

Remote control of a 6R manipulator

Citation for published version (APA):
Serrarens, A. F. A. (1996). Remote control of a 6R manipulator: an application in using computer-networks and
cross-development software for real-time control of dynamic systems. (DCT rapporten; Vol. 1996.025).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/0e225c30-3835-4483-8b0f-5ba623dd1d72

Remote Control of a 6R
Manipulator

A.F.A. Serrarens

Report number: WFW 96.025

Practical Assignment Report

Author: A.F.A. Serrarens
Institution: Mechanical Engineering Laboratory,

Robotics Dep., Cybernetics Div.
Tsukuba Science City, Japan
K. Komoriya, Dr.Eng. (Mechanical Engineering Laboratory)
dr. ir. F.E. Veldpaus (Eindhoven University of Technology)

Mentors:

Report number: WFW 95.025
Date: February 1996

Remote control o f a 6R n/ranipealator
An application in using computer-networks and cross-development software for real-time control of

dynamic systems

A.F.A. Serrarens

27th February 1996

Contents

List of Figures V

List of Tables

Summary

Acknowledgements

vi

vii
...

v111

1 Introduction 1
1
2
3

1.1
1.2
1.3

Robotics Today .
Research Objectives .
Outline of this Report .

2 Kinematics and Dynamics of the 6R Robot 5
2.1 Forward Kinematics . 5
2.2 Inverse Kinematics . 9
2.3 Dynamics and Control . 10
2.4 Conclusions . 13

3 Network as Real Time Control Medium 14
3.1 Real-time Networking: An Introduction . 14
3.2 VxWorks for PC Targets: An Application . , 15
3.3 Conclusions . 18

4 Implementations and Experiments 19
4.1 Remote Control of Pick-and-Place task . 19
4.2 What’s happening? . 21
4.3 A little intelligence , . 22
4.4 Conclusions . 25

5 Conclusions and Recommendations 26

...
111

Biliography

A Frame Transformation Matrix

B Inverse Kinematics of the 6R Move Master

C Source Code Ethernet Control

iv

28

30

32

3’7

List of Figures

1.1 Hardware configuration of network experiment 3

2.1 Two consecutive links and their D-H parameters 7
2.2 Kinematic model of the Move Master Robot 8
2.3 The two fields in the science of kinematics 9
2.4 Redundant solution o f a three link arm 10
2.5 Joint space and Cartesian space control schemes 12

3.1 Steps in the Ethernet control of the Move Master 17

4.1 Parabolic blends smooth a path with via points 20
4.2 Positons of the Pick-and-Place task . 20
4.3 Preliminary design of the userinterface 22
4.4 The search-and-grasp problem . 23
4.5 Two phases in precise scanning . 23

A. l Transformation of an arbitrary frame to an other 30

B.l Illustration of the three posture flags . 33
B.2 Geometrical solution of 81 . 35
B.3 Geometrical solution of 63 . 35
€3.4 Gmmetrical LiolUtion of 6$. 36

V

2.1 D-H parameters of the 6R Move Master Robot 7

Vi

Nowadays, control applications can be very complex. This complexity can be the result
of sophisticated and extended control strategies or because of the enormous control and
communication overhead of a great number of co-operating systems. These types of appli-
cations usually require parallel processing of the real time control code. In this report the
distibution of CPU’s with Ethernet as communication medium is discussed as a solution
for real time parallel processing applications.

This method can be simplified by the use of real time operating software especially
developed for real time network communication within a set of CPU nodes of the network.
The software used in this research (Wind River Systems’ VxWorks 5.2) is implemented on
a UNIX Workstation and can be booted by many different commercially available CPU
platforms. The advantage of this is that the operating system is standardized for every
node in the real time distributed control setup. The setup is easily scalable depending on
the requirements of the control task.

This software and the use of Ethernet as communication line is tested by controlling a
GR robot from a (remote) UNIX Workstation communicating with a PC which is connected
with the robot controller. This test was succesful and illustrates the use of this software
in communication and distribution of CPU’s within Ethernet.

The use of existing computer networks as real time control medium is a flexible and
powerful way to deal with the continueously growing complexity in control applications.
Although the method is promising, extended testing of the CPU processing times in com-
bination with the time delays in Ethernet communication is required in order to gain
successful results in any control task.

vii

This research could not have been done without the help of a number of people, whom I
would like to thank herewith.

First, I would like to thank Prof. ir. Kals (Eindhoven University of Technology) and
Dr. Matsuno (Mechanical Engineering Laboratory) who made the arrangements for me to
join the Mechanical Engineering Laboratory for a guest research during October 4th until1
December 30th 1995.

I will thank Dr. Komoriya (Cybernetics Division, Mechanical Engineering Laboratory)
for accepting me as a guest researcher. Furthermore, I would like to thank all the memebers
of Cybernetics Division for there useful remarks and ideas.

Special thanks to Mr. Arisumi (Cybernetics Division, Mechanical Engineering Labora-
tory) for helping me in daily life problems.

I will thank the people of Fanuc Ltd., Japan for giving me the opportunity to take a
look in an advanced japanese robot factory.

Furthermore, I will thank all the people of Kanagawa Industrial Technology Research
Institute in general and Mrs. Komoriya in particular for showing me a High-Tech prefec-
tural research institute.

I am grateful to dr. ir. Veldpaus (Eindhoven University of Technology) for being my
official mentor of this practical assignment.

I will thank the NUFFIC-STIR/JP-foundation for their financial support for this trainee-
ship.

Finally, I would lilie to thank my family, friends and girlfriend for their interest and
attention during my stay in Japan.

... v111

Introduction

This report offers a description of the research on the possibilities and application of
controlling a 6R industrial robot through a computer network system. Section 1.1 gives a
brief description of the “world of robotics”. In Section 1.2 the objectives of this research
are given. The outline of this report is described in Section 1.3 .

1.1 Robotics Today
Nowadays, the field of robotics is very broad in applications as well as in design. The
boundary, which separates mechanical devices in robots and non-robots is not very clear
and is often liable to subjective convictions, for example, in the field of mechanical ma-
nipulation. In this area a sequence of programmed tasks are executed by the mechanical
device to achieve a final goal: realization of a product. The flexibility in the programming
of a mechanical device is probably the most important criterion to draw the mentioned
boundary. In more sophisticated robot designs, this flexibility is a natural part of the
system and complex design and refined control is given more importance.

Nowadays, robots gain a certain amount of intelligence when equipped with a great
number of sensors, for example tactile and vision based sensors. Industrial manipulators
are equipped with sensors just to maintain their programmed, repetitive operation while
sensors of intelligent robots also detect external circumstances. Use of this sensor informa-
tion in a set of actions is the main topic in the control of intelligent robots.

The combination of mobilization and intelligence of robots opens a lot of potential
applications for robots. Robots can be designed as self operating mobile devices, which
interpret their surroundings and react by avoiding collisions, taking the easiest way, etc,
simular to human behaviour. This is useful in situations in which it is not possible for
humans to do certain activities because of dangerous or inhuman circumstances.

In this study a six degree of freedom robot is used to test a computer network as control
medium. It is not the particular robot that is of main interest, but a demonstration of the
potentials of using distributed CPU’s to manage the control of a mechanical device. In the

4

Introduction 2

case of intelligent robots a lot of computations have to be made on a real time basis. The
use of networking CPU’s as an intertasking and multitasking operating system then can
be very useful.

The underlying research of this report is done at the Cybernetics Division of the
Robotics Departement of the Mechanical Engineering Laboratory? in Tsukuba Science

For three months I have been dealing with cross-development operating software? fun-
damentals of robotics, networking? programming and being in a complete different culture.
At the rather young age of a graduate student, this experience is very impressive. Besides
of the fact that I learned a lot of new skills in the broad field of Mechanical Engineering?
H also learned a lot of new things about life and about the lives of culturally very different
people. I think the latter has been just as important for me as dealing with this practical
assignment? as a part of the graduate course in Mechanical Engineering at the Eindhoven
University of Technology, The Netherlands.

city, h p s n .

1.2 Research Objectives
This survey narrates about the use of a computer network system as a medium to con-
trol a six D.O.F. manipulator. The manipulator is the RV-E2 Move Master produced by
Mutsubishi Electric Corporation. This rather small industrial robot is provided with DC
servomotors to actuate the six rotational joints. A hardware controller device, also pro-
duced by Mutsubishi, controls the servomotors when the user gives commands which are
recognizable for this controller. The commands can be given by a IBM-PC which commu-
nicates with the controller by a serial line connection. The system is completed with a so
called teaching box. The user can, for example, program initial positions of the robot with
this device.

The purpose of this research is not to develop a new controller concept for this robot.
This is even impossible, because the controller overhead is included in the controller device.
For the user it is important to program B suitable task for a desired operation. Examples
of such tasks are the stacking of products on a palette or tray, positioning semi-finished
articles at assembly lines or welding of metals. A task is programmed by a list of commands
in an IBM-PC which are send to the controller as 8-bit characters. If this PC is connected
to the local Ethernetwork then, in principle? it is possible to give the commands from a
remote machine, also connected to this network.

However, the problem in this application is that different computer architectures are
part of the network. The development software VxWorks provides an easier way to use
different types of computer architectures in a real time network application.

Generally? the graphical performance of workstations (UNIX) is much better and faster
than that of PC’s. If one wants to develop a graphical userinterface it is obvious to use
a workstation for this. In the proposed network application an userinterface is developed
in the X Windows library, which can be included in 6-codes. This userinterface holds the
commands the user can give to the controller A kinematic wire-model can simulate the

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Introduction 3

movements of the manipulator.
Figure 1.1 shows the configuration of the hardware elements of this application. Note

Ethernet

TeachBox

Figure 1.1: Hardware configuration of network experiment

that in reality there are many more computers connected to the Ethernetwork and that
these machines can be used for real-time control applications. This gives the potential
to use extended control strategies that are available in theory but hardly ever used in
practice because of their high demands on CPU-time and/or memory. Especially, model-
based control strategies are a real burden in real time controll. Another example of using
the network as a real time medium is the simultanuous control1 of two or more co-operating
manipulators. One can easily make up many more examples of using real time network
development.

1.3 Outline of this Report

In the experiments a robot with six rotational joints (6R) is used. In Chapter 2 this ma-
nipulator is described in more detail. Aspects like forward kinematics, inverse kinematics,
dynamics and control are discussed.

The next chapter explaines the background of the network application. The operat-
ing software VxWorks is considered together with the use of this software in the ix86

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Introduction 4

CPU-family. Fragments of programs illustrate the aspects of implementing a real-time
controlling-task through the Ethernet.

To ease the use of the industrial manipulator a graphical userinterface is developed.
Simulation of the robot movements, kinematics and inverse kinematics are required to
calculate the positions and postures of the robot. A wire model shows these movements,
positions amd postures in a graphical display. This graphical userinterface is discussed in
Chapter 4.

To test the network application, a pick-and-place task is implemented in the UNIX
workstation. This task, in the form of commands, is send to the PC via the Ethernet and
from the PC to the robot (-controller). This test is also discussed in Chapter 4.

At the end-effector of the robot a laser range sensor is attached. With this sensor it
is possible to scan simple-shaped objects. A suitable algorithm controls the robot in such
a way that it can locate the position and orientation of the object in a predefined area.
After that, the robot is able to pick up the object. This experiment is done with the PC
as a stand-alone machine. These experiments are also discussed in Chapter 4.

This survey is concluded in Chapter 5. Conclusions and recommendations summarize
the preceding discussions.

Mechanica I Engineering Labora tory, Tsu ku ba Science City, Ja pan

Kinematics and Dynamics of the 6R
Robot

The robot under consideration is a typical six degree of freedom manipulator that is very
common in industrial applications. In Section 2.1 the kinematics is point of discussion.
Inverse kinematics is derived in Section 2.2. The dynamic features of the robot are of
less importance in this application. Nevertheless, some dynamics and control of industrial
manipulators are discussed in Section 2.3. This chapter is concluded in Section 2.4

2.1 Forward Kinematics
The most important part of an industrial robot is its end-effector. After all this part has to
perform a desired task (follow a trajectory, pick-up products, etc.). Such a task is realized
by mutual co-operation of, in this case, six links. The links are connected with rotational
joints. Every joint can change the relative position and orientation of all consecutive joints.

provides methods to compute the position
and orientation of the manipulator’s end-eflector relative to a user-defined base as a func-
tion of the joint-variables and a given set of l ink-parameters. The last two quantities are
explained further on in this section.

The Denavit-
Hartenberg Convention. In this convention Cartesian coordinate frames fixed to each
of the links are introduced. The position and orientation of a joint, between two links,
specifies the spatial transformation between two consecutive coordinate frames.

Generally, a transformation between Cartesian coordinate frames is described by a

The forward or direct kinematic analysis

In this section one kinematic convention is discussed thoroughly:

l A definition of kinematics in general is: the science of motion (position, velocity, acceleration and all
higher derivatives with respect to time) that analyzes motion without regard to forces which cause it.

5

Kinematics and Dynamics of the 6R Robot 6

(4x4) homogeneous transformation matrix A, i.e.

This matrix can be divided into two main parts, i.e.

1 R(3z3) i p(3x1)

O(lx3) i 1

in which R(sx3) = [n' 0' Ú] represents the rotational component and p(3~1) = $the trans-
lational component. Denavit and Hartenberg apply this general transformation between
any two coordinate frames to write

where T, defines the position and orientation of a coordinate frame fixed to link n (end-
effector) with respect to a coordinate frame fixed to the user-defined base. A; defines the
transformation of a coordinate frame x-1, fixed to link i - 1, to the coordinate frame x,
fixed to link i . This transformationis described by (see Appendix A):

(2.4) I I O O O 1

cos (O ;) - sin(O ;) cos (a;) sin(O ;) sin(a;) a; cos (O ;)
Ai = sin(O ;) cos(O ;) cos(a;) - cos(8;) sin(a;) a; sin(O ;)

O sin(ai) cos(ai) di

This transformation is a function of the four Denavit-Hartenberg parameters (D-H-
parameters) O;, d; , a; and ai. For rotational joints, O; is called a joint-variable or generalized
joint coordinate. The remaining three parameters are called the link-parameters.

Figure 2.1 illustrates the definitions of these parameters. With the convention of fixing
link frames to links as in figure 2.1, the following definitions of the D-H parameters are
valid:

19; = the angle between Xi-1 and X ; measured about 2;
d; = the distance from Xi-1 to X ; measured along 2;
a; = the distance from Zi-1 to 2; measured along Xi-1

a; = the angle between Zi-1 and 2; measured about Xi-,

For the Move Master robot the parameters can be found in table 2.1

illustrative for the parameters in table 2.1
Figure 2.2 depicts the kinematic model of the Move Master robot. This model is

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Kinematics and Dvnamics of the 6R Robot 7

i
1
2
3
4
5
6

A

8; d; a; a;
61 LI o o
6 2 - 90" O L2 -90"
6 3 -90" O L3 O
6 4 L5 L4 -90"

86 L6 o -90"
6 5 + 180" O O $90"

Joint

Axis i

,//' \

Figure 2.1: Two consecutive links and their D-H parameters

Table 2.1: D-H parameters of the 6R Move Master Robot

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Kinematics and Dynamics of the 6R Robot 8

\

n/2

Figure 2.2: Kinematic model of the Move Master Robot

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

9

2.2 Inverse Kinematics
In the previous section a method to compute the position and orientation of the end-
effector relative to the base, given the joint angles, was discussed. In this section the
inverse problem is observed: Given the desired position and orientation of the end-effector
relative to the base, how to compute the set of joint angles which will achieve this desired
result? This problem of inverse kinematics, is more important in task programming of
a robot than forward kinematics. Unfortunately, it is also more difficult to solve.

In the case of forward kinematics, the state of the manipulator is given in the joint
space by the DH-parameters. Inverse kinematics requires the state of the manipulator
given in the Cartesian space description of the end-effector (see Figure 2.3 The position of
the end-effector relative to the base is presented by IC,, ye and ze and its orientation relative
to the base by (u,,@, and 7,.

Generally, it is impossible to solve the inverse kinematics in a closed form because of
the strong non-linearities in the transformations. On the other hand, if the kinematic
lay-out of a manipulator is rather simple it is often possible to solve the inverse kinematics
in closed form. To solve the inverse kinematics of the Move Master one has to deal with

Direct Kinematics

Inverse Kinematics

Figure 2.3: The two fields in the science of kinematics

the fact that, in general, there is no unique solution: there can exist multiple solutions, an
inifinite number of solutions or no solution at all.

The occurence of multiple solutions simply results from the fact that the end-effector
can reach a specified position with more than one configuration of the linkages. In that
case the manipulator is said to be redundant. This is illustrated in Figure 2.4 for a three
link planar arm. Then the control algorithm has to choose between possible solutions,
using criteria such as the avoidance of collisions with external obstacles. Another criterion
could be the minimization of the required movements of each joint. In practical situations
there might be many more criteria to choose between possible solutions.

An example of an infinite number of solutions can be found in the Move Master. If
0 5 = O then 06 = -04 results in the same position and orientation of the end-effector

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

10

I h

Figure 2.4: Redundant solution of a three link arm

relative to the base for each value of 194. In this case, the manipulator is salu to have a
degeneracy. If not restricted, control over the two degrees of freedom is lost.

Situations in which no solutions can be found occur if the prescribed orientation and
position do not lie in the manipulator’s workspace.

Generally, solutions can be obtained by geometrical, algebraical or numerical methods
or by mixtures of these methods. In Appendix B, a purely geometrical solution for the
inverse kinematics of the Move Master is presented. Pieper [li] describes an algebraic
method to solve the inverse kinematics of 6 D.O.F. manipulators with three consecutive
axes intersecting in a point. This method could also be applied to the Move Master,
since the axes of the last three joint frames intersect at the origin of the 5th joint frame.
Manocha et al. [7] describe a mixture of algebraical and numerical methods to solve the
inverse kinematics of general six revolute joint manipulators. Also their method could be
applied to the Move Master.

2.3 Dynamics and Control
In the field of dynamics of manipulators, globally, two formulations are used: the Newton-
Euler and the Lagrange formulation. Because it is out of the scope of this research to discuss
the dynamics of industrial manipulators in detail, a brief discussion of the formulations
together with applications in manipulator control is presented.

The science of dynamics deals with the motion of bodies under the influence of applied
forces. For manipulators, the dynamics are described in terms of changes of the arm
configuration as a function of time caused by torques exerted by the joint actuators. Why
are dynamics important in industrial manipulators? One can try to control the actuators
such that the end-effector traces a desired trajectory. Stepper-motors or DC motors can
be used to realize desired joint angles. In this case feedback control of joint angles and
joint velocities is enough. However, this will result in the end-effector to lag behind the

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

11

desired trajectory during acceleration and to overshoot when decelerating, especially for
high speed operations. Many industrial manipulators operate at reduced speed to overcome
this problem. This also holds for the Move Master. When higher speed is required, a more
sophisticated control strategy is necessary. At this point there is a need for model based
control.

This req~~lres a d y n a ~ i c model of the manipidator: Such a model can predict the
behaviour of the robot arm as a result of given joint torques. Implementing this model,
the control scheme has a feedforward control part (dynamic prediction of the positions,
velocities and accelerations) and a feedback control part to deal with all interactions that
have not been taken into account by the model.

There are two parts in manipulators dynamics: forward dynamics and inverse dy-
namics. Forward dynamics concerns the problem of computing the manipulator motions
as a result of applied joint torques. Inverse dynamics is related to computing the re-
quired set of joint torques given the positions, velocities and accelerations of the joints as
a function of time. In task planning, the inverse dynamics play a crucial role.

The dynamic model of a manipulator with n links and n actuated joints, obtained
by either the Newton-Eulerian (see [5]) or the Lagrangian (see [i s]) formulation, has the
following general form:

7 = M(O)O + V (0 , O) + G(O) + F (O , O) (2.5)
where IT is the n x l vector of applied joint torques, M (O) is the n x n mass matrix, V(O,6)
is the n x l vector of centrifugal and Coriolis terms, G(O) is the n x l vector of gravity terms,
and F (O , 6) is the n x l vector that represents other interactions, for instance due to friction,
damping and flexibility of the links. The last term is extremely hard to model and is often
not included in the dynamic model. While controlling the manipulator, these unmodelled
effects have to be overcome by feedback control.

The variables in the model (2.5) are the joint parameters O (joint space). However,
the desired motion of the end-effector usually is given in Cartesian space so there is a
need for transformation of (2.5) from joint to Cartesian space. There are two ways to
implement these transformations into a controi scheme. The first one is to use inverse
kinematics, which results in a joint based control scheme and the second one is to use
forward kinematics, which results in a Cartesian based contïol scheme. Both methods
require the so called Jacobian J , a n x n matrix of partial derivatives g. The Jacobian
relates velocities in Cartesian space (2 ;) and joint space (O ;) with each other. Torques in
Cartesian space are interpreted as the set of forces and torques applied at the end-effector
resulting in the desired motion of this manipulator part. The relations between velocities
and torques in the two spaces are

2 = J (O) O
F = J - y O) 7

in which A? is the n x l vector of end-effector velocities (translational and rotational), 6 is
the n x l vector of angular joint velocities, .F the n x l vector of applied forces and torques
at the end-effector and T is the nzl vector of applied joint torques.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

12

Figure 2.5: Joint space and Cartesian space control schemes

The two control schemes are depicted in Figfire 2.5. In these schemes the feedback part
and the feedforward part are included. In Joint space control, the error in joint angles and
velocities is corrected by the feedback gains KP and I I , respectively. For Cartesian space
control the feedback control “pushes” the errors in the end-effector positions and velocities
to zero by equivalent gains. The control strategy of the feedforward control part applied
in both cases is trying to remove all non-inertial forces and torques. In the ideal situation
the only part that remaines would be a simple Newton’s law:

7 = M (@) ö (2.8)

Unfortunately, there are a number of errors, which have to be overcome by the feedback
control. The cause of these errors can be unmodelled aspects (joint friction and reso-
nances, for example), errors in manipulator parameters, external disturbances (7dist) like
an unknown load at the end-effector, errors in measurements, differences in the calculated
actuator torques and the actual actuator torques, etc.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

13

The system error equation of the proposed controlled system can be written as

Since M (0) is not, in general, diagonal the right hand side is a coupled system, that is, if
a disturbance on any joint occurs, all other joints will have errors too.

Implementations of such extended control laws demands for large CPU-power. In-
verse kinematics, kinematics, Jacobians, inverse Jacobians, dynamic models, adaptation
mechanisms, feedback control laws, etc, have to be computed real time. A distribution of
CPU-power is inevitable in such cases.

2.4 Conclusions
This chapter discussed a number of fundamental aspects of robots in general and industrial
manipulators in particular. Summarizing, the following conclusions can be drawn,

Forward kinematics is a tool to calculate the end-effector position and orientation as
a function of the joint angles. This study is useful in kinematic simulations, but less
applicable in task planning of robotic manipulators.

Inverse kinematics is not a tool in itself. It only defines the problem of calculating the
joint angles as a function of a desired set of end-effector positions and orientations.
Generally, the inverse kinematics cannot be solved in closed form. In certain cases,
especially if the manipulator lay-out is simple, it is possible to compute the inverse
kinematics in a closed form, either analytically, geometrically or by combinations of
these methods. However, in many cases numerical algorithms have to be developed
to solve the problem, which results in less accuracy and, in certain cases, numerical
stability problems.

Dynamics of manipulators are described with two generally used formulations: Newton-
Euler formulation, using Newton's law and the Lagrange formulation using system
energy principle. Both methods are equivalent and result in a closed form solution
of the manipulators dynamics.

In control of industrial manipulators, usually no dynamic model is used, because it
is computationally very expensive. Simple PID-based feedback controllers have to
perform a stable and accurate task execution. A drawback of using this strategy is
that the manipulators have to operate at reduced speed.

Extending the control model with model-based descriptions results in a high demand
on computational power, because the dynamic model has to be evaluated real time.
Multitasking of computations could be a solution to this problem.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Network as Real Time Control
Medium

This chapter discusses the implementation of control applications through a local Ether-
network. For this application the real time software VxWorks is used. An introduction is
given in Section 3.1. Section 3.2 describes some features of VxWorks and the development
for ix86 CPU targets. The chapter is concluded in Section 3.3.

3.1 Real-time Networking: An Introduction
The applications of network-based computer systems have been very divers and useful.
However, they can be extended if distributed real time applications can be realized with
the use of such networks.

Suppose you are faced with the task to implement a model-based control algorithm
in a stand-alone computer (for example a PC). This machine has to control a strongly
non-linear mechanic system. The PC has to compute the non-linear model and the control
law and send actuator information to, and read sensor information from the mechanical
system. Moreover, it has to display user-defined information on a graphical userinterface.
All of this has to be performed at a real time basis. Another task can be to control, let’s say,
three mechanical devices, which have to co-operate with each other. The control overhead
may be simple, but most of the actuators have to be activated simultaneously. Besides,
reading and interpreting sensor information has to take place simultaneously. Moreover,
the planning of the synchronized tasks has to be stored somewhere and be easily accessible.

These examples illustrate that many modern control applications are distributed or
can better be distributed due to physical limitations of stand-alone computer systems.
In these cases there is a need for several processors, terminals, I/O-handling and data-
handling devices, which synchronously co-operate with each other to manage a real time
control task. In other words, there is a need for connected computer systems of which the
application can use as many as necessary.

Computer network systems provide this scaled distribution of access to computer power.

1.4

Network as Real Time Control Medium 15

UNIX operating systems have become the standard for using computer network systems.
UNIX already provides the important features for portable software development such as
a graphical interface to the network (X windows for example), network programming via
TCP/IP and NFS, and multiple processors and users. The recent IEEE-1003.4 Posix real
time extensions seem to make UNIX systems, as network nodes, almost complete. On
the other hand, platforms like ix86, SPARC, MIPS; CPU32, i960 and PowerPC all are
different nodes in many networks, nowadays. In distributed real time applications it would
be helpful to standardize the operating software. This will ease the co-operation between
different platforms. The cross-development , real-time operating software VxWorks makes
this possible. Even for more platforms than listed above.

3.2 VxWorks for PC Targets: An Application
VxWorks in combination with UNIX forms a complete, integrated development and operat-
ing environment. The UNIX system is used for software development and non-time-critical
components of an application, while VxWorks is used for testing, debugging and running
real time applications. VxWorks can be networked with any operating system that has
TCP/IP networking facilities. UNIX workstations can be used to edit, compile, link and
store real time code, that will be used in a VxWorks environment afterwards. The basic
architecture of a networked VxWorks application is formed by a host-target pair. For
this research such a combination is a UNIX Workstation - Pentiurn-S PC pair, re-
spectively. Once a hardware connection between these two machines through the Ethernet
is made, the target can be booted (using a disk boot-partition, contrary to most other
architectures that use a boot-ROM) by VxWorks and configured so that the pair can be
established using the Ethernet addresses of these two machines. After that it is possible
to run real time code on the VxWorks target. This real time code can be written very
economically, since it doesn’t have to be linked with the VxWorks system libraries or with
each other. While loading object modules (unlinked C-codes), the external symbol refer-
ences BE solved dynamically using the symbol tables already loaded iri the VxWorks target
by default (during the booting-procedure) or by previously loaded modules. This method
prevents the application programs to be unnecessarily large, which is desirable running
these programs in real time applications.

The previous section motivates the need for distributed software development. Every
hardware part of the application deals with its own real time or non- real time job. Of
course, there is also a strong need for communication between jobs, since they have to be
synchronized in most cases. This idea of distributed jobs, running simultaneously, is well
known as multitasking and intertask communication. VxWorks provides an extended
set of tools for multitasking and intertasking, regardless of the location or CPU-type of
the computers running the different tasks. To use VxWorks in a networked application
one can use the UNIX-compatible sockets, which make it possible to communicate between
tasks running on different nodes in the Ethernet. A task can be related to one or more

‘VxWorks can also be used in stand-alone machines as a real time operating system

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Network as Real Time Control Medium 16

sockets. The information read from or written to these sockets may come from or go to
different CPU’s or the same CPU running different tasks. In this way it is easy to collect
the information of all distributed tasks in a central CPU which has to combine it to control
a mechanical device. Backplane CPU’s can also collect this distibuted information to store
it in a RAM or NFS for evaluation or use it in a graphical userinterface. These two non-real
time processes - a y take much time and would be a real burden if queued in a real time
run. The distributive character of the network can be very useful in these situations.

Another great advantage is the fact that VxWorks is completely UNIX-compatible.
In other words, one can use the same UNIX standard in all types of CPU’s booted by
VxWorks. In the case of a PC-target this has several advantages. In the application of this
research, the serial line of the PC is used to give commands to the robot via the controller
(see Section 1.2). This serial line is a standard device in the VxWorks development for
the PC-target. To have access to devices in an UNIX environment, normally, the following
procedure principles are required:

devicef d = open(“devicename”, accessflag, opt ion) ;

read(devicefd,buffer-ptr,nBytes);

write(devicefd,bufferptr,nBytes);

close(devicefd);

......

.

.

in which devicefd is a handle label for the particular “devicename“; accessflag can
be O R D O N L Y , O-WRONLY or ORDWR corresponding to read only, write only or read/write
access; buffer-ptr is a pointer to the information buffer to be read or written.

This simple type of device access can also be used for the serial line in the PC. The
overhead of writing a difficuit piece of code to access the serial port is included in VxWorks
and can be handled in a standard UNIX form. In other words, it is possible to simply write
and read character-buffers to and from the serial port of the PC, without m y need fer
access procedures, specific for PC serial lines (RS-232-C).

PC’s used for real time applications are equipped with A/D and/or D/A cards. These
devices are non-standard and require a driver routine written by the user. After such a
driver is written it can be put dynamically in the list of available device drivers. Access to
these not standard devices can then be obtained in the same way as described above. Con-
tinuing these procedures for every device used in a particular real time control application,
makes it possible to develop a complete standardized operating system for this application.
This operating system can be easily transformed to another, since every module, whether
a device driver or task, is linked with the system at run time. This is desirable, since the
operating system kernel doesn’t have to be rebuilt every time a real time control applica-
tion is changed or extended. In other words, the VxWorks operating system is an open

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Network as Real Time Control Medium 17

system in many fields: real time code development, user-defined device access, network
programming, kernel development and running applications.

As mentioned before, VxWorks is used to control a 6 D.O.F. robot through a local
Ethernet. Because the axes of this robot are controlled by a hardware control device (see
Figure le l)7 only commands have to be send through to Ethernet. This makes the control
overhead rather limited. Nevertheless, the experiment illustrates many features of the use
of VxWorks and the network. Rather than giving an obscure listing of source codes of the
Ethernet control application, in Figure 3.1 the steps in such an application are depicted.
The hardware elements are emphasized in this illustration to make the steps more obvious
to the reader. Creation of sockets (connection to Ethernet to read and write character-

..... -- command i

.....

i=i+l

Write command

inionnation about

Figure 3.1: Steps in the Ethernet control of the Move Master

based data streams) and reading/writing from and to these sockets is executed by TCP/IP
network programming conventions. In the described implementation it is obvious that the
UNIX Workstation is the leading component in giving control commands. The Workstation
is the first to give the command and the last to confirm whether this command is actually
executed after which a new command can be given. The VxWorks machine (PC) is only

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Network as Real Time Control Medium 18

a gate-way for writing commands to the robot. If the control of the axes had to be done
by a real time software control algorithm, then this could be distibuted over the UNIX
Workstation and VxWorks. For example, the inverse dynamics could be computed by the
Workstation and the feedback-control of the axes as well as the 1/0 with the robot by the
PC.

3.3 con@Pusisns
In this chapter arguments are given to use Ethernet as real time control medium. The
UNIX-compatible real time software operating system VxWorks is narrated and its useful-
ness in such Ethernet applications is emphasized. The general structure of implementing
tasks within a host-target pair is also discussed. From this chapter the following conclusions
can be drawn.

o Using Ethernet opens the potential to control distibuted or complicated systems at
a real time basis.

o VxWorks provides a fully UNIX-compatible real time operating system, which can
be used across different CPU platforms.

o VxWorks is a scalable and flexible open operating system. The developer can use as
much of it as necessary. Moreover, it can be extended dynamically without rebuilding
the operating kernel.

o Standard Internet protocols, like TCP/IP, can be used to program the communication
through Ethernet.

o A complete set of tasks running on different or the same CPU’s can easily be syn-
chronized by an extended set of multitasking and intertasking tools.

o Non-time-critical components can be set aside fro= the rea! time control tasks.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Implementations and Experiments

The previous chapter discussed some features of the VxWorks operating system together
with methodologies for implementations in real time applications. This chapter narrates
about the implementation of a graphical userinterface and the programming of two tasks.
In Section 4.1 a pick-and-place task of an object is discussed. Section 4.2 discusses the
userinterface. Section 4.3 describes a second pick-and-place experiment. In this experiment
the robot is equipped with a laser range sensor near the end-effector (gripper) for detecting
the object. The chapter is concluded in Section 4.4.

4.1 Remote Control of Pick-and-Place task
Many robot tasks in industrial applications are simple pick-and-place tasks. Industrial
robots can be quite easily programmed by giving a list of commands to perform such tasks.
The list of available commands is very divers and scopes nearly all possible configurations
and movements of the manipulator. For example, it is possible to command a particular
joint with a specified modification of the joint angle (relative to previous position). This can
be executed with a specified speed and interpolation technique. Speed settings modify the
acceleration and the maximum speed when moving with a constant speed. Interpolation
settings modify the method of moving from position A to B, either linear, circular or smooth
interpolation. Such interpolations are generated by the controller itself and are based on
parabolic blends near the interpolation points. Figure 4.1 illustrates this interpolation.
Timer settings can also be used to delay executions of commands. This is useful when the
manipulator is part of a larger co-operating system in which tasks have to be synchornized.
The most frequently used command types are those to specify the movements of the center
of the end-effector. After all, this part of the manipulator has to execute the tasks, while
the other links have to move in that manner making this possible. The controller uses
inverse kinematics to compute the joint movements as function of time, taking into account
the interpolation method. The user simply provides a short command called “MP” with
additional numerical values specifying the desired final position of the end-effector. It is
obvious that addition of via point specifications results in a movement from A to B simular

19

Implementations and Experiments 20

vis Point 3

via Point 5 Find Point
4

Figure 4.1: Parabolic blends smooth a path with via points

to the way illustrated in Figure 4.1. In the considered pick-and-place task this MP command
is used to move from one point to another using a linear interpolation method. Figure 4.2
illustrates the implemented pick-and-place task. The task is implemented in the UNIX

#3 Approach Position Goal I

.. y # I Approach Position Object

!

I
I

#z object Position

Figure 4.2: Positons of the Pick-and-Place task

host which sends the commands one after another to the PC. The PC writes them to the
controller. Before a new command can be send, a message from the controller has to be
send telling the command list that the previous command is executed and a new command
is expected. This semaphore is executed by sending the command “WH” to the controller.
This command, an abbreviation of “Where?”, asks for the current position and orientation
of the end-effector as well as the three posture flags of the complete manipulator (see

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Imdementations and Experiments 21

Appendix B). Because this information can only be given if the manipulator is in a (new)
fixed position, the command list “knows” that the next command can be given. This
task is succesfully executed: the commands from the UNIX host arrived to the controller
and the controller could send the acknowledgements back to the UNIX. Evaluating these
acknowledgements showed that the positions detected by the joint-sensors were the same
as the pmitions given by the MP commands= In Appenclix C the source codes of this
experiment are given.

4.2 What’s happening?
Before any tasks will be executed in reality, it is wise to test them on a simulator. More-
over, since the robot is controlled remotely through the Ethernet, it is convenient to have
update information of the state of the manipulator. These two items can best be shown
by a graphical userinterface. Such an interactive tool makes it possible to easily program,
simulate and execute tasks together with a constant updating of manipulator states. The
design of an userinterface for the Move Master is discussed in this section.

Since displaying just numerical values is not a very clear way of keeping the user up-
to-date, a graphically displayed kinematic model of the robot is the best way to show
manipulator information. To implement tasks, a surveyable graphical control panel is
developed. Other control panels can start the simulation of the task or send the task to
the robot. Movements of the robot are shown by adapting the kinematic model, displayed
as a wire frame, and sensor information, displayed by numerical values.

This userinterface is developed with the X Window library. This library has a com-
plete set of standard window-components: buttons, canvas-windows, sliders, gauges, etc.
This library can be used in the C programming language, which makes coupling with the
real time task execution codes (VxWorks) very easy. The most important ingredient of
programming with X Window library is the callback. This is a piece of code describing the
handling of the user’s interaction with the userinterface. For example, if the user pushes
Q, firnction button, the callback code has to deal with this xticr, and make sure that the
demand of the user will be executed.

Figure 4.3 illustrates the userinterface as it is currently developed. Many modifications
and augmentations still have to be made. The upper left panel holds the command buttons,
a numerical value display (joint angles, position and orientation of the end-effector and the
posture flags together with a gripper open/close flag). Beneath the numerical value display
an O r i e n t a t i o n button can change the angle of view to the 2D map of the 3D manipulator
model, a Demo button shows a demonstration of a task in the canvas window and the Task
1 button executes the task described in the previous section. The last set of buttons can
change the angle of every joint seperately by incrementing the joint chosen angle with
PLUS or MINUS. The canvas window at the upper right shows the wire model of the Move
Master. Commands given at the control panel will change this wire model. The canvas
window at the lower right shows sensor information of the sensor fixed at the gripper of
the manipulator. The application of this sensor will be discussed in the next section.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Implementations and Experiments 22

4.3

Figure 4.3: Preliminary design of the userinterface

A little intelligence.. .
The pick-and-place task of Section 4.1 is only succesful if the object is placed at a predefined
location. In industrial applications this is usually the case. On the other hand, if the robot
has to pick objects from a conveyor belt which does not have frames to hold objects, it
might be useful to equip the robot-gripper with some sort of vision-based sensor, like a CCD
Camera or a laser range sensor. In this research a laser range sensor is used. This sensor
detects differences in height. The working area of the laser is just a square millimeter spot
and therefore it is necessary to perform more than one scan in order to localize the (center
of) the object. A geometrical algorithm has to control the movements of the end-effector
in such a way that the dimensions, position and orientation of the object can be found.
After that, grasping and placing the object can be done in the same way as described in

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Implementations and Experiments 23

Section 4.1.
The experiment is done with an arbitrary rectangular object. This object has to be

localized somewhere in an area known by the searching algorithm. Figure 4.4 depicts
this searching problem. Since the shape of the object is rather elementary, the searching

\ I #8 ADDrOaCh Position Goal e------- ..
i ”\,

I

Initial PC \ ”’ ’. Y-

Figure 4.4: The search-and-grasp problem
4

!d V
3

I

Figure 4.5: Two phases in precise scanning

problem can be executed with a straightforward algorithm. First the sensor has to do a
rough scan within the predefined area. During this scan he will roughly detect the object
somewhere. In that neighbourhood, the sensor has to scan more precisely. With this
last scan it is possible to calculate the position and orientation of the object. The two

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Implementations and Experiments 24

step procedure is illustrated in Figure 4.5: firstly, multiple scans along the y-direction of
the predefined area (Figure 4.4), which will result in knowledge of the orientation of the
rectangular object; secondly two more scans across the object, parallel with the main sides
of the rectangular, which results in knowledge of the position of the center point M and
the dimensions of the rectangular.

Scan I results in f0u.r points of intersection: A, B , C and D. If the lines lines AC and B D .
are parallel, they are points of two parallel sides of the rectangular. From this, the orien-
tation a in the 1cy plane, can be computed as

for O" 5 a 5 180" IC, - Ax1
J(Cx - Ax)2 + (Cy - Ay)2

sin(a) =

In Scan 11, a scan in the direction of a and a scan perpendicular to this direction are made.
This results in four points of intersection. Combining the coordinates of these points results
in the following equations

a = IC*D*l
b = IA*B*I

1
2

I?: - -b sin(a) = M, + k cos(a)

1
2
1
2

BY* + -bcos(a) = My + k sin(cr)

A: + -acos(a) = Mx - Zsin(a)

1
2

AY + -a sin(a) = My + Z cos(a)

from which the unknown parameters M,, My, k and 1 can be obtained by

1 o cos(cu) o
O 1 sin(a) O

o 1 o co+)

= O R I E N T . U = ñ 1 O O -sin(cr)

+zi = ORIENT-^.^ (4.3)

The inverse of O R I E N T can be computed in closed form, which results in a numerically
stable solution of U. Implementation of this scheme in a task list results in a succesful
grasping of the object after scanning. The algorithm is tested in the stand-alone PC.
In the future it will be tested and augmented in the remote control procedure, discussed
in earlier parts of this report. The sensor information can be send real time through
the Ethernet after which it can be displayed on the userinterface (see Section 4.2). Due to
limited time for this research, I could not finish the implementation of the search algorithm

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

I m p I e m e n t a t io n s and Experiments 25

and test the grasping of the arbitrary placed object with the Ethernet control. Since the
sensor information is tested to be send through the Ethernet and the procedure to give
commands through the Ethernet is already tested (see Section 4.1)) this procedure should
be able to perform successfully.

The pick-and-place task of Section 4.1 will be provided with a little more intelligence
such that the robot can find the object by itself without having to place the object at a
defined location. This procedure can be fastened and augmented to cases in which the
object is moving by using a camera instead of a laser range sensor. Such an experiment is
described in [14]. If the complete robot is given an extra degree of freedom (as will be the
case in the future), the possibilities will be even more extensive.

4.4 Conclusions
In this chapter some experiments and implementations of Ethernet control and the grasping
of objects are described. Although the available time made it impossible to finish the
experiments and implementions, the obtained results are satisfactory and emphasize the
potential of future research. From this chapter the following conclusions can be drawn.

e Using VxWorks as an operating system for the PC-target, executing a pick-and-place
task with the 6R manipulator through the Ethernet, is quite successful.

o An userinterface, written with the X Windows library, is implemented on the UNIX-
host. Commands can be simulated and send to the robot by this user-panel.

o The manipulator can grasp arbitrary placed rectangular objects with unknown di-
mensions if a laser range sensor is attached near the gripper. A geometrical algorithm
controls the movements of the end-effector .

o Grasping objects can be advanced by using a camera near the gripper. Also moving
objects can be grasped, especially if the robot is mobilized.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Chapter 5

Conclusions and Recommendations

In this chapter conclusions are drawn with respect to the research objectives as described
in Section 1.2. Moreover, some recommendations for future investigation are given.

o The inclusion of the main kinematic and dynamic aspects in a model is straight-
Real time model-based control forward but results in complicated formulations.

demands for distributed CPU-power.

o Networking, cross-development software and standard UNIX-systems provide the
opportunity to use the (local or global) computer network system as a medium for
real time control.

o Real time and non- real time jobs can be simultaneously distributed over different
CPU platforms.

o Experiments showed that the Ethernet pair: UNIX-PC results in a succesful execu-
tion of a pick-and-place task of the 6R manipulator remotely controlled by the UNIX
Workstation.

o A graphical userinterface is developed in the UNIX-host. Commands can be given
from this control panel and the movements of the robot can be illustrated by a
kinematic wire model .

e The robot gains a limited amount of intelligence, when equipped with a laser range
sensor. Rectangular shaped, arbitrary placed objects can be picked up after a number
of scans, under control of a geometrical algorithm.

The remote control idea is illustrated in this report. The pick-and-place experiment
through the net was succesful. The use of Ethernet was rather simple: only commands and
small batches of numerical information had to be transported through the net. Further
investigation should be done to the use of the network in more time-critical control tasks,
with a constant transport of control and sensor data. Because of the non-deterministic
behaviour of the Ethernet transport (collision detection and retry procedures) and (small)

26

Conclusions and Recommendations 27

time-delays in transport, this might give problems, which have to be solved by extended
testing and measuring.

The vision-based sensoring of a static or moving target object can be extended by
using a camera near the gripper and by mobilization of the robot. Together with the use
of network controll, this requires further research.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Bibliography

[i] Move Master user Manual, Mutsubishi Electric Corp., Model RV-E2.

[2] Wind River Systems, VxWorks 5.2, Programmer’s Guide

[3] Wind River Systems, VxWorks 5.2, Reference Manual

[4] Bloomer, J., “Power Programming with RPC,” O’Reilly & Associates, Inc., 1991.

[5] Craig, J. J., “Introduction to Robotics, Mechanics & Control,” Addison- Wesley Pub-
lishing Company, 1986.

[6] Kernighan, B.W. and Ritchie, D.M., “The C programming Language,” Prentice-Hall,
Englewood CliYrjrs, NJ, 1987.

[7] Manocha, D. and Canny, J.F., “Efficient Inverse Kinematics of General 6R Manipu-
lators,” IEEE Trans. Robotics Automation, Vol. 10(5):648-657, 1994.

[8] McKerrow, P. J., “Introduction to Robotics,” Addison- Wesley Publishing Company,
1991.

[9] Nicolson, E. J., “Standardizing 1/0 for Mechatronic Systems (SIOMS) using Real Time
UNIX Device Drivers,” Proceedings of the i994 IEEE International Conference on
Robotics and kuiomaiion, Vo1.4:3489-3494, 1554.

[lo] Paul, R.P., “Robot Manipulators: Mathematics, Programming, and Control,” The
MIT Press, Cambridge, MA, 1981.

[li] Pieper, D., “The Kinematics of Manipulators Under Computer Control,” Ph.D. The-
sis, Stanford University, 1968.

[la] Pardo-Castellote, G. and Schneider, S., “The Network Data Delivery Service: Real-
Time Data Connectivity for Distributed Control Applications,” Proceedings of the
i994 IEEE International Conference on Robotics and Automation, Vo1.4:2870-2876,
1994.

[13] Skowronski, J.M., “Control Dynamics of Robotic Manipulators,” Academic Press,
Inc., 1986.

28

Bibliography 29

[14] Smith, C.E. and Papanikolopoulos, N.P., “Grasping of Static and Moving Objects
Using a Vision-Based Control Approach” , Proceedings 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooper-
ative Robots, Vo1.1:329-334, 1995.

[15] Stone, H.W. , “Kinematic Modeling, Identification, and Control of Robotic Manipula-
tors,,, Kluwer Academic Publishers, 1987.

[16] Williams, T., “Fiber network supports distributed real-time systems,” Computer De-
sign, 29(17):60-62, Sept. 1990.

[17] Williams, T., ”Real-time Unix develops multiprocessing muscle,” Computer Design,
30(5):26-30, March 1991.

[is] Wells, D.A., “Theory and Problems of Lagrangian Dynamics,” Schaum, 1967.

[19] Young, D.A. and Pew, J.A., “The X window system Programming and Applications
with Xt OPEN LOOK Edition,” Prentice Hall, 1992.

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Appendix A

Frame Transformation Matrix

Consider the two arbitrary Cartesian coordinate frames 7; and in Figure A.1. The

Figure A.l: Transformation of an arbitrary frame to an other

matrix A transforms frame 7; into frame 3. This transformation can be decomposed into
a combination of primitive transformations (see Paul [io]):

Trans(z, O, O)
Trans(O, y, O) +- Translate y units along the Yaxis
Trans(0, O, z) +- Translate z units along the Zaxis

Rot(z, 19) + Rotate I9 degrees about the X axis
Rot(y, 0) + Rotate 19 degrees about the Yaxis
Rot(z, 19) + Rotate I9 degrees about the Zaxis

+ Translate IC units along the X axis

These six primitive homogeneous transformations matrices are

r i o o IC1
Trans(z, O, O) = I o o 1

30

Frame Transformation Matrix 31

r l o o o 1
0 1 0 y

Trans(0, y, O) = (o o 1 0 1

Trans(0, O, z) = i ; 0 ; ; i

L o o o i 1
cos8 -sin8 O O

Rot(2,B) =

Applying (A.l) , the Denavit-Hartenberg link coordinate frames,
specified such that the forward transformation matrices A; are prescribed by

for i = 1, . . . , n, are

A; = Rot(z, O;) Trans(0, O, d;) Trans(a;, O, O) Rot(z, a;) (A.2)

which results in

1 i O O O 1

cos (O ;) - sin(û;) cos (a;) sin(8;) sin(a;) a; cos (8;)
A; = sin(@;) cos(@;) cos(a;) - cos(I9;) sin(a;) a; sin(I9;)

O sin(a;) cos(a;) di

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Appendix I3

Inverse Kinematics of the 6R Move
Master

The user prescribes a set of positions, orientations and three posture-flags for the end-
effector relative to user-defined base frame. The problem is to find the six joint angles
which correspond to this prescribed information, summarized in the vector
[ze, y,, ze, a,, ,Be, ye, f lagl, f lagz, flag3]*. The set of non-linear equations to solve are:

in which

= 'Tl(O1) 'T2(@2) 2T3('93) 3T4(04) 4T5(05) 5116(06) 6 T e

rll f 1 2 r13 z e

r21 r22 r2.3 Ye

r31 r32 T33 ze
0 0 0 1

I COS a e COS D e

sin
COS a e sin P e sin Y e - sin COS 7, COS a, sin P e COS ye + sin a, sin 7,

sin D e sin ye + COS a e COS ye sin a, sin pe COS ye - COS a, sin ?e COS ,Oe sin
- sin ,Be cos Be sin y, C O S P ~ COSY,

(B.1)

and ;-lT; are consecutive link frame transformations (Appendix A).
Figure B.l illustrates the three flags. The position of joint five can be computed by

32

Inverse Kinematics of the 6R Move Master 33

h
Flag 1

d L

F l a g 2 F l a g 3

Figure B.l: Illustration of the three posture flags

From Figure B.2 it is obvious that 191 can be calculated as

81 = Atan2('PSY, OP5,) if flag 1 is Right
61 = Atan2(-oP5Y, -'Psz) if flag 1 is Left

For the solution of Q3 the following relations are valid (see Figure B.3) :

= cos(81) + OP5Y sin(&)
kl = l P g X - L2
k2 = OPgZ - L1

k3 = 1/L4+L5
a = Atan(L4, L5)

(k12 + - L32 - k32)
COS(83*) =

2 L3 k3

sin(&*) = 4-
û3* = Atan2(sin(û3*), COS(&*)) if flag 2 is Above
63* = Atan2(-sin(03*), COS(&*)) if flag 2 is Below
03 = 03* + a (B.5)

For the solution of 192 the following relations are valid (see Figure B.4) :

,û = Atan2(kz,Ll)

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Inverse Kinematics of the 6R Move Master 34

)
k12 + k22 + L32 - k32

7 = ACOS(

0 2 = - P - y i f & * > O
82 = - @ + r i f 83* < O

2 L3 d m

The last three joint angles 4,s and 6 can be solved easily if the corresponding three frames
are moved to the origin of the 5th joint frame. Kinematically, this situation is identical
to the real situation. The advantage of this is that the last three links and joints can be
seen as an so called Euler Wrist, which rotates the end-effector by Z-Y-Z Euler angles
relative to the third frame. The corresponding rotation matrix can be described by:

1 cos 194 cos û5 cos 196 - sin û4 sin 86 - cos û4 cos û5 sin û6 - sin O4 cos 06 cos û4 sin 0 5

sin 04 cos O 5 cos 06 + cos 04 sin 06 - sin û4 cos 6 5 sin 66 + cos û4 cos 06 sin û4 sin 85
- sin 05 cos 06 sin05 sin06 cos 0 5

(B-8)

3R6 is know by:

Considering (B.8) the solutions of the last three joint angles can be computed as follows:

û4 = Atan2(3a6y, 3u6x)

85 = Atan2(4(3n6z)2 + (306z)2, 3a62)

06 = Atan2(o6 , ngZ) 3 2 -3

choose: O" 5 I95 5 180"
if 3a62 = O and 3u6Y = O

I94 = o
O5 = O
66 = Atan2(-306x, 3n6x)

(B.lO)

(B.ll)

(B.12)

(B.13)
(B.14)
(B.15)

û5 = 180" is also a case, but since this angle is out of the physical range of the Move
Master, this situation doesn't have to be considered.

MecRa n ica 1 Engineering Laboratory, Tsu ku &a Science City, 9 a pan

Inverse Kinematics of the 6R Move Master 35

Figure B.2: Geometrical solution of 61

5

Figure B.3: Geometrical solution of 63

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Inverse Kinematics of the 6R Move Master 36

5

L
Figure B.4: Geometrical solution of û2

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control

/* taskl-h0st.c: pick and place task for Hove Raster robot. This program runs
on UBIX and communicates nith its vxWorks counterpart: taskl-target.c
*/

#include "task. h"

#define REG-SIZE (1)
#define STDIO-FILEBO (O)

main ()
{

struct sockaddr-in hostdddr; /* address of server */
struct sockaddr-in targetAddr; /* address of client */
int sockAddrSize = SizeofchostAddr);
int fds, fda, i;
int clen, nRead;
char character, READY Li71 ;
char nhatsinbuffer[64] ;

/* set up local address of inet domain socket */

memset (&hostAddr, O, sockAddrSize) ;
hostAddr.sin-family = PF-IBET;
hostAddr.sin-port = htons(SERVER-PDRT-NUH);
hostAddr.sin-addr.s-addr = htonl(1NADDR-ANY);

/* grab the internet domain socket */

if ((fds = socket(PF-IBET, SOCK-STREAR, O)) == -1)

perror("socket") ;
close(fds);

>
/* bind socket to hostAddr */

if (bind(fds, (struct sockaddr*)&hostAddr, sockAddrSize) == -1)
{

perror("bind") ;
close(fds);

1

/* put your ear on the binding and listen for a connection request */

37

Source Code Ethernet Control 38

if (listencfds, MAX-QUEUED-CDliHECTIDliS) == -1)
c

perror("1isten") ;
close(fds);

3

/* nhen the binding is ringing: answer and accept a connection */

if ((fda = accept(fds, (struct sockaddr*)&targetAddr,
LsockAddrSize)) == -1)

I
perror("accept") ;
close(fda1;

3
else

printf ("Request for connection with target accepted\n") ;

if ((nRead = read(fda, (char *)&READY, sizeof(READY))) == -1)
{

perror("read") ;
closecfda) ;
close(fds);
exit(í) ;

3

printf ("target said: %s\n",READY);

/*******************start transmitting conunands+++*+**********+i++*i++/

char command:![] = "wh\r";
write (fda, (char *)&command:!, sizeof(comand2));i= O;
if(read (fda, &character, REC-SIZE)) nhatsinbuffer[i++]=character;
whileccharacter != '\r') {
if(read (fda, &character, REC-SIZE))
nhatsinbuffer[i++l=character;

printf("Reading size of buffer: %d\n", i);
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

/*******************next command***********************************/
/* gripper open */

char comandi[] = "go\r";
write (fda, (char *)&commandl, sizeof(comand1));

3

/*******************confirmation*************************~********/

write (fda, (char *)&command:!, sizeof(command2)) ;i = O;
if(read (fda, &character, REC-SIZE)) whatsinbuffer[i++l=character;
while(character != '\r') {
if(read (fda, &character, REC-SIZE))
nhatsinbuffer[i++]=character;

printf ("Reading size of buffer: %d\n", i) ;
printf ("Reading contents of buffer: %s\n", nhatsinbuffer) ;

/*********+******next command .
/* goto position #O */

char command3 [I = "mp 500 ,O, 500, i80 ,O ,90\r" ;
nrite (fda, (char *)&Comand3, sizeof(command3));

3

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control 39

write (fda, (char *)&command2, sizeof(command2)); i = O;
if(read (fda, &character, REC-SIZE)) whatsinbuffer[i++l=character;
nhile(character != {
if(read (fda, &character, REC-SIZE))
whatsinbuffer[i++]=character;

printf ("Reading size of buffer: %d\n", i) ;
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

1

/**+*************next command .
/* goto position #2 */

char command4[] = "mp 600,0,145,180,0,90\r";
write (fda, (char *)&command4, sizeof(command4));

/*******************confirmation**********************************/

write (fda, (char *)&command2, sizeof(command2)); i = O;
ifhead (fda, &character, REC-SIZE)) whatsinbuffer[i++]=character;
whileccharacter != '\r') {
if(read (fda, &character, REC-SIZE))
whatsinbuffer[i++]=character;

printf("Reading size of buffer: %d\n", i);
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

1

/****************ne*t command .
/*

char commandO[] = "gc\r";
write (fda, (char *)&commando, sizeof(command0));

gripper close -> grasp object */

write (fda, (char *)&command2, sizeof(comand2));i= O;
if(read (fda, &character, REC-SIZE)) nhatsinbuffer[i++]=character;
nhile(character != '\r') {
if(read (fda, acharacter, REC-SIZE))
whatsinbuffer Ci++]=character;

printf("Reading size of buffer: %d\n", i) ;
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

1

/*********+******next command .
/* goto position #3 */

char command5C1 = "mp 480,-250,300,180,0,0\r";
write (fda, (char +)tcomand5, sizeof(comand5));

write (fda, (char *)&command2, sizeof(command2)); i = O;
if(read (fda, &character, REC-SIZE)) nhatsinbuffer[i++]=character;
whiie(character != {
if(read (fda, &character, REC-SIZE))
what sinbuff er [i++] =character ;

printf ("Reading size of buffer: %d\n", i) ;
printf ("Reading contents of buffer: %s\n" , whatsinbuffer) ;

/****************next command .
/* goto position #4 */

char command6[1 = "mp 480,-250,220,180,0,0\r";
write (fda, (char *)&command6, sizeof(command6));

>

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control 40

write (fda, (char *)&comand2, sizeof(command2));i= O;
ifcread (fda, &character, REC-SIZE)) nhatsinbuffer[i++]=character;
while(character != '\r')
if(read (fda, &character, REC-SIZE))
nhatsinbuffer[i++]=character;

printf ("Reading size of buffer: #d\n", i) ;
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

3

/*********+******next command .
/* goto position #O */

char command7[1 = "mp 500,0,500,180,0,90\r";
write (fda, (char *)&commandï, sizeof(conunand7));

write (fda, (char *)&command2, sizeof(command2)); i = O;
if(read (fda, &character, REC-SIZE)) nhatsinbuffer[i++l=character;
while(character != >\r') {
if(read (fda, &character, REC-SIZE))
nhatsinbuffer[i++] =character ;

printf("Reading size of buffer: %d\n", i) ;
printf ("Reading contents of buffer: %s\n", whatsinbuffer) ;

/*******************end of task***********************************/

char comande[] = "ed\r";
write (fda, (char *)&comande, sizeof(commande));
printf ("send end-of -task comand\n") ;

3

close(fds) ;
close(fda);

3

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control 41

/* taskl- target.^: pick and place task for Move Master robot. This program runs
on VxWorks and communicates nith its UEIX counterpart: taskl-h0st.c
*/

#include "vxWorks . h"
#include "f cntl . h"
#include "tyLib. h"
#include "ioLib. h"
#include "netinet/tcp. h"
#include "sys/socket . h"
#include "in. h"
#include "stdio . h"

#define SERVER-PORT-BUM (5001)
#define MSG-SIZE (64)
#define MAX-QUEUED-COBBECTIOBS (4)
#define SERVER-IBET-ADDR "150.29.102.37" #define MAX-DATA 2
tdef ine SERIAL "/tyCo/O"

STATUS TASKl(void)
<

int fds, i;
struct sockaddr-in hostSockAddr;
char commandC641, nhereC641, character;
char
int SOCK-ADDR-SIZE = sizeof(struct sockaddr-in);
int sFd;
int optval;
int nRecv, data;

/* create socket */

readyCl71 = "ready to receive";

if ((sFd = socket (PF-IBET, SOCK-STREAM, O)) == -1)
1

perror("socket") ;
close(sFd) ;

1

/* set socket options */

optval = 1;

setsockopt(sFd, IPPROTO-TCP, TCP-EODELAY, &optval, sizeof(optva1));

/* build server socket address */

memset (áhostSockAddr, O , SOCK-ADDR-SIZE) ;
hostSockAddr.sin-family = PF-IEET;
hostSockAddr.sin-port = htons (SERVER-PORT-HUM);
hostSockAddr.sin-addr.s-addr = inet-addr (SERVER-IBET-ADDR);

/* connect to server */

if (connect (sFd, (struct sockaddr*)&hostSockAddr,
SOCK-ADDR-SIZE) == -i)
<

perror("connect") ;
close(sFd);

>
printf ("connected to server\n") ;

/* nrite a message to the server that ne want to receive a command */

if (write (sFd, (char *)&ready, sizeofcready)) == -1)

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control 42

I
perror ("wr i te t o host") ;
c lose(sFd) ;

1

p r i n t f ("Request f o r r ece iv ing commands from t h e host\n") ;
f d s = open(SERIAL, O-RDUR, O);

while (comande01 != ' e ' && c o m a n d i i j != ' d ' j i
i = O ;
if (read(sFd, &charac t e r , 1))

command[i] = cha rac t e r ;
if (wr i t e (f d s , (char *)&charac te r , i) == -1)
{

perror ("wr i te t o s e r i a l l i ne") ;
c losec fds) ; close(sFd) ;
e x i t (i) ;

>
>
w h i l e (i) I

i++ ;
if (read(sFd, &charac t e r , 1) == -1)
{

perror (" read from host") ;
c losec fds) ; close(sFd) ;
e x i t (i) ;

>
{
if (wr i t e (f d s , (char *)&charac te r , i) == -i)

perror ("wr i te t o s e r i a l l i ne") ;
c losec fds) ;close(sFd) ;
e x i t c l) ;

commandCi1 = cha rac t e r ;
if (cha rac t e r == ' \ r 7) break;

>

>
p r i n t f ("COHHABD w r i t i n g t o 1s: %s\n",SERIAL,command) ;

if (command[O] == ' H ' && comandCl1 == 'h '
I

i = O ;
if (r eadc fds , kcharac te r , 1))
{

nhere[i] = cha rac t e r ;
if (wr i t e (sFd, (char *)&charac te r , i) == -1)
I

perror ("wr i te t o host") ;
c lose (fds) ;close(sFd);
e x i t c l) ;

3
>
whi le(1) {

i++ ;
if (r ead (fds , &charac te r , i) == -1)
{

perror (" read from host") ;
c losecfds) ;close(sFd) ;
e x i t (1) ;

>
I
if (wr i t e (sFd, (char *)&charac te r , i) == -1)

perror ("wr i te t o serial l i ne") ;
c lose (fds) ;close(sFd) ;

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

Source Code Ethernet Control 43

exitcl) ;
>
nhere[il = character;
if (character == '\I-') break;

>
1

1
close(sFd);
cïoseifdsj;
exit(1) ;

Mechanical Engineering Laboratory, Tsukuba Science City, Japan

	Voorblad

	Contents

	List of Figures

	List of Tables

	Summary

	Acknowledgements

	1. Introduction

	2. Kinematics and dynamics of the 6R Robot

	3. Network as Real Time Control Medium

	4. Implementations and Experiments

	5. Conclusions and Recommendations

	6. Bibliography

	Appendix A
. Fram Transformation Matrix
	Appendix B. Inverse Kinematics of the 6R Move Master

	Appendix C. Source Code Ethernet Control

