),

OiL(O) I
aU u=u,

ouc(O) I
aU u=u.

(
1 _ Ts/2 D12 ) ~ 2

L/R . D'2 R'

D
- D"

(109)

(110)

Further, taking also r and , as intermediate variables, it is possible to write

aD aD ar aD a,
(111)= --+--

oUs or oUs a, oUs '

aD aD ar
(112)

alp or 01;

with, as a consequence of Eqs.(103-104),

aD 1
= (3/4) (1 +r - (3/4Ji)2' (113)ar

aD
-(3/4)2 (1 +r -\3/4Jii2' (114)

eli
or

-RIp/U;,
or

(115)= aJ = R/U.,oUs p
a, LS Ts /2

(116)
oUs -2 U;L/R'

(117)
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6.4.4 Small-signal model

For the sake of clarity, the small-signal model describing perturbations about a nominal
cyclic steady state will be rewritten again as in Sec. 6.2.4:

"'.k+l = ~O"'.k +QO<f.k'

~k = lfO"'.k + If-ollk'

where

~o [ai/a"'.] - [oi/oI] [o.£/oIr [0.£/0"'.] ,

Qo = [oi/old - [oi/oI] [o.£/oIr [O.£/OE] ,

lfo = [o~/o"'.] - [o~/oI] [o.£/oIr [0.£/0"'.] ,
If-o = [O~/OE] - [O~/OI] [o.£/oIr [O.£/OE] .

(118)

(119)

(120)

(121)

(122)

(123)

After evaluating ancillary matrices using the value of D given by Eq.(104) and the cyclic
operation point value x'(O) = [iL(O) 1/c(O)] given by Eqs.(61-62),

1> 1(Td = exp {11Tl} = exp {1l DTs}, (124)

~2(T2) = exp {12 (T2- Tl)} = exp {12 D'Ts} , (125)

'EI (Td = ~l"'. (0) +~l UsDT., (126)

fl1(Td 11"'. (Td +~lU., (127)

[l2(Td = 12"'. (Td, [l2(T2) = 12"'.(0), (128)

the Jacobians related to the small-signal model follow:
a) from Eq.(40):

b) from Eq.(41):

[oUoI] = [oUoTl oUoT2],
Oi/OTI = ~2(T2) [-[l2(Td +[ll(Td] ,
ai/oT2 = [l2(T2);

c) from Eq.(42):

[ ] [
oedax (0) ] [1

0<:./0"'. = oc';o~(O) = 0
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because now, on the basis of Eq. (97),

OCI OCI ' [ o ] ,= Ox (T
I

) ~1(Td = f ~1(Td = 10'!'.(0)

OC2
[ 0 o],=

0'!'.(0)

(134)

(135)

d) from Eq.(43):

[oc/oT] = [ ocdo~1
- - oc2/81 I

o ] [ S +Us / L 0]
OC2/oT2 - 0 l'

(136)

since, by taking again Eq.(97) into consideration,

8cI 8cI '
oT IT=T, + o'!'.(T

I
) !l1(Td = S +f9)(TI ) = S +Us/ L,

OC2
0, oT

2
= 1;

(137)

(138)

e) from Eqs.(44-45):

[OUOE] = - [~; -I] [~~] -[:n [~;],

[O~/OE] = - [:~] [~~] - [:~] [~;],
where

[aT lap] = [8T./aus aT,/oIp ]

- - 8T2/oUs oT2/Olp ,

with, from the fact that TI = DTs and T2= T.,

(139)

(140)

(141 )

oT2

oUs = 0,

oT2 = 0
01 'p

(142)

(143)

the partial derivatives oD/oUs and oD/olp being given by Eqs.(111-112); and finally

[0 /0 ] _ [OiL(O)/OUs aiL(O)/alp ]
'!'. E - ouc(0)/8Us ouc(O)/oIp ,

the entries above being already calculated in Eqs.(105-108).

Related to the output voltage, we repeat again

lio [o~/a'!'.] = [1 0],
~o = O.
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6.4.5 Simulation results

By choosing the nominal determining variables as U, = 12V and Ip = 9A with S =
0.3 U,/ L, it leads approximately to the same output power as given by Eq.(48).

After inputing the nominal values into Eqs.(124-144) and then into Eqs.(120-123), the
resulting matrices are found to be

~o =
[ -0.3841 0.0435 ] G = [ -0.1115 1.4767 ]

-0.5871 0.9545 _0 -0.0587 0.5738

(147)

liD = [ 0 1 ] I~o = [ 0 o ]

In App. Gam-file is given based on the recurrence equations (118-119) with the nu
merical values from Eq.(147). Fig. 9 shows simulation results from a step change in the
input voltage from 12V to 8V, while Fig. 10 presents results concerning a step change in
the peak current from 9A to 10.5A. As earlier, data from the exact large-signal model are
also given for the purpose of comparison.

On the basis of MATLAB tools, it follows from Eq.(147) that

uo(z)
u,(z)
uo(z)
ip(z)

-0087 (z + 0.7315)
. 5 (z + 0.3638)(z _ 0.9351)'

38 (z - 1.1269)
= +0.57 (z + 0.3638)(z _ 0.9351)'

(148)

(149)

Both poles in Eqs.(148-149) are real, which explains the over-damped transient in
Figs.(9-10). This transient is, however, much faster than the situation in Figs. 5-7. In
fact, one pole is dominant, making the circuit now to behavior much like a first-order sys
tem. Notice also that the system became much less sensitive to perturbations in the input
voltage.
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APPENDICES

Ancyllary techniques are summarized in the following sections, together with MATLAB

m-files concerning the application examples.

A Vector gradient functions

If [(x) is a p-vector which is a function of the scalar x, then

[

dI,(x)/dx ]
d[(x)/dx = :

dIp(x)/dx

If J('E.) is a scalar function of the q-dimensional vector 'E. , then the gradient vector is

where the gradient is a row vector by definition.

If [('E.) is a p-vector function of a q-vector 'E. , then the Jacobian matrix is the p by q

matrix

The matrix identity (whose elements in the main diagonal are equal to one, all other
elements equal to zero) is represented by I. A vector (or a matrix) which has all elements
equal to zero shall be denoted by 0 .

B Newton algorithm

Consider the system of n non-linear equations Ii in n variables Xi:

h(X"X2,··· ,xn ) 0

!2(Xl,X2l ... ,xn ) 0

(150)

!n(Xl, X2, ... , xn) o.

Denote the vector of variables by 'E. and the vector of functions by [. Then Eq.(150) has
a compact form

(151)
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Assume that the system has a solution; denote it by ~. and expand each function in a
Taylor series about ~:

f () 0In (. ) 0In (.) 0In ( • )n X +-. XI - XI +-. x2 - X2 + ... +-. xn- X n + ...- ox, OX2 oXn

Assuming that ~ is close to ~', higher order terms may be negleted and the system may
be writen in the linearized form:

(152) .

where

(153)

is the Jacobian matrix of the function L, evaluated at ~. If we set Eq.(152) equal to zero

and solve, the result will not be the vector ~. (because the high-order terms have been

negleted) but some new value for ~. Using superscripts to indicate iteration sequence we
have

Formally, the solution of Eq.(154) is obtained by writing

~m+1 = ~m _ {-IL(~m).

In practice, the Jacobian matrix is not inverted. Instead, define

.6..x m = x m+1 _ x m .- - -

Then

J 6.x m = -I (x m)- - - -

is solved by LV factorization [7] and the new ~m+1 is obtained from

(154)

(155)

The algorithm has fast convergence (quadratic close to the solution). The reader is
referred to any good mathematical book for more detail information, since this is a well
known procedure.
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C Recurrence equation between states

Generally, a power electronic converter has several modes of operation. The state-space
description in Eq.(l) has been derived for each mode (usually a physical structure consisting
of two energy storage elements) in the classical form

dx

d
-=Ax+Bu.t -- -- (156)

The solution of Eq.(156) gives the recurrence equation between states at different times,
which is found to be [6]

(157)

with

{) 12 2 1 3 3exp A . (tt - to } = I + A . (tt - to) +-A . (tt - to) + -A . (t 1 - to) +...- - - 2! - 3!-

If u remains invariant during the time interval [to, ttl, then Eq.(157) becomes

(158)

under the condition that A -t exists.

When J!. is a second-order matrix, a very simple procedure for evaluating exp{J!. (tt-to)}
is obtained by making use of the Caley-Hamilton theorem [6]. In this case, consider

whose characteristic equation

has the roots

At = a + (3 and A2 = a - (3.

After some manipulations, the solution of
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is found to be

flu { aui a sinh[,B(t , - to)] +cosh[,B(t , - to)J} ea(t1 - to),

fl '2 = {a~2 sinh[iJ(t , _ to)]} ea(t1 - to),

fl 22 = {a22
iJ
- a sinh[,B(t , _ to)] +cosh[iJ(t , _ to)]} ea(t1- to),

fl 21 { a;, sinh[,B(t , _ to)J} ea(t1- to).

A considerable amount of labour is involved when dealing with matrices of order higher
than two. In such cases, sound algorithms exist for the purpose of numerically computing
matrices exponential [7].
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D M-file large-signal model DRC

+

UoRCL

------- ------- ---. .

Us

Ts
.---/---.---<---.---.

Y.*******************************************
Yo Large-signal discrete model of a up/down converter
Yo under duty-ratio control
Yo

%******************************************
Yo

Yo

Yo

Yo

Yo

Yo

Yo

Yo

Y.*******************************************

y.*******************************************
Yo Basic parameters
x----------------------------------
Yo Passive components
L=250e-6; C=220e-6; R=2.0;
Yo

Yo Nominal determining variables
Us=12; Uo=-9; Ts=20e-6;
D=-Uo/(-Uo+Us);
Yo

Dp=1.0-D; qsi=(Ts/2)/(L/R);
X*****************************************

Y.*******************************************
Y. System matrices
y.--------------------------------
Ai = [0 0; 0 -l/(R*C)]; Bl '" [ l/L; 0];
A2 = [0 l/L; -1/C -l/(R*C)];
%*******************************************

%*******************************************
Yo Periodic operating point
%--------------------------------
Tl = D*Ts; T2 = Ts;
Psil = expm(Al*Tl);
Psi2 = expm(A2*(T2-Tl));
Yo

xO = inv(eye(2)-Psi2*Psil)*Psi2*Bl*Us*D*Ts;
1.********************************************

Y.********************************************
Y. Simulating the converter
y.--------------------------------
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(1, 2, ... , SmRng) *Ts
Xsimulating 250*20us=5ms

Y. simulation range:
SmRng = 250;
X
X step change from operating point
Usk=8; Dk=D;
X
Y. new system matrices
Tlk = Dk*Ts; T2k = Ts;
Psilk = expm(Al*Tlk);
Psi2k = expm(A2*(T2k-Tlk));
X
Y.--------------------------------
XSimulation loop
X
clear td ydl yd2;
I=O; xk=xO; X initial conditions
X
for 1=1 :SmRng X simulation loop

X
xkl = Psilk*xk + Bl*T1k*Usk; Y. recurrence eqs.
xk2 = Psi2k*xkl ; X

next state

y. store results
X
X

ydl(l)=xkl(l); td(l)=l*Ts;
yd2(I)=xk2(1) ;
xk=xk2;
end
y.******************************************

Y.******************************************
y. Presentation
y.-------------------------------
plot(td,ydl,'y--')
hold on
plot(td,yd2,'y--')
hold off
clear td ydl yd2;
%******************************************
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EM-file small-signal model DRC

+

UoRCL

------- ------- ---. .

Us

Ts
.---1---.---<---.---.

Y.******************************************
~ Small-signal discrete model of an up/down converter
~ under duty-ratio control
~

1.******************************************
~

~

~

~

~

~

~

~

1.*******************************************

(1,2, ... , SmRng)*Ts
~ simulating 250*20us=5ms

y.*******************************************
1. Basic parameters
1.----------------------------------
y. Passive components
L=250e-6; C=220e-6; R=2.0;
~

~ Nominal determining variables
Us=12; Uo=-9; Ts=20e-6;
D=-Uo/(-Uo+Us);
Dp=1.0-D; qsi=(Ts/2)/(L/R);
~

~ Simulation range:
SmRng = 250;
~

~ Step change from determining variables
Usk=Us; usk=Usk-Us;
Dk=0.5; dk=Dk-D;
1.*****************************************

Y.*****************************************
~ Periodic operating point & derivatives
1.--------------------------------
iLO = (1-qsi*Dp"2)*(D/Dp"2)*(Us/R);
vCO = -(D/Dp)*Us;
~

diLO_dUs = (1-qsi*Dp"2)*(D/Dp"2)/R;
dvCO_dUs = -D/Dp;
~

diLO_dD = (-qsi+(1+D)/Dp"3)*Us/R;
dvCO_dD = -(1/(Dp"2))*Us;
1.*******************************************

1.*******************************************
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%System matrices & co

~--------------------------------
Al = [0 0; 0 -l/(R*C)]; Bl = [l/L; 0];
A2 = [0 l/L; -l/c -l/(R*C)];

%
Tl = D*Ts; T2 =Ts;
Psil = expm(Al*Tl);
Psi2 = expm(A2*(T2-Tl»;
%
xO = [iLO ; vCO ];
xl =Psil*xO + Bl*Tl*Us;
%
gl_Tl = Al*xl + Bl*Us;
g2_T2 = A2*xO; g2_Tl = A2*xl;
%********************************************

Y.********************************************
1. Jacobians
y.--------------------------------
df_dx = Psi2*Psil;
%
dLdTl = Psi2*(-g2_Tl + gl_Tl);
df dT2 = g2_T2;
dLdT = [ df_dTl df_dT2 ] ;
%
dc_dT = [1 0; 0 1];

%
dLdp [0 Ts; o 0];
%
dX_dp = [ diLO dUs diLO_dD

dvCO_dUs dvCO_dD ] ;

%
df_dp = -(df_dx -eye(2»*dx_dp -df_dT*dT_dp;
%
dc_dp = - dc_dT*dT_dp;
Y.********************************************

%********************************************
%Small-signal model
%--------------------------------
FO = df _dx; 7. dc_dx = 0
GO =df_dp - df_dT*dc_dp; %dc_dT = 1
HO = [0 1];
KO = [0 0];

Y.********************************************

%********************************************
Y. Simulating the converter
y.--------------------------------
clear td ydl yd2;



1=0; xkl=[O;O]; xk=[O;O];
'I.
for 1=l:SmRng
'I.
qk= [usk; dk];
xkl= FO*xk + GO*qk;
'I.

'I. from steady state

%simulation loop

'I. input to the system
Y. discrete recurrence

next state

'I. store results

'I.
'I.

ydl(1)=xk(l)+iLO; td(1)=1*Ts;
yd2(1)=xk(2)+vCO;
xk=xkl;
end
Y.********************************************

%********************************************
Y. Presentation
'1.--------------------------------
plot(td,yd2,'b')
'1.********************************************
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F M-file large-signal model CMC

+

Uo

S

*

R

*
*: *

C

* -
*

*

*

L

*: *
* -

*
*

*

-------.-------.---

Us

Ts
.---/---.---<---.---.

•

- IP

%****************************************
Y. Large-signal discrete model of an up/down converter
%under current-mode control
Y.

%****************************************
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.
Y.

'l.*******************************************

%*******************************************
%Passive components
L=250e-6; C=220e-6; R=2.0;
%----------------------------------
y. Nominal determining variables
Us=12; Ip=9; Ts=20e-6;
S=0.3*Us/L;
'l. --------
Y. in order to show instability,
Y. just make: S=O.O; R=4;
'l.-----------------------------------
Y. Step change from operating point
Usk=Us i usk=Usk-Us;

Ipk=10.5; ipk=Ipk-Ip;
Y.
SmRng=60; y. Simulation range: 60*20us=1.2ms
'l.****************************************

Yo****************************************
'l. System matrices
y.
Al = [0 0;
A2 = [ 0 l/L;

o -l/eR*C)J; 81 = [ l/L; OJ;
-l/C -l/eR*C)J;

Y.
%--------------------------------
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Y. Auxiliary variables
Y.
qsi~(Ts/2)/(L/R);

Gamma~R*Ip/Us;

gam~(l +2*L*S/Us)*qsi;
Ogam~1/(1+Gamma-gam*3/4);

X*****************************************

%*******************************************
Y. Periodic operating point
Y.
O~(3/4)*(1-0gam); Op~1.0-0;

Y.
Tl ~ D*Ts; T2 ~ Ts;
Psil ~ expm(Al*Tl);
Psi2 ~ expm(A2*(T2-Tl));
Y.
xO ~ inv(eye(2)-Psi2*Psil)*Psi2*Bl*Us*D*Ts;
Y.*******************************************.

%********************************************
Y. Simulation loop
Y.
clear td ydl yd2; Y. reset vectors
I~O; xk=xO; Y. initial condo
Y.
for I~l:SmRng Y. simulation loop
Y.
Y.-- approx duty ratio Y.
Tlk ~ (Ipk -xk(l))/(S +Usk/L); Y.
if Tlk<O Tlk=O; end Y. boundaries

if Tlk>Ts Tlk=Ts; end Y.
T2k = Ts; Y.
Y.
Psilk = expm(AhTlk); Y. sensitivy matrices
Psi2k ~ expm(A2*(T2k-Tlk)); Y.
Y.
xkl = Psilk*xk + Bl*Tlk*Usk; Y. recurrence eqs.
xk2 = Psi2k*xkl ; Y.

Y.
ydl(I)=[O 1] *xk; td(I)=I*Ts; Yo store results

yd2(I)= [0 1] *xkl; Y.
xk::::xk2; Yo next state

end
Y..*••**•••***.****••**.*.*••**•••*•••*.*

%***************************************
Y. Presentation
Y.
plot(td.ydl.·y--')
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hold on
plot(td,yd2,'y--')
hold off
'l.****************************************



G M-file small-signal model CMC

converter

+

S

Uo

*

R

*
*: *

C

* -
*

*

*

L

*: *
* -

*
*

*

------- ------- ---. .

*

Ts
.---/---.---<---.---.

Us

- Ip

%****************************************
Yo Small-signal discrete model of an up/down
'I. under current-mode control
'I.
%****************************************
Yo

'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
%*******************************************

%*******************************************
%Passive components
L=250e-6; C=220e-6; R=2.0;
%----------------------------------
'I. Nominal determining variables
Us=12; Ip=9; Ts=20e-6;
S=O.3*Us/L;
'I. --------
Y. in order to show instability,
%just make: 5=0.0; R=4;

%--------~--------------------------
'I. Step change from operating point
Usk=Us; usk=Usk-Us;
Ipk=10.5; ipk=Ipk-Ip;
'I.
SmRng=60; 'I. Simulation range= 60*20us=1.2ms
%****************************************

%***************************************
Y. Auxiliary variables
'I.
qsi=(Ts/2)/(L/R);
Gamma=R*Ip/Us;
gam=(l +2*L*S/Us)*qsi;
Ogam=1/(1+Gamma-gam*3/4);
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%*****************************************

%*****************************************
'l. Cyclic operation point & derivatives
'l.
D=(3/4)*(1-0gam); Dp=1.0-D;
'l.

(1-qsi*Dp~2)*(D/Dp~2)*Us/R;

= -(D/Dp)*Us;
iLO =
vCO
'l.
%------
dGamma_dUs
dgam_dUs
'l.

= -R*Ip/Us~2;

= -2*qsi*L*S/Us~2;

dGamma_dlp = R/Us;
dgam_dlp = 0;

(3/4)*Ogam~2;

= -(3/4)~2*Ogam~2;

dD3Gamma =
dD_dgam
'l.

(-qsi +(1+D)/Dp~3)*Us/R;

-(1/Dp~2)*Us;

dD_dGamma*dGamma_dUs +dD_dgam*dgam_dUs;
dD_dGamma*dGamma_dlp;

= (1-qsi*Dp~2)*(D/Dp~2)/R +diLO_dD*dD_dUs;
= -D/Dp +dvCO_dD*dD_dUs;

dD_dUs =
dD_dlp =
'l.
%------
diLO dD =
dvCO_dD =
'l.
'I. ------
diLO_dUs
dvCO_dUs
Yo

diLO_dlp = diLO_dD*dD_dlp;
dvCO_dlp = dvCO_dD*dD_dlp;
'1.*******************************************

'1.*******************************************
'I. System matrices & co
'l.

o -l/(R*C)J; Bl =

-l/C -1/ (R*C)] ;
Al = [0 0;
A2 = [ ° l/L;
'l.
Tl = D*Ts; T2 = Ts;
Psil = expm(Al*Tl);
Psi2 = expm(A2*(T2-Tl));

[ l/L; OJ;

'l.
xO = [iLO ; vCO J ;
xl = Psil*xO + Bl*Tl*Us;
'l.
gl_Tl = Al*xl + Bl*Us;
g2_T2 = A2*xO; g2_Tl = A2*xl;
'1.********************************************

%********************************************
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y. Jacobians
y.-------------
df_dx = Psi2*Psi1;
%
df_dT1 = Psi2*(-g2_T1 + gl_T1);
dLdT2 = g2_T2;
df_dT = [ df_dT1 df_dT2 ] ;
%
y.-------------
dc_dx = [ 1 0 ; 00];
dc_dT = [(S+Us/L) 0 ; 0 1];
%
'l.------------
dLdp = [ Ts*dD_dUs Ts*dD_d1p
%
dx_dp = [ diLO_dUs diLO_d1p

dvCO_dUs dvCO_d1p ] ;

o 0 ];

%reset vectors
% initial condo

Yo begin loop
% input to the system

%store results
%

%next state

%
'l.-------------
df_dp = -(df_dx -eye(2))*dx_dp - df_dT*dT_dp;

%
dc_dp = -dc_dx*dx_dp -dc_dT*dT_dp;
%
'l.********************************************

'l.********************************************
%Small-signal model
%
FO = df_dx - df_dT*inv(dc_dT)*dc_dx;
GO = df_dp - df_dT*inv(dc_dT)*dc_dp;
HO = [0 1];

KO = [0 0];

'l.********************************************

'l.********************************************
1. simulating the convertor
%
clear td yd1 yd2;
1=0; xk1=[0;0]; xk=[O;O];

%
for 1=l:SmRng
qk= [usk; ipk];
xk1= FO*xk + GO*qk;
%
yd1(1)=xk(1)+iLO; td(I)=1*Ts;
yd2(1)=xk(2)+vCO;
%
xk=xk1 ;
end
'l.---------------
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plot(td,yd2,'b')
%
%********************************************
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