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Abstract 

Tills report deals with an analytical approach of antenna synthesis. It 

presents a optimization method which is based on writing the design criteria as a ratio 

of two quadratic Hermitian forms, so that more than one antenna parameter (such as 

antenna efficiency and beam efficiency) can be optimized simultaneously, with and 

w:ithout pattern-structure constraintS. 

Firstly the mathematical formulation is given; then the optimization method is 

discussed with and without constraints to the far-field pattern. Finally, a comparison 

is made with the results obtained by others and examples are given. This clearly 

shows the capability and correctness of the optimization procedure. 
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1 Introduction 

Generally speaking, the objective of antenna synthesis is to reach the best possible 

design under the condition that reqrnrements with respect to radiation properties are 

met. Synthesis techniques can be divided into two categories. In one category, the 

solution is found via numerical manipulations; while in the other, the solution is found 

analytically. The latter has the advantage that it offers more insight into the effects 

and interactions between different design parameters. Furthermore, that method gives 

a closed form to both the aperture-field distribution and the far-field pattern. After 

optimization, the far-field will be known across the full angle-region of interest, 

which removes the need to compute the time consuming far-field integrals repeatedly. 

The analytical method often uses the concept of partial radiation-patterns, and 

approximates the desired far-field pattern and the corresponding aperture-field 

distribution by means of a series of special source functions. 

For the application of this method, two aspects require attention. Firstly, the 

selection of special functions can be governed by certain considerations, including: the 

simplicity of approximating the desired pattern with a minimum number of terms in a 

series, the property of orthogonality, the ease with which functions can be Fourier 

transformed or by the possibility of working with a series of functions with which one 

is familiar (some degree of arbitrariness can not be denied). Secondly and more 

demanding, is the aspect that "the requirements with respect to radiation properties" 

can vary widely and can often be mutually exclusive. 

Due to these two aspects, a whole range of synthesis procedures exists. Most of them 

are focused on one specific design objective and are applied to earth-stations for 

satellite communications. 

There are synthesis methods in which only the pattern shape is modified ([1],[2J,[3]). 

Or optimization techniques without pattern constraints ([4], [5], [6], [7J, [8], [9]). 

Borgiotti [4J and Mironenko [5J discuss methods to maximize the fraction of power 

radiated in a prescribed solid angle, while Minkovich [6J and Yurjev [7J deal with 

problems in terms of maximum main lobe power and low sidelobe level or nrinimum 

total power of side lobe radiation. References [8J (Kouznetsov) and [9J (Sanzgiri) deal 

with sidelobe envelope. Some methods include constraints but optimize only one 
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design objective ([10],[11],[12]). The constraints can be sidelobe peak level 

(Sanzgiri [10]) , pattern nulls (Drane [11]) or main lobe beam width (Kurth [12]). 

It is clearly desirable that a more general technique could be used which has the 

possibility of dealing with many different design criteria. 

If possible this method should deal with design criteria: 

- irrespecti ve of the source functions used 

-separately and with a set of design criteria at the same time 

-with and without pattern constraints 

-with and without blockage 

-with and without ~-dependence. 

The technique described in this report is pleasingly elegant if optimization problems 

are concerned. Even optimization problems with constraints can be solved simply. 

Most engineers turn to Lagrange multipliers if constraints are included. However, due 

to the elegant form, it appears to be possible to simplify the problem. In the proposed 

optimization method the constraints are treated as a "benefit" because they reduce 

the number of variables which can be adjusted. 

In section 2 some antenna parameters (such as antenna efficiency, beam efficiency, or 

the normalized second moment) are fitted into a suitable form and in section 3 it is 

shown that optimization problems reduce to simple problems which can be solved 

with basic theorems from linear algebra. 

In section 4 different source functions are introduced and optimization examples are 

given. Numerical results are given in several tables. In section 5 the different source 

functions are compared. 

Cross-polar synthesis and blocked aperture distributions are treated in sections 6 and 

7, respectively. 

No attempt has been made to include in this treatise all of the results that have been 

published by others on the problem of synthesis. Therefore, a selection has been made. 
This selection intends to reach a large variety of source functions adopted and pattern 

requirements stated. 
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2 Writing antenna parameters in a suited form 

In this section it is shown that a variety of antenna parameters (such as antenna 

efficiency, beam efficiency, normalized second moment, etc) can be written in a 

particular, suited form. The starting point is a circular aperture located in the x-y 

plane as shown in figure 2.1., 

I x 

" .,....-,-....... 
./ "" , . , 

/ ! \ observation point 
I -:-I-!----~----------~ 

! <~:;J,J"""""::::...+---''--'---------z-
>y \ / \ 'y 
~ 

Figure 2.1 Coordinate system. 

The aperture points are given by normalized aperture polar coordinates (r,,') and the 

far field observation point by spherical coordinates (R,O,;). The integral part g(u,;) of 

the far field pattern E(R,O,;) [13J is related to the aperture distribution f(r,;') by the 

integral [13J: 

2 2r 1 jur cos(;-;') 
g(u,¢) = a f f f(r,,') e rdrd" (2.1) 

o 0 

2 r a rD 
with u = -,\- sinO = -,\ sinO 

When f(r) is a ;-independent, uniform-phase aperture distribution, g(u) can be 

written as the first order Hankel transform: 
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g(u) = 21:a
2 J f(r) Jo(ur) rdr 

o 

Iff(r) is written as: 

N 
f(r) = E a e (r) 

n=On n 
o 

10 

(2.2) 

(2.3) 

elsewhere 

where a are the excitation coefficients of the elementary real functions e (r) and J is 
n n 0 

the Besselfunction of the first kind and zeroth order, it is possible to split the Hankel 

transform into a set of integrals as follows: 

N N 1 
g(u) = 2:fa2E a I (u) = 2:fa2E a J e (r) Jo(ur) rdr 

n=O n n n=O nO n 
(2.4) 

To derive the equations for the different antenna parameters, the equations for the 

power radiated by the aperture p , the power radiated within a prescribed solid angle 
r 

p , and the second moment /1. are needed. The first two are given by: 
r,angle 2 

1 c 

Pr = 2:fa2Jf2(r) rdr p = 2:fJu p(u) du (2.5) 
rJangle 

o 0 
sinU pre 

with p(u) = g2(U) and c = ----;,\c-- , where Upre is the prescribed angle. 
:fD 

The second moment of the far field radiated power with respect to the axis u=O is 

found by integrating u2p(u). This leads to: 

'CD/,\ :fD/'\ 

/1.2 = J U 2 p(u) u du = J U 3 p(U) du (2.6) 

o 0 
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" 2 The normalized second moment 1J2 = P is a measure of the spread of the radiated 

power from the beam axis. 
r 

Some basic antenna definitions can now be written as: 

2 p ( 0) 
~ = 

a P 
aperture efficiency (2.7) 

r 

beam efficiency 
p 

TJ = r ,angle 
b ---

P 
(2.8) 

r 

normalized second moment 2 1'2 
IJ=-

P 
(2.9) 

r 

Using the equations (2.3) and (2.4), it is possible to write these antenna definitions 

into a form (known as the quotient of two Quadratic forms or Rayleigh quotient), 

which lends itself to evaluation with the help of basic theorems from linear algebra. 

To reach this, f(r), g(u) and p(u) are written as follows: 

f(r)= ~T.~ 
= o 

o $ r $ 1 

elsewhere 

T T were ~ = (a ,a , ............ aN) and e = (e ,e , ............. e
N

), 
a 1 - a 1 

with IT(e) an N+1 element vector with elements: 

1 

I.(e.) = f e. Jo(ur) rdr 
1 1 1 

(i=O, .... N), 
o 

and, 

(2.10) 

(2.11) 

(2.12) 

with Vij = I(e)I(eJ the elements of an N+1xN+l element matrix V. 

Using the above aefinitions, it is possible to describe the power radiated by the 

aperture and within a prescribed solid angle and the second moment in a comparable 
way: 
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(2.14 ) 

1 

with A .. = fe e rdr the elements of an N+lxN+1 element matrix A. 
IJ i j 

o 
P = aTXa 

r,angle - -
(2.15) 

c 

with X .. = fu y .. du the elements of an N+1xN+1 element matrix X. 
IJ IJ 

o 
T 

/1-2 = i! Wi! (2.16) 

"KD/)' 

with W .. = f u 3y .. du the elements of an N+1xN+1 element matrix W. 
IJ IJ 

o 

The basic antenna definitions can now be expressed as a ratio of two quadratic forms: 

2 ~Ty(O)g. 
(2.17) 

1/ = --=---
b ~ TA~ 

(2.18) 

aTW a 
1f2- ------

- ~ T A~ 
(2.19) 

The matrices Y,A,X,W have the property of being hermitian, because: 

l\ = N with l\ = Y,A,X,W 
ij j i 

(2.20) 

where: denotes the complex conjugate. 

This is immediately evident from equations (2.14)-{2.16). Furthermore, A ,X and W 

are positive definite because they represent the radiated power, the power radiated in 

a prescribed angle and the spread of radiated power, respectively. 
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3 The optimizatioo procedure 

3.1 Theorem 

Consider the problem of maximizing a quantity which can be written as: 

T a Aa 
h(ilo) = - T -

~ B~ 
(3.1) 

in which ilo is an N+1-element vector and A and Bare N+lxN+1 real and square 

matrices. This form is known as a Rayleigh quotient, or quotient of two quadratic 

forms. The solution to the problem can be found in a basic theorem from linear 

algebra [14J. The theorem states that with A and B hermitian and B positive definite, 

the maximum (or minimum) of the quantity is given by the largest (or smallest) 

eigenvalue determined by: 

Ailo=ABilo (3.2) 

So, the original problem can be treated as a general eigenvalue problem. The proof of 

this theorem can be deduced from the formula for the derivative of a vector-valued 

function in an N + 1-mmensional space. 

h(Hh) = h(ilo) + Jh + a(h) (3.3) 

were J is the Jacobian matrix. 

2bTA~ bTAb 

~TA~ 
1 + 

~TA~ 
+ 

~TA~ 
= T 2bTB~ bTBb ~ B~ 1 + + 

~TB~ ~TB~ 

~TA~ 2bTA~ 2bTB~ 
= 
~TB~ 

( 1 + 
~TA~ ~TB~ 

+ a(h2) ) 



neglecting O(h 2) we get: 

h(Hh) 

in an extreme the following holds: 

Jh = h(ll,+h) - h(ll,) = 0 

aTAa 

14 

~ All, - ( - T - )Bll, = 0 ~ All, = ..IBll, 
g. Bg. 

g.TAg. 
with ..I = ----,;T.----­

g. Bg. 

resulting in a generalized eigenvalue problem. 

3.2 Some properties of generalized eigenvalue problems 

(3.4) 

(3.5) 

Because the original problem can be treated as a generalized eigenvalue problem some 

properties, that can be used in the optimization, are summarized. 

(1) Because B is non-singular the equations reduce to the standard eigenvalue 

problem form: 

B-1 All, = ..Ill, (3.6) 

(2) Because A and B are real and symmetric, the eigenvalues will be real. 

(3) When A and B are real, symmetric and positive definite the eigenvalues will 

all be positive. 

(4) Because A and B are both real and symmetric and B is positive definite, the 

equations may be transformed using the Choleski decomposition [31]: 

B=LLT (3.7) 

with L a lower triangular matrix. Multiplying equation (3.2) with L -1 gives: 

C 1ACTLTll, = ..ILTll, (3.8) 
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So A are the eigenvalues of the symmetric matrix L -1 AL -T and the 

eigenvectors are L T 1!0. A special case occurs when the matrix B is a rank 1 

matrix, then only one eigenvalue is non-zero. 

(5) When A and B are both diagonal matrices, the eigenvalues are: 

Ai i 
A ---

i - B i i 
(3.9) 

and the eigenvectors are (O, ... O,a.,O ... O). 
1 

3.3 Constraints 

The problem of optimizing a quantity subject to constraints is usually solved with the 

aid of Lagrange multipliers ([lO],[llJ).The Lagrange method is based on finding the so 

called Lagrange multipliers which form the best fit solution to the problem. This 

method states the problem as: 

max f(1!o)IClI = Q ~ V·f = CTA " ClI = Q. With C a MxN+l constraint matrix 

(suppose there are M constraints), ,\ the Lagrange multipliers and V the gradient. 

Consequently this method starts with N+M+l equations. However, due to the 

elegant mathematical form adopted here it is possible to convert this N+l+M 

problem into a N+I-M problem. In this way, reducing the manipulations needed to 

come to a solution when the number of constraints is increased. An explanation for 

this is that constraints reduce the number of variables which can be adjusted. It is 

clear that when the number of constraints increases the number of variables which 

can be adjusted decreases ( there are N + 1 elementary functions so there can be N 

constraints). So, from an optimizing point of view it is favourable to keep the number 

of constraints as low as possible. In contrast to a "best-fit solution" constraints are 

all satisfied when the latter method is used. 

For antenna problems, constraints can be represented in the following way: 

(3.lO) 

where v is the prescribed value in a point u relative to the value at u = O. Or in a 
pre m 

shortened notation: 
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T T l!, og =g ol!,=O 
m m 

with 9 the constraints vectors (m = O,l, .. ,M < N+1). 
m 

The quantity to be optimized now becomes: 

aTAa 
h(l!,) = - T -

~ B~ 

T Il!, 9 = 0 (m = O,l, ... M and M < N+1) 
m 

3.4 The optimization procedure with constraints 

(3.11) 

(3.12) 

Suppose 9 ,g ,···gM span an M dimensional space rand the N+1-M dimensional 
I 2 

space r is spanned by Yi.. (j = M+1, ... N+1) 
J 

ql 

qi 

~;;---~qM 

Figure 3.1 The space rand r 

Since l!, T 9 = 0 , the vector l!, must lie in r and it can be written as: 
m 

N+1 
a = E w c = Wc 
- j=M+1-j j -

(3.13) 

where W = [wM+1 I ..... IYi.N+l] is an N+1xN+I-M matrix (the columns are formed 

by the vectors Yi..l and £ is an N+l-M vector. The problem has now been reduced to 

the determinatio~ of the vectors 5: and Yi.., and optimizing: 
J 

c TWTAWc 
h(c) = ------=- (3.14) 

- s;TWTBWs; 
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with WT AW and WTBW N+I-MxN+I-M real square matrices. 

N+l 
!XDXO=O N+l-M 

N+l 
A 

N+l-M 

Figure 3.2 The product WT AW 

Finding a basis for 'Y ~ can be realized in different ways. One is via the 

Gram-Schmidt [31 J transformation, but the Householder transform with partial 

pivoting [31J guarantees better numerical stability. A property of the Householder 

transform is that it reduces a N+lxM matrix 'Y( 'Y= [q I q 1····1 qMJ) to an upper 
I 2 

tridiagonal form; with Q a N+lxN+l orthogonal matrix (Householder matrix) and R 

an MxM upper tridiagonal matrix (see figure 3.3). 

~XDl~~ri 
'. '----y-' ~ z 

N+1 M 

Q r = Qr 

Figure 3.3 The product Q 'Y 

Let Q be defined as: 

~ • 
N+l 

Q 

Figure 3.4 QI and Q2 

Defining Q as stated above indicates that the last N+I-M rows of Q (=Q2) form a 

basis for r (because Q2 'Y= 0). Substituting W = Q2 in equation (3.14) gives: 
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(3.15) 

The advantage of using the Householder transform now becomes clear, because the 

matrix product Q? AQ2 (or Q?BQ2) does not have to be evaluated by matrix 

multiplication, because it can be evaluated with two Householder transforms: 

Q2(Q2A)T (3.16) 

with Q2A the last N+1-M rows of QA, Q2(Q2A) T the last N+1-M rows of 

Q(Q2A)T, thus forming a N+1-M.N+1-M square matrix. That the theorem for 

optimizing is still valid, might seem surprising at first sight. However the theorem is 

valid for both matrices Hermitian, and the matrix in the denominator positive 

definite. Now (Q2AQ?)T = Q2A TQ? = Q2AQ? (A is Hermitian), making 

Q2AQ? Hermitian. The same holds for Q2BQ?, so if Q2BQ? is positive definite 

the theorem holds. This can easily be shown from the definition: 

Q2BQ? is positive definite if :!TQ2BQ?:! > 0 V:!. 

Let Q?x = y ~ yTBy > 0 (B is positive definite). This proofs that after deforming 

the N+1.N+1 problem into an N+1-M.N+1-M problem the theorem still holds. 

It will be clear that the maximum (minimum) constrained eigenvalues A. will be 
l,con s tr 

smaller (greater) than the maximum (minimum) unconstrained A .. 
1 

Notice that, in the constrained case, we get a N-M element vector !;, when we started 

with an N element vector ll.. The vector ~ can easily be calculated by using (3.13). 

3.5 Optimizing a product of Quadratic forms 

An interesting case will appear if more than one antenna parameter has to be 

optimized simultaneously. For a function which can be written as: 

aTAa aTCa 
h1(ll.)h2(ll.) = - T - - T -

~ B~ ~ D~ 

its optimization can be solved with (see appendix 1) : 

(3.17) 
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(3.18) 

The proof of (3.18) can be deduced from the derivative of a vector-valued function in 

an N + 1--dimensional space. 

if B = D equation (3.18) reduces to : 

[

1 aTCa 1 aTAa ] 
- - - A + - - - C a = ,\ Ba 

T T - -
2 ~ B~ 2 ~ B~ 

or E'il, = ,\ F'il,. (3.19) 

The optimization is now done iteratively. A suitable vector il, to start with is the 

eigenvector that corresponds to the largest eigenvalue of the two quadratic forms. 

After calculating the matrices E and F, a generalized eigenvalue problem of exactly 

the same form as that in (3.1) is obtained. The eigenvector corresponding to the 

optimum solution of Eil, = ,\ Fil, is used in the next iteration. The computation can be 

continued until a maximum is reached with the desired degree of accuracy. 

3.6 Maximum Sidelobes constraints 

If there are requirements with respect to the sidelobe--peak levels within a specific 

angle region, the optimization procedure has to be done iteratively. Because the 

positions (Urn) of the peak levels are not known in advance, some starting positions 

have to be chosen. Suitable starting points will be those lying midway between the 

two nulls of the pattern in the unconstrained case. The starting points for any 

iteration step that follows will be midway between the old points and the position of 

the new maxima. This procedure is repeated till all sidelobe-peak levels have reached 

the desired level with a prescribed accuracy. If the problem requires the sidelobe 

envelope to be kept below a certain level, it is better to start the procedure with only 

one constraint with respect to that sidelobe which is closest to boresight that exceeds 

the prescribed sidelobe envelope (the first sidelobe). If the level of the next sidelobe 
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away from boresight exceeds the prescribed level, the procedure has to be repeated 

with two constraints. This is done for all side10bes within the angle region of interest. 

In this way, it is possible to end up with the highest number of variables which can be 

used for optimization purposes. 
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4. V ariOllS kinds of source functions 

In this section various types of functions e (r) are treated and some examples of 
n 

optimization procedures (with or without constraints) are given. 

4.LAperture distributions consisting of Besselfunctions 

The first kind of aperture distribution which will be considered is the one using a 

series of Besselfunctions. Much of the work on optimization procedures involving 

Bessel functions has been reviewed by S.C.J. Worm [15]. For this case, f(r) can be 

written as: 

N 
f(r) = E a J (/I r) 

n=On 0 n 
O$r$l, 

= o elsewhere 

and g(u) can be calculated using Lommels Formula [16, p134], 

1 
1 I I 

j J (/I r)J (ur)rdr=u2_ 2{UJ (v l)J (ul)-v J (/I l)J (ul)) 
OnO v OnO nanD o n 

This gives for g(u): 

a N n I I 

g( u) = E 2_ 2 { uJ (v )J (u) - /I J (v )J (u) } 
n =0 u /In 0 nOn 0 n 0 

I 

(4.1) 

( 4.2) 

(4.3) 

where J denotes the derivative of J with respect to r. The right hand side of 
o 0 

I 

equation (4.3) can be simplified through the choice of J (v ) or J (v ) = 0 . Or more 
o nOn 

generally: 

I 

V J (/I ) + hJ (v ) = 0 
nOn 0 n 

( 4.4) 

I 

The case that h=O (or J (/I ) = 0 ~ J (/I ) = 0) reduces to the Taylor distribution. 
o n 1 n 

The case h=1D (or J (/I ) = 0) is a type of illumination which is investigated for 
o n 
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example by Kritsky [17]. 

Because the work of Taylor ([1],[18]) has had a profound influence on antenna 

synthesis. this distribution with J (v ) = O. will be considered first. 
1 n 

N 
4.1.1 Aperture illUmination E a J (v r) with J (v ) = 0 

n=On 0 n 1 n 

In this case. the aperture illumination consists of a series: 

N 
f(r) = E a J (v r) 

n=On 0 n 
= o elsewhere 

with v = O. v = 3.8317 •.......... 
o 1 

Some functions J (v r) are shown in figure 4.1. 
o n 

... 

... 

... 
j 0.1 

i • 
: 
~ .-o.t , 
~ .. 
~ .. 
~ .. 

....... ;,g .... , 

-oIDCI.allW1 

-.lOa.''''' 
----.,IOUO.l~ 
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Figure 4.1 J (v r) with J (v ) = o. 
o n 1 n 

The far field is (for the case J (v ) = o. see (4.3)). 
1 n 

N an 
g(u) = uJ (u) E 2 2 J (v ) 

1 n=O u -v nOn 
ifUf V 

n 

= ifu=v 
n 

Fitting into the vector and/or matrix form gives: 

T II = (1. J (v r) •.......... J (vNr) ) 
o 1 0 

(4.5) 

(4.6) 

(4.7) 



Using Lommels equation [16, pI34j gives: 

A .. 
lJ 

X .. 
lJ 

W .. 
lJ 

=0 

= !J 2(/J) 
2 0 i 

ifil'j 

if i = j, 

23 

(4.8) 

( 4.9) 

(4.10) 

(4.11) 

The elements of the matrices X and W given by equation (4.10) and (4.11) have to be 
calculated numerically. 

Some examples 

The unconstrained optimization of ~ can be done easily by making use of (3.9) which 
a 

gives ~ = 1 (4.12) 
a,max 
T 

J! =(1,0, ...... ,0) (4.13) 

g(u)= J 1 (u) (4.14) 
u 

Figure 4.2 gives the corresponding far field pattern and aperture distribution. 

The unconstrained optimization of 112 and ~ is given in table Al and A2, respectively 
b 

(sIl= sidelobelevel, u3dB = half of the 3 dB beamwidth). Tables which are referred to 

as A.xx are given in appendix 2. In this report the value c for the upper boundary of 

the integral of (2.5) has been taken as 3.5, unless otherwise specified. This value 

assures a narrow beam with a low first sidelobe [4], because it assures that even with 

an uniform illuminated aperture no sidelobe is in this region. Figure 4.3 shows some of 
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the far field patterns for minimum 1J2 and the corresponding aperture distributions. 

The unconstrained optimization of 1/ gives the opportunity to compare the results 
b 

with those in literature. Slepian [19] showed that the maximum of (2.10) is attained 
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Figure 4.2 g(u) and fer) for maximum ~ ; using the series E a J (II r) with J (II ) = 0 

a n=On 0 n 1 n 
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Figure 4.3 g(u) and fer) for minimum 1J2; using the series E a J (II r) with J (II ) = 0 
n=On 0 n I n 
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the illumination is a radial function, which is a solution of the Fredholm integral 

equation with largest eigenvalue a(p): 

1 

a(p)So~p,r) = f So~p,s) Jo(prs)sds (4.15) 
. 0 

The functions S o~p,r) are called hyperspheroidal functions. Borgiotti [4] tried to 

expand these functions in a series of Besselfunctions. In table 1 the coefficients a are 
n 

shown for different values of c, calculated with the method presented in this report. 

Table 1 an for unconstrained optimization of 1/b 

c al a2 a3 a4 as a6 a7 

t 1 0.021157 --{).008402 0.004790 

1 1 0.084790 --{).032862 0.018650 --{).012402 

2 1 0.338182 --{).118224 0.065765 --{).043411 0.031423 

3 1 0.733818 --{).211754 0.114627 --{).074953 0.054015 

3t 1 0.961843 --{).241602 0.129335 --{).084266 0.060626 --{).046358 

Comparing these coefficients with those of Borgiotti shows that there is a difference if 

c is small « 1.5). When c is large, only the last few coefficients differ slightly. Fig 4.4 

shows the aperture distribution were the difference is largest (c = 1) and the aperture 

distribution with a small difference (c = 3.5). As can be seen, the difference is mainly 

localized at the edge. This agrees with the statement of Borgiotti, that the difference 

between his distribution and the hyperspheroidal function is several percent and is 

mainly localized at the edge of the aperture ([4],p 655). 

1/ 1/ 1/ 
The results of the unconstrained optimization of 1/ x 1/ , --.l! and J.....lL are given in 

a b (}'2 (}'2 

table A3,A4 and A5. Figures 4.5, 4.6 and 4.7 show some typical aperture distributions 

and far field patterns. 
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Table 2 shows the results of the optimum q with a number of prescribed side lobes. 
a 

This can be compared with the results of Taylor (M is the number of equal sidelobe 

levels, N = 6). 

Table 2 constrained optimization of qa 

M qa Taylor Kriskiy 

2 0.9487 0.93 0.945 

5 0.8897 0.855 0.890 

The computed results are somewhat higher than Taylor's but are in close agreement 

with those of Kritskiy [17], patterns and aperture distributions similar to one's of 

Kritskiy are given in figure 4.8. 

As an example of constrained optimization a flat topped beam (optimum IJ2) is shown 

in figure 4.9 and a beam with a specified 3 dB beamwidth (optimum q ) is given in 
b 

figure 4.10. 

Figure 4.9 shows that if the far field pattern resembles a step the aperture 

illumination is similar to J b)/r. 
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N 
4.1.2 Aperture illumination 1; a J (v r) with Jlv ) = 0 

n=lD 0 n b n 

TWs type of series has been used for synthesis purposes before ([17],[20],[21]). The 

aperture illumination consists of a series: 

N 
f(r) = 1; a J (v r) 

n=ln 0 n 
= o elsewhere 

with v = 2.4048, v = 5.5201, ......... (note that n now starts with 1). 
1 2 

Some functions J (v r) are shown in figure 4.10. 
o n 

"'M' 
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Figure 4.11 J (v r) with Jlv ) = o. 
o n b n 

The far field is (for the case J (v ) = 0, see (4.3)). 
o n 

N va 
n n 

g(u) = J (u) 1; V 2_U2 J1(vn) 
o n=l n 

= 

TWs leads to : 

T 
~ = (J (v r), .......... J (vNr) ) 

o 1 0 

VIJ1(VI) vNJI(vN) 
J (u)( 2 2 , ....... ,- 2 2-) . o v -u v-u 

1 N 

if u f v 
n 

ifu=v 
n 

(4.16) 

(4.17) 

( 4.18) 

(4.19) 
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Using Lommels equation, [16 p134] gives: 

A .. 
IJ 

X .. 
IJ 

W .. 
IJ 

=0 

= 1 J2(1I ) 
2 1 i 

=11 II J (II )J (II ) 
ijlilj 

if i f j 

if i = j 

c U J2(U) 

f (II . 2 -u 2) ( II 2 

0 1 J 

rD/ A u 3J2(U) 
=1I,l1,J (II,)J (II,) f 0 

1Jl]IJ ( II . 2_u 2)( II 2 

0 1 J 

(4.20) 

-u 2)du (4.21) 

du (4.22) -u 2) 

The elements of the matrices X and W as given in equation (4.21) and (4.22) have to 

be calculated numerically. 

Some examples 

The unconstrained optimum for ~ is easy to derive, when making use of equation 
a 

(3.9). This leads to : 

_ (-2 -2 -2) ~ - 4 II + II + ...... + liN 
a,m ax 1 2 

T 1 1 
a = (II J (II ), ............ '''''II-

N
TJ --r( -II-

N
') ) 

1 1 1 1 

g(u)= 

( 4.25) 

=1 
2 

J (II ) 
1 n 
II 

n 

N 1 
J(u)E (II L U 2 ) 

o n=l n 

if u = II 

( 4.23) 

( 4.24) 

if Ufll 
n 

n 

Table A6 shows the results of the unconstrained optimization of aperture efficiency 

for some values of N. Some typical aperture distributions and corresponding far field 

patterns are shown in figure 4.12 (the illumination tends to unity if N becomes large) 
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Figure 4.12 g(u) and f(r) for maximum ~ ; using the series E a J (II r) with Jill) = 0 

a n =1 nOn b n 

Table A6 shows the results of the unconstrained optimization of 112 (figure 4.12 gives 

an example of g(u) and f(r)). As can be seen the minimum value is close to 5.78. This 

can be explained by replacing the upper limit of the integral in equation (2.8) by (I) ( 

[22]). In this case the matrix W becomes diagonal and equation (3.9) can be used 

W 
leading to ,\ . = r = 112 = 2.40482. However, this is only allowed if the aperture 

mln 11 1 

distribution smoothly approaches zero at the edge. In this report this approximation 

'I'D 
is not used and the upper limit is kept on T"". 

~ ~ 
Some of the results of the unconstrained optimization of ~ , ~ x ~ , and ..JL.!L. are 

b a b 112 

given in tables A7, AS, and A9, respectively. Plots of g(u) and f(r) are shown in 

figures 4.13 - 4.15. 

As an example of constrained optimization a flat topped beam is shown in fig 4.16 and 

a specified 3 dB beamwidth is shown in fig 4.17. Figure 4.18 shows a pattern with 4 

sidelobes of -30 dB. 
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4.2 Aperture illumination consisting of Zernike polynomials 

Other aperture illuminations which can be used for optimization purposes are the 

circle polynomials of Zernike ([23]'[24]) RO (r) (this method is very similar to the 
2n 

method used by Galindo [30]). Such functions reduce to Legendre polynomials: 

(4.26) 

Some Zernike polynomials are shown in figure 4.19. 

Irnllr.. 

~ .. 
~ .. 

Figure 4.21 Some Zernike polynomials. 

g(u) can be calculated by making use of the relation [25] : 

1 ~(n-m)J (u) 
JRm(r)J (ur)rdr = (-1) ....!.l+.L. 

n m U ( 4.27) 
o 

This leads to : 

N J (u) 
g(u) = E a _2_;-"_1 , 

n=On u (4.28) 
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so~T = (R~(r), R~(r),,, ....... ,R~N(r) ) (4.29) 

I(e) 
_ J 1 ( u) J 3 ( U ) ':'2N+~~) 
- ( u ' u , .......... , u ) . (4.30) 

The elements of the matrix A can be calculated using [15] : 

1 1 
fR~i(r)R~j(r) rdr = 4i+2 if i = j 

0 (4.31) 
= 0 if i t j. 

Resulting in : 

1 
A .. = ifi=j 

IJ 4i+2 ( 4.32) 
= 0 ifi tj 

The elements of the matrix X can be calculated with the following expression 

[16,p135] : 

c 

f J (u)J (u)du - -c 
2i+l 2j+l u-

o 
+ if i t j 

+ J 2 i \ ~ ) J 2 j \ ~ ) (4.33) 

--2i+2 j+2-

and with a modification of Hansens formula [16 p152] : 

c 1 

f J2.(U) du = . E En J 2. Ic) ifi = j 
o 21+1 u 2(21+1) n=O 21+\+6 

(4.34) 

where En is the Neumanns factor which is defined as : 

En = 1 for n = 0 
= 2 elsewhere. 

Calculating the integral as a series of Besselfunctions as in (4.34) is a practical way 

because most numerical procedures use backward recursive relations, such as 
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J (u) = 2 n J (u) - J (u) to come to J .( u). The reason for this is that an forward way 
II-I U n II.1 21+1 

(starting with J and J ) gives in some cases unstable results. By simply using all the 
o 1 

results of J .(c) , the integral (4.34) can easily be computed. 
21+1+n 

c 

W .. 
IJ = f u J .(u)J .(u) du 

21+12J+l 
o 

which has to be calculated numerically. 

Some examples 

The unconstrained optimum of q (using 2.8) leads to : 
a 

q =1 
a,max 

T a = (1,0,0, ........ 0) 

J d u) 
g(u) = u 

(4.35) 

(4.36) 

. (4.37) 

(4.38) 

The results of the unconstrained optimization of u2, q , q • !} ,!}b! u2 and 7] 7] ! u2 are 
b a b a b 

given in tables A12, A13, A14, A15 and A16 respectively. Plots of g(u) and f(r) are 

shown in figures 4.22, 4.23, 4.24, 4.25 and 4.26. The results of the optimization of !} 
b 

can be compared with literature [5]. 

As can be seen in fig 4.24 the results are identical. 
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4.3 Aperture illumination consisting of power-law functions 

Some engineers use an aperture distribution which consists of a series of powers of 

(1-r2) (see e.g. [8]) : 

N 
f(r) = E a (1_r 2)n 

n=On 

, .. 
, .. 
, .. 

~ , .. 
j , 

.~ 
~ -0 •• , .... 

.... 

.... 
• , ,!--:,,.,. ,-,"=.,"-,:"': .• "--=-, .-:-. --7, .':-, ----:c,':" .• --=,:':. ,--:,"= .• "-,:"': .• :---' 

Figure 4.28 Some powers of (l-r2)n. 

(4.39) 

The reason for this is that in some practical cases the functions f(r) are smooth 

monotonically decreasing functions which can be approximated by a few terms of the 

series stated in (4.39)[26]. 

g(u) can be calculated with the following relation: 

Resul ting in : 

N J n +1 
g(u) = E a 2n n! lin.! 

n=On 

(4.40) 

(4.41 ) 

(4.42) 
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T Jt{u) In+l 
I (~) = ( u , .............. ,2n n! un.1 ) 

The elements of the matrix A are easy to calculate: 

1 

\=2(i+j+l) 

The elements of the matrix X can be calculated with: 

(4.43) 

(4.44) 

C c-i-j 

J u-i-j-1JJu)Jj,~U)du= - 2 (i +j+l ) {Ji(c)Jj(c) + Ji)c)Jj)c)} (4.45) 
o 

Resulting in : 

c - i - i 
X .. =(2 i 'ii!j!)-1 2 (·+·+1){J.(c)J.(c)+J. (c)J. (c)) 

1J 1 J 1 J 1+1 J+l 

Which have to be calculated numerically. 

The elements of the matrix Ware: 

c 

W .. =(2 i +j i!j!) J u-i-j+IJ. (u)J. (u)du 
~ 1.\ J+\ o 

( 4.46) 

( 4.47) 

which have to be calculated numerically, or solved analytically using [16j,p.136. 

Some examples 

Optimization of 1/ gives the same results as in equation (4.36 -4.3B).The results of 
a 

the optimization of 1/2 and 1/ are given in table A17 and AlB (plots of g(u) and f(r) in 
b 

figures 4.29 and 4.30). 

The results for optimization of 1/ • 1/ , 1/ /1/2 and 1/ 1/ /1/2 are shown in table A19, A20 
a b b a b 

and A2l (fig.4.3l, fig.4.32 and 4.33 show plots of g(u) and f(r)). 
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5 Comparing different kinds of source functions 

Up to now, different kinds of source functions have been considered. It is 

interesting to see what kind of function is best suited for particular 

optimization purposes. If the tables Al - A21 are scrutinized, it becomes 

clear that for different optimization purposes, different kinds of source 

functions should be used. 

All the results presented in the tables are summarized in figures 5.1 to 

5.6. These figures show the convergence rate of the procedure when the 

antenna parameters are optimized, using different source functions. The 

value of the parameters are given against N, where N is the number of 

elementary functions in the series. From these figures it is easy to deduce 

the most suitable source function for the optimization of a particular 

antenna parameter or a product of different antenna parameters. 

An optimal 'la is the prime objective with ground-based antennas being 

part of a communication system. An optimal 'lb applies to satellite based 

antenna systems because it assures a high amount of power in a 

prescribed region. The optimization of the product 'la%/ (J2 is interesting 

for ground based radiometry purposes. As stated before a maximum 'lb 

will ensure a high amount of power in a prescri bed region and a minimal 

(J2 will assure a small spread around the axis u=O, thus making the 

sidelobes low. Including the maximization of 'la will prevent the antenna 

from becoming too large, thereby reducing the costs of the antenna. 

Interesting to note is that the optimization of 'la'lb/ (J2 resulted in a 

similar aperture illumination function for all source functions used. This 

led to the expectation that there was a particular optimum aperture 

function. Optimization with (1-r2)n showed that (1-r2) was the leading 

term (al was at least 100 times larger than the other an's (n=O,,,N,l'l)). 

Optimization with Zernike polynomials showed that the first two 

coefficients ao and al were nearly equal and that the other coefficients 

were at least 500 times smaller. This also led to the conclusion that 

(1-r2) is the optimum function because (see 4.26): 



R3(2rLl) = 1 

Rg(2r2-1) = 2r2-1 
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} --o.5R8(2r2-1)--o.5R~(2rLl) = 1-r2 

If the upper boundary of the integral in (2.6) is set to CD, (1-r2) will be 

the optimal function. This means that for large antennas (large D/ >.), 1-r2 

optimizes TJaTJb/ u2. 

The constrained optimization of the antenna parameters is given in figures 

5.6 to 5.14. In these :ligures the antenna parameter under consideration is 

optimized, when the sidelobe--level is lower than -25 or -30 dB, 

respectively. As can be seen from these :ligures, the Zernike circle 

polynomials give good results for any optimization which includes TJb. As· 

shown in literature (Slepian [19]) the function which optimizes the beam 

efficiency is the hyperspheroidal function (because it is the eigenfunction of 

the Fredholm integral). That Zernike polynomials can approximate this 

function well, is not surprising because the Zernike polynomials are a 

limiting case of the hyperspheroidal functions (p ... 0 see (4.15)) . 
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6 Asymmetric patterns 

In this section asymmetric patterns are considered. For some purposes asymmetric 

aperture distributions are preferred to symmetric distributions [27,28]. A suitable 

aperture distribution is: 

N 
f(r,¢) = E a J (/I r) cos(2m¢') 

n=ln,m m n,m 
(6.1) 

The technique handled now is an extension of the symmetrical case. The theory is 

similar to that case, but the equations are given for the sake of completeness. 

Numerical results are not given, but easy to calculate. 

g(u) can be calculated with formula (2.1) , substituting (6.1) and using: 

eiur cos(¢-m¢') = E (jtJ (ur)eip(¢-m¢') 
p=-m P 

(6.2) 

If only even multiples of m are considered ( this means that only distributions are 

considered with two planes of symmetry) this results in : 

N 
g(u,¢) = E a IJ! cos(2m¢) 

n=ln,m n,m 
(6.3) 

with 

1 

IJ! = (_l)m £ jJ (/I r)J (ur)rdr 
n , m m 2.}. n,m 21ft 

(6.4) 

o 
and Em the Neumann factor. 

This integral can be calculated with 

1 

j J (/I r) J (ur) rdr = 
2m n,m 2m 

(6.5) 
o 

This can be simplified by choosing J (/I ) = 0 or J (/I ) 
2m n,m 2m+l n,m 

o (analogous to 
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equation 4.4). When J (v ) = 0 the distribution is zero at the edge and 6.1 
2m n,m 

becomes a Fourier-Bessel series. In the case of J (v ) = 0 the derivative is zero 
2m+l n,m 

at the edge and 6.1 becomes a Dini-series. 

Fitting into the vector and or matrix form gives: 

T ~ = (J (v r), J (v r), ........ J (VN r)) 
2m h2m 2m 2,2m 2m ,2m 

(6.6) 

T 
il, = (a ,a , ....... aN ) 

h2m 2,2m ,2m 
(6.7) 

(6.8) 

The matrices A, X and W can be calculated analogous to the symmetrical case. 
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7 Blocked aperture distributions 

As will be shown next, the method described in section 2, is also able to deal with a 

blocked aperture distribution ([29J,[17]).The aperture distribution now becomes: 

N 
fer) =E a [J (v r) + b Y (v r)] 

n=l nOn nOn 
(7.1) 

This is a very elegant series, because it offers the chance to describe the behaviour of 

the distribution at the edge (r = 1) and at an arbitrary point r = e (which can be the 

edge of a sub reflector). Four possibilities arise, the aperture distribution: 

1) is zero at r = e and at r = 1 

2) is zero at r = e and has a zero derivative at r = 1 

3) has a zero derivative at r = e and is zero at r = 1 

4) has a zero derivative at r = e and at r = 1 

If possibility 1 is considered the distribution becomes: 

N J (v 0 
fer) = E a [J (v r) - 0 n Y (v r)] 

n=1 nOn Y (v ~) 0 n 
o n 

(7.2) 

with Y the Besselfunction of the second kind and zeroth order and v a solution of : 
o n 

J (v n 
J (v ) - 0 n Y (v ) = 0 . 
On Y (v non 

o II 

, .. 
, .. 
, .. 

~ 0.2 

i , 
; 
~ ..... 1 , 
~ .. 
~ .. 
~ .. 

.. 
\ 

---" .......... ----
",:--::,7., -::,~ .• -"'--=.7 .• ---=,7 .• --:,7 .• ---=,7 .• --:,7., ---=,7 .• ---=,'=" .• --', 

J (v n 
Figure 7.1 Some functions J (v ) - 0 II Y (v). 

On VivO On 
o n 

(7.3) 
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The far field can be calculated using (equation 4.2). 

N {J (u) a + J (uO fl } 
g( u) = }; a v __ o_--., __ n_-...,_o ____ n_ 

n=l n n U 2 _ V 2 if u oj v 
n 

n 

= ~ {Jl(UJ a. + J1(u.O fl.} + 2 1 1 1 1 

N {J (v.)a 
+};av 0 1 n 

+ J (v.Ofl } 
o 1 n if U = v 

n=l n n U 2 IJ 2 

nfi i n 

with a = - J (v ) + 
n 1 n 

J (v n 
On y(v) 

y (v 0 1 n 
o n 

J (v n 
fl = ~ {J (v 0 - 0 n y (v 0 } 

n 1 n y (v 0 1 n 
o n 

Fitting into the desired form gives: 

J (v n 
o 1 y (v r) •......• J (vNr) -

y {I/ n 0 1 0 
o 1 

{J (u) a + J (u ~ ) fl} {J (u) a N+ J (u ~ ) fl N} 
( 010 1 0 0 ) 

11 , •••• 'vN ___ ...,-_..-----
1 U2_V2 U2_112 

1 N 

The elements of the matrix A are: 

if i oj j 

if i = j 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
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The elements of the matrix X and Ware: 

X .. = 
IJ 

c v v u f i j 

O (u'-v.')(u'-v. 
1 J 

W .. = 
1J 

1:DO 
~ v v U 3 

J' j 
( u ,-v 2) ( U '-v. o i J 

(7.8) 

{a.a) 2(U) + (a./1.+ a/1.)J (u)J (uO + /1./1) 2(uO}du 
2)1 J O 1J JI0 0 1JO 

(7.9) 

{a.a) 2(U) + (a./1.+ a./1.)J (u)J (uO + /1./1) 2(uO}du 
2) 1 J 0 1 J J 1 0 0 1 J 0 

which have to be calculated numerically. 

Calculations, with this kind of aperture distribution, are done for two values of ~ (0.1 

and 0.05). The value of ( = 0.1 can be considered as the blocking of a sub reflector in 

a large antenna system or the blocking of a feed in a small antenna system. The value 

of ~ = 0.05 can be the blocking of a feed in a intermediate antenna system. The 

numerical results are given in tables A18-A22 for ~ = 0.1 and in table A23-A27 for ~ 

= 0.05. Corresponding plots for ~ = 0.1 are shown in figures 7.2 - 7.6. 
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Next possibility 3 is considered, the distribution then becomes: 

N J (1/ n 
f(r) =1; a [J (1/ r) - 1 n Y (1/ r)] ~ $ r $ 1 

n=1 nOn Y (1/ {) 0 n 
1 n 

(7.10) 

with Y (Y ) the Besselfunction of the second kind and zeroth (first) order and 1/ a 
o 1 n 

solution of : 

J (1/ n 
J (1/ ) - 1 n Y (1/ ) = 0 
On Y (1/ {) 0 n 

1 n 

, .. 
, .. 
,., 

-", 
--1>.15 ;-

-,. l 
_j L-. __ ~ __ •• 

o 0.1 O.O! 

figure 7.7 Some functions J (1/ r) -
o n 

(7.11) 

J (1/ n 
1 n Y(I/r). 

Y (1/ {) 0 n 
1 n 
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The far field can be calculated using (equation 4.2). 

N { v J (u) a + uJ Uu) 1 
g(u) = lj a n ° n I 

n=1 n U 2 - V 2 

n 

- -~{Jl(v.l a. + Uo(v.O 1J + 2 1 1 1 1 

N { v JO(v
i

) a + uJ1(V
i
e) 

+ lj a n n 

n=1 n 

noli 

with a = - J (v ) + 
n I n 

U 2 
i 

J (v n 
I n y (v ) 

y (v n In 
1 n 

V 2 

n 

1 = 
n 

J (v n 
e {-J (v 0 + I n y (v 0 } 

On y (v non 
I n 

Fitting this into the desired form gives: 

~T = 

} 
n 

1 } 
n 

J (v e) J (vNe) 
(J (v r) - I I Y (v r), .. ,J (vNr) - I Y (vNr) ) 

01 Y(vej0l ° Y(vn0 
I I I N 

The elements of the matrix A are: 

A .. = 0 
lJ ifd j 

The elements of the matrix X and Ware: 

ifuf v (7.12) 
n 

ifu = v 

(7.13) 

(7.14) 

(7.16) 



X .. = 
IJ 
C 
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f u {a.ayy.J 2(U) + (aY.1.+ aY.1.)uJ (U)J (UO 
0 (U 2-V. 2 )(U 2_V. 2 ) IJIJO IIJ JJI 01 

1 J 

+ U21.1.J12(UO} du (7.17) 
1 J 

W .. = 
IJ 

TD/). 
3 

Jr u { a.ayy.J 2(U) + (aY.1.+ aY.1.)uJ (U)J (uO 
O ( U 2 -v . 2 ) ( U 2 -V . 2) 1 J 1 J 0 1 1 J J J 1 0 1 

1 J 

+ U21.1.J/(UO} du (7.18) 
which have to be calculated nu~~rically. 

Again calculations are performed with ~ = 0.1 and ~ = 0.05. Results are shown in 

tables A28-A32 (~ = 0.1) and A33-A37 (~ = 0.05). Plots are shown in figures 7.8 _ 
7.12. 
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The results of the tables are summarized in figures 7.13 to 7.17. 

The following notation is used in the plots: 

Xi = 0.1: blocked distribution, zero at ~ = 0.1 

Xi = 0.05: blocked distribution, zero at ~ = 0.05 

Xi = 0.1 z.d.: blocked distribution, zero derivative at ~ = 0.1 

Xi = 0.05 z.d.: blocked distribution, zero derivative at ~ = 0.05 

uncon"trained optimizot,on of "toA (blocked) 

N--

", ... Xi~O.l 

+ "'- -Xi.~O.05 

N--

Figure 7.13 The value of ~a 

against N, where N is the 

number of elementary 

functions in the series. 

Figure 7.14 The value of 1T2 

against N, where N is the 

number of elementary 

functions in the series. 

....... j 

I 
i 

unc:or'lltrcined optimizCltion 01 etoB {blocked) 
0,98,--___ -_-___ --"--.;-__ ----, 

uncon.troinOd optimization 01 ataA_.toB (blocked) 

0.96 

T 0.94 

0.88 
• _ Xi_C. 1 I.d. 

0.86 " .. x;_o.o~ I,d. 

N-+ 

Figure 7.15 The value of ~b 

against N, where N is the 

number of elementary 

functions in the series. 
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Figure 7.16 The value of ~af/b 

against N, where N is the 

number of elementary 
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Figure 7.17 The value of T/a%/ u2 

against N, where N is the 

number of elementary 

functions in the series. 

67 

Dealing with the values for the blocked case, has to be done with some restraint, if 

these values are to be compared with those for the unblocked case. For the unblocked 

case, the lower boundary of the integral (2.5) for the power radiated by the aperture 

is 0, while for the blocked case it is set on e. As the integral of the power radiated by 

the aperture (2.5) appears in the denominator of the antenna parameters (see (2.7), 

(2.8) and (2.9)), the optimal values for the blocked aperture have to be taken lower if 

they are to be compared with unblocked results. This makes it clear that the results 

for the blocked aperture are always worse than those for the unblocked case. 

Especially, the value for T/a%/ u2 will differ. 
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8. Conclusions 

The method presented in this report makes it possible to optimize two or more 

antenna parameters simultaneously, with or without constraints. The results obtained 

with this method agree well with those found in literature. Although the examples 

given in this report represent only a small set of different pattern requirements, they 

clearly show the variety of problems that can be handled. Because different source 

functions were used to optimize na, %, (f2, na%, and nanb/ (f2, it is possible to deduce 

the most suitable source function for optimization of a particular antenna parameter. 

An optimal na is the prime objective for ground-based antennas in satellite 

communication systems. An optimal % applies to satellite-based antenna systems, 

because it assures a high amount of power in a prescribed region. Optimization of the 

product na%/ (f2 will be interesting for ground-based radiometry purposes. As stated 

a maximum nb will assure a high amount of power in a prescribed region and a 

minimal (f2 will assure a small spread around the axis u=O, thus making the sidelobes 

low. Including the maximization of na will prevent the antenna from becoming too 

large, thereby reducing the costs of the antenna. 

In general, it is true that if an antenna parameter has to be optimized which includes 

nb, the Zernike circle polynomials guarantee a good convergence rate. 

Comparing the values for the blocked case with those for the unblocked case shows 

that the results for the blocked aperture are always worse than those for the 

unblocked case. Especially, the value for nanb/ (f2 will differ. So, if a high value for an 

antenna parameter is needed it will be better to take an unblocked system. 
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APPENDIX 1 Optimization of multiple antenna parameters 

The proof of this theorem can be deduced from the formula for the derivative of a 

vector-valued function in an N+l-dimensional space. 

f(M h) = f(~) + Jh + t{h) 

where J is the Jacobian matrix. 

_{ 11 TAIl + 2h T A1I 
f(Mh) 

- 11 TB~ 2hTB~ + 

2hTA~ 

~TA~ [: 
+ 

~TA~ 

~TBl! 
+ 

~TB~ 

~TB~ 

= 

neglecting (J (h 2) we get: 

again neglecting (J (h 2) 

l! TA;u. TCl! 

~ TB;u. TD~ 

+ 

+ 

+ It T Ah 

+ hTBh 

hTAh 

l!TA~ ] ~TBh 

~TB~ 

}{1I ;CII 
+ 2h

T
C1I + hTCh } 

2hTD~ hTDh ~ D~ + + 

2hTC~ hTCh 

~TC~ 

[: 

+ 
~TCl! + ~TC~ 

~TD~ 
+ 

~TD~ 
+ 

~TDh 

~TD~ ~TD~ 

] 
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In an extreme is : 

J.h = f(g,+.h) - f(g,) = 0 

1 ~TC~ B~TA~ 1 
~ 

~TB~ ~TD~ 
(Ag,-

~TB~ 
) + 

~TD~ 

with ~ 

resulting in a generalized eigenvalue problem. 

~TA~ 

~TB~ 
(Cg,-

D~TC~ 

~TD~ 
) = 

1 
+ T D]g, 

~ D~ 

0 
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APPENDIX 2 Numerical results (Tables) 

Table Al unconstrained optimization of (J2 (Bessel with J 1(lIn )=O) 

N 1/a 1/b (J2 sill s1l2 s1l3 u3dB 

0 1.0000 0.8366 200.317 17.59 23.80 27.94 1.61 

1 0.5182 0.8194 7.208 36.59 49.38 60.22 2.41 

2 0.5936 0.8666 6.584 26.28 43.82 53.88 2.24 

3 0.6258 0.8828 6.323 27.08 34.70 48.94 2.19 

4 0.6436 0.8909 6.179 27.29 35.79 40.54 2.13 

9 0.6759 0.9041 5.914 27.48 36.37 43.48 2.11 

14 0.6905 0.9094 5.960 27.50 36.42 42.57 2.08 

Table A2 unconstrained optimization of 1/b (Bessel with J 1(lIn)=O) 

N 1/a 1/b (J2 sill s1l2 s1l3 u3dB 

0 1.0000 0.8366 200.317 17.59 23.80 27.94 1.61 

1 0.8706 0.9395 67.773 29.39 29.57 32.87 1.81 

2 0.8658 0.9438 52.827 25.91 34.21 34.85 1.86 

3 0.8648 0.9446 46.948 25.64 31.95 37.72 1.86 

4 0.8646 0.9450 43.792 25.57 31.66 36.03 1.86 

9 0.8643 0.9452 38.171 25.52 31.48 35.57 1.86 

14 0.8643 0.9452 36.484 25.51 31.48 35.55 1.86 
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Table A3 unconstrained optimization of flaflb (Bessel with J I(Vn)=O) 

N 1/a1/b 1/a % 1T2 

0 0.8366 1.0000 0.8366 200.31 

1 0.8827 0.9719 0.9083 134.52 

2 0.8846 0.9708 0.9112 123.95 

3 0.8850 0.9706 0.9118 119.43 

4 0.8851 0.9705 0.9120 116.89 

9 0.8852 0.9705 0.9121 112.16 

14 0.8852 0.9705 0.9122 110.69 

Table A4 unconstrained optimization of flb/1T2 (Bessel with J1(lIn)=0) 

N 1/b/1T2 1/a % 1T2 

2 0.1139 0.5243 0.8228 7.2228 

3 0.1320 0.6071 0.8725 6.6052 

4 0.1401 0.6412 0.8890 6.3436 

5 0.1447 0.6596 0.8970 6.1984 

6 0.1476 0.6712 0.9017 6.1060 

8 0.1512 0.6847 0.9069 5.9953 

10 0.1533 0.6924 0.9097 5.9314 
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Table A5 unconstrained optimization of ~a~b/ (F2 (Bessel with J 1(lIn )=O) 

N ~a~b/ (F2 ~a ~b (F2 

0 0.0042 1.0000 0.8366 200.317 

1 0.0607 0.5413 0.8322 7.421 

2 0.0825 0.6395 0.8839 6.855 

3 0.0927 0.6801 0.9011 6.608 

4 0.0987 0.7018 0.9093 6.466 

9 0.1099 0.7392 0.9216 6.194 

14 0.1153 0.7547 0.9259 6.066 

Table A6 unconstrained optimization of ~a (Bessel with JO(lIn )=O) 

N ~a ~b (F2 sill s1l2 s1l3 

1 0.6917 0.9098 5.771 27.49 36.41 42.56 

2 0.8229 0.8523 9.682 16.06 30.47 37.72 

3 0.8763 0.8428 13.610 17.03 21.53 32.84 

4 0.9051 0.8396 17.534 17.28 22.88 25.13 

5 0.9230 0.8383 21.448 17.38 23.26 26.70 

10 0.9605 0.8367 40.799 17.51 23.68 27.69 

15 0.9734 0.8365 59.752 17.55 23.75 27.85 
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Table A7 unconstrained optimization of ,,2 (Bessel with J O(lIn)=O) 

N ~a ~b ,,2 slll sll2 sll3 u3dB 

1 0.6917 0.9098 5.7714 27.49 36.41 42.56 2.083 

2 0.6923 0.9101 5.7714 27.43 36.38 42.28 2.083 

3 0.6926 0.9102 5.7713 27.46 36.31 42.50 2.083 

5 0.6928 0.9102 5.7713 27.48 36.37 42.48 2.083 

10 0.6930 0.9103 5.7712 27.49 36.43 42.52 2.083 

15 0.9103 5.7711 27.49 36.43 42.53 2.083 

Table A8 unconstrained optimization of ~b (Bessel with JO(lIn)=O) 

N ~a % ,,2 slll sll2 sll3 u3dB 

1 0.6917 0.9098 5.771 27.49 36.41 42.56 2.08 

2 0.7551 0.9219 6.116 22.69 34.09 40.56 1.97 

3 0.7858 0.9283 6.621 24.01 28.36 37.82 1.95 

4 0.8032 0.9320 7.169 24.47 29.87 32.12 1.92 

5 0.8143 0.9344 7.736 24.70 30.36 33.76 1.92 

10 0.8381 0.9395 10.623 25.13 31.04 34.78 1.89 

15 0.8466 0.9413 13.492 25.25 31.21 35.23 1.87 
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Table A9 unconstrained optimization of ~a~b (Bessel with J o( vn)=O) 

N ~a% ~a ~b q2 

1 0.6293 0.6916 0.9098 5.771 

2 0.7284 0.8071 0.9025 7.532 

3 0.7734 0.8557 0.9038 9.528 

4 0.7984 0.8821 0.9051 9.051 

5 0.8144 0.8987 0.9062 13.637 

10 0.8483 0.9335 0.9088 23.918 

15 0.8603 0.9455 0.9098 34.026 

Table AlO unconstrained optimization of ~b/ q2 (Bessel with J o(vn)=O) 

N ~b/q2 ~a ~b q2 

2 0.1580 0.7047 0.9138 5.782 

3 0.1581 0.7073 0.9148 5.784 

4 0.1581 0.7081 0.9151 5.785 

5 0.1582 0.7085 0.9152 5.785 

6 0.1582 0.7087 0.9153 5.786 

8 0.1582 0.7089 0.9153 5.786 

10 0.1582 0.7090 0.9154 5.786 
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Table All unconstrained optimization of ~a~b/112 (Bessel with JO(vn)=O) 

N qa%/112 qa qb 112 

1 0.1090 0.6917 0.9099 5.7714 

2 0.1144 0.7406 0.9211 5.9614 

3 0.1155 0.7509 0.9245 6.0089 

4 0.1159 0.7541 0.9256 6.0254 

5 0.1160 0.7555 0.9261 6.0313 

10 0.1162 0.7571 0.9267 6.0381 

15 0.1162 0.7573 0.9268 6.0381 

Table A12 unconstrained optimization of 112 (Zernike) 

N ~a ~b 112 sill sll2 sll3 

1 0.7537 0.9261 5.9606 24.62 33.57 39.73 

2 0.6968 0.9116 5.7423 27.32 36.53 42.79 

3 0.6966 0.9116 5.7421 27.43 36.54 42.75 

4 0.6966 0.9116 5.7417 27.50 36.53 42.59 

5 0.6966 0.9116 5.7412 27.49 36.48 42.34 

10 0.6972 0.9118 5.7371 27.49 36.42 42.56 
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Table A13 unconstrained optimization of 1/b (Zernike) 

N 1/a 1/b 1T2 sill s1l2 s1l3 

1 0.8671 0.9432 22.708 23.49 31.27 36.22 

2 0.8642 0.9451 35.373 25.45 31.68 35.65 

3 0.8642 0.9451 34.321 25.51 31.47 35.53 

4 0.8642 0.9451 34.362 25.51 31.47 35.54 

5 0.8642 0.9451 34.361 25.51 31.47 35.54 

10 0.8642 0.9451 34.361 25.51 31.47 35.54 

Table A14 unconstrained optimization of 1/a1/b (Zernike) 

N 1/a1/b 1/a 1/b 1T2 

1 0.8587 0.9709 0.9109 97.747 

2 0.8851 0.9704 0.9121 101.593 

3 0.8851 0.9704 0.9121 108.759 

4 0.8851 0.9704 0.9121 108.791 

5 0.8851 0.9704 0.9121 108.790 

10 0.8851 0.9704 0.9121 108.790 

Table A15 unconstrained optimization of 1/b/ (f2 (Zernike) 

N 1/b/ 1T2 1/a 1/b 1T2 

3 0.1592 0.7127 0.9166 5.756 

4 0.1592 0.7126 0.9166 5.756 

5 0.1592 0.7127 0.9166 5.756 

6 0.1592 0.7127 0.9166 5.755 

8 0.1593 0.7129 0.9167 5.754 

10 0.1593 0.7131 0.9168 5.752 
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Table A16 unconstrained optimization of nanb/ (J2 (Zernike) 

N na%/(J2 na % (J2 

1 0.1175 0.7582 0.9273 5.9819 

2 0.1175 0.7612 0.9278 6.0081 

3 0.1176 0.7613 0.9278 6.0084 

4 0.1176 0.7613 0.9278 6.0079 

5 0.1176 0.7614 0.9278 6.0073 

10 0.1178 0.7619 0.9280 6.0028 

Table A17 unconstrained optimization of (J2 (1_r2)N 

N na nb (J2 sill s1l2 s1l3 

1 0.7537 0.9261 5.9606 24.62 33.57 39.73 

2 0.6968 0.9116 5.7423 27.32 36.53 42.79 

3 0.6966 0.9115 5.7421 27.43 36.54 42.75 

4 0.6966 0.9115 5.7417 27.50 36.27 42.59 

5 0.6967 0.9116 5.7412 27.49 36.48 42.34 

Table A18 unconstrained optimization of nb (1_r2)N 

N qa qb (J2 sIll s1l2 s1l3 

1 0.8642 0.9451 35.373 25.45 31.68 35.65 

2 0.8642 0.9451 34.320 25.51 31.48 35.53 

3 0.8642 0.9451 34.361 25.51 31.48 35.53 

4 0.8642 0.9451 34.361 25.51 31.47 35.54 

5 0.8642 0.9451 34.361 25.51 31.47 35.54 
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Table A19 unconstrained optimization of ~a1/b (1_r2)N 

N 1/a1/b 1/a ~b 1T2 

1 0.8787 0.9873 0.8900 129.38 

2 0.8839 0.9704 0.9109 109.59 

3 0.8851 0.9704 0.9121 108.75 

4 0.8851 0.9704 0.9121 108.79 

5 0.8851 0.9704 0.9121 108.79 

Table A20 unconstrained optimization of 1/b/1T2 (1_r2)N 

N 1/b/ 1T2 1/a 1/b 1T2 

2 0.1537 0.7127 0.9166 5.961 

3 0.1592 0.7127 0.9166 5.756 

4 0.1592 0.7126 0.9166 5.756 

51 0.1592 0.7127 0.9166 5.756 

6 0.1592 0.7127 0.9166 5.755 



Table A21 unconstrained optimization of TJaTJb/ (f2 (1_r2)N 

N TJaTJb/ (f2 TJa TJb (f2 

1 0.1175 0.7582 0.9273 5.9819 

2 0.1175 0.7612 0.9278 6.0081 

3 0.1176 0.7613 0.9278 6.0084 

4 0.1176 0.7613 0.9278 6.0079 

5 0.1176 0.7614 0.9278 6.0073 

Table A22 unconstrained optimization of TJ (~= 0.1) 
a 

N TJa TJb (f2 s1l1 s1l2 s1l3 u3dB 

1 0.7688 0.8408 10.9234 16.18 33.15 57.26 1.86 

2 0.8112 0.7734 12.8040 13.89 29.59 33.61 1.75 

3 0.8844 0.8075 20.5250 16.09 24.46 23.59 1.70 

4 0.8950 0.7962 22.5409 15.80 26.16 22.92 1.67 

5 0.9207 0.8081 30.1596 16.37 25.32 24.88 1.65 

10 0.9507 0.8093 51.1978 16.53 25.49 25.45 1.64 

Table A23 unconstrained optimization of (f2 (~ = 0.1) 

N TJa TJb (f2 s1l1 s1l2 s1l3 u3dB 

1 0.7688 0.8408 10.9234 16.18 33.15 57.26 1.86 

2 0.7686 0.8409 10.9234 16.18 33.15 57.30 1.86 

3 0.7695 0.8415 10.9231 16.21 33.03 57.21 1.86 

4 0.7695 0.8415 10.9231 16.21 33.03 57.30 1.86 

5 0.7698 0.8417 10.9228 16.21 33.08 57.88 1.86 

10 0.7700 0.8419 10.9222 16.22 33.10 57.90 1.86 



N 1/a 

1 0.7688 

2 0.7331 

3 0.8008 

4 0.7950 

5 0.8190 

10 0.8343 
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Table A24 unconstrained optimization of 1/ « = 0.1) 
b 

1/b 112 slll sll2 sll3 

0.8408 10.9234 16.18 33.15 57.26 

0.8463 11.1786 16.95 32.89 44.87 

0.8817 14.9648 20.07 24.81 39.84 

0.8822 15.0692 20.12 25.00 40.16 

0.8943 18.8336 21.02 49.10 27.06 

0.9043 26.4640 21.75 43.11 28.28 

Table A25 unconstrained optimization of 1/a1/b « = 0.1) 

N 1/a1/b 1/a 1/b 112 

2 0.6547 0.7933 0.8254 11.1653 

3 0.7445 0.8654 0.8604 17.0700 

4 0.7478 0.8726 0.8570 17.4611 

5 0.7803 0.8980 0.8690 23.3086 

10 0.8102 0.9251 0.8759 36.0890 

Table A26 unconstrained optimization of 1/a1/b/ (12 « = 0.1) 

N 1/a1/b/112 1/a 1/b 112 

2 0.0463 0.7790 0.8363 10.9569 

3 0.0610 0.8010 0.8515 11.1764 

4 0.0610 0.8019 0.8513 11.1814 

5 0.0613 0.8053 0.8536 11.2153 

10 0.0614 0.8070 0.8545 11.2297 

u3dB 

1.86 

1.93 

1.86 

1.86 

1.86 

1.86 



Table A27 unconstrained optimization of qa (e = 0.05) 

N qa qb 1J2 s1l1 sll2 sll3 u3dB 

1 0.7618 0.9335 9.3359 18.36 33.49 42.04 1.90 

2 0.8194 0.8077 11.5774 14.71 30.17 34.36 1.76 

3 0.8883 0.8311 17.9673 16.83 22.75 25.61 1.73 

4 0.9026 0.8200 20.3840 16.58 24.50 23.63 1.69 

5 0.9265 0.8283 26.6477 17.06 23.96 26.18 1.67 

10 0.9581 0.8272 46.2287 17.16 24.31 26.73 1.64 

Table A28 unconstrained optimization of 1J2 (e = 0.05) 

N qa % 1J2 s1l1 sll2 sll3 u3dB 

1 0.7618 0.8827 9.3359 18.36 33.49 42.04 1.90 

2 0.7615 0.8827 9.3359 18.37 33.49 42.03 1.94 

3 0.7623 0.8833 9.3356 18.39 33.39 41.98 1.93 

4 0.7623 0.8833 9.3356 18.39 33.40 41.98 1.92 

5 0.7626 0.8835 9.3353 18.40 33.46 41.83 1.92 

10 0.7626 0.8836 9.3348 18.41 33.49 41.95 1.92 

Table A29 unconstrained optimization of qb (e = 0.05) 

N qa qb 1J2 s1l1 sll2 sll3 u3dB 

1 0.7618 0.8827 9.3359 18.36 33.49 42.04 1.90 

2 0.7402 0.8845 9.4062 19.04 33.31 41.85 1.97 

3 0.8003 0.9116 11.9064 22.35 35.59 27.18 1.93 

4 0.7990 0.9116 11.9085 22.36 35.27 27.28 1.92 

5 0.8201 0.9207 14.3787 23.20 34.41 30.28 1.92 

10 0.8371 0.9278 19.2025 23.83 33.80 31.74 1.92 
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Table A30 unconstrained optimization of qa% (e = 0.05) 

N qa1/b qa qb 1J2 

2 0.6911 0.8012 0.8626 9.7866 

3 0.7714 0.8682 0.8885 14.2926 

4 0.6842 0.8794 0.8848 14.9784 

5 0.8065 0.9027 0.8935 19.4142 

10 0.8361 0.9314 0.8977 30.3315 

Table A31 unconstrained optimization of qa%/1J2(~ = 0.05) 

N qaqb/ 1J2 qa % 1J2 

2 0.0727 0.7785 0.8780 9.3964 

3 0.0743 0.7978 0.8901 9.5530 

4 0.0743 0.7992 0.8900 9.5611 

5 0.0746 0.8021 0.8918 9.5845 

10 0.0747 0.8038 0.8926 9.5958 

Table A32 unconstrained optimization qa (e = 0.1, z.d.) 

N qa qb 1J2 sill s1l2 s1l3 u3dB 

1 0.6906 0.8842 76.5289 23.29 31.59 35.63 2.02 

2 0.8206 0.8279 19.8492 15.33 30.58 34.42 1.78 

3 0.8729 0.8214 52.7631 16.39 22.53 27.64 1.73 

4 0.9009 0.8186 53.3849 16.54 24.41 23.76 1.69 

5 0.9181 0.8179 54.5004 16.67 24.50 25.47 1.66 

10 0.9536 0.8170 62.3075 16.79 24.97 26.00 1.64 
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Table A33 unconstrained optimization u2 (~ = 0.1, z.d) 

N 1/a 1/b u2 sill sll2 sll3 u3dB 

1 0.6906 0.8842 76.5289 23.29 31.59 35.63 2.02 

2 0.7998 0.7399 14.4403 13.21 27.41 35.75 1.72 

3 0.7491 0.7698 12.9291 13.96 34.89 45.70 1.80 

4 0.7732 0.8016 12.2598 14.84 36.46 38.37 1.81 

5 0.7670 0.8100 11.9371 15.10 33.78 40.88 1.81 

10 0.7720 0.8329 11.2662 15.86 33.37 52.32 1.81 

Table A34 unconstrained optimization 1Ib( ~ = 0.1, z.d) 

N 1/a 1/b u2 slll sll2 sll3 u3dB 

1 0.6906 0.8841 76.5289 23.29 31.59 35.63 2.02 

2 0.7527 0.8954 55.1277 20.47 45.40 32.37 1.97 

3 0.7847 0.9026 72.1146 21.70 33.28 29.73 1.90 

4 0.8018 0.9062 59.0666 21.97 36.57 27.74 1.89 

5 0.8130 0.9087 70.5527 22.19 36.97 28.97 1.87 

10 0.8361 0.9137 65.9799 22.52 38.30 29.46 1.86 

Table A35 unconstrained optimization of 1/a1/b (~ = 0.1, z.d.) 

N 1/a1/b 1/a 1Ib u2 

2 0.7054 0.8048 0.8765 32.9712 

3 0.7498 0.8529 0.8792 61.3762 

4 0.7736 0.8786 0.8806 41.4220 

5 0.7890 0.8946 0.8820 60.3350 

10 0.8208 0.9277 0.8848 59.2650 
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Table A36 unconstrained optimization of ~a%/,,2 (e = 0.1, z.d.) 

N ~a~b/ ,,2 ~a ~b ,,2 

2 0.0418 0.8081 0.7623 14.7149 

3 0.0455 0.7705 0.7786 13.1680 

4 0.0522 0.8055 0.8174 12.5984 

5 0.0537 0.7991 0.8232 12.2475 

10 0.0590 0.8081 0.8467 11.5854 

Table A37 unconstrained optimization ~a «( = 0.05, z.d)-l 

N ~a % ,,2 slll s1l2 s1l3 u3dB 

1 0.6915 0.9034 43.0743 26.17 40.56 37.63 2.08 

2 0.8226 0.8459 13.9792 15.86 30.46 36.46 1.81 

3 0.8759 0.8373 34.8215 16.87 21.76 30.94 1.75 

4 0.9045 0.8342 23.8801 17.08 23.29 24.67 1.70 

5 0.9223 0.8330 34.8215 17.19 23.57 26.38 1.69 

10 0.9592 0.8316 50.3044 17.32 24.01 27.17 1.64 

Table A38 unconstrained optimization ,,2 «( = 0.05, z.d.) 

N ~a ~b ,,2 slll s1l2 s1l3 u3dB 

1 0.6915 0.9034 43.0743 26.17 40.56 37.63 2.08 

2 0.8148 0.7945 12.7625 14.38 29.20 36.21 1.75 

3 0.7538 0.8179 11.3600 15.28 40.11 42.77 1.86 

4 0.7749 0.8475 10.7161 16.43 34.18 41.35 1.86 

5 0.7647 0.8548 10.3654 16.79 32.51 48.04 1.89 

10 0.7659 0.8755 9.6842 17.86 33.26 42.25 1.90 



Table A39 unconstrained optimization of ~b (~ = 0.05, z.d.)l 

N ~a % (12 sIll sIl2 sIl3 u3dB 

1 0.6915 0.9034 43.0743 26.17 40.56 37.63 2.08 

2 0.7546 0.9152 31.1951 22.05 36.04 37.25 1.97 

3 0.7854 0.9218 40.9612 23.36 29.43 34.56 1.93 

4 0.8031 0.9255 33.2388 23.76 31.27 30.58 1.92 

5 0.8143 0.9279 40.4678 24.05 31.72 32.13 1.90 

10 0.8380 0.9330 38.2808 24.38 32.49 33.02 1.86 

Table A40 unconstrained optimization of ~a~b (~ = 0.05, z.d.) 

N ~a~b ~a ~b (12 

2 0.7228 0.8068 0.8959 19.8132 

3 0.7677 0.8553 0.8976 37.1679 

4 0.7924 0.8816 0.8989 25.7521 

5 0.8082 0.8981 0.9000 38.2833 

10 0.8417 0.9325 0.9027 40.7880 

Table A41 unconstrained optimization of ~a%/ (12 (e = 0.05, z.d.) 

N ~a~b/ (12 qa % (12 

2 0.0516 0.8198 0.8168 12.9610 

3 0.0555 0.7794 0.8268 11.5912 

4 0.0632 0.8090 0.8602 10.9973 

5 0.0651 0.8004 0.8649 10.6324 

10 0.0716 0.8059 0.8854 9.9553 



Eindhoven Universit of Technol0 Research Re orts 
Faculty of Jectrical Engineering 

ISSN 0167-970B 
Coden: TEUEDE 

(222) J6zwiak, L. 
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES ~ITH THE SEPARATE REALIZATION 
OF THE NEXT-STATE AND OUTPUT FUNCTIONS. 
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2 

(223l J6zwiak, L. 
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES. 
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0 

(224) Book of abstracts of the first Benelux-Japan Workshop on tnformation and 
Communication Theory, Eindhoven, The Netherlands, 3-5 September 1989. 
Ed. by Han Vinck. 
EUT Report 89-E-224. 1989. ISBN 90-6144-224-9 

(225) Hoeijmakers, M.J. 
A POSSIBILITY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL 
OF A SYNCHRONOUS MACHINE WITH RECTIFIER. 

(226) 

EUT Report 89-E-22S. 1989. ISBN 90-6144-22S-7 

eah~ka, R.P. and E.M. van Veldhuizen, W.R. Rut~ers, L.H.Th. Rietjens 
XP IMENTS ON INITIAL BEHAVIOUR OF CORONA GEN RATED WITH ELECTRICAL 

PULSES SUPERIMPOSED ON DC BIAS. 
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5 

(227) Bastings, R.H.A. 
TowARD THE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM IN ANESTHESIA. 
EUT Report 89-E-227. 1989. IS8N 90-6144-227-3 

(228) Hekker, J.J. 
COMPUTER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE 
SIMULATOR. 
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1 

(229) Dostrom, J.H.M. van 
INTELLIGENT ALARMS IN ANESTHESIA: An implementation. 
EUT Report 89-E-229. 1989. ISBN 90-6144-229-X 

(230) Winter, M.R.M. 

(231 ) 

DESIGN OF A UNIVERSAL PROTOCOL SUBSYSTEM ARCHITECTURE: Specification of 
functions and services. 
EUT Report 89-E-230. 1989. ISBN 90-6144-230-3 

Schemmann, M.F.C. and H.C. Heyker, J.J.M. Kwaspen, Th.e. van de Roer 
MOUNTING AND DC TO 18 GHz CHARACTERISATION OF ~OUBLE BARRIER RESONAnT 
TUNNELING DEVICES. 
EUT Report 89-E-231. 1989. ISBN 90-6144-231-1 

(232) Sarma, A.D. and M.H.A.J. Herben 
UAl"i'IACQUISITION AND SIGi;ALi'RQCESSING/ANALYSIS OF SCINTlLI.ATlON EVEIHS 
FOR THE OLYMPUS PROPAGAT let, EXPtR IMEtlT. 
EUT Report 89-E-232. 1989. ISBN 90-6144-232-X 

(233) Nederstigt, J.A. 
DESIGN ANO IMPLEMENTATION OF A SECOND PROTOTYPE OF THE INTELLIGENT ALARM 
SYSTEM IN ANESTHESIA. 
EUT Report 90-E-233. 1990. ISBI< 90-6144-233-8 

(234) Philippens, E~H.J. 
DESIGNING DEBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS. 
EUT Report 90-E-234. 1990. ISBN 90-6144-234-6 

(235) Heffels, J.J.M. 
A PATIENT SIMULATOR FOR Al~ESTHESIA TRAINltJG: A mechanical lung model and a 
physiological softvlare r.1odel. 
EUT Report 90-E-235. 1990. ISBN 90-6144-235-4 

(236) Lammers, J.D. 
KNOWLEDGE BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simplexys expert system 
appl iCi:ltion. 
EUT Report 90-E-236. 1990. ISBN 90-6144-236-2 

(237) Ren Oingchang 
PREDICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT EXCHANGER. 
EUT Report 90-E-237. 1990. ISBN 90-6144-237-0 



Ei:-:dhO\(,11 Uf'iversi~'i at Tt:'chnolo'~y i~e~t:,~rd: RP:2orL 
Facultv or Electrical En9ineerin~ 

ISS" 0167-9708 
Coden: TEUEDE 

{238) L~~mers, J.~. 

(239 ) 

THE USE OF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL CHECKING. 
EUT Report 90-E-238. 1990. ISBN 90-6144-23B-9 

Wa
E

g , x. 
PR LIM I NARY I NVEST I GAT IONS ON TACT I LE PERCEPT lor, OF GRAPH I CAL PATTERNS. 
EUT Report 90-E-239. 1990. ISBN 90-6144-239-7 

(240) Lutgens, J.M.A. 
KNOWLEDGE BASE CORRECTNESS CHECKING FOR SIMPLEXYS EXPERT SYSTEMS_ 
EUT Eeport 90-E-240_ 1990. ISBN 90-6144-240-0 

(241) Brinker, A.C. den 
A MEMBRANE MODEL FOR SPATIOTEMPORAL COUPLING. 
EUT Report 90-E-241. 1990. ISBN 90-6144-241-9 

(242) Demarteau, J.I.M. and H.C. Heyktr, J.J.M. Kwas~en, Th.G. van de Roer 
MICROWAVE NOISE MEASUREM NTS ON DOUBLE ARRIER RESONANT TUNNELING 
DIODES. 
EUT Report 90-E-242. 1990. ISBN 90-6144-242-7 

(243) Massee, P. and H.A.L.M. de Graaf, W.J,M. Balemans, H.G. Knoopers, H.H.J. 
ten Kate 

(244) 

PREDt3iGN OF AN EXPERIMENTAL (5-10 MWt) DISK MHO FACILITY AND PROSPECTS OF 
COMMERCIAL (1000 MWt) MHD/STEAM SYSTEMS. 
EUT Report 90-E-243. 1990. ISBN 90-6144-243-5 

Klompstra, Martin and Ton van den Boom, Ad Damen 
A COMPARISON OF CLASSICAL AND MODERN CONTROtIER'DESIGN: A case study. 
EUT Report 90-E-244. 1990. ISBN 90-6144-244-3 

(245) BerT' P.H.G. van de 
ON HE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation 
experiment. 
EUT Report 90-E-245. 1990. ISBN 90-6144-245-1 


	Abstract
	Acknowledgements
	Table of contents
	1. Introduction
	2. Writing antenna parameters in a suited form
	3. The optimization procedure
	3.1 Theorem
	3.2 Some properties of generalized eigenvalue problems
	3.3 Constraints
	3.4 The optimization procedure with constraints
	3.5 Optimization a product of quadratic forms
	3.6 Maximum sidelobes constraints
	4. Various kinds of source functions
	4.1 Aperture distributions consisting of Besselfunctions
	4.2 Aperture illumination consisting of Zernike polynomials
	4.3 Aperature illumination consisting of power-law functions
	5. Comparing different kinds of source functions
	6. Asymetric patterns
	7. Blocked aperature distributions
	8. Conclusions

