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Abstract

This report deals with an analytical approach of antenna synthesis. It

presents a optimization method which is based on writing the design criteria as a ratio
of two quadratic Hermitian forms, so that more than one antenna parameter (such as
antenna efficiency and beam efficiency) can be optimized simultaneously, with and
without pattern—structure constraints.
Firstly the mathematical formulation is given; then the optimization method is
discussed with and without constraints to the far—field pattern. Finally, a comparison
is made with the results obtained by others and examples are given. This clearly
shows the capability and correctness of the optimization procedure.
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1 Introduction

Generally speaking, the objective of antenna synthesis is to reach the best possible
destgn under the condition that requirements with respect to radiation properties are
met. Synthesis techniques can be divided into two categories. In one category, the
solution is found via numerical manipulations; while in the other, the solution is found
analytically. The latter has the advantage that it offers more insight into the effects
and interactions between different design parameters. Furthermore, that method gives
a closed form to both the aperture—field distribution and the far—field pattern. After
optimization, the far—field will be known across the full angle-tegion of interest,
which removes the need to compute the time consuming far—field integrals repeatedly.

The analytical method often uses the concept of partial radiation—patterns, and
approximates the desired far—field pattern and the corresponding aperture—field
distribution by means of a series of special source functions.

For the application of this method, two aspects require attention. Firstly, the
selection of special functions can be governed by certain considerations, including: the
simplicity of approximating the desired pattern with a minimum number of terms in a
series, the property of orthogonality, the ease with which functions can be Fourier
transformed or by the possibility of working with a series of functions with which one
is familiar (some degree of arbitrariness can not be denied). Secondly and more
demanding, is the aspect that "the requirements with respect to radiation properties"
can vary widely and can often be mutually exclusive.

Due to these two aspects, a whole range of synthesis procedures exists. Most of them
are focused on one specific design objective and are applied to earth—stations for
satellite communications.

There are synthesis methods in which only the pattern shape is modified ([1],[2],[3]).
Or optimization techniques without pattern constraints ({4], {5], [6], [7], [8], [9])-
Borgiotti [4] and Mironenko [5] discuss methods to maximize the fraction of power
radiated in a prescribed solid angle, while Mirkovich [6] and Yurjev [7] deal with
problems in terms of maximum main lobe power and low sidelobe level or minimum
total power of side lobe radiation. References [8] (Kouznetsov) and [9] (Sanzgiri) deal
with sidelobe envelope. Some methods include constraints but optimize only one



design objective ([10],[11],{12]). The constraints can be sidelobe peak level
(Sanzgiri [10]) , pattern nulls (Drane {11}) or main lobe beam width (Kurth [12}).

It is clearly desirable that a more general technique could be used which has the
possibility of dealing with many different design criteria.
If possible this method should deal with design criteria:

— irrespective of the source functions used

—separately and with a set of design criteria at the same time

—with and without pattern constraints

—with and without blockage

—with and without ¢—dependence.

The technique described in this report is pleasingly elegant if optimization problems
are concerned. Even optimization problems with constiraints can be solved simply.
Most engineers turn to Lagrange multipliers if constraints are included. However, due
to the elegant form, it appears to be possible to simplify the problem. In the proposed
optimization method the constraints are treated as a "benefit" because they reduce
the number of variables which can be adjusted.

In section 2 some antenna parameters {such as antenna efficiency, beam efficiency, or
the normalized second moment) are fitted into a suitable form and in section 3 it is
shown that optimization problems reduce to simple problems which can be solved
with basic theorems from linear algebra.

In section 4 different source functions are introduced and optimization examples are
given. Numerical results are given in several tables. In section 5 the different source
functions are compared.

Cross—polar synthesis and blocked aperture distributions are treated in sections 6 and
7, respectively.

No attempt has been made to include in this treatise all of the results that have been
published by others on the problem of synthesis. Therefore, a selection has been made.
This selection intends to reach a large variety of source functions adopted and pattern

requirements stated.



2 Writing antenna parameters in a suited form

In this section it is shown that a variety of antenna parameters (such as antenna
efficiency, beam efficiency, normalized second moment, etc) can be written in a
particular, suited form. The starting point is a circular aperture located in the x—y

plane as shown in figure 2.1.,

/ ' \ observation point

Figure 2.1 Coordinate system.

The aperture points are given by normalized aperture polar coordinates (r,4’) and the
far field observation point by spherical coordinates (R,4,4). The integral part g(u,¢) of
the far field pattern E(R,4,4) [13] is related to the aperture distribution f{r,§’) by the

integral [13]:

2r 1 . ,
g(u,f) = azf f f(r,4) eJur sl )rdrd¢’ (2.1)
0 0
27a D

with u = I sind = - sinf

When f(r) is a g—independent, uniform—phase aperture distribution, g(u) can be

written as the first order Hankel transform :
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1
g(u) = 2ara.2f f(r) Jo(ur) rdr (2.2)
0

If {(r) is written as:

N

fty= % a e(r) 0<rg¢l1 (2.3)
n=0" *®
0 elsewhere

where a are the excitation coefficients of the elementary real functions e (r) and J . is

n n
the Besselfunction of the first kind and zeroth order, it is possible to split the Hankel
transform into a set of integrals as follows:

N N !
g(u) =27a2% a I (u) =27a28 a f e (r) J,(ur) rdr (2.4)
n=¢ " ® n=0 “0 n

To derive the equations for the different antenna parameters, the equations for the

power radiated by the aperture p , the power radiated within a prescribed solid angle
r

, and the second moment p, are needed. The first two are given by:

rangle
1 c
= 2 =
p =272 ffz(r) rdr pangle 21rfu p(u) du (2.5)
0 0
D sin gpre
with p(u) = g2(u) and ¢ = —T where fpre is the prescribed angle.

The second moment of the far field radiated power with respect to the axis u=0 is

found by integrating u?p(u). This leads to:

1D/} 1D/A

pa = fu2 p(u) udu = fu’5 p(u) du (2.6)
0 0
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)
The normalized second moment ¢2 = =5 is a measure of the spread of the radiated

.
power from the beam axis.

Some basic antenna definitions can now be written as:

p(0)

aperture efficiency n = b (2.7
. p T angle
beam efficiency 7, = (2.8)
p
r
By

normalized second moment o? = 3 (2.9)

—

Using the equations (2.3) and (2.4), it is possible to write these antenna definitions
into a form (known as the quotient of two Quadratic forms or Rayleigh quotient),
which lends itself to evaluation with the help of basic theorems from linear algebra.
"To reach this, f(r), g(u) and p(u) are written as follows:

fr)= al.e 0¢r¢l » (2.10)
= 0 elsewhere
were a (2 ,a a )andeT::(ee en)
s N e € e N
g(u) = I'(e)-2 (2.11)

with lT(e) an N+1 element vector with elements:

L(e) = S e, J (ur) rdr (i=0,....N), (2.12)
and,
p(u) = g(u) = (U Jg(w)=2 I(e)] (e)a =2 Va (2.13)

with V = I(e, )I(e ) the elements of an N+1xN+1 element matrix V.

Using the a.bove &eﬁmtlons it is possible to describe the power radiated by the
aperture and within a prescribed solid angle and the second moment in a comparable
way:
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T

P =a Aa (2.14)
! 1
with Ai i= f eiej rdr the elements of an N+1xN+41 element matrix A,
r,a.ngle= QTX_ (2'15)
c
with Xi i~ f u vij du the elements of an N+1xN+1 element matrix X.
0
2= a,TWg (2.16)
1D/]
with W;; = f uSV;du  the elements of an N+1xN+1 element matrix W.
0

The basic antenna definitions can now be expressed as a ratio of two quadratic forms:

2 aTVv(0)a 2.1
n = 2.17
3 alAa

TX a ( )

n = 2.18
b aTAa
SR (2.19)
Pl 2.19

alaa
The matrices V,A,X,W have the property of being hermitian, because:
X =% withR=VAXW (2.20)

ij il
where:  denotes the complex conjugate.
This is immediately evident from equations (2.14)—2.16). Furthermore, A ,X and W
are positive definite because they represent the radiated power, the power radiated in
a prescribed angle and the spread of radiated power, respectively.
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3 The optimization procedure
3.1 Theorem

Consider the problem of maximizing a quantity which can be written as:

h(a) = —p (3.1)

in which a is an N+1—element vector and A and B are N+1xN+1 real and square
matrices. Thig form is known as a Rayleigh quotient, or quotient of two quadratic
forms. The solution to the problem can be found in a basic theorem from linear
algebra [14]. The theorem states that with A and B hermitian and B positive definite,
the maximum (or minimum) of the quantity is given by the largest (or smallest)
eigenvalue determined by:

Aa = ABa (3.2)

So, the original problem can be treated as a general eigenvalue problem. The proof of
this theorem can be deduced from the formula for the derivative of a vector—valued
function in an N+1-dimensional space.

h(a+h) = h(a) + Jh + O(h) (3.3)
were J is the Jacobian matrix.

aTAa + 2hTAa + hTAh

alBa + 2h'Ba + hIBh

h(a+h) =

—

2h " Aa h~Ah
aTAg Lt gTAa ¥ aTAa
“eTBa |, 207Ba . 17BY
aTBa gTBg
_TAa ohTAg 21T Ba
=§TB@(1+ Try  2Tha + 0(hY))
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neglecting J(h?) we get:

P As 2w, Bashry (3.4
h(a+h) = + h™(Aa———— 3.
( 2 Ba 2 Ba a " Ba
in an extreme the following holds:
Jh = h(a+h) —h(a) =0
aTAs
= Aa—(—F—)Ba=0= Aa=)Ba (3.5)
a " Ba
aTAz
with A =
aTBg

resulting in a generalized eigenvalue problem.

3.2 Some properties of generalized eigenvalue problems

Because the original problem can be treated as a generalized eigenvalue problem some

properties, that can be used in the optimization, are summarized.

(1) Because B is non—singular the equations reduce to the standard eigenvalue
problem form:
B_lAg =3 (3.6)

(2) Because A and B are real and symmetric, the eigenvalues will be real.

(3) When A and B are real, symmetric and positive definite the eigenvalues will
all be positive.

(4) Because A and B are both real and symmetric and B is positive definite, the
equations may be transformed using the Choleski decomposition {31]:
B=LLT (3.7)

with L a lower triangular matrix. Multiplying equation (3.2) with 1! gives:

Lt AL Ty = anTe (3.8)
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T

So A are the eigenvalues of the symmetric matrix LIAL™T and the

eigenvectors are LTQ. A special case occurs when the matrix B is a rank 1
matrix, then only one eigenvalue is non—zero.

(5) When A and B are both diagonal matrices, the eigenvalues are :
) A
i Bij (39)
and the eigenvectors are (0,...0,ai,0...0).

3.3 Constraints

The problem of optimizing a quantity subject to constraints is usually solved with the
aid of Lagrange multipliers ([10],[11]).The Lagrange method is based on finding the so
called Lagrange multipliers which form the best fit solution to the problem. This
method states the problem as:

max f(a)|Ca = b = V.f = CT4 A Ca = b. With C a MxN+1 constraint matrix
(suppose there are M constraints), A the Lagrange multipliers and V the gradient.
Consequently this method starts with N+M+1 equations. However, due to the
elegant mathematical form adopted here it is possible to convert this N+1+M
problem into a N+1-—M problem. In this way, reducing the manipulations needed to
come to a solution when the number of constraints is increased. An explanation for
this is that constraints reduce the number of variables which can be adjusted. It is
clear that when the number of constraints increases the number of variables which
can be adjusted decreases ( there are N+1 elementary functions so there can be N
constraints). So, from an optimizing point of view it is favourable to keep the number
of constraints as low as possible. In contrast to a "best—fit solution" constraints are
all satisfied when the latter method is used.

For antenna problems, constraints can be represented in the following way:

11(0)-a=0 (3.10)

pre

Tw)a=v 17002 = T(@)-v

pre

where v is the prescribed value in a point u relative to the value at u = 0. Orin a
pre m
shortened notation:
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gT-g =gT a=10 (3.11)

m m

with ¢ the constraints vectors (m = 0,1,..,.M < N+1).
m

The quantity to be optimized now becomes:

T
ba) = 2o | aTq =0 (m =01, Mand M < N+1 (3.12)
(@).—aTB | 2 g = (m=01,.Mand M < ) :

3.4 The optimization procedure with constraints

Suppose gl,g_z,...gM span an M dimensional space ¥#and the N+1-M dimensional
space ¥ is spanned by w_(j = M+1,..N+1)
i

Figure 3.1 The space ¥ and 7*

Since ng_ =0, the vector a must lie in ¥* and it can be written as:
m

a= ¥ wc =Wc (3.13)
j=M+1 i1

where W = [wyr . }.....| Wy 4] is an N+1xN+1-M matrix (the columns are formed

by the vectors w ) and ¢ is an N+1-M vector. The problem has now been reduced to
j
the determination of the vectors ¢ and w_, and optimizing:
i

h(c) = —p—F——— (3.14)
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T

with WLAW and WIBW N+1-MxN+1-M real square matrices.

x x[ =
———— -
N4l N+1-M
N+l N+1-M
wT A . W o= WIaAwW

Figure 3.2 The product WL AW

Finding a basis for # * can be realized in different ways. One is via the
Gram-Schmidt [31] transformation, but the Householder transform with partial
pivoting [31] guarantees better numerical stability. A property of the Householder
transform is that it reduces a N+1xM matrix ¥( ¥= [ql| q, |....| qM]) to an upper
tridiagonal form; with Q a N+1xN+1 orthogonal matrix (Householder matrix) and R
an MxM upper tridiagonal matrix (see figure 3.3).

w =
Q R =
3
Q: 0 s
S — R \ ; =
N+1 M
Q ] ¥ = Q¥

Figure 3.3 The product Q #

Let Q be defined as:

Figure 3.4 Q, and Q;

Defining Q as stated above indicates that the last N+1-M rows of Q (=Q2) form a
basis for #* (because Q #= 0). Substituting W = Q; in equation (3.14) gives:
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QTQ¥AQ29

h(g) = —m—m———
cTQIBQ, ¢

(3.15)

The advantage of using the Householder transform now becomes clear, because the

matrix product QzTAQQ (or Q?TBQQ) does not have to be evaluated by matrix
multiplication, because it can be evaluated with two Householder transforms:

Qx(Q.A) T (3.16)
with QA the last N+1-M rows of QA, Qu(Q:A)Y the last N+1-M rows of
Q(QQA)T, thus forming a N+1-MxN+1-M square matrix. That the theorem for

optimizing is still valid, might seem surprising at first sight. However the theorem is
valid for both matrices Hermitian, and the matrix in the denominator positive
definite. Now (Q:AQ20)T = Q:ATQ,T = Q;AQ,T (A is Hermitian), making
QgAQgT Hermitian. The same holds for Q;BQ,T, so if QQBQgT is positive definite
the theorem holds. This can easily be shown from the definition:

Q:BQ.1 is positive definite if xL Q;BQq x > 0 Vx .

Let Qng =y= yTBy > 0 (B is positive definite). This proofs that after deforming
the N+1xN+1 problem into an N+1-MxN+1—M problem the theorem still holds.

It will be clear that the maximum (minimum) constrained eigenvalues A w‘ill be
1,CON § Lr
smaller (greater) than the maximum (minimum) unconstrained A .
1
Notice that, in the constrained case, we get a N-M element vector ¢, when we started

with an N element vector a. The vector a can easily be calculated by using (3.13).

3.5 Optimizing a product of Quadratic forms

An interesting case will appear if more than one antenna parameter has to be
optimized simultaneously. For a function which can be written as:

aTAg gTCg

hi(a)ha(a) = ;TBa, -Tha (3.17)

its optimization can be solved with (see appendix 1} :
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c] a= (3.18)

The proof of (3.18) can be deduced from the derivative of a vector—valued function in
an N+1—dimensional space.

if B = D equation (3.18) reduces to :

1 i_i.TCQ. 1 gTAg ( )
—_——A + - Cla=4iBa or E'a=1Fa. 3.19
2 gTBg. 2 gTBg

The optimization is now done iteratively. A suitable vector a to start with is the
eigenvector that corresponds to the largest eigenvalue of the two quadratic forms.
After calculating the matrices E and F, a generalized eigenvalue problem of exactly
the same form as that in (3.1) is obtained. The eigenvector corresponding to the
optimum solution of Ea = X Fa is used in the next iteration. The computation can be
continued until a maximum is reached with the desired degree of accuracy.

3.6 Maximum Sidelobes constraints

If there are requirements with respect to the sidelobe—peak levels within a specific
angle region, the optimization procedure has to be done iteratively. Because the
positions {up) of the peak levels are not known in advance, some starting positions
have to be chosen. Suitable starting points will be those lying midway between the
two nulls of the pattern in the unconstrained case. The starting points for any
iteration step that follows will be midway between the old points and the position of
the new maxima. This procedure is repeated till all sidelobe—peak levels have reached
the desired level with a prescribed accuracy. If the problem requires the sidelobe
envelope to be kept below a certain level, it is better to start the procedure with only
one constraint with respect to that sidelobe which is closest to boresight that exceeds
the prescribed sidelobe envelope (the first sidelobe). If the level of the next sidelobe
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away from boresight exceeds the prescribed level, the procedure has to be repeated
with two constraints. This is done for all sidelobes within the angle region of interest.
In this way, it is possible to end up with the highest number of variables which can be

used for optimization purposes.
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4 Various kinds of source functions

In this section various types of functions e (r) are treated and some examples of
n
optimization procedures {with or without constraints) are given.

4.1 Aperture distributions consisting of Besselfunctions

The first kind of aperture distribution which will be considered is the one using a
series of Besselfunctions. Much of the work on optimization procedures involving
Bessel functions has been reviewed by S.C.J. Worm [15]. For this case, f(r) can be
written as:

aldJ(vr) 0<r¢1,
=0n0 n (41)

N
fry)= X
n
0 elsewhere

and g(u) can be calculated using Lommels Formula [16, p134],
1

1 ; /
OfJo(vnr).]o(ur)rdrzuz_yz{UJo(an)J 0(“1)—Vn~] O(an)JO(U1)} (4.2)

This gives for g(u):

N 4
g(u) = §=0 -y

{ uJo(un)J;(u) ~vJ ;(vn)J AUN; (4.3)

2
n
where J ) denotes the derivative of J ) with tespect to r. The right hand side of

equation (4.3) can be simplified through the choice of JO(V ) or J;(u ) = 0. Or more
n n
generally:

an;(vn) + hJo(vn) =0 (4.4)

The case that h=0 (or J ;(u )=0=1] 1(v ) = 0) reduces to the Taylor distribution.
n n
The case h=o (or J 0(r/ } = 0) is a type of illumination which is investigated for
n
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example by Kritsky [17].
Because the work of Taylor ([1},[18]) has had a profound influence on antenna
synthesis, this distribution with J 1(u ) = 0, will be considered first.
n
N
4.1.1 Aperture illumination ¥ a J (v r)withJ (v ) =0
n=0" 0" n 1" n

In this case, the aperture illumination consists of a series :

N
flty= % alJ(vr) 0<r¢tl (4.5)
n=0" ¢ 0
= 0 elsewhere

withv = 0,7 =3.8317,.......
Some functions J 0(V r) are shown in figure 4.1.
n

ralukive smplitude

L] 0.1 9.2 0.3 0.4 0.3 0.8 0.7 e.a (8 ] 1

Figure 4.1 Jo(vnr) with Jl(vn) = 0.

The far field is (for the case Jl(v ) = 0, see (4.3)).
n

N 4
g(u) = qu(u) 123:0 ug_ung Jo(un) ifu¢ v (46)
= la J}v) ifu=vw
2 n 0 n n

Fitting into the vector and/or matrix form gives:

e =(1, Jo(u‘r), .......... Jo(er) ) (4.7)
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Ji{u) w?Je(vy) ullo(vy)
T N
l (g) = u 1, U i—p T e R S 2_') (48)
1 N

Using Lommels equation [16, p134] gives :
A =0 ifi#j (4.9)

— 172 es

_2J0(yi) ifi=j,

€ u3yg ";( u)
Xl_} = Jo(]}i)Jo(]}j) 6]' ( 1 g_yjig ) ( " Z—V j)du N (410)
TP/" usJ f( u)

WIJ = Jo(vi)‘]{)(yj) .0! ( u Z—V: ) (u Z—V Jy)dll . (411)

The elements of the matrices X and W given by equation (4.10) and (4.11) have to be
calculated numerically.

Some examples

The unconstrained optimization of 7 can be done easily by making use of (3.9) which
a

gives (N (4.12)
al=(1,0,......,0) (4.13)
glu=T1(v) (4.19)
u

Figure 4.2 gives the corresponding far field pattern and aperture distribution.

The unconstrained optimization of ¢? and 7 is given in table Al and A2, respectively
(sll= sidelobelevel, u3dB = half of the 3 dB beamwidth). Tables which are referred to
as A.xx are given in é.ppendix 2. In this report the value ¢ for the upper boundary of
the integral of (2.5) has been taken as 3.5, unless otherwise specified. This value
assures a narrow beam with a low first sidelobe [4], because it assures that even with
an uniform illuminated aperture no sidelobe is in this region. Figure 4.3 shows some of
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the far field patterns for minimum ¢? and the corresponding aperture distributions.

The unconstrained optimization of n gives the opportunity to compare the results
with those in literature. Slepian [19] showed that the maximum of (2.10) is attained

Js Wl Ay 5wl fu
— e

relative smplituas

by c_‘l: _unllorm jl
5o} 035 _:
o.zL |
-60 . j
T % - © [T % o1 oz o3 v os e o 0.8 uf;_J
N
Figure 4.2 g(u) and {(r) for maximum % ; using the series & a J 0(V 1) with J l(u y=0
a n=0n Il n

relRtIvE powsr

sinimue sigma 2 lzero’s of J1}

relative waplitude

Figure 4.3 g(u) and {(r) for minimum ¢2; using the series & a J o(v r) with J l(v }=20
n=0ﬂ n n
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the illumination is a radial function, which is a solution of the Fredholm integral
equation with largest eigenvalue a(p):

1

a(p)Sogp,r) = f Sogp,s) Jo(prs)sds (4.15)
' 0

The functions Sogp,r) are called hyperspheroidal functions. Borgiotti [4] tried to

expand these functions in a series of Besselfunctions. In table 1 the coefficients a are
n

shown for different values of c, calculated with the method presented ir this report.

Table 1 a,, for unconstrained optimization of g

¢ |a a2 a3 a4 as ag ay

+ 11 ]0.021157 {-0.008402 | 0.004790
1 |1 |0.084790 }-0.032862 | 0.018650 |-0.012402
2 |1 |0.338182 [-0.118224 | 0.065765 |-0.043411 1{ 0.031423
3 |1 0733818 }-0.211754 | 0.114627 |-0.074953 | 0.054015
34+ |1 | 0961843 -0.241602 | 0.129335 |[-0.084266 | 0.060626 |-0.046358

Comparing these coefficients with those of Borgiotti shows that there is a difference if
¢ is small (< 1.5). When c is large, only the last few coefficients differ slightly. Fig 4.4
shows the aperture distribution were the difference is largest (¢ = 1) and the aperture
distribution with a small difference (¢ = 3.5). As can be seen, the difference is mainly
localized at the edge. This agrees with the statement of Borgiotti, that the difference
between his distribution and the hyperspheroidal function is several percent and is
mainly localized at the edge of the aperture ([4],p 655).

n N
The results of the unconstrained optimization of 5 x 7, -b and -2 are given in
a

g2 g?
table A3,A4 and AS5. Figures 4.5, 4.6 and 4.7 show some typical aperture distributions

and far field patterns.
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Table 2 shows the results of the optimum 5 with a number of prescribed side lobes.
a

This can be compared with the results of Taylor (M is the number of equal sidelobe

levels, N = 6).

Table 2 constrained optimization of 5,

M Na Taylor |Kriskiy

2 109487 | 0.93 0.945
5 | 08897 | 0.855 0.890

The computed results are somewhat higher than Taylor’s but are in close agreement
with those of Kritskiy [17], patterns and aperture distributions similar to one’s of
Kritskiy are given in figure 4.8.

As an example of constrained optimization a flat topped beam (optimum ¢2) is shown
in figure 4.9 and a beam with a specified 3 dB beamwidth (optimum nb) 18 given in
figure 4.10.

Figure 4.9 shows that if the far field pattern resembles a step the aperture
illumination is similar to J(r)/r.
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Figure 4.8 g(u) and f(r) for maximum 5 with equal sidelobes; M = 2and M = 5
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N
4.1.2 Aperture illumination £ a J (v r) with ng y=20
n=1" 9% = n

This type of series has been used for synthesis purposes before ([17],{20],[21]). The
aperture illumination consists of a series :

N
fx)= Y al(vr) 0¢r¢1 (4.186)
n=1n 0" n

= 0 elsewhere

with v = 2.4048, v, = 5.5201,......... (note that n now starts with 1).
Some functions J 0(1; r) are shown in figure 4.10.
I

T . 44y
TG 8 S20mr)
T {8, aryar)
TEEAD L. TRMe) ]

.2

s

relative aepllcude

Figure 4.11 Jo(u r) with ng )y=0.
n n

The far field is (for the case JO(V ) = 0, see (4.3)).
n

N L%
glu) = Jo(u) E:l Vng_ug Jl(vn) ifu# v (4.17)
= -;an ng(vn) ifu=v
This leads to :
gT = (Jo(vlr), .......... Jo(uNr) ) ) (4.18)
1T(e) = Jo(u)(f-—;i-;-é:—;l, ....... ,if-;—;—i;%‘l) . (4.19)
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Using Lommels equation, [16 p134] gives :

Ay =0 ifi#] (4.20)
1712 PPN
= 2J1(Vi) if i
o () [ I%(u)
X5 =y ) 1(Vj) Of v =) ?—_u 7ydu (4.21)
WP/A u’? Jz( n) du
Wy = ) 6’ vy T (v ) (4.22)

The elements of the matrices X and W as given in equation (4.21) and (4.22) have to
be calculated numerically.

Some examples

The unconstrained optimum for 5 is easy to derive, when making use of equation
a
(3.9). This leads to :

- A2 4 2 —2
r]a’m-;xii(vl +v oty ) (4.23)
1 1
T
a” = Joreenenaans T (7Y (4.24)
v 1J v VNJ vy
N 1 .
g(u)= JD(U)i}:l ” 121_11 if U#Vn
(4.25)
J(v)
=1 _1 n d —
=15 if u v

n

Table A6 shows the results of the unconstrained optimization of aperture efficiency
for some values of N. Some typical aperture distributions and corresponding far field
patterns are shown in figure 4.12 (the illumination tends to unity if N becomes large)
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amblitucs

relative

Figure 4.12 g(u) and {(r) for maximum n; using the series ¥ anJ 0(unr) with J gun) =0
n=]1

Table A6 shows the results of the unconstrained optimization of ¢2 (figure 4.12 gives
an example of g(u) and {(r)). As can be seen the minimum value is close to 5.78. This
can be explained by replacing the upper limit of the integral in equation (2.8) by o (
[22]). In this case the matrix W becomes diagonal and equation (3.9) can be used

w
leading to A = 1—” = v'*: = 2.40482, However, this is only allowed if the aperture

Il
11
distribution smoothly approaches zero at the edge. In this report this approximation

7D
is not used and the upper limit is kept on ~ X .

nh

Some of the results of the unconstrained optimization of (REARN and —"‘2— are
a

a
given in tables A7, A8, and A9, respectively. Plots of g(u) and f(r) are shown in
figures 4.13 — 4.15.

As an example of constrained optimization a flat topped beam is shown in fig 4.16 and
a specified 3 dB beamwidth is shown in fig 4.17. Figure 4.18 shows a pattern with 4
sidelobes of —30 dB.
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4.2 Aperture illumination consisting of Zernike polvnomials

Other aperture illuminations which can be used for optimization purposes are the

circle polynomials of Zernike ([23],[24]) Rg (r) (this method is very similar to the
111
method used by Galindo [30]). Such functions reduce to Legendre polynomials :

Rggr) = Pn(2r2—1) (4.26)

Some Zernike polynomials are shown in figure 4.19.

N Infriike
....... O &
o8 1]
i
o8t b 1]
v.af LT
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3 &
4 o.2F s ‘.‘
= AN
H 4
or Vi
7
2 2} ":
t 7
0.4 K —
K
.5
5.0
=1
2 0.1 0.2 2.3 0.4 0.5 0.8 0.7 [N ) 0.9 H

Figure 4.21 Some Zernike polynomials.

g(1) can be calculated by making use of the relation [25] :

1
-m)J
fR:(I)Jm(ur)Idr = (—1§(n ) —“l(‘iﬂ . (4.27)
0
This leads to :
N J (u
glu)=13 a 2+l (4.28)
n=0"
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soel = (RY(x), RYE), - RYN () ) (4.29)
Ie) = ’ 11(111 ), 1 ](lu ), .......... ,1211\1”53)) . (4.30)

The elements of the matrix A can be calculated using [15] :

1
1
0 0 o . - — .
J R (RS (r) rdr =777z =]
0 (4.31)
=0 ifitj
Resulting in :
1 " - .
Ay T iy Hi=] (4.32)
=0 ifit]

The elements of the matrix X can be calculated with the following expression
[16,p135] :

¢
J_ o (e)d (c) — F_ (c)J .(c)
fJ,(u)J_(u)d—3=——c{ 24327 231 2131’ 2j4i }+ Wi
0 21417 25+t (2]+1)l — (2_]'1"1)2
¢ 29700 (133)
2T +2 )42
and with a modification of Hansens formula {16 p152] :
c
f.]2(u)d—u=——(——-)—1 5 end? (c ifi=] (4.34)
0 2is1 u 2 2i+1 n=0n 2i+g+)l .
where €, is the Neumanns factor which is defined as :
€En =1 forn=0
= 2 elsewhere.

Calculating the integral as a series of Besselfunctions as in (4.34) is a practical way
because most numerical procedures use backward recursive relations, such as
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J (1{) :?_“_J (u)—J (lﬁl) to come to Jz_(lf). The reason for this is that an forward way
n- In s 14

u
(starting with J . and J 1) gives in some cases unstable results. By simply using all the
results of Jz'((f) , the integral (4.34) can easily be computed.
1414

C
W= bf ud, (u), (u) du (4.35)

which has to be calculated numerically.

Some examples

The unconstrained optimum of n (using 2.8) leads to :
a

=1 (4.36)
al = (1,0,0,........0) (4.37)
g(u) = il-,(l—u)— (4.38)

The results of the unconstrained optimization of ¢2, Ny 1. nb,nb/ ¢? and 7.7 Jo? ate
given in tables A12, A13, A14, A15 and A16 respectively. Plots of g(u) and f(r) are
shown in figures 4.22, 4.23, 4.24, 4.25 and 4.26. The results of the optimization of 7
can be compared with literature [5).

As can be seen in fig 4.24 the results are identical.
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4.3 Aperture illumination consisting of power—law functions
Some engineers use an aperture distribution which consists of a series of powers of

(1-1?) (see e.g.[8]) :

fr)=% a (1-r%)" (4.39)

{-rar] *p

" gerael te
el
e
ST Tt

relative Baplituds
-

- . a a N " . .
] 0.1 .2 98 o4 085 0a 07 o0m o8 1
-

Figure 4.28 Some powers of {1~r?)".

The reason for this is that in some practical cases the functions f(r) are smooth
monotonically decreasing functions which can be approximated by a few terms of the
series stated in (4.39)[26].

g(u) can be calculated with the following relation:

1
1
f (1—x2)"J t)(\11[)1‘(h = 2% n! :]1:,—“ (4.40)
0
Resulting in :
N J 4+l
glu)= X 3n2“ nl —=n7y (4.41)
n=

Soel = (1, (1~1%),.crnn... (1= (4.42)
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The elements of the matrix A are easy to calculate :

1

Aij= 2 i+j+1)

The elements of the matrix X can be calculated with :

c -i-g
St (N (o= T Ty ) + 3 (0, ()

Resuiting in :

¢ i-i

Xij = (214 itjl)-15 GESLS! ){Ji(c).]j(c) + Ji+1(c)Jj+l(c)}

Which have to be calculated numerically.
The elements of the matrix W are :

c
=91+ j15l ~i-j 41
Wij (234 {131 {u Ji’gu)Jhgu)du

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

which have to be calculated numerically, or solved analytically using [16],p.136.

Some examples

Optimization of # gives the same results as in equation (4.36 —4.38).The results of
a

the optimization of ¢% and n, are given in table A17 and A18 (plots of g{u) and {(r) in

figures 4.29 and 4.30).

The results for optimization of 5 x M r)b/ c?and g ryb/ ¢? are shown in table A19, A20
a a

and A21 (fig.4.31, fig.4.32 and 4.33 show plots of g(u) and {(1)).
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5 Comparing different kinds of source functions

Up to now, different kinds of source functions have been considered. It is
interesting to see what kind of function is best suited for particular
optimization purposes. If the tables Al — A21 are scrutinized, it becomes
clear that for different optimization purposes, different kinds of source
functions should be used.

All the results presented in the tables are summarized in figures 5.1 to
5.6. These figures show the convergence rate of the procedure when the
antenna parameters are optimized, using different source functions. The
value of the parameters are given against N, where N is the number of
elementary functions in the series. From these figures it is easy to deduce
the most suitable source function for the optimization of a particular
antenna parameter or a product of different antenna parameters.

An optimal g, is the prime objective with ground-based antennas being
part of a communication system. An optimal m, applies to satellite based
antenna systems because it assures a high amount of power in a
prescribed region. The optimization of the product #ann/¢? is interesting
for ground based radiometry purposes. As stated before a maximum #p
will ensure a high amount of power in a prescribed region and a minimal
o2 will assure a small spread around the axis u=0, thus making the
sidelobes low. Including the maximization of 5, will prevent the antenna
from becoming too large, thereby reducing the costs of the antenna.

Interesting to note is that the optimization of g,9p/02 resulied in a
similar aperture illumination function for all source functions used. This
led to the expectation that there was a particular optimum aperture
function. Optimization with (1-r?)» showed that (1-r2) was the leading
term (a; was at least 100 times larger than the other ay’s (n=0,.N,#1)).
Optimization with Zernike polynomials showed that the first two
coefficients ao and a; were nearly equal and that the other coefficients
were at least 500 times smaller. This also led to the conclusion that
(1-r?) is the optimum function because (see 4.26):
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RY(2r2-1)
R¥(2rz-1)

If

—0.5R§(2r2-1)-0.5R3(2r>-1) = 112
2r3-1

If the upper boundary of the integral in (2.6) is set to », (1-r?) will be
the optimal function. This means that for large antemnnas (large D/}), 1-r2
optimizes nanb/02.

The constrained optimization of the antenna parameters is given in figures
5.6 to 5.14. In these figures the antenna parameter under consideration is
optimized, when the sidelobedevel is lower than -25 or -30 dB,
respeciively. As can be seen from these figures, the Zernike circle
polynomials give good results for any optimization which includes 7, As’
shown in literature (Slepian [19]) the function which optimizes the beam
efficiency is the hyperspheroidal function {because it is the eigenfunction of
the Fredholm integral). That Zernike polynomials can approximate this
function well, is not surprising because the Zernike polynomials are a
limiting case of the hyperspheroidal functions (p - 0 see {4.15)).
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6 Asymmetric patterns

In this section asymmetric patterns are considered. For some purposes asymmetric
aperture distributions are preferred to symmetric distributions [27,28]. A suitable
aperture distribution is:

f(r,4) =I§ a J (v r1)cos(2m¢’) (6.1)

nzln,m m nym

The technique handled now is an extension of the symmetrical case. The theory is
similar to that case, but the equations are given for the sake of completeness.
Numerical results are not given, but easy to calculate.

g{u) can be calculated with formula (2.1) , substituting (6.1) and using :
Jur cos(¢-1m4") _ 5 (i\Py (ur)elP(4-mé’) (6.2)
p=w P

If only even muitiples of m are considered ( this means that only distributions are
considered with two planes of symmetry ) this results in :

N
glu,d)= £ a ¥ cos(2mg)
n=1mm m
(6.3)
with
1
v = (1) f J (v 1)J (ur)rdr (6.4)
0

and e the Neumann factor.

This integral can be calculated with

1 W (v )1 ()= v I (v )] (u)
JI (v 1)J (ur)rdr= — 2w dwil _mm inilnp 2 (6.5)
0 2m° nym 2m u? — vzmm

This can be simplified by choosing J2 (v Y=20or J2 1(u ) = 0 (analogous to
m 4+

m nm n,m
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equation 4.4). When J2 (v )} = 0 the distribution is zero at the edge and 6.1
B Tol
becomes a Fourier—Bessel series. In the case of J (v ) = 0 the derivative is zero

2m+1° nym
at the edge and 6.1 becomes a Dini—series.
Fitting into the vector and or matrix form gives:
eL=(J (v 1,3 (v. 1)d (v 1)) (6.6)
= ' bom O Uamt 22 7T ont Noom
T _
a = (ahm,az,zm, ....... aNﬂm) (6.7)
T
gud)=2a" ¥ (6.8)

nym

The matrices A, X and W can be calculated analogous to the symmetrical case.
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7 Blocked aperture distributions

As will be shown next, the method described in section 2, is also able to deal with a
blocked aperture distribution ([29],[17]).The aperture distribution now becomes :

N
f(r)= a[J(v1)+Db Y (v 1) £<r¢l (7.1)
n=1 o™ o0 n n ¢ n

This is a very elegant series, because it offers the chance to describe the behaviour of
the distribution at the edge (r = 1) and at an arbitrary point r = £ (which can be the
edge of a sub reflector). Four possibilities arise, the aperture distribution:
l)iszeroatr= {andatr=1

2) is zero at T = ¢ and has a zero derivativeatr =1

3) has a zero derivativeat r = { and is zeroatr =1

4) has a zero derivativeat r = fand atr =1

If possibility 1 is considered the distribution becomes :

J v
0 ( n ‘) YO(Vnr)] f<r¢ (7.2)

Y (v )

0 n

N
f()=% a[J(vr1)-
n=1" 0 n

with Y0 the Besselfunction of the second kind and zeroth order and v a solution of :
n

Jo(vn) - (v)=0. (7.3)

o luse] imyy (anr)

S N0 leinr) ~b 1070 Lsjer
e T (2w =banTo taiper)

> \\n Ladur} —a3NYG (33ur]
N =0 fatue) 24nTD Insurt
\ e
L C 2 ]
‘I l". "
L} LS A
\ £,
| J; Y
. . J ,
y / - %
\ / 5\
3 2 X
;
h
;

relative naplitude
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The far field can be calculated using (equation 4.2).

N { T (u) o+ (uf) B}
&v) =n£1a“yn 0 vt — v * - ifu.'éyn (74

=)+ 104} +
N {Jo(yi)an + Jo(vif)ﬁn}

+ % av . fu=v
n=1 » *® u? — v * !
n#i i n

withan=—-Jl(vn)+ J"(V““ Y (v )

Y(Vf)ln

0 n

oo U vi gy
n ' n Y (v &) t°

¢ n

Fitting into the desired form gives :

le-]
H

J{vr)— Y (vpr 7.5
(D= Py Yl gy ) @9

(V{Jo(u)alﬂo(uf)ﬂl}w {J, (u)ay+d (u)by}

WV 7.6)
7 "N b —— ) (
u VN

1 7

u v

1

The elements of the matrix A are :

A= 0 ifi#]j

ij
1 2 _ 9 =
S(af=-87 ifi=]

1

(7.7)
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The elements of the matrix X and W are :

X = — (7.8)

c
T ) a8 0100+ 3 et
Wi = (7.9)
D/ A

v u?l

E{f' = ; ¢ 1]1 . J){aiaj.loz(u) + (aiﬁj+ ajﬁi)Jo(u)Jo(uO + ﬂiﬁj‘]oz(uf)}du
i j

which have to be calculated numerically.

Calculations, with this kind of aperture distribution, are done for two values of ¢ (0.1
and 0.05). The value of { = 0.1 can be considered as the blocking of a sub reflector in
a large antenna system or the blocking of a feed in a small antenna system. The value
of ¢ = 0.05 can be the blocking of a feed in a intermediate antenna system. The
numerical results are given in tables A18—A22 for £ = 0.1 and in table A23—-A27 for ¢
= 0.05. Corresponding plots for { = 0.1 are shown in figures 7.2 — 7.6.
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Next possibility 3 is considered, the distribution then becomes :

N I (v ¢
f(r) =% an[.lo(unr)— o )

n=] Y iun{j

1

Yo(vnr)] E<r¢l (7.10)

with Y0 (Y1 ) the Besselfunction of the second kind and zeroth (first) order and v a
n
solution of :

3 (v
N CRE : Y (v)=0 (7.11)

1 n
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\
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I (v £)
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1

figure 7.7 Some functions J o(v 1) — Yn(v r).
n n
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The far field can be calculated using (equation 4.2).

e NoLrd e e e ud g 1)
n=1" u - v

(7.12)

T ifu#v
n

n

i w)e + (v 1)+
) i 1 o i 1

i

N {¢v J (v ) a + ulJ (v ¢) 7}
+ ¥ a n 0 i n 1 i n ifu=v_

n=1 " u: — v “? !
n#i i n
) I (v ¢)
withe ==J(w )+ _1 " Y(v) (7.13)
n 1" n W‘)— 1 n
e wo+r U0y g
= —_ v v
T 0* n W 0 nf

Fitting this into the desired form gives :

§T=
J J

(J (vr)— 1(Vlé)Y(ur),..,J(er)— l(VNg)Y(er)) (7.14)

0 1 m o1 0 W 0

1'(e) =

({VlJu(u)al+qu(£u)7l} ...... {vNJo(u)aN+ qu(.;’u)'yN}) (1.15)
ut— V: ’ ’ 02— VNZ

The elements of the matrix A are :

A..= 0 ifi#] (7.16)

1)
1 2 _ AR P §
T(ai 7i)1f1 ]

The elements of the matrix X and W are :
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Xij =
c
u 2
f R e ﬁ[){ aiajviuon (u) + (aiui'yj+ ajvj'yi)uJo(u)Jl(uf)
0 i i
+ u27i7j.112(u£) } du (7.17)
W..=
1]
'.TD/ A
r u 3 2
J ( 0 i—y 2 ) ( 0 i—y T){ aiajui”jJO (u) + (aiyi7j+ ajyj‘ri)ujo(u)‘]l(u{)
0 i i
+u?y,7J Mué) } du (7.18)

which have to be calculated numerically.

Again calculations are performed with £ = 0.1 and ¢ = 0.05. Results are shown in
tables A28—A32 (¢ = 0.1) and A33-A37 (¢ = 0.05). Plots are shown in figures 7.8 —
7.12.
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The results of the tables are summarized in figures 7.13 to 7.17.

The following notation is used in the plots:

Xi = 0.1: blocked distribution, zero at { = 0.1

Xi = 0.05: blocked distribution, zero at £ = 0.05

Xi = 0.1 z.d.: blocked distribution, zero derivative at { = 0.1
Xi = 0.05 z.d.: blocked distribution, zero derivative at £ = 0.05
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functions in the series.
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Dealing with the values for the blocked case, has to be done with some restraint, if
these values are to be compared with those for the unblocked case. For the unblocked
case, the lower boundary of the integral (2.5) for the power radiated by the aperture
is 0, while for the blocked case it is set on {. As the integral of the power radiated by
the aperture (2.5) appears in the denominator of the antenna parameters (see (2.7),
(2.8) and (2.9)), the optimal values for the blocked aperture have to be taken lower if
they are to be compared with unblocked results. This makes it clear that the results
for the blocked aperture are always worse than those for the unblocked case.

Especially, the value for n,9,/¢? will differ.
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8.Conclusions

The method presented in this report makes it possible to optimize two or more
antenna parameters simultaneously, with or without constraints. The results obtained
with this method agree well with those found in literature. Although the examples
given in this report represent only a small set of different pattern requirements, they
clearly show the variety of problems that can be handled. Because different source
functions were used to optimize 75, Ny, @2, 7afb, and ann/e?, it is possible to deduce
the most suitable source function for optimization of a particular antenna parameter.

An optimal 7, is the prime objective for ground—based antennas in satellite
communication systems. An optimal n, applies to satellife~based antenna systems,
because it assures a high amount of power in a prescribed region. Optimization of the
product fan,/0? will be interesting for ground—based radiometry purposes. As stated
a maximum %, will assure a high amount of power in a prescribed region and a
minimal ¢2 will assure a small spread around the axis u=0, thus making the sidelobes
low. Including the maximization of s, will prevent the antenna from becoming too
large, thereby reducing the costs of the antenna.

In general, it is true that if an antenna parameter has to be optimized which includes
fb, the Zernike circle polynomials guarantee a good convergence rate.

Comparing the values for the blocked case with those for the unblocked case shows
that the results for the blocked aperture are always worse than those for the
unblocked case. Especially, the value for nany/o? will differ. So, if a high value for an
antenna parameter is needed it will be better to take an unblocked system.
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APPENDIX 1 Optimization of multiple antenna parameters

The proof of this theorem can be deduced from the formula for the derivative of a
vector—valued function in an N+1-dimensional space.

fa+h) = f(a) + Jh + 4bh)

where J is the Jacobian matrix.

alAal 2h7TAa 2h
1+
a B

neglecting ¢ (h?) we get:

I
b

.@-TA T aa
+ h™(Aa —
gTB T T

10
o
we]
]
o
o
o

again neglecting ¢ (hz) :
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In an extreme is :

1 aTca f Ba_a_.TA_a_.) 1 aTa, { DLTCQ)
= \Aa.— + \CQ- =0
.@TBQ _T a gTBg aTDa aTB_a a Da
1 s1Ca 1 aTAa 1 1
= A + Cla= ] B + Dla
aTBa alDa a’Ds 3 Ba ] [ aTBa 2 Da
gTAg gTC@
with 1 =
aTBg gTDa

resulting in a generalized eigenvalue problem.
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APPENDIX 2 Numerical results (Tables)

Table Al unconstrained optimization of ¢2 (Bessel with Jy(v4)=0)

N Ta b g? sil1 sl12 5113 u3dB
0 | 1.0000 0.8366 |200.317 17.59 23.80 27.94 1.61
1 | 0.5182 0.8194 7.208 36.59 49.38 60.22 2.41
2 | 0.5936 0.8666 6.584 26.28 43.82 53.88 2.24
3 | 0.6258 0.8828 6.323 27.08 34.70 48.94 2.19
4 | 0.6436 0.8909 6.179 27.29 35.79 40.54 2.13
9 | 0.6759 0.9041 5.914 27.48 36.37 43.48 211
14 1 0.6905 0.9094 5.960 27.50 36.42 42.57 2.08
Table A2 unconstrained optimization of n, (Bessel with Jy(vy)=0)
N| 1 N o2 slt1 sl12 sl13 u3dB
0 | 1.0000 0.8366 |200.317 17.59 23.80 27.94 1.61
1 | 0.8706 0.9395 67.773 29.39 29.57 32.87 1.81
2 | 0.8658 0.9438 52.827 25.91 34.21 34.85 1.86
3 | 0.8648 0.9446 46.948 25.64 31.95 37.72 1.86
4 | 0.8646 0.9450 43.792 25.57 31.66 36.03 1.86
9 | 0.8643 0.9452 38.171 25.52 31.48 35.57 1.86
14 | 0.8643 0.9452 36.484 25.51 31.48 35.55 1.86
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Table A3 unconstrained optimization of g9y, (Bessel with J4(v,)=0)

N | nam Na b o2

0 | 0.8366 1.0000 0.8366 200.31
1 | 0.8827 | 0.9719 0.9083 134.52
2 | 0.8846 0.9708 0.9112 123.95
3 | 0.8850 0.9706 0.9118 119.43
4 | 0.8851 0.9705 0.9120 116.89
g | 0.8852 0.9705 0.9121 112.16
14 | 0.8852 0.9705 0.9122 110.69

Table A4 unconstrained optimization of g1,/¢2 (Bessel with Jy(vy)=0)

N | /o2 fa o o2

2 01139 05243 | 0.8228 | 7.2298
3 101320 {06071 |0.8725 | 6.6052
4 | 01401 | 06412 (08890 | 6.3436
5 | 0.1447 | 0.6596 | 0.8970 | 6.1984
6 |0.1476 | 0.6712 | 0.9017 | 6.1060
8 |0.1512 | 0.6847 | 0.9069 | 5.9953
10 | 0.1533 | 0.6924 | 0.5097 | 5.9314




Table A5 unconstrained optimization of gafn/er2 (Bessel with Jq(v5)=0)
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N |7anv/e? fa b o2

0 | 0.0042 | 1.0000 | 0.8366 |200.317
1 | 00607 |05413 |0.8322 | 7.421
2 | 0.0825 |0.6395 |0.8839 | 6.855
3 | 00927 |0.6801 |0.9011 | 6.608
4 | 00987 |0.7018 |0.9093 | 6.466
9 |0.1099 |0.7392 | 0.9216 | 6.194
14 | 0.1153 | 0.7547 | 0.9259 | 6.066

Table A6 unconstrained optimization of 5, (Bessel with Jo(vy)=0)

N Ta 7b o2 sli1 sli2 sl13
11 | 0.6817 | 0.9098 5.771 27.49 36.41 42.56
2 |0.8229 | 0.8523 9.682 16.06 30.47 37.72
3 | 0.8763 | 0.8428 | 13.610 17.03 21.53 32.84
4 10.9051 | 0.8396 17.534 17.28 22.88 25.13
5 |0.9230 | 0.8383 | 21.448 17.38 23.26 26.70
10 | 0.9605 | 0.8367 | 40.799 17.51 23.68 27.69
15 | 0.9734 | 0.8365 | 59.752 17.55 23.75 27.85
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Table A7 unconstrained optimization of ¢2 (Bessel with Jo(vq)=0)

N fa b o? sll1 sll2 sl13 uddB
1 | 0.6917 0.9098 5.7714 27.49 36.41 42.56 2.083
2 [0.6923 0.9101 5.7714 2743 36.38 42.28 2.083
3 | 0.6926 0.9102 5.7713 27.46 36.31 42.50 2.083
5 | 0.6928 0.9102 5.7713 27.48 36.37 42.48 2.083
10 | 0.6930 0.9103 5.7712 27.49 36.43 42.52 2.083
15 0.9103 5.7711 27.49 36.43 42.53 2.083
Table A8 unconstrained optimization of gy, {Bessel with Jo(v5)=0)
N| 1 m o2 sl 112 113 u3dB
1 ]0.6917 | 0.9098 5.771 27.49 36.41 42.56 2.08
2 | 0.7551 0.9219 6.116 22.69 34.09 40.56 1.97
3 | 0.7858 0.9283 6.621 2401 28.36 37.82 1.95
4 | 0.8032 0.9320 7.169 2447 29.87 32.12 1.92
5 | 0.8143 0.9344 7.736 24.70 30.36 33.76 1.92
10 | 0.8381 0.9395 10.623 25.13 31.04 34.78 1.89
15 | 0.8466 0.9413 13.492 25.28 3121 35.23 1.87




Table A9 unconstrained optimization of n,n1, (Bessel with Jy(vn)=0)
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N | nano a b 2

1 | 0.6293 0.6916 0.8098 5.771
2 {0.7284 0.8071 0.9025 7.532
3 | 0.7734 0.8557 0.9038 9.528
4 | 0.7984 0.8821 0.9051 9.051
5 | 0.8144 0.8987 0.9062 13.637
10 | 0.8483 0.9335 0.6088 23.918
15 | 0.8603 0.9455 0.9098 34.026

Table A10 unconstrained optimization of #,/¢? (Bessel with Jo(vp)=0)

N | m/fo? Ta U 02

2 | 0.1580 0.7047 0.9138 5.782
3 | 0.1581 0.7073 0.9148 5.784
4 | 490.1581 0.7081 0.9151 5.785
5 | 0.1582 0.7085 0.9152 5.785
6 | 0.1582 0.7087 0.9153 5.786
8 | 0.1582 0.7089 0.9153 5.786
10 | 0.1582 0.7090 0.9154 5.786
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Table A1l unconstrained optimization of gany/e? (Bessel with Jo(vn)=0)

N {gaqufo? fa o a2

1 10.1090 0.6917 | 0.9099 | 5.7714
0.1144 | 0.7406 | 0.9211 5.9614
0.1155 | 0.7509 | 0.9245 | 6.0089
0.1159 0.7541 [ 0.9256 | 6.0254

G & W

0.1160 | 0.7555 0.9261 6.0313
10 | 0.1162 | 0.7571 0.9267 | 6.0381
15 10.1162 | 0.7573 | 0.9268 | 6.0381

Table A12 unconstrained optimization of ¢2 (Zernike)

N fa b o2 sll1 sl12 5113

1 | 0.7537 0.9261 5.9606 24.62 33.57 39.73
0.6968 0.9116 5.7423 27.32 36.53 42.79
0.6966 0.9116 5.7421 27.43 36.54 42.75

T- S ]

0.6966 | 0.9116 | 5.7417 27.50 36.53 42.59
5 | 0.6966 0.9116 | 5.7412 27.49 36.48 42.34
10 | 0.6972 | 0.9118 | 5.7371 27.49 36.42 42.56
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Table A13 unconstrained optimization of 4y, (Zernike)

N Ta b g? sll1 sil2 sl13

1 | 0.8671 0.9432 22.708 23.49 31.27 36.22
2 | 0.8642 0.9451 35.373 25.45 31.68 35.65
3 | 0.8642 | 0.9451 | 34.321 25.51 31.47 35.53
t% 0.8642 0.9451 34.362 25.51 31.47 35.54
5 | 0.8642 0.9451 34.361 25.51 31.47 35.54
10 | 0.8642 0.9451 34.361 25.51 31.47 35.54

Table A14 unconstrained optimization of 5,9y (Zernike)

Zernike)

N | nanp Na b o?
1 | 0.8587 0.9709 0.9108 97.747
2 | 0.8851 0.9704 0.9121 101.593
3 | 0.8851 0.9704 0.9121 |108.759
4 | 0.8851 0.9704 0.9121 [108.791
5 | 0.8851 | 0.9704 | 0.9121 [108.790
10 [ 0.8851 0.9704 0.9121 )108.790
Table Al5 unconstrained optimization of ny,/s2 (
N | n/e? fa b 02
3 :0.1592 0.7127 0.9166 5.756
4 01592 |0.7126 | 0.9166 5.756
0.1592 0.7127 0.9166 5.756
6 | 0.1592 | 0.7127 | 0.9166 5.755
8 |0.1593 | 0.7129 | 0.9167 5.754
10 | 0.1593 | 0.7131 | 0.9168 5.752




Table A16 unconstrained optimization of 5,71,/ ¢? (Zernike)
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N |namp/e? | 1a i 02
1 | 0.1175 0.7582 0.9273 5.9819
2 | 0.1175 0.7612 0.9278 6.0081
3 | 0.1176 0.7613 0.9278 6.0084
4 |0.1176 | 0.7613 | 0.9278 | 6.0079
5 | 01176 | 0.7614 | 0.9278 | 6.0073
10 | 0.1178 | 0.7619 | 0.9280 | 6.0028
I J

Table A17 unconstrained optimization of ¢2 ( 1—r2)N
N a 7b o2 sll1 sll2 sll3
1 §0.7537 0.9261 5.9606 24.62 33.57 39.73
2 | 06968 | 0.9116 | 5.7423 27.32 36.53 42.79
3 | 0.6966 0.9115 5.7421 27.43 36.54 42.75
4 | 0.6966 0.9115 5.7417 27.50 36.27 42.59
5 | 0.6967 0.9116 5.7412 27.49 36.48 42.34

Table A18 unconstrained optimization of 7p (l—ri’)N
N Na m g2 sli1 sl12 5113
1 }0.8642 | 0.9451 | 35.373 25.45 31.68 35.65
2 ] 0.8642 0.9451 34.320 25.51 31.48 35.53
3 | 0.8642 0.9451 34.361 25.51 31.48 35.53
4 | 08642 | 0.9451 | 34.361 25.51 31.47 35.54
5 | 0.8642 0.9451 34.361 25.51 31.47 35.54
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Table A19 unconstrained optimization of 7,7y (1—r'4’)N

N alb Na M o2

1 | 0.8787 0.9873 0.8900 129.38
0.8839 0.9704 0.9109 109.59
0.8851 0.9704 0.9121 108.75
0.8851 0.9704 0.9121 108.79

[ - O L N ]

0.8851 0.9704 0.9121 108.79

Table A20 unconstrained optimization of /2 (1—r2)N

N | no/o? Na b g2

2 | 0.1537 |o0.7127 | 0.9166 | 5.961
3 | 01592 |[0.7127 | 09166 | 5.756
4 | 01592 |0.7126 |0.9166 | 5.756
5001592 {0.7127 {09166 | 5.756
6 |0.1592 |0.7127 | 0.9166 | 5.755




Table A21 unconstrained optimization of nan,/¢? (1—r2)N
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N |nanv/o? Na 7 o2

1 | 0.1175 0.7582 0.9273 5.9819

2 | 0.1175 0.7612 0.9278 6.0081

3 | 0.1178 0.7613 0.9278 6.0084

4 | 0.1176 0.7613 0.9278 6.0079

5 | 0.1176 0.7614 0.9278 6.0073

Table A22 unconstrained optimization of (¢ = 0.1)
a
N Na Th o2 sll1 sl12 si13 uldB
1 | 0.7688 0.8408 110.9234 16.18 33.15 57.26 1.86
2 | 0.8112 0.7734 112.8040 13.89 29.59 33.61 1.75
3 | 0.8844 0.8075 [20.5250 16.09 24.46 23.59 1.70
4 | 0.8950 0.7962 [22.5409 15.80 26.16 22.92 1.67
5 | 0.9207 0.8081 {30.1596 16.37 25.32 24 88 1.65
10 | 0.9507 0.8093 |51.1978 16.53 25.49 25.45 1.64
Table A23 unconstrained optimization of ¢% (¢ = 0.1)

N fa b o2 sll1 sl12 sl13 u3dB
1 | 0.7688 0.8408 }10.9234 16.18 33.15 57.26 1.86
2 | 0.7686 0.8409 |10.9234 16.18 33.15 57.30 1.86
3 | 0.7695 0.8415 |10.9231 16.21 33.03 57.21 1.86
4 | 0.7695 0.8415 1{10.9231 16.21 33.03 57.30 1.86
5 | 0.7698 0.8417 [10.9228 16.21 33.08 57.88 1.86
10 | 0.7700 0.8419 |10.9222 16.22 33.10 57.90 1.86
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Table A24 unconstrained optimization of 7, (¢ =0.1)

N Ta b a? slil sil2 sll3 u3dB

1 |0.7688 0.8408 [10.9234 16.18 33.15 57.26 1.86
2 107331 0.8463 |11.1786 16.95 32.89 44.87 1.93
3 | 0.8008 0.8817 |14.9648 20.07 24.81 39.84 1.86
4 | 0.7950 0.8822 ]15.0692 20.12 25.00 40.16 1.86
5 | 0.8190 0.8943 [18.8336 21.02 49.10 27.06 1.86
10 | 0.8343 0.9043 |26.4640 21.75 43.11 28.28 1.86

Table A25 unconstrained optimization of 9495 (£ = 0.1)

N | 7am Na b ol

2 | 0.6547 0.7933 | 0.8254 |11.1653
3 |0.7445 | 0.8654 | 0.8604 |17.0700
4 | 0.7478 | 0.8726 | 0.8570 |17.4611
5 | 0.7803 0.8980 | 0.8630 }23.3086
10 | 0.8102 0.9251 0.8759 |36.0890

Table A26 unconstrained optimization of napu/e? (¢ = 0.1)

N rlafib/f":" fa b o?

2 | 0.0463 0.7790 0.8363 110.9569
3 { 0.0610 0.8010 0.8515 |11.1764
4 | 0.0610 0.8019 0.8513 |11.1814
5 1 0.0613 0.8053 0.8536 |11.2153
10 | 0.0614 0.8070 0.8545 |11.2297




Table A27 unconstrained optimization of 55 (¢ = 0.05)
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N fa T o2 sll1 sll2 sl13 u3dB
1 | 0.7618 0.9335 9.3359 18.36 33.49 42.04 1.90
2 | 0.8194 0.8077 |11.5774 14.71 30.17 34.36 1.76
3 | 0.8883 0.8311 |17.9673 16.83 22.75 25.61 1.73
4 | 0.9026 0.8200 |20.3840 16.58 24.50 23.63 1.69
5 | 0.9265 0.8283 |26.6477 17.06 23.96 26.18 1.67
10 | 0.9581 0.8272 |46.2287 17.16 24.31 26.73 1.64
Table A28 unconstrained optimization of ¢2 (§ = 0.05)
N Na b o2 sll1 sl12 si3 u3dB
1 |0.7618 | 0.8827 | 9.3359 18.36 33.49 42.04 1.90
2 10.7615 | 0.8827 | 9.3359 18.37 33.49 42.03 1.94
3 | 0.7623 0.8833 9.3356 18.39 33.39 41.98 1.93
4 | 0.7623 0.8833 9.3356 18.39 33.40 41.98 1.92
5 | 0.7626 0.8835 9.3353 18.40 33.46 41.83 1.92
10 | 0.7626 0.8836 9.3348 18.41 33.49 41.95 1.92
Table A29 unconstrained optimization of gy, (¢ = 0.05)

N Na 7b 02 sll1 s112 si13 u3dB
1 | 0.7618 0.8827 8.3359 18.36 33.49 42.04 1.90
2 | 0.7402 0.8845 9.4062 19.04 33.31 41.85 1.97
3 0.8003‘ 0.9116 |[11.9064 22.35 35.59 27.18 1.93
4 {0.7990 0.9116 |11.9085 22.36 35.27 27.28 1.92
5 | 0.8201 0.9207 [14.3787 23.20 34.41 30.28 1.92
10 { 0.8371 0.9278 (19.2025 23.83 33.80 31.74 1.92
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Table A30 unconstrained optimization of 9anp (£ = 0.05)

N [ namb Ta b g2

2 106911 | 0.8012 | 0.8626 | 9.7866
3 07714 | 0.8682 | 0.8885 |14.2926
4 | 06842 | 0.8794 | 0.8848 |14.9784

5 | 0.8065 0.9027 0.8935 |19.4142
10 | 0.8361 0.9314 0.8977 [30.3315

Table A31 unconstrained optimization of fanp/e2(¢ = 0.05)

N |nanv/o? Na b 02

2 }0.0727 | 0.7785 0.8780 9.3964
3 | 0.0743 | 0.7978 | 0.8001 9.6530
4 |0.0743 0.7992 0.8900 | 9.5611
5 | 0.0746 0.8021 0.8918 | 9.5845
10 | 0.0747 | 0.8038 | 0.8926 9.5058

Table A32 unconstrained optimization 5, (¢ = 0.1, z.d.)

N Na 7b o2 sll1 sl12 sl13 u3dB

1 | 0.6806 0.8842 |76.5289 23.29 31.59 35.63 2.02
2 | 0.8206 0.8279 [19.8492 15.33 30.58 34.42 1.78
3 | 0.8729 0.8214 |52.7631 16.39 22.53 27.64 1.73
4 | 0.9009 0.8186 |53.384% 16.54 24.41 23.76 1.69
5 | 0.9181 0.8179 [54.5004 16.67 24.50 25.47 1.66
10 | 0.9536 0.8170 62.3075 16.79 24.97 26.00 | 1.64
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Table A33 unconstrained optimization ¢2 (¢ = 0.1, z.d)

N Na 7o o2 sll1 5112 sl13 u3dB

1 | 0.6906 0.8842 |76.5289 23.29 31.59 35.63 2.02
2 | 0.7998 0.7399 |14.4403 13.21 27.41 35.75 1.72
3 | 0.7491 0.7698 {12.9291 13.96 34.89 45.70 1.80
4 | 0.7732 0.8016 [12.2598 14.84 36.46 38.37 1.81
5 | 0.7670 0.8100 {11.9371 15.10 33.78 40.88 1.81
10 | 0.7720 0.8328 |11.2662 15.86 33.37 52.32 1.81

Table A34 unconstrained optimization gy(£ = 0.1, z.d)

N Na 7 2 sl s5i12 sil3 u3dB

1 | 0.6906 0.8841 }76.5289 23.29 31.59 35.63 2.02
2 | 0.7527 0.8854 |55.1277 20.47 45.40 32.37 1.97
3 | 0.7847 | 0.9026 |72.1146 21.70 33.28 29.73 1.90
4 | 0.8018 0.9062 |59.0666 21.97 36.57 27.74 1.89
5 | 0.8130 0.9087 |70.5527 22.19 36.97 28.97 1.87
10 | 0.8361 0.9137 [65.9799 22.52 38.30 29.46 1.86

Table A35 unconstrained optimization of g7, (¢ = 0.1, z.d.)

N | fmam Na 7b sl

2 | 0.7054 0.8048 0.8765 |32.9712
3 [0.7498 0.8529 0.8792 |61.3762
4 | 0.7736 0.8786 0.8806 |41.4220
5 | 0.7890 0.8946 0.8820 {60.3350
10 | 0.8208 0.9277 | 0.8848 [59.2650
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Table A36 unconstrained optimization of ganu/e2 (¢ = 0.1, z.d.)

N |namfo? | 7a b o2

2 10.0418 | 0.8081 | 0.7623 |[14.7149

3 | 0.0455 | 0.7705 | 0.7786 |13.1680

4 | 0.0522 0.8055 0.8174 |12.5984

5 ]0.0537 {0.7991 | 0.8232 |12.2475

10 | 0.0590 | 0.8081 | 0.8467 |11.5854

Table A37 unconstrained optimization 5, (¢ = 0.05, z.d)-1
N Ta b o? sll1 sll2 sil3 u3dB
1 | 0.6915 | 0.9034 |43.0743 | 26.17 40.56 37.63 2.08
2 [0.8226 | 0.8459 [13.9792 15.86 30.46 36.46 1.81
3 | 0.8759 | 0.8373 |[34.8215 16.87 21.76 30.94 1.75
4 | 09045 | 0.8342 |23.8801 17.08 23.29 24.67 1.70
5 | 0.9223 0.8330 |34.8215 17.19 23.57 26.38 1.69
10 | 0.9592 0.8316 |50.3044 17.32 24.01 27.17 1.64
Table A38 unconstrained optimization ¢2 ({ = 0.05, z.d.

N Na 7b g2 sli1 si12 sl13 u3dB
1 | 0.6915 0.9034 |43.0743 26.17 40.56 37.63 2.08
2 [0.8148 | 0.7945 [12.7625 14.38 29.20 36.21 1.75
3 [0.7538 | 0.8179 [11.3600 15.28 40.11 42.77 1.86
4 | 0.7749 0.8475 |10.71i61 16.43 34.18 41.35 1.86
5 | 0.7647 0.8548 |10.3654 16.79 32.51 48.04 1.89
10 | 0.7659 0.8755 9.6842 17.86 33.26 42.25 1.90
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Table A39 unconstrained optimization of gy, (¢ = 0.05, z.d.)1

N Na Tb g2 sll1 sl12 sll3 u3dB
1 | 0.6915 0.9034 [43.0743 26.17 40.56 37.63 2.08
2 1 0.7546 0.9152 |31.1951 22.05 36.04 37.25 1.97
3 10.7854 | 0.9218 [40.9612 23.36 29.43 34.56 1.93
4 ;08031 | 0.9255 |33.2388 23.76 31.27 30.58 1.92
5 | 0.8143 0.9279 |40.4678 24.05 31.72 32.13 1.90
10 | 0.8380 | 0.9330 [38.2808 24.38 32.49 33.02 1.86

Table A40 unconstrained optimization of gagy, (¢ = 0.05, z.d.)

T

N | 7am Ta b o?
2 | 0.7228 0.8068 0.8959 |[19.8132
3 | 0.7677 0.8553 0.8976 |[37.1679
4 |0.7924 0.8816 0.8989 [25.7521
5 | 0.8082 0.8981 0.9000 |[38.2833
10 | 0.8417 0.9325 0.9027 |40.7880
able A41 unconstrained optimization of nafgn/o? (£ = 0.05, z.d.)
N [namb/e? | 1a M o2
2 | 0.0516 0.8198 0.8168 [12.9610
3 | 0.0555 0.7794 0.8268 |11.5912
4 | 0.0632 0.8090 0.8602 [10.9973
5 | 0.0651 0.8004 0.8649 [10.6324
10 | 0.0716 0.8059 0.8854 9.9553




Eindhoven University of Technology Research Reports LSSH 0167-9708
Faculty of Electrical Engineering Coden: TEUEDE

(222) Joswiak, L.
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES W1TH THE SEPARATE REALIZATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222, 1989, ISBN 90-6144-222-2

(223) Jéswiak, L.
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report 89-E~223, 1989, ISBN 90-6144-223-0

(224) Book of abstracts of the first Benelux-Japan Workshop on tnformatian and
Communicatien Theory, Eindhoven, The Netherlands, 3-5 September 1989.
Ed, by Han Vinck.
EUT Report B89-E-224. 1989. ISBN 90-6144-224-9

(225} Hoeijmakers, M.J.
A POSSIBILTTY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL
OF A SYNCHRONOUS MACHINE WITH RECTIFIER.
EUT Report 89-E£-225. 1989. ISBN 90-6144-225-7

(226) Dahiya, R.P, and E.M, van Veldhuizen, W.R. Rutgers, L.H.,Th., Rietjens
EXPERTMENTS ON INITIAL BEWAVTOUR OF-CORONA TENERATED WITH ELECTRIGAL
PULSES SUPERIMPOSED ON DC BIAS.

EUT Report 89-E-226. 1989. ISBN 90-6144-226-5

(227) Bastings, R.H.A.
TOWARD THE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM LN ANESTHESI|A,
EUT Report 89-E-227, 1989, ISBN 20-6144-227-3

(228) Hekker, J.J.
COMPUTER ANIMATED GRAPHICS AS A TEACHING TQOL FOR THE ANESTHES!A MACHINE
SIMULATOR,
EUT Report 89-E-228. 1989. |SBN 90-6144-228-1

{229) Oostrom, J.H.M. van
INTECLIGENT ALARMS IN ANESTHESIA: An implementation,
EUT Report 89-E-229. 1989. ISBN 90-6144-229-X

(230) Winter, M.R.M.
DESICN OF A UNIVERSAL PROTOCOL SUBSYSTEM ARCHITECTURE: Specification of
functiens and services.
EUT Report 89-E-230. 1989. ISBN 90-6144-230-3

(231) Schemmann, M.F.C. and H.C. Heyker, J.J.M. Kwaspen, Th.G. van de Roer
MOUNTING AND DC TO 18 CHz CHARACTERISATION OF DOUBLE BARRIER RESONAINT
TUNNELING DEVICES.

EUT Report 89-E-231. 1989. |SBN S0-6144-231-1

(232) Sarma, A.D. and M,H.A.J, Herben
DATA ACQUISITION AND SIGWAL PROCESSING/ANALYSIS OF SCINTILILATION EVENTS
FOR THE QLYMPUS PROPACATICH EXPERIMEMNT.
EUT Report 89-E-232, 1989, ISBN 90-6144-232-X

{233) Nederstigt, J.A.
DESTCN AND EMPLEMENTATION OF A SECOND PROTQTYPE QF THE INTELLIGENT ALARM
SYSTEM IN ANESTHESIA.

EUT Report 90-E-233. 1990. 15BN 90-6144-233-8

(234) Philippens, E.H.J.
DESTUNTNG 6EBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS,
EUT Report 9G-E-234, 1990, 158N 90-6144-234-6

(235) Heffsls, J.J.M.
A PATTENT SIMULATOR FOR ANMESTHESIA TRAINING: A mechanical lung mode! and a
physiological seftware model,
EUT Report 90-E-235., 1990. [SBN 90-6144-235-4

(236) Lammers, J.O0.
KNOWLEDCE BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simplexys expert system
application.
EUT Report 90-E-236. 1990. iSBN 90-6144-236-2

(237) Ren Qingchang
PREDICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT EXCHANCER.
EUT Report 90-E-237. 1990. I3SBN 90-6144-237-0



Eindhoven Uriversity of Technoloyy Hewearch Report, 1351 0167-9708
Facultv orf flectrical Engineering Coden: TEUEDE

{238) Lemmers, J.O,
THE USE OF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTGCOL CHECKING.
EUT Report 90-E-238. 1990. ISBN 90-6144-238-9

(239) Wang, X.
PRELIMINARY {NVESTIGATIONS ON TACTILE PERCEPTION OF CRAPHICAL PATTERNS.
EUT Report 30-E-23%9. 1990, I1SBN 90-6144-239-7

(240) Lutgens, J.M.A.
KNOWLEDGE BASE CORRECTNESS CHECKING FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Eeport 90-E-240. 1990. ISBN 90-6144-240-0

{241) Brinker, A.C. den
A MEMBRANE MODEL FOR SPATIOTEMPORAL COUPLING.
EUT Report S0-E-241. 19390. ISBN 90-6144-241-9

(242) Demarteau, J.l.M, and H.C. Heyker, J.J.M. Kwaspen, Th.G. van de Roer
MTCROWAVE NOISE MEASUREMENTS ON DOUBLE EARRIER RESONANT TUNNEL ING

DI0DES.
EUT Report 90-E-242. 1990. ISBN 90-6144-242-7

(243) Massee, P. and H.A.L.M. de Graaf, W.J.M. Balemans, H.G. Knoopers, H.H.J.

ten Kate

PREDESTGN OF AN EXPERIMENTAL (5-10 Mwt) DISK MHD FACILITY AND PROSPECTS OF
COMMERCIAL (1000 Mwt) MHD/STEAM SYSTEMS.

EUT Report 90-E-243. 1990. I5BN S0-6144-243-5

{244) Klompstra, Martin and Ten van den Boom, Ad Damen
A COMPARTSON OF CLASSiCAL AND MODERN CONTROLLER DESICN: A case study.

EUT Report 90-E-244. 1990. ISBN 90-6144-244-3

(245) Berg, P.H.G. van de
ON THE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation

experiment.
EUT Report 90-E-245, 1990, 15BN 90-6144-245-1



	Abstract
	Acknowledgements
	Table of contents
	1. Introduction
	2. Writing antenna parameters in a suited form
	3. The optimization procedure
	3.1 Theorem
	3.2 Some properties of generalized eigenvalue problems
	3.3 Constraints
	3.4 The optimization procedure with constraints
	3.5 Optimization a product of quadratic forms
	3.6 Maximum sidelobes constraints
	4. Various kinds of source functions
	4.1 Aperture distributions consisting of Besselfunctions
	4.2 Aperture illumination consisting of Zernike polynomials
	4.3 Aperature illumination consisting of power-law functions
	5. Comparing different kinds of source functions
	6. Asymetric patterns
	7. Blocked aperature distributions
	8. Conclusions

