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A GENERALIZED ADVANCING FRONT MODEL DESCRIBING THE OXYGEN

TRANSFER IN FLOWING BLOQD

J.M.M., Oomens and J.A.E., Spaan
Department. of Mechanical Engeneering, University of

Technelogy, Eindhoven, the Netherlands

INTRODUCTION

It is well known from literature that under certain conditioms
the steady state transport of oxygen in flowing blood can be des-
cribed relatively simple when a sharp boundary (advancing front)
is assumed between oxygenated and unoxygenated blood (4).

Advancing Front (A F) theories have been used to predict oxygen
transfer rates in membrane oxygenators (e.g. 2,5). Advancing Front
models presented in literature -( 2,3,4,5,6) have been derived for
specific geometries of the flow channel and well defined velocity
profiles. A general A F theory would be useful to predict oxygen
transport performance. for the variety of flow geometries and flow
conditions encountered.in experimental studies with membrane oxyge-
nators and to analyse the data of existing oxygenators. In this
work a general A F theory is presented.

The derivation of the more general A F theory will be dome
for an oxygenation situation as given in Fig. | and under the
following conditions: the flow in the oxygenation channel is
fully developed laminair flow,.the hemoglobin distribution in the
blood is considered to be uniform, the diffusion of oxygen in the
flow direction is neglected with respect to the diffusion perpen-
dicular to the flow, the oxygen tension outside the flow channel
is constant, and the diffusion of hemoglobin and oxyhemoglobin
is neglected. The basic assumptions for the A F theory are the
following: the oxygenation reaction is instantaneous, a large
difference. exists between the initial oxygen partial pressure in

" the blood and the partial pressure in the gas side, and the oxygen
flux through the membrane and the saturated blocd layer is consi-
dered to be comnstant by given z*.
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234 J.M.M. OOMENS AND J.A.E. SPAAN
MASS TRANSFER EQUATIONS

The dimensionless transfer equations which determime the 02
transfer in flowing blood can be given by (1,2,3 and 6)

32c A

w7 = f(x )»—% (C + h.5) flat duct (1)
dx 9z
1 d * 3. 3
— o —x {r - =) =£(r ) +—5 (C+h.8) tube (2)
T T or - 3z

Equations 1 and 2 represent a differential mass balance where
at steady state the diffusion of oxygen into a blood volume is
balanced against the convective removal. In the above equations
z#; £(x*), £(r*)}and x¥, r¥ are rhe dimensionless flow channel
length, the dimensionless velocity profile, and the depth in
the blood layer, respectively, and are given by

flat duct tube
z = ZQDZ (3] = 2Dy (4
d°.v RZ.V
£(x )=V, (x) /T () £ =V (/7 (6)
XH= x/d (7) r“= r/R (8)
r— z% L
z% = Q0 P 02 gas s ide e . i ¢ P
x'.':, r% - ‘ — -
) " membrane’ = ©
x® = — —
1--.': = 1 blood
dq
| A F by z¥
AF |
X% = 1 — — — —
r:'-' = 0 L Ci Pl
fig. la flat duct wal¥ or fig. 1b flat duct
tube centre line T~ tube

Figure 1. Schematic diagram of an oxygenation channel. The

blood 1is separated from the gas side by a permeable membrane.

a) Path of the A F front with a general velocity profile.

b) Corresponding 0, concentration—partial pressure profiles in
‘the blood and tﬁe membrane by given channel length z¥.
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The corresponding boundary conditions for equations 1 and 2
are (see also figure 1)
flat duct tube

All x¥%; 2%<0; C = Ci (9) All r#; z%<0; C = Ci (10)

blood membrane interface

cw/czv = Com/am (n Cov/“v = Com/“m (12)
x%=032%20;D (Bx") =D (ax,g (13)ir%=1;2%20;D (ar“) =D (ar~ (14)
conditions of no flux in the solid wall or center line
aC <
wi=13ALL 2% 200 =0 (1) r=0;a11 w25 =0 (16)

Because of the A F assumptions the following equations obtain
within the saturated part of the blood layer

d ac d - dc
E;E'[%v,m szﬁ =0 (17) IoE [rn'D { = ﬁ =0 (18

v,m  dr#*
Integration of equaticns 17 and 18 result in the following formulas
for the 0, concentration profiles

2
- - - X
C = C.,+(C_~C.0 & (19)

_ , 1o ¥ _ ln r*
C=C; ¢ Thaw * Coyllm Tem (20)

The A F equations may be obtained by integration of the dif-
ferential equations 1 and 2, from the blood membrane interface to
the A F and from the front to the umpermeable wall respectively
the tube centre line (6). In performing the integration procedure,
the 0, concentration and saturation profiles as well as the boun-
dary conditions haveto be used. This results for the tube in

* *

‘q
dz*=iﬂ-q.F(q)(]nq-2M)+ ETTF%?EET ( gh.Inq.f(q)dq'2M~£h.f(q)dq) dqg (21)

The flow averaged saturation at a dimensionless distance z® is

» q‘.'.‘

S = Z‘j"q‘f(q)dq + 8,02 f q-£{q)-dq (22)
q:'.-

Integration of equation 21 together with 22 results in the general

A F model for the tube. It is given in terms of four dimensionless

numbers L%, H, M, and £ and three integral formulas Iy, 12 and I3.
For the flat duct and the tube the general A F equations become

L¥*=H(I,*M 1])+13 (23) f=1 (24)




236 J.M.M. DOMENS AND J.A.E. SPAAN

Where L* is the dimensionless length of the flow channel, H is the
ratio of the remaining O, uptake capacity of the entering blood and
the concentration differénce between the entering blood and the gas
side, M is the relative membrane resistance, and f the fractional
saturation change. I , I and I depend only on the velocity profile
and the chosen flow chanfiel geoletry. Equations 23 and 24 are pre-—
sented for a general velocity profile and geometry of the flow
channel. Tabel! ¥ gives an overview and comparison of the terms of
the equations for the tube and the flat duct geometry. Equation 23
can be subdivided in three characteristic parts wich represent the
three influences that determine the depth of penetration of the
oxygenation front in the bloodlayer at a given dimensionless length
of the flow channel L%,

H-I2 represents chemical reaction (23a)
H-M-I1 represents the membrane resistarce {(23b)
13 represents physically dissolved oxygen (23c)

The effect of the membrane resistance or the physically dissolved
Oxygen can be neglected simply by setting M or I equal to zero.
Under normal conditions the chemical reaction te®m determines for
85% the required flow channel length, the membrane resistance for
10Z and the physically dissolved oxygen for 5%. Therefore a closer
examination of the integral term 12 in the equation 23 is necessary.

The physical significance of the integral term I. and the
effect of the velocity profile will be investigated f6r the flat
duct geometry. 12 can be defined from figure la as the dimensionless
saturated flow moment. It is the sum of the flow in parallel dif-
ferential saturated layers ( f(q) dg) times the diffusion pathways
q travelled by the 02 to reach these layers,

w

q
I,= I (£(0)dq)-q = § q-f(q)dq (41)

0

The saturated flow moment allows to quantify the (intuitive) sup-
position that a large part of the flow close along the blood gas
interface achieves more effective oxygenation than flow far from
this interface. In terms of a flow moment, one can say that by a
fixed saturated flow (a fixed amount of 0O uptake in the blood),
the smaller I, the shorter the needed dimensionless flow chanmnel
length. Since™I, is only determined (for a given f) by the funetion
£(q) it is cleaF that the influence of £(q) on I, can be studied by
a velocity distribution that depends on one paramieter only in which

the flow can be brought either close or far from the blood gas
interface by charige of that parameter. Such a velocity profile for

example is represented by the formula
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n
Vz(x)=A'('}d£) (45)

and the reversed function
n
Vy(x)=A-(1-D) (46)

with 0 = n = @ and coupled by n=0. The mean velocity for both
profiles is given by

V_(x) divided by V yields the dimensionless velocity function
£¥x*). For equation 45 and 46 f£(x*) becomes respectively

n

£(x%) = (o + 1)-(x®)" (48)

£ (x=': ) n

I

(o + 1)-(1 - =%) (49)

The corre5pondi%g integrals L, can be calculated for eq. 45 as
Ip=(n+1) - j q- (@)™ dg = [(n+l)/(n+2)] &n+2 (49)
and for 46 as ”
I,=(n+1) ?q(l—q)“dq=<n+1>/<n+z) [(l-q"i“’“%]- [(1—&‘)“”—1}(50)
In figure 2,1, is given for several values f (equals I.) as a

function of tﬁe velocity parameter n. The upper part 0% figure 2 !
represents the velocity profiles for different values of n.

0

z 2
E._g__% éE?I? o eiorene

Figure 2 The variation of the flow moment with the velocity
parameter for various values of the fractional saturation change.
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It can easily be seen that the greater the flow along the membrane
the better the oxygenation. There is a great change in the satura-—
ted flow moment for values of ng2. This is also the region where
such velocity profiles are encountered in existing membrane oxy-
genators. Plugflow is represented by n=0, nearly parabolic flow by
n={, shearflow by n=1, and nearly couvette flow by n=2. In the
development of an oxygenator the therm I, can be helpful in choos-
ing an appropriate velocity profile for the device.

The general A F model presented here depends on situations
where only one side of the flow channel is permeable to oxygen.
For the case of membranes on both sides of the channel, eq. 23 and
24 and the equations in tabel I are still applicable. With symmetri-
cal flow in such a channel, the penetration depth g now varies
between 0 and i. The problem of membranes on both sides and an
asymmetric flow profile in the channel can be solved by utilizing
the one membrane equations presented here and through the use of
the appropriate velocity profiles ome has to preform two calcula—
tions to determine the penetration depths q] and ¥ at either side
of the membranes. The modelling of. the two merbrané channels by two
one membrane channel 15 Valld as long as ¢ +qh<1 The blood is
fully saturated when ¢ +q c=1. Slmllarly to flgure 2, (when I,.M=0)

1 72,

I, as a function of n 1s given in figure 3 for q +q 1 (f= 1;
Comparison of figures 2 and 3 shows that a chsnnel with membranes
on both sides reduces the flow moment three to four times compared
to the one membrane channel for the case I =f=], For the region
ng2 the influence of the velocity profile on I.is not very signi-
ficant. This is contrary to the behaviour shown in figure 2.

CONCLUSIONS

Derivation of A F equaticons from the generalised A F model
{equations 23 and 24) for a given flow-oxygenation situvation, redu-
ces the gquestion to the resolution of three simple integral formu-
las. The defined flow moment can be used to quantify the mean in-

fluence of the velocity profile on the dimensionless length of a
flow channel.

P
2 == membr ane

i
.15 0 b l___,é n
1\ F=1"
1.05 V=A+ ("
d
—i e L

0 1 2 3 4 5
Figure 3. The influence of the flow parameter on the flow moment
for the two membrane channels with an asyvmmetric velocity profile.
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NOTATION
A = constant
Gy T solubility coeff. of 0, in the membrane material
a, = solubility coeff. of 02 in blodéd plasma
Cg 0, concentration
{ = 1initial oxygen concentration

0, concentration in the membrane at the blood interface
0, concentration in the blood at the membrane interface
0, concentration -
cﬁannel height
membrane thickness
= diffusion coeff. of oxygen in membrane
diffusion coeff. of oxygen in blood
max 0, binding capacity
1engh% of the flow channel
veloclity parameter
blood flow rate
" distance from the origin to the A F
constant partial pressure. in the gas side
initial uniform partial pressure in the blood
partial pressure at the blood membrane intexrface
dimensionless distance from the origin to the A F
radius
inner radius of the tube
oxygen saturation
average oxygen saturation
initial oxygen saturation
mean velocity
local velocity
depth in the channel
= distance along the flow channel
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