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Summary 

This report presents a review of the available literature on Control Structure Design (CSD) for 
dynamic systems. In control system design, CSD is preceding the actual controller design and is 
defined as the stage in which decisions are made on the number, place and type of actuators (inputs) 
and sensors (outputs) to be used (Input/Output (IO) selection phase) and on the interconnections 
between measured and manipulated variables (Control Configuration (CC) selection phase). CSD 
has only been paid limited attention to, although an appropriate selection and pairing of measured 
and manipulated variables is as im-portant 3s contrn!!er desigr, itse!f: 2. wïûzg ch~ice for the 
controller structure may put fundamental limitations on the system’s performance, which cannot 
be cwercome by advanced coiltroller design. Moreover, the compleraty of a controi system is largely 
determined by the underlying control structure. For these reasons, CSD is a very important issue 
in modern control system design. 

The main purpose of this exploratory study is to get an overview of the work that has already 
been performed in this area. Since CSD is particularly important for large-scale systems, most 
of the literature on CSD is published in the area of process control. However, applications in 
aircraft control and control of mechatronic systems have also been encountered. Unfortunately, 
the literature on CSD is largely restricted to linear control systems. 

In this report, eleven different approaches for the IO-selection phase and twelve for the CC- 
selection phase are shortly discussed and compared. A simultaneous solution of both stages in CSD 
has not been found in literature; IO-selection and CC-selection are always treated successively. 
The various methods are assessed for some aspects which are practically important, e.g., is the 
method generally applicable?, is it independent of the controller?, is it efficient/effective?, does 
it account for robust stability/performance?, is the theory well developed? Only a few of the 
methods discussed appear to be directly applicable to nonlinear control systems. Unfortunately, 
these methods seem not very effective, so additional selection criteria have to be applied before 
an appropriate control structure selection is possible. 

The main conclusion of this report is that intensive further research has to be done in the area 
of CSD for both nonlinear and linear control systems, since none of the currently available CSD 
methods seems to be completely satisfactory. 
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a 

ai 
A 
aij 
Ai j 
diag [ aii] 
Hock diag[Aai] 
A-1 
A H  
a’, AT 
A 

column 
i-th element of a 
matrix or transfer function 
ij-th element of A 
ij-th block (“subsystem”) of A 
diagonal matrix with elements ai; (diagonal elements of A) 
biock diagonal matrix with blocks A;; (diagonal blocks of A) 
inverse of A 
complex conjugate transpose of A 
transpose of a ,  A 
perturbed matrix/transfer function A 
perturbed element aij 

first order time derivative of a 
maximum singular value of A 
minimum singular value of A 
1-norm of a 

Abbreviations 
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CSD 
DBRG 
DCLI 
DIC 
(D)NBRG 
DOF 
FDLTI 
IMC 
IO 

MILP 
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MRI 
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NMP 
PID 
PRGA 
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LQ(W 

Block Relative Gain 
Control Configuration 
Closed Loop Disturbance Gain 
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Dynamic Block Relative Gain 
Decentralized Closed Loop Integrity 
Decentralized Integral Controllability 
(Dynamic) Nonlinear Block Relative Gain 
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Internal Model Control 
Input /Output 
L k e x  Quadïatic (Gaussian) 
Mixed Integer Linear Program 
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Niederlinski Index 
NonMinimum Phase 
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Chapter 1 

Introduction 

This report presents a survey of recent literature in the field of Control Structure Design (CSD) 
for dynamical systems. The fundamentals of the various methods are explained. This study is 
performed in the initial stage of a research into CSD for nonlinear dynamical systems. The main 
purpose of this exploratory study is therefore, to get an overview of the work that has already 
been performed; this survey is certainly not exhaustive, since izevitably some of the relevz~t work 
is left out. Unfortunately, the literature studied is largely restricted to linear control systems. 
Therefore, in future research it has to be investigated if it is possible to adapt or generalize some 
of the concepts for linear systems for use in nonlinear control system design. 

Roughly, control system design consists of performing the following steps [$I: 
1. definition of the control objectives/specifications 

2. modeling of the system to be controlled 

3. control structure design 

4. controller design 

5. control system evaluation and tuning (simulations/experiments) 

6. controller implementation 

Note that it is not always possible, nor desirable, to perform these steps successively, e.g., the 
controller design may call for a more accurate system model, or closed-loop simulations may 
indicate the need for a different control structure. 

While studying literature, it has been noticed that different definitions are used for the third 
step, Le., the 77control structure design” phase. In this report, it is specified as follows: 

control structure design is the stage of control system design, in which one decides 
on the number, the place, and the kind of actuators and sensors to be used and on the 
internal controller structure interconnecting measured and manipulated variables. 

The first phase in CSD, which involves choosing measured and manipulated variables to be used 
for closed-ioop feedback control, wiil be cailed the bnput/Output selection phase (IO-selection 
phase). It is emphasized, that in this context the term ”output” is referring to measured variables 
and not to variables to be controlled: the latter are strongly related to the control objectives and 
have to be formulated preceding the CSD. The second phase in CSD will be referred to as the 
Control Configuration selection phase (CC-selection phase), and is preceding the determination 
of the appropriate control law. This phase is particularly important for decentralized control 
systems (see, e.g., [5, 70]), and refers to the process of specifying how the selected measurements 
should be fed back to the selected manipulated variables. This process is sometimes referred to 
as ”partitioning” of the inputs and outputs [54, 561. 
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exogeneous inputs tu(.) 

I c 

CHAPTER 1.  INTRODUCTION 

controlled outputs z(s) c 

I I I 

inputs 

controller: IC(s) 

Figure 1.1: General framework for linear control systems 

Contrary to centralized control, in a decentralized control system there is only a limited infor- 
mation flow through the controller, ie., the controller does not determine all system inputs from 
all system outputs. In a decentralized control system one tries to independently control particular 
subsystems of the full system. The motivation for decentralized control may stem from hardware 
and design considerations [18, 471: technically or economically it may not be feasible to apply 
a fully centralized controller, and moreover the controller design may be simplified, since fewer 
controller parameters need to be chosen than for the full system. 

In [BO], it is stated that the problem of control structure selection does not end with the design 
phase: following control system commissioning, changing process conditions or market demands 
may alter the dynamics of a plant significantly, by which a redefinition of the control structure is 
necessary. 

The effect of CSD for linear systems under feedback control is illustrated in Fig. 1.1; this control 
system representation is adopted from [SI. The system is described by the following two relations: 

Note that the transfer function matrices Pzu, Pyw and Pyu are not defined (as indicated by the 
question marks in Fig. 1.1) until a subset of the candidate measurements and manipulations have 
been selected for closed-loop control, for the purpose of satisfying the control objectives repre- 
sented in o. In the CC-selection phase it is decided which of the entries in the controller matrix 
I - ( s )  should be chosen structurally zero and which not. In [29], it is discussed that after certain 
modifications in the system description, the controller matrix K ( s )  can always be represented by 
a more commonly used block diagonal form. 

The motivation to focus on the subject of CSD is, that it is as important os the actual con- 
troller design. In [35, 361, it is stated that a wrong choice of actuators and sensors may put 
fundamental limitations on the system’s closed-loop performance, that cannot be overcome by 
advanced controller design. Moreover, the complexity of a control system is largely determined by 
the underlying control structure [56]. A possible definition of complexity is the sum of the number 
of inputs and outputs selected and the number of feedback interconnections between them [54, 
Chapter 51. In general, the more complex a control system is, the more it costs, the harder it is 
to maintain and the less reliable it is. For these reasons, CSD is a very important issue in control 

, 
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system design. Unfortunately, contrary to control law design, CSD has only been paid limited 
attention to. In [54], it is even stated that by neglecting the CSD phase, modern control theory 
has set the stage for the design of unnecessarily complex controllers. 

In practice, CSD is often carried out in an intuitive ad hoc fashion rather than systematically: 
engineers use experience, simulation and trial and error to guide actuator and sensor selection 
and placement. Particularly for large-scale systems, favorable candidate control structures are 
easily overlooked. In [54, 561, it is shown that the number of alternative control structures grows 
extremely rapidly as the complexity (as defined above) of the system to be controlled increases. 
öecause of this, ad hoc or other inefficient search techniques for CSD are rendered impractical for 
large-scale systems by the overwhelming number of candidate control structures. Therefore, in 
this report emphasis is on systematic and quantitative approaches to CSD, rather than on more 
qualitative ones based on engineering heuristics. 

Certainly the ultimate test of a candidate control structure will be the control system perfor- 
mance once a controller has been designed for the control structure. However, making this the only 
test of a candidate control structure, leads to a CSD-procedure that rapidly becomes infeasible as 
the system size increases, since for each control structure a controller would have to be designed. 
Such a computationally intense and time consuming procedure would be intractable for anything 
but a small group of candidate configurations. 

In this report, the quality, i .e . ,  the practical relevance, of the vâïiow CSD methods proposed 
in literature will be addressed. Of course, it is possible to evaluate the CSD methods for a huge 
set of criteria. Since this is not feasible, only a restricted set of criteria is suggested here, which 
represents the favorable properties the "ideal" IO-selection or CC-selection procedure must pos- 
sess. 

In [56], it is stated that control system complexity, system uncertainty and accuracy speci- 
fications are critical issues in modern control system design. Therefore, a paradigm for control 
system design is proposed: Minimize control sys tem complexity subject t o  the achievement of ac- 
curacy specifications in  the face of uncertainty. The problem of CSD can also be formulated in 
the context of this paradigm. Consequently, some desirable aspects to be accounted for in CSD 
are: 

1. robust stability: Robust stability implies that the controlled system will maintain stable 
operation in the presence of uncertainty. 

2. nominal performance: It is desirable that a (nominal) performance measure can be speci- 
fied, which must be achieved with the selected controller structure, e.g., specifications on the 
closed-loop bandwidth and high-frequency roll-off rate, or offset-free steady-state behavior. 

3. robust performance: The control system should perform well also in the presence of 
modeling errors. This aspect implies both robust stability and nominal performance. So, if 
robust performance is addressed in the CSD method, the first two aspects are redundant. 
However, these aspects remain very useful criteria for initial screening of a possibly huge set 
of candidate control structures. 

4. complexity of controller structure: It should be possible to impose the allowable control 
system complexity. In [54], it is emphasized that complexity is not a well-defined concept. It 
is argued that not only the number of inputs, outputs and feedback interconnections is im- 
portant, but issues such as sensor/actuator costs, reliability, maintainability, and controller 
design/tuning must be considered as well. 

In addition to these aspects to be accounted for during CSD, a CSD method must be: 

5. general: The CSD method should be applicable to a large class of control systems; gen- 
erality is often impaired by assumptions on, e.g., the multiplicity of the control loops and 
by restrictions on the systems considered, e.g., only square systems or stable systems are 
considered. Moreover, various CSD methods are only applicable at  steady state. 
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6. applicable to nonlinear control systems: Desirably, CSD methods developed for linear 
control systems have a nonlinear counterpart, or it must be possible to generalize them to 
nonlinear systems. 

7. controller-independent: The CSD method must be performed with open-loop data only, 
i. e., the CSD method must be independent of controller data: for initial screening of a large 
number of candidate control structures, it should be possible to eliminate those candidates 
for which a controller achieving the desired specifications on the controlled system does not 
exist, regardless of the controller design method i351 that wiil be used. if ciosed-loop data is 
required, CSD may have to be performed all over again for each controller type or controller 
tuning. 

8. direct: Usually, the selection of ”viable” control structures is based on testing all possible 
structures for a set of criteria. In that case, the design is iterative and indirect. Preferably, 
the CSD method directly yields one, or maybe some, favorable control structures given the 
specified control system requirements. 

9. quantitative: The CSD method preferably provides quantitative measures in screening can- 
didate control structures; rather than qualitative ones based on, e.g.? engineering heuristics. 

10. efficient: The CSD method must be able to quickly and easily evaluate a possibly very large 
number of candidate control structures. Efficiency is related to the amount of computational 
and analytical effort needed in the method. Efficiency may, e.g., call for necessary conditions 
instead of sufficient conditions during the IO-selection or CC-selection phase, see [54]. This 
is because sufficient conditions for feasibility of a control structure must address all aspects 
of feasibility. Consequently, they must typically be employed in the context of controller 
design, which prevents the application of sufficient conditions to a large number of candidate 
structures, [54, Section 2.41. Furthermore, if modeling errors are addressed in the CSD 
method, the use of norm bounds on these errors is more efficient (yet more conservative) 
than the use of an explicit error model. 

11. effective: The CSD method must be able to eliminate infeasible candidate control structures 
and maintain the feasible ones. This implies, that the method must be able to very clearly 
distinguish between the ”promising” control structures and the other ones. An effective 
method therefore calls for necessary and sufficient conditions for feasibility tests. Generally, 
necessary conditions are not effective, since there is no guarantee that the control structures 
maintained are actually feasible. 

12. simple: Desirably, the theory, implementation and application of the CSD algorithm is not 
too complex or tedious. The key idea of the CSD method must be clear and selection of 
candidate control structures must be straightforward. 

13. theoretically well developed: The theory behind a CSD method is desirably well devel- 
oped/complete and a succesful application should prove the method’s practical relevance. 

It is emphasized that this list of desirable properties of a CSD method is certainly not complete. 
Moreover, some of the aspects listed above overlap, e.g., 1 and 3,  and 5 and 6,  or are closely 
related, e.g., 9 and 10, and 10 and 12. 

As it has already been noted, CSD is particularly important for large-scale systems. Therefore, it 
is not surprising that the greater part of the literature on CSD stems from process control. In this 
research area, CSD is related to, e.g., the optimal placement of temperature sensors to measure 
a temperature profile in a distillation column (see, e.g., [32, 36, 37, 44]), the choice between ”ma- 
terial balance control” and ”energy balance control’’ (see, e.g., [72]), and pairing of inputs and 
outputs to obtain noninteracting decentralized control schemes (see, e.g., [18, 24, 421). However, 
CSD is also of great importance in aircraft control [15, 211 and in control of mechatronic systems. 
With respect to the latter research area, CSD is related to, e.g., the favorable placement of strain 
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gauges, acceleration sensors [i91 and actuators [i] for flexible beams. 

This report is set up as follows. First, in Chapter 2 a uniform linear system description is chosen, 
which will be referred to in the rest of the report. In Chapter 3 and 4 different methods for 
CSD are presented: Chapter 3 focusses on the IO-selection phase while Chapter 4 does so for 
the CC-selection phase. An overview of practical applications of CSD from literature is given in 
Chapter 5 ,  followed by a proposal for an example which could be used to evaluate the various IO- 
and CC-selection methods discussed in Chapter 3 and 4. In Chapter 6 the different approaches in 
CSD are compared, based on the aspects discussed above, and the most promising CSD methods 
are proposed. Finally, Chapter 7 suggests some recommendations for future research in CSD for 
both linear and nonlinear control systems. 



Chapter 2 

Preliminaries 

The IO-selection and CC-selection methods respectively to be discussed in Chapter 3 and 4 are 
for the greater part based on linear time-invariant system descriptions. To put the approaches in 
a general, unambiguous framework, it is decided to describe these systems by the following state 
equations: 

i ( t )  = Az( t )  + B t ~ ( t )  + w ( t )  
y(t) = CZ(t> + Du(t)  + v ( t )  
z ( t )  = EZ(t)  + Fu( t )  

(2.1) 

with: 
z E lñn state variables 
u E Ern manipulated variables 
y E lñ' measured variables 
z E n2' 
w E n2" system noise 
v E IR' measurement noise. 

variables to te controlled 

Actually, the control objectives identify the controlled variables z as the primary set of measure- 
ments which should be made. However, these theoretically desirable measurements are not always 
available to monitor the control objectives (e.g., in the case of composition of a distillation prod- 
uct) and they have to be replaced by "secondary measurements" in y, z. e., measurements of other 
system variables (e.g., pressures or temperatures). 

After Laplace transformation, the system (2.1) can be written: 

with: 
P ( s )  PW(s)B + D; Pw(s) = C(s1- A)-' 
Q(s )  = Qw(s)B + F ;  Q ~ ( s )  = E(s1-  A)-'. 

(2.2) 

The manipulated variables are often generated by a dynamical feedback of measured variables (see 
Fig. 1.1) and therefore the relation between these variables can be written as follows: 

u(.) = K(s)y(s) (2.3) 

The system descriptions used in the CSD approaches discussed in this report are all based on 
(2.1)-(2.3), except if it is explicitly remarked. 

6 



Chapter 3 

Criteria for selection of inputs 
and outputs 

In this chapter, some potential methods for the seiection of measured and manipuiated variabies 
are outlined. 

3.1 Control power and speed 
In [58], Chapter 14 is devoted to selection of regulatory "control structures" in process control. 
However, the term control structure has a broader meaning there: it is not only used to indicate 
which sensors/actuators are selected and interconnected, but it is also used to indicate the t ype  of 
controller, e.g., feedback and feedforward control, cascade control and decoupling control. 

In the approach discussed, it is assumed that the variables to be controlled are measurable or 
can be replaced by secondary measurements; z is thus assumed to be completely incorporated in 
y. Furthermore, it is stated that the number of manipulated variables should at least equal the 
number of variables to be controlled. 

The selection of the manipulated variables u is based on control p o w e r  and control speed as 
performance criteria. Unfortunately, the approach is rather qualitative. The first criterion refers 
to the static influence of the manipulated variable on the variable to be controlled, for instance 
when the manipulated variable goes from the nominal operating point to fully open (maximum 
attainable value of the manipulated variable). If this influence is weak, or weak compared to the 
influences of other controlled variables, the candidate control loop is rejected. The second criterion 
refers to the speed of reduction of a deviation in the controlled variable. It is desirable that this 
speed is high and the inputs are therefore chosen to meet this feature. For an objective comparison 
of regulatory control speeds, it is assumed that in all cases a PID algorithm is used, tuned in the 
same way. 

In [60], two heuristic guidelines for input selection are suggested, which are closely related to 
the approach discussed above: 

o Select inputs that have large effects on the controlled variables, i .e.,  select inputs associated 
with a large steady-state gaia 

o Select inputs that rapidly affect the controlled variables, i.e., select inputs with small time 
constants and delays. 

3 2  Locations of poles and zeros 
It is commonly known (see, e.g., [38, Sections 1.7 and 3.6]), that any zeros or poles incorporated in 
the plant P(s)  which are located in the Right Half Plane (RHP), restrict the range of frequencies 

7 
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Figure 3.1: General block scheme of linear control systems 

over which the use of feedback can be beneficial. 
RHP-zeros impose an upper bound on the range of frequencies over which the sensitivity to 

disturbances acting on the system can be reduced (see Fig. 3.1 in which z,.(s) and y,.(.) represent 
reference cignak and the pre-f;!ter P; (s> trarislates the refererice Sigrid in t e r m s  ~f co-nirilled vari- 
ables z,.(s) into terms of measured variables y,.(.)). A RHP-(transmission)-zero in the plant limits 
the achievable bandwidth of the plant, regardless of the type of controller that is used. The reason 
is, that with a RHP-(transmission)-zero the controller cannot invert the plant and perfect con- 
trol is impossible. Therefore, plants with RHP-(transmission)-zeros within the desired bandwidth 
should be avoided [25]. For the SISO case, deterioration in control quality is inversely proportional 
to the distance of the zero from the origin. In the MIMO case, this is not straigthforward, but 
RHP-zeros with small magnitudes are likely to cause problems in MIMO systems as well [20]. 

RHP-poles impose a lower bound on the range of frequencies over which measurement noise 
must be passed without attenuation (the loop bandwidth), i e . ,  RHP-poles impose a lower bound 
on the loop bandwidth. 

From (2.1)-(2.2) it is seen that the presence of RHP-zeros or RHP-poles is partly determined 
by the choice of the matrices B,  C and D. Therefore, since it is desirable to avoid these zeros and 
poles, this should be accounted for in the CSD phase, during which the matrices of interest are 
determined. However, an IO-selection procedure based on the notions of performance limitations 
due to RHP-zeros and RHP-poles has not been found in literature. 

For nonlinear systems, RHP-zeros correspond with unstable zero-dynamics, while RHP-poles 
correspond with unstable manifolds. 

3.3 Controllability and observability 
A method for IO-selection based on the concepts of controllability and observability is proposed in 
[46] and summarized in [53]. This idea stems from the notion that each control structure should 
simultaneously achieve the objectives of bringing the controlled output of the system to the desired 
one and monitoring all variables (states) which are critical for system performance. It is clarified 
that the concepts of complete state controllability and observability have some deficiences for the 
purpose of IO-selection. Instead, structural controllability and observability aspects have to be 
considered. 

The IO-selection procedure was originally developed for regulatory control schemes in process 
control. The control systems considered are assumed to be represented in a form equivalent 
to (2.1). Moreover, it is assumed that the controlled variables in z ,  resulting from the control 
objectives, are incorporated in y; if some of the elements in z are not directly measurable, it 
should be possible to calculate or estimate them from secondary measurements and incorporate 
them in y. The algorithm to select appropriate measured and manipulated variables is then based 
on structural controllability and structural observability of the state space description (2.1). 

In [46], specifically for PI control schemes the feasibility is investigated. Therefore, the undis- 
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turbed state space description (2.1) is augmented with variables z* to include integral action: 

A 0  
[:*]=[c o ] [ : * ] + [ D ] u .  

If the augmented state feedback u = K [ z  2*IT is used, proportional and integral (PI) control 
actions are introduced. The system (2.1) is said to be integral controllable if (3.1) is state con- 
trollable, i .e . ,  the pair 

has to be controllable. If a system does not satisfy this condition, then no feasible PI control 
system can be found. Before continuing, some definitions have to be made: 

Definition 3.1: structural matrix [61] 
A structural matrix is a matrix having only two types of entries: 

1. fixed zeros which can never take a non-zero value independently of the values of 
all parameters in the system, 

parameters. 
2. urhitrur,ry er,tries which ~ - 2 y  take znv .-= valiie .--- Iinrl i idiEo \--&--- vprnj i ---, Jpnpnrlinv __-_-_ O o= m-edel 

Definition 3.2: generic rank [16] 
The generic rank of a structural matrix M notated by p , ( M )  is the maximal rank that 
M achieves as a function of its arbitrary (non-zero) elements. 

A structural model, in contrast to a numerical one, is more meaningful for IO-selection based 
on controllability/observability aspects. This is because a structural model depends on invariant 
aspects of the system only. A numerical model depends on the values of the model parameters, 
which are never known precisely, with the exceptions of zeros that are fixed by absence of physical 
connections between different process units (subsystems). Therefore, an unfortunate choice of 
some parameters may yield an uncontrollable/unobservable system. So, a numerical model does 
not provide useful global information about the controlled system’s behaviour. However, a disad- 
vantage of a structural representation is the impossibility of drawing quantitative conclusions on 
controllability and observability in the sense of strength and direction of the couplings between 
input and output variables [31]. In the selection algorithm, the structural controllability of the 
system (3.1) plays an important role. 

Definition 3.3: structural controllability [16] 
The structural pair (A, B) is structurally controllable if 

1. every state is accessible from at least one input, and 
2. the generic rank of [A B] is n. 

Analogously, (A, C) is structurally observable if (AT, C’) is structurally controllable. 

Definition 3.4: ”extended” structural controllability 
The structural pair 

A 0  [( c O)’( o ) ]  
is structurally controllable if: 

1. ( A ,  B )  is structurally controllable, and 
2. the generic rank of the ”structural compound matrix” S, defined by 

is n + I .  
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Inaccessibility of an output from a manipulated variable implies that the manipulated variable 
has no influence on the output [30]. If the accessibility conditions are satisfied for both structural 
controllability and observability, all unstable modes can be influenced and observed, with the 
exception of poles in the origin. The generic rank condition serves to detect pure integrators which 
are not controllable with a given set of manipulated variables. For stable systems, accessibility 
to the states which are pure integrators only is important [46]. Note that a necessary condition 
for pg(Se) = n + I is that pg(A,B) = n and pg(AT,CT) = n, i.e., the rank conditions for 
stri~ct~i~ral controllability and structural observability have to be satisfied, but need not be checked 
seperately. In [16, 30, 611, a lot more can be read about structural aspects of (control) systems 
and controllability/observability aspects. 

The procedure for selecting measured and controlled variables to generate feasible control 
structures as discussed in [46], is then as follows: 

1. 

2. 

3. 

4. 

5. 

6 .  

Choose y to represent the variables to be controlled by primary or secondary measurements. 
The selected measurements are then represented by y = Cz + Du. 

Test for "dual accessibility" of the structural pair (C ,A) ,  i . e . ,  test if (AT,  CT) is accessible 
with the measurements selected in step 1. If the test is negative, augment y to y* = c*.. + n*,. 
Form the structural matrix 

A B  sz = [ C* D* ] 
where all the feasible manipulated variables make up the columns of B and D. 

Delete columns (one at a time) from 

[ ~ * ] ,  
such that the number of remaining manipulated variables ??i, corresponding to the remaining 
columns in [ a ]  
is equal to the number of observations I* for the system. 

Test for accessibility of (A, z). If it is not satisfied, the set of manipulated variables selected 
is not feasible, it is rejected and a different Ë must be chosen to achieve accessibility. If the 
test is satisfied, perform step 6. 

Test if 

is structurally nonsingular, ie., test if pg(sz )  = n+ I * .  If the test is affirmative, the selected 
measurements corresponding to the rows of C* and manipulated variables corresponding to 
the columns of z represent a feasible IO-set. Otherwise, reject the set of selected variables 
as infeasible. 

Applying this algorithm, all structurally controllable IO-sets can be generated, which may still 
be a very large number. Then, further screening at different levels of sophistication (e.g., by engi- 
neering heuristics or dynamic simulations) has to be performed to rediice all possible aiternatives. 
It is emphasized that an IO-set which is structurally controllable need not be numerically control- 
lable [16], i. e., the IO-selection method discussed above may yield infeasible IO-sets, depending 
on the numerical values of the parameters of the physical system. 

In [16], it is stated that the concept of structural controllability as a feasibility criterion can also 
be used for non l inear  systems; by linearizing a nonlinear system description, a linear structural 
system description can be obtained. Since nonlinear equivalents for complete state controllability 
and observability have also been defined [51], it is expected that these concepts can be applied in 
IO-selection for nonlinear control systems as well. 
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3.4 Cause-and-effect graphs 
A systematic procedure for generating alternative feasible IO-sets based on the cause-and-effect 
representation of the steady-state process is discussed, e.g., in [17] and summarized in [53]. The 
method is stated to be one of the first non-numerical techniques to solve the problem of synthesizing 
control structures for process control. 

Cause-and-effect relationships between different variables of a system can be represented by 
a directed graph or digraph (see Fig. 3.2). Nodes in the graph are the system variables (states, 
inputs, outputs and disturbances) and the edges, i. e., the directed lines, show the relationships 
between these variables. The edges can carry information about cause-and-effect relationships 
between the variables, such as steady-state gains, time constants and dead times. So, by tracing 
paths in the graph, it is possible to find which variables affect a specific process variable or which 
variables are affected by the given variable. In order for control to be effective, there must be a 
causal path between the manipulated variables u and the variables to be controlled z. 

After the digraph for the complete process is generated, the next step is to determine the 
"constrained variables": the control objectives define the process variables to be maintained within 
a certain error around the steady-state value and these variables are called the constrained variables 
(2). Furthermore, variables which violate production, safety or operational limits may be identified 
as constrained variables. The next step is to propagate the constraints through the cause-and- 
effect graph with the god to locate alternative sets of measured aIid mairipiilated variables in the 
graph to satisfy the objective constraints. As the constraints are propagated, the process variables 
encountered along the edges are classified as ANDed or oRed by the following rules: 

e candidate i n p u t  variables  are ANDed if all these variables are required to be controlled in 
order to control the constrained variable 

e candidate i n p u t  variables  are oaed if control of either of these variables is sufficient to control 
the constrained variable 

e candidate measured variables  are ANDed if all these variables have to be measured in order 
to obtain the value of the constrained variable 

candidate measured  variables  are ORed if a single measured variable is sufficient to obtain 
the value of the constrained variable. 

Thus, by considering the digraph, possible ways of measuring and manipulating the constrained 
variables are searched for. Any set of IQ-variables which makes control and measurement of 
the constrained variables possible is a candidzte IQ-set. So, initially a possibly large number of 
candidate IO-sets is generated. In order to reduce the alternatives to a smaller subset, they are 
evaluated based on selection heuristics. The resulting subset is in turn further screened, e.g., by 
performing dynamic simulations. 

Since it is also possible to represent n o n l i n e a r  systems by directed graphs, see, e.g., [12], the 
IO-selection method is expected to be applicable to nonlinear control systems as well. 

In fact, the method based on the cause-and-effect graphs uses accessibility as a criterion that a 
feasible IO-set should satisfy. According to the structural controllability criterion (Definition 3.3) 
discussed in Section 3.3, accessibility only is not sufficient for feasibility, since the generic rank 
test may fail for certain IQ-sets. In [31], it is stated that the qualitative nature of the selection 
ir,ethod based on cause-ad-effect graphs is a disadvantage 

3.5 Achievable performance 
In [8], a method is discussed to determine what performance specifications (of a large but restricted 
class) can be met using a n y  linear controller design method, for a given linear system and IQ-set. 
Given a fixed set of performance (or robustness) specifications on the controlled system, an IO-set 
is feasible if at least one controller exists that satisfies the specifications. Based on the outcome 
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Figure 3.2: Example of a simple digraph for a control system 

of the feasibility problem, the designer may, or may not, modify the choice and placement of the 
sensors and actuators. If the specifications are feasible, the designer might remove actuators and 
sensors to see if the specifications are still feasible; if the specifications are infeasible, actuators and 
sensors may be added or relocated until the specifications become achievable. Selecting measured 
and controlled variables in this way is therefore iterative. A systematic methodology to decide 
which variables are the best to be removedladded, is however not proposed. 

Another possible selection criterion based on performance considerations uses the minimally 
achievable value of the quadratic (performance) criterion by the combination of an optimal control 
law and an optimal observer (Kalman filter), see [33]. Consider the time-invariant system (2.1) 
with D = O and F = O. In the stationary case, the stochastic linear optimal output (y) feedback 
regulator minimizes the criterion: 

J = E[zT(t)W1z(t) + uT(t)W2u(t)] (3.2) 

with W1 and W2 weighting matrices. The minimally achievable value of this criterion can be 
achieved with a control law u = -Fi (where Z is the state estimate by the Kalman filter) and 
can be written as: 

in which V, represents the intensity of the process noise 20, P and Q are solutions of stationary 
Riccati equations and F = W2-lBTP. Since P = P(A,  B,  E ,  W1, W2) and Q = Q(A, C, V,, K,) 
(K, represents the intensity of the measurement noise), the minimum of the performance criterion 
d depends, among others, on the matrices B and C ,  which are determined in the IO-selection 
phase during CSD. 

From (3.2), it is obvious that the minimally achievable J is also dependent on the scaling 
of the variables to be controlled z and the candidate manipulated variables u. For example, if 
a manipulated variable in u with unit EN] is replaced by one with unit a much larger J 
will result. Therefore, it is important that z and u are scaled in such a way that their values 
are representative of their relative importance, so that the scaled variables can be compared 
numerically to each other. Scaling must be accounted for by proper choice of the weighting 
matrices WI and W2. 

From the point of view of good performance under Linear Quadratic Gaussian (LQG) control, a 
small value of 7 is desired. Provided that t and u are properly scaled, it is recommended to choose 
B and C,  i.e., to select the IO-set, such that the smallest J is achieved. This method can also be 
used for time-dependent state space descriptions in the instationary case. However, computation 

J = tr[Pv, + Q F T ~ 2 F ]  (3.3) 
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of the performance index J then implies the solution of two differential Riccati equations, requiring 
high computational effort. 

In [31], a number of candidate input sets is evaluated by computing J ,  which is the minimal 
value of the criterion ~7~,(zT(~)z(~) + uT(T)u(T))dT; the input set which achieves the smallest J 
is the most promising for control. The same procedure is possible for determining a proper set of 
measured variables. 

Optimal control of nonlinear systems is, e.g., discussed in [50]. The optimal control problem 
in this case camists of %x!ir,g a c m t m l  u that minimizes, e.!., the criterion 17=o f(z, u,  7)dT. 
Maybe, this offers a potential tool for IO-selection in nonlinear control systems. 

t 

3.6 Accuracy of state estimates 
In [32], the optimal location of temperature and concentration measurements along the length of 
a tubular reactor is considered. Since the objective of measurements is to gain information on the 
system, it is stated that a sensible criterion for optimal measurement selection is, that the best 
possible estimates of the system state can be made on the basis of the selected measurements. 
The optimai sensor location problem is then posed as that ûf selectizg z give2 zmmher of points 
out of the prespecified locations, the so-called "collocation points". Furthermore, it is stated that 
the obtainable quality of state estimates is often more dependent on the location of the sensors 
than on the namber of sensors. 

The selection problem is approached from a stochastic point of view, acknowledging the uncer- 
tainties inherent in system parameters and measurements. A conventional way of accounting for 
such model uncertainties, is to introduce random disturbance terms into the system equations (w 
and w in (2.1)) of which the statistical properties reflect in some manner the expected degree of 
modeling error. For the purpose of optimal measurement location, the nonlinear system equations 
are linearized around steady-state: 

(3.4) 
i = Ax + w 
y = Cx + v 

with w : zero-mean white Gaussion process noise 
with v : zero-mean white Gaussion measurement noise. 

It is assumed that the measurement noise at different locations is not correlated. The goal 
is to obtain the optimal estimate of the state z, given the measurements y ( ~ ) ,  O 5 T 5 t.  For 
a given system and measurement set, the estimate i for which the estimation error covariance 
matrix P( t )  = E[{z(t) - i ( t ) } { x ( t )  - is "minimal", is called the optimal estimate. The 
correspmding optimal covariame matrix P(t )  is calculated from a Riccati equation, which depends 
on the system matrix A, the measurement matrix C and the process and measurement noise 
intensity matrices. 

To account for the number and location of measurements performed, a vector a is introduced 
with ai = 1 if a measurement is used and ui = O if it is not. Co, if the total number of sensors is 
specified to be rn, only rn of the candidate measurements in y are performed and only rn of the 
elements in a take the value 1; these rn measurements have to be chosen from the N collocation 
points. The covariance matrix P(t)  which indicates the accuracy of the state estimate becomes 
now dependent on u. An optimal measurement policy is then defined as the one that minimizes 
an appropriate scalar measure of P(t).  Since P ( t )  is a nonnegative definite matrix, its trace is a 
measure of its magnitude and therefore the "optimality index for rneasuremeni location" is chosen 
as: 

tf 
J = atr[P(tf)] + p /  tr[P(t)]dt (3.5) 

t o  

with o and ,û positive constants specifying the relative weights of the two terms. The optimal 
sensor selection problem is then solved by minimizing J with respect to the parameters ui. In [32], 
an iterative algorithm is proposed to  solve this problem; the set of ui's determined by the procedure 
designates the optimal sensor locations. 
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3.7 Economics 
In [48], a systematic method is outlined, that can be used to select the economically optimal 
measured and manipulated variables in process control, without designing the controller, while 
maintaining good controllability characteristics. It is stated that different IO-selections lead to 
different controller performance, as well as to different capital and maintenance costs; it is with 
the trade-off between instrumentation costs and operating benefits that the paper is concerned. 

The scope of the problem is restricted to linear(ized) system descriptions for processes whose 
operation is dominated by steady-state aspects. Furthermore, the measured variables are assumed 
to be perfectly regulated (y = O) and only square systems are considered, i e . ,  I = rn. Operating 
constraints and disturbances are accounted for; the effects of disturbances on the plant are reflected 
in the variation of plant variables which are not selected as measured variables. 

The method for selection of IO-sets is based on varying a permutation matrix R; the permuta- 
tion matrix can be used to select each of the candidate combinations of measured and manipulated 
variables (compare with the method discussed in Section 3.6, where the vector a contains infor- 
mation on the measurements to be performed). The integers in R define the IO-set. Varying Q, 
it is possible to assess the influence on the economics for all the candidate IO-sets and choose 
the optimum directly. This method is only feasible for problems with a small number of candi- 
date manipulated and measured variables. For this reason, a Mixed Integer Linear Programming 
(MILP) method is used tc uvahate the cadidate IO-sets. However, as the problex is combina- 
torial in nature, this method requires too high computational effort if the number of IO-variables 
is large. Therefore, initial screening is desirable, in order to eliminate infeasible IO-sets without 
first evaluating all of them. This may be achieved by the introduction of ”structural connectivity 
constraints”, i. e., the integer search space is reduced by using structural information about the 
relationships between the inputs and outputs (input/output connectivity). 

Ideally, the transfer function matrix P(0)  between the active manipulated variables and the 
perfectly controlled measurements is structurally nonsingular. However, a weaker set of structural 
connectivity constraints is used: for every selected measured variable to be perfectly controlled, 
at least one manipulated variable which affects the measured variable must be active. Similarly, 
for each active manipulated variable selected, at least one measured variable that it affects must 
be perfectly controlled. By introducing these extra constraints, not all possible IO-sets have to be 
considered and computational effort to solve the IO-selection problem is reduced. 

In [48], it is emphasized that the MILP should only be used as a screening tool for prediction 
of economically sound IO-sets, for different reasons: 

o The analysis does not examine the controllability of the process. 

o The MILP analysis only calculates an estimate of the ”dynamic economics”, i .e . ,  the eco- 
nomics under influence of the disturbances. 

o The linearization only has a limited accuracy. 

Because of these limitations, the following IO-selection procedure is suggested. A number of IO- 
sets which are to be examined in detail are proposed. For these candidate IO-sets, the MILP 
algorithm is solved, by which conclusions can be drawn on the IQ-sets yielding the best dynamic 
economics. These IO-sets are then all subjected to controllability analyses to test the validity 
of the perfect control assumption. Minimum condition number plots (desirably small) and RHP 
transmission zeros (desirably none) are used as controllability indicators. Moreover, the selected 
IO-sets can be used for a nonlinear dynamic economic analysis, which is unfortunately a complex 
problem. The results of these analyses should then be used in conjunction to select the best IO-set. 

3.8 Morari resiliency index 
In [73], a method is discussed for CSD for multiloop SISO controllers in a multivariable process 
environment. No attention is paid to the measurement selection problem. Instead, it is only stated 
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that the controlled variables should be directly measured or should be computed from other di- 
rectly measured variables (secondary measurements). The selection of the controlled variables z is 
primarily based on engineering judgement and good understanding of the process. Considerations 
of economics, safety, constraints, availability, and reliability of sensors must be factored into this 
decision. 

The input selection problem is treated in a more quantitative way; it is based on the "resiliency" 
of the plant. In [45], the term resiliency is used to describe the ability of the plant to move fast and 
smoothly from one operating condition to another (including start-up and shut-down) and to deal 
efficiently with disturbances and model-plant mismatches. Based on the work in [45], the authors 
of [73] propose the so-called Morari Resiliency Index (MRI) to guide the selection of manipulated 
variables: 

MRI = g[P(jw)]. (3.6) 
The MRI is the minimal singular value 0 of the plant transfer function matrix P ( j w )  (or Q( jw) ,  
since y and z are assumed to be equivalent). The set of manipulated variables that gives the largest 
minimum singular value over the frequency range of interest is the best, i .e. ,  the corresponding 
IO-set yields the most resilient system. Unfortunately, the MRI is expected to be not effective, 
since it fails i o  satisfactorily address ail aspects of resiliency as mentioned above. 

The selection of IO-sets based on the MRI is independent of the control configuration and 
controller design. However, the procedure is scaling dependent. This problem can be circumvented 
by expressing the gains of all the plant transfer functions in dimensionless form, or by otherwise 
properly scaling of the system description. 

3.9 Condition number 
In [21, 54, 561, an IO-selection procedure is presented that is based on the condition number of 
the plant; the proposed algorithm has been implemented in the MATLAB Control Configuration 
Design Toolbox [54, 571. The theory proposed provides quantitative, efficient, and necessary condi- 
tions for viability: a control structure is termed viable (feasible) if it allows accuracy specifications 
to be achieved in the face of uncertainty. The conditions are quantitative because they incorporate 
quantitative expressions of the control performance requirements (accuracy and uncertainty) and 
the conditions are efficient because they can be applied to the open-loop system prior to control 
law design. 

Robust stability is one fundamental issue for viability; other issues are, e.g. ,  nominal stability, 
nominal performance, robust performance and closed-loop integrity. The criterion for selecting 
measured and manipulated variables is based on a necessary and sufficient condition for robust 
stability, arising from the small gain theorem in robust control theory, see, e .g . ,  [38]. An additive 
unstructured uncertainty description is used to represent the uncertainties in the transfer function 
matrix of the plant. It is very important to note that in the criterion discussed below the "plant" 
P, corresponds to various selected subsets of the candidate measured and manipulated variables, 
i e . ,  P, is a subsystem of P in (2.2): 

Suppose P, is a Finite-Dimensional Linear Time-Invariant (FDLTI) nominal plant. 
Suppose also that K is a FDLTI controller which stabilizes P,. Under these conditions, 
K stabilizes all p, = P,+A, with the same number of RHP-poles as P, and T(A,)  5 6, 
if and only if 

T [ K ( I +  PsK)-l] < 1/s, v w. (3-7) 

This necessary and sufficient condition is then considerably weakened [54] to a necessary con- 
dition for robust stability, which is independent of the controller K ( s )  and is more appropriate for 
screening of candidate IO-sets: 

Suppose P, is a square, FDLTI nominal plant. Under these conditions, there exists a 
FDLTI controller K which 
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1. stabilizes all ps = P, + A, with 

(a) the same number of RHP-poles as P, and 

(b) ü(Aa)/ü(Ps)  L bra ,  and 

2. achieves Y( S) 5 u s ,  us < i V w ws 

only if 

(3.8) 

where: 

S = (I + PSK)-' is the nominal output sensitivity function of the closed-loop 
system, 

K: = ü(Ps)/o(Ps) is the Euclidean condition number of the plant, 

S,, is the specified, possibly frequency-dependent, relative-additive uncertainty 
margin, and 

us and ws specify the closed-loop bandwidth of the system in terms of S. 

Qualitatively, the selection criterion implies that a selected subset with a "large" condition 
number can only tolerate "small" amounts of unstructured uncertainty without sacrificing robust 
statibility. Moreover, the criterion is only meaningful for systems where tracking and disturbance 
rejection are important, so that a bandwidth ws is specified. A selected subsystem/subset which 
fails to satisfy (3.8) is not considered a viable IO-set. The condition number criterion has a 
quantitative nature in the sense that uncertainty and performance specifications enter explicitly 
through S,,, us and ws in provisions 1 and 2 of the criterion above. Furthermore, the condition is 
e f i c i en t  in that it is easy to compute and does not require prior design of a control law. However, 
the criterion is not necessarily eflectiue, since it checks a necessary condition only, i .e. ,  infeasible 
candidate IO-sets may pass (3.8). 

In [54, 561, it is stated that satisfying the control objectives requires that the selected mea- 
surements y be "strongly related" to the performance variables t: since the performance variables 
may not always be measurable, one attempts to control t by controlling y, using knowledge of the 
performance variables z as a function of the selected measurements y. Thus performance spec- 
ifications expressed in terms of t must always be translated into performance specifications on 
y. Selection of an appropriate IO-set is therefore crucial to satisfactorily control the performance 
variables. So, the IO-sets which pass the proposed selection criterion are practically useful only, 
if it is possible to relate z with the measured variables selected. Since this is not explicitly stated 
in the selection criterion, it must have been assumed that this is always possible, no matter which 
candidate measurements are selected. 

Unfortunately, the condition number of the plant is scaling dependent, L e . ,  it depends on the 
choice of the units for u and y, while the uncertainty margin S,, and the closed-loop bandwidth ws 
are specified under the assumption that the plant is properly scaled. However, scaling each subset 
individually would make the IO-selection procedure burdensome and less efficient. This problem 
can be avoided by replacing the condition number K(P,) by the minimal condition number tc*(P,), 
where K : * ( ? ~ )  5 .(I',). Since computation of K:*(P,) is still an open problem, lower bounds on 
tc*(P,) can be established, leading to the following result: 

The IO-selection criterion remains valid when either of the following is substituted for 
tc(Ps) in (3.8): 

2max{IlA(Ps)ll1, IlA(Ps)llm) - 1 or ü ( A ( P s ) )  (3.9) 

where A(P,) = P, * PsT is the Relative Gain Array (RGA) of the plant P, and "2 
denotes elementwise multiplication known as the Schur (or Hadamard) product. 
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The RGA will be discussed in more detail in Section 4.4. This modification of (3.8) weakens 
the necessary condition for robust stability in the sense that the selection procedure becomes less 
severe and a larger number of candidate IO-sets will pass the criterion. Efficiency is very important 
in the initial screening of a large number of candidate IO-sets. Once a smaller "pool" of IO-sets 
is left, the stronger, but less efficient, scaling-dependent criterion (3.8) can be used. 

Finally, it is remarked that the selection criterion could also be used for testing closed-loop in- 
tegrity, z. e. ,  testing if the closed-loop system remains robustly stable if one or more actuator/sensor 
failures occur. 

3.10 Singular value decomposition 
The Singular Value Decomposition (SVD, see, e.g., [47, Chapter lo]) is frequently encountered in 
literature as a tool for IO-selection. In this section, some approaches will be outlined. 

In [65] and [47, Chapter 131, a method is proposed for selecting input variables based on the 
effectiveness of disturbance suppression, which is strongly dependent on the disturbance direction, 
i .e . ,  the direction of the system output vector z resulting from a specific disturbance. Disturbance 
rejection is often the main objective of process control. For multivariable systems, usually each 
disturbance affects all the outputs; a well designed control system should be able to reject these 
disturbances at steady-state. The linear control system considered is described by the following 
equation: 

4 s )  = Q(s)u(s) + Qd(s)w(s) = Q(s)u(s) + 4 s )  (3.10) 

where d ( s )  represents the eflect on the controlled outputs of the physical disturbances ~ ( s ) .  The 
transfer function matrix Q(s) is assumed to be square ( r  x r ) .  

The input selection procedure uses the SVD of the complex matrix Q: 

Q = W E b "  (3.11) 

where W and V are unitary matrices and C is a diagonal matrix containing the real nonnegative 
singular values in descending order: 

(3.12) C = diag[ui] ; u = 6 1  2 6 2  2 ... 2 u,. = 0 2 O. 

Matrix W consists of the so-called left singular vectors and matrix V of the right singular vectors. 
For the singular vectors associated with the largest and smallest singular value, it can be written: 

- 

(3.13) 

Vector w,,, therefore corresponds to the direction of the input which undergoes the largest am- 
plification and vmin to the direction with the smallest amplification. 

Consider the system (3.10). As it is stated above, it is of interest to investigate the magnitude of 
the manipulated variables necessary to compensate for the effect of a disturbance. In this context, 
it is reasonable to use the Euclidean norm (2-norm) as a measure of magnitude of u, because it 
"sums up" the deviations of all manipulated variables. Consider a particular disturbance d. For 
complete rejection of this disturbance (y = O) at steady-state, u should satisfy u = &-'d. The 
zpantit y 

11~112/11~112 = l l Q - ~ ~ l l z / l l ~ l l z  (3.14) 

depends only on the direction of the disturbance, but not on its magnitude. It measures the 
magnitude of u needed to reject a disturbance d of unit magnitude which enters in a particular 
direction expressed by d/ljd(lz. The "best" disturbance direction in the sense that it requires the 
least action by the manipulated variables, is that of the left singular vector w,,,(Q) associated 
with the largest singular value of Q. In this case (see [SS]): 

(3.15) 
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By normalizing (3.14) with this "best" disturbance, the following measure, the so-called distur- 
bance condition number K d  of the plant Q, is obtained: 

(3.16) 

It expresses the magnitude of the manipula ted  variables needed to reject a disturbance in the 
direction d relative to rejecting a disturbance with the same magnitude, but in the "best" direction. 
F ~ - -  - -__ -- --A- n-1 -L-..IJ L -  ---ie-- L - L L -  - J- L--. -_-- 
direction is d = tunain(&). In this case K ~ ( Q ) ~ ~ ~  = T(Q)/g(Q) = K(Q) with K ( & )  the condition 
number of the plant. It follows that 

i iioiiSqtiaiC p l C l . i i L 4 ,  SiiGUiU Ut: it:.l)iCl.LG Dy Uit: . l )%?uUW-i i iVt: iBt:  [47]. The "wo&' diskcrbzEct 

15 Kd(&)  5 d&) (3.17) 

and K d ( & )  may be viewed as a generalization of the condition number of the plant, which also 
takes into account the direction of the disturbances. Just like K(&), K ~ ( Q )  is scaling dependent. 

The disturbance condition number may be used to select manipulated inputs: input sets gen- 
erating low values of K d ( & )  are preferred. An advantage of the disturbance condition number is, 
that it is iadepadeat & the c=atrû!!er. E û w e v e ~ ,  2 pessible Uis2dv22t2ge is its sca!iag Yepe~dexe.  

in  [31], the problem of input selection for linear multivariable systems is addressed. i t  is stated 
that the SVD method facilitates the quantif ication of the system's excitation by the various inputs, 
and thus the selection of an appropriate set of inputs. It is put forward that the importance of 
reducing the number of inputs not only stems from economic reasons (less actuators amount to 
lower hardware costs), but also from robustness reasons: a control system design with modeling 
errors and too many inputs may lead to overparametrized controllers, which may exhibit reduced 
robustness characteristics. The general idea of the more inputs there are, the better control of 
the process is possible, is only true if control is based on a perfect model. The goal of the input 
selection method proposed in [31], is to reduce the number of inputs, while still preserving the 
controllability of the system. Ideally, the retained inputs are "strong" (see Section 3.1) and such 
that each of them excites the modes in a way orthogonal to the others. 

Consider the following, not necessarily square, system: 

& = A x + B u  
z = Ex. (3.18) 

This system is assumed to be both controllable and observable. Moreover, a primordial assumption 
is, that the system has been scaled in such a way, that the numerical values of x ,  u and y are 
representative of their relative inportance and can be compared numerically to each other. The 
system in (3.18) can also be described by: 

z(s) = Q ( s ) ~ ( s )  with: Q(s) = E(s1-  A)- lB (3.19) 

or in modal form (see, e.g., [69]): 

Q(s) = Ê(s1- A)-'B (3.20) 

with A = H - I A H ,  Ê = E H  and 6 = H- 'B .  Matrix A is diagonal with the eigenvahes of A along 
its diagonal and H contains the n linearly independent eigenvectors of A. Equation (3.20) clearly 
shows that the transmission of information from the inputs to the outputs can be considered as a 
series of three mappings: 

1. mode excitation: B maps the input space nt" onto C 

2. mode dynamics: (SI - A)-' maps cc" onto CY 

3. mode composition: Ê maps cc" onto the output space Br. 
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The matrix B indicates both the magnitude and the direction in modal space of the excitation 
from the various inputs. However, the analysis of the inputs by considering the matrix B alone 
requires the dynamics and the composition to be similar for all the modes, i.e., the modal basis 
must be scaled. In order to find a set of input variables which contains the strongest inputs in 
terms of a norm of Q ( s ) ,  a scaling procedure is proposed in [31]. After scaling, &(s) can be written 
as Q(s )  = @(SI - A)-’(-A)B in which the matrix B describes the excitations of the normalized 
modes. The modes are called normalized, because they all exhibit the same maximal contribution 
to the dynamics of the system, and the modal space is properly scaled. Consequently, B contains 
information about the m a g n i t u d e  and the direct ion of the excitation of the normalized modes by 
the inputs. 

The SVD of B is used for input selection: 

(3.21) 

where C1 contains the dominant singular values of B .  The column vectors of V provide an or- 
thonormal co-ordinate system for viewing the inputs; Vi spans the subspace of the input space 
which is mapped onto the normalized modes via the dominant singular values. In [31], a method 
is developed to select the dominant inputs by using KA. 

Papers [6, 441 discuss the use of SVD in the selection of measured variables for distillation column 
control. 

In [6], a method is presented to select appropriate (temperature) measurement locations, which 
is based on a compromise between the measurements’ sensitivity to manipulated variables and 
”inferential error”, i.e., the error in the unmeasured variables to be controlled, under perfect 
control of the measured variables. The unmeasurable variables to be regulated z (top and bottom 
composition errors) are considered to be functions of the measurements y (tray temperatures). So, 
to keep z at the desired level, secondary measurements y are used by the controller; this is called 
”inferential control”, see, e.g., [68]. The SVD method is used to study the sensitivity of y to the 
inputs, which should preferably be high, while the sensitivity of z to load disturbances should be 
low. 

The following dynamic system model is considered: 

x = Aa: +Bu + H w  

Z = E Z  
y = c a :  (3.22) 

with w representing load disturbances. At steady-state  and under perfect control of the measured 
variables (y = O ) :  

y = Ca: = CGJu +CGl,w = O (3.23) 

with: 
Gs = (-A)-lB 
GI, = ( -A)- lH 

the ”state-input gain matrix” 
the ”state-load gain matrix”. 

The required control to maintain y = O is: 

U = - (CGs)- lCGis~ .  

The error in .z when y is perfectly controlled, i.e., the inferential error, is then: 

(3.24) 

(3.25) 

with the ”inferential error” matrix: 
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For any load disturbance w, only a small deviation in z is permitted, i e . ,  11z11/11w11 should be kept 
small, wich is equivalent to keeping F(Gle) small. The SVD of Gl, can be written as in (3.11). 
The first column of the left singular matrix, wl ,  indicates the strongest direction of composition 
error z ,  while the first column of the right singular matrix, q, indicates the strongest disturbance 
direction; a load of norm 1 in the w1 direction yields an inferential error of norm a in the tu1 
direction (see also Equation (3.13)). 

The SVD of G, and GI, can be used to trade-off the sensitivity of y to manipulated variables 
(SVD of G,) with the magnitude of inferential error (SVD of Gle). A possible measurement selec- 
tion rule is then: assuming u, w and y are properly scaled, the elements in the first column of the 
left singular matrix of G, with the largest magnitude are chosen to represent the measurements, 
at the same time avoiding a large value of ü in the corresponding inferential error matrix GI,. 

In [44], a measurement (location) selection procedure is described, which is a practical com- 
promise between sensitivity of the measurements with respect to the manipulated variables and 
independence in the sense of a low degree of interaction between the measurements. The paper 
presents four systematic sensor selection procedures, all based on a SVD analysis of a, not nec- 
essarily square, process gain matrix P(s )  at steady-state. Again, the elements of P(0)  should be 
scaled properly, see. e.g.. C54. Chapter 51. 

The main method discussed, is the ”principal component analysis”. This method bases the 
sewor selection on the locatior; of the principal components in the left siiigulaî matrix W .  Each 
column in Wis  an orthonormal vector whose co-ordinate directions are described by each one of the 
candidate process sensors. The left singular vector 201 points in the direction of the most sensitive 
combination of sensors; w2 points in the second most sensitive direction, which is perpendicular 
to the major direction of sensitivity, etc. Therefore, it stands to reason that the location of 
the principal component of each vector indicates good choices for sensors which are relatively 
sensitive and also relatively (but not completely!) independent. The measurement selection is thus 
determined by performing a SVD analysis on P(0) and then choose the measurements (locations) 
which correspond to the largest absolute value in each of the left singular vectors. Note that this 
approach is different from the one presented in [6], where the largest absolute values in w1 only 
are used to select a measurement set; by doing this, independence of the measurements is not 
accounted for! 

The second and third method discussed in [44] are strongly related with the principal compo- 
nent method. The second method provides modifications in the case sensitivity should be sacrificed 
for the sake of reduced sensor interaction, while the third method is based on a comparison between 
the overall (all candidate sensor locations) SVD analysis and a partial (selected sensor locations 
only) SVD analysis. If the plant condition number tc(P(0)) = zT(P(O))/o(P(O)) is about the same 
for both methods, the sensor locations are probably good choices. 

The fourth method is a global one, in which a partial SVD analysis is performed for each 
combination of sensors. This procedure is the most definitive, but also much more time-consuming. 
Moreover, it is stated that the method in most cases does not yield results which are significantly 
better than the principal component method. 

3.11 Structured singular value 
In [35, 36, a?], a memuremext selectiori methcc! is disciissec! ir, the ccntext e€ the StrnutUred 
Singular Value (SSV) theory. The proposed method is used for selecting secondary measurements 
in inferential control systems, i e . ,  if it is difficult or impossible to directly measure the variables to 
be controlled (”primary measurements”), other (“secondary”) measurements have to be performed. 
The primary measurements could then be estimated on the basis of a system model. 

The method discussed is restricted to linear, time-invariant, stable plants. The assumption of 
stability is introduced for simplicity only. The measurement selection procedure is based on the 
fundamental idea that a control system must achieve robust  p e r f o r m a n c e .  Candidate measurement 
sets for which a controller satisfying robust performance cannot be designed are undesirable and 
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z' : 
w' : 
Si : 
So : 

weighted controlled variables, including manipulated variables u 
weighted external inputs, i .  e .  , disturbances, measurement noise and reference signals 
input to uncertainty block 
output of uncertainty block 

Figure 3.3: General framework for uncertain linear control systems 

are systematically eliminated. 
The SSV theory is used to develop a number of measurement screening tools that addresses 

the issue of modeling errors. Some tools are independent of the controller design methods, while 
others are tied to a specific controller design method. For initial screening of a large number of 
candidate measured variables, it is proposed to apply general screening tools, i .  e . ,  initially those 
candidates are eliminated for which a linear time-invariant controller achieving robust performance 
does not exist, no matter what controller design method is used. If the number of candidates left is 
reduced to a sufficiently low level, design-specific screening tools can be used, i .  e . ,  those candidates 
for which the particular design approach under consideration cannot yield a controller achieving 
the desired level of robust performance are eliminated. Although only measurement selection is 
considered, it is stated that the same norm-bound method can be applied to select an appropriate 
set of actuators among the available candidates. 

The general framework for the systems considered is depicted in Fig. 3.3 (compare with Fig. 
1.1). The model uncertainty A is decribed as a set of norm-bounded (more specifically, bounded 
maximum singular value) perturbations to the nominal frequency response matrix P at each 
frequency. It seems to be almost impossible to obtain a practically useful uncertainty description, 
i .  e.,  a rigorous yet nonconservative uncertainty description, that encompasses all system/model 
mismatches, including the effects of nonlinearities. Therefore, only the uncertainty that is believed 
to always exist and is important for closed-loop stability and performance is modeled; in [36], e.g., 
only structured multiplicative uncertainty on the inputs and outputs is modeled. For measurement 
selection, such a "parsimonious" uncertainty modeling is justified, since the procedure involves 
eliminating undesirable candidates, for which a controller achieving robust performance cannot be 
found for the given uncertainty structure and level. An overly conservative uncertainty description 
will either leave no  viable candidate or eliminate some of the viable candidates. 

So, the concept of robust performance is used as a screening tool in the selection of measured 
variables. Consider Fig. 3.3 and define MA to be the closed-loop transfer function matrix relating 
the normalized inputs w' to the weighted outputs z',  i .e . ,  z' = MAW'. Robust performance is 
achieved if: 

I I M A ~ [ ~  < 1 for all perturbations considered. (3.26) 

This condition can be tested through a measure called the Structured §ingular Value (see, e.g., 
[7]), wich is referred to as p.  The development of screening tools based on the fundamental idea 
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represented by (3.26) will not be elaborated here, since this requires thorough knowledge of, e.g., 
SSV theory and Youla parametrization, which is beyond the scope of this literature review. 

In [35], four necessary conditions for testing robust performance for a given set of measurements 
are derived. These necessary conditions can be checked efficiently and are proposed as general 
screening tools. The first condition is a test for the existance of a causal controller achieving 
nominal performance, which is a necessary condition for robust performance. By also allowing for 
noncausal controllers, which are physically not realizable, three more necessary conditions for the 
existence of a controller achieving robust performance can be developed. 

Some design-specific screening tools are also proposed in [35]. Necessary conditions for robust 
performance for systems under LQG control and Internal Model Control (IMC) are developed, as 
well as a necessary condition for controllers with integral action, regardless or their tuning. 

In [36, 371 and [35, Appendix BI, design-specific screening tools are developed in the context of 
inferential loop-shaping, which is an extension of the multivariable loop-shaping design technique 
to systems with secondary measurements. Norm-bounds on particular transfer function matrices 
that parametrize the controller IC, e.g., those functions that play similar roles as the sensitivity 
and complementary sensitivity functions in the standard loop-shaping problems, are derived and 
used as screening tools. In [37], development of tight, suficient  conditions to locate measurement 
sets for which a controller achieving robust performance exists is the focus, thereby eliminating a 
larger number of candidates than in the case necessary conditions are applied. 

Moreover, ir: [37] it is stated that design-dependent scïeening tools for loop-shaping can also 
be developed for cases where the controllers are restricted to diagonal or block-diagonal configu- 
rations. This would mean that the same screening tools could be used for control configuration 
selection! Unfortunately, this issue is not further explained. 

In [60], a method for control structure design is proposed, which combines heuristic knowledge 
(such as discussed in Section 3.1), simple analytical criteria and more elaborate computational 
routines (SSV theory). Control structure design is defined here as selection and pairing of ma- 
nipulated variables, and controlled variables to be used for feedback. The IO-selection phase will 
be discussed in this section, while variable pairing, i .e . ,  the CC-selection phase, will be discussed 
in Section 4.12. The method is restricted to steady-state linear control system descriptions, with 
emphasis on applications in process control. 

The first step in the IO-selection procedure, is to apply simple numerical tests to the candidate 
IO-sets, by which the alternatives are classified on a best-to-worst scale. An example of such a 
computationally fast "rank" test, is the so-called intersivity index o(P)/.*(P>, see also [44]. This 
measure trades off the minimum multivariable process gain, determined by the minimum singular 
value o(P)  (desirably large, see Section 3.8) and the sensitivity to model uncertainty, expressed 
by the minimum condition number K*(P) (desirably small, see also Section 3.9). 

After classifying all candidate IO-sets in this way, the IO-selection method proceeds to screen 
the alternatives. In this second step, the following practical issues are addressed: 

1. constraint satisfaction: It is required that the magnitudes of the manipulated variables 
and particular other variables resulting from the control action, remain within specified 
bounds . 

2. robust stability: It is required that the control system remains closed-loop stable in the 
presence of modeling errors. 

All candidate IO-sets are individually tested for both issues and additionally for a combination of 
1 and 2. This combined test addresses the ability of the control system to simultaneously handle 
constraints and maintain closed-loop stability for all possible modeling errors. The basis for the 
tests is the SSV for particular transfer function matrices at steady-state. The SSV theory allows 
both robustness and performance aspects of control problems to be captured simultaneously. The 
method is independent of a specific controller design technique; maintenance of integral control in 
the presence of modeling errors, is the only requirement. The development of the tests is discussed 
in [59]. 



Chapter 4 

Criteria for selection of the 
configuration control 

Ia t h i s  chElapter, soilre methods to decide on the interconnections between the 7lieasüred arid rnariip- 
ulated variables are discussed. In all approaches, decentralized control is a basic assumption. As 
is it discussed in the introduction, decentralized control may considerably reduce the complexity 
of both the controller design and the controller itself. 

4.1 Stability of fixed eigenvalues 
In [22, 291, the issue of fixed eigenvalues under decentralized control is discussed. Consider the 
following state space description of a linear constant control system: 

system: 

controller: u = Ky. 

i = Aa: + Bu 
y =  ca: 

It is stated, that if this system is both controllable and observable, the poles of the controlled 
system, i e . ,  the eigenvalues of ( A  + BKC),  can be placed completely arbitrarily (with complex 
poles in complex conjugate pairs) by centralized (dynamical) output feedback. The uncontrollable 
and unobservable poles always remain the same in case of output feedback, independent of the 
Controller parameters and the order of the controller; the controllers even may be time-dependent 
and nonlinear. 

Definition 4.1: fixed eigenvalues [29] 
Fixed eigenvalues are defined as the eigenvalues of the system that cannot be shifted by 
a controller, independent of the controller parameters and the controller type, provided 
the controller is based only on inputs u and outputs y of the system to be controlled. 

Therefore, the uncontrollable and unobservable eigenvalues are called central ly  fixed eigenvalues. 
So, these eigenvalues are invariant for all possible controllers for the system. In the case decen- 
Irdized controllers are applied, i. e., K = block diag[&], additional fixed eigenvalues may appear; 
these are called decentral ly  fixed eigenvalues and are caused by, and dependent of, the structure 
of K ,  i.e., the control configuration. Suppose there are no centrally fixed eigenvalues. The sim- 
plest way to show that an eigenvalue of A is decentrally fixed, is to calculate the eigenvalues of 
( A  + BKC) for an arbitrary feedback matrix K with the specific configuration under considera- 
tion; the eigenvalues which coincide for the uncontrolled system and controlled system correspond 
to the decentrally fixed eigenvalues with probability one [29]. 

Even if the original system is controllable and observable, the introduction of a decentralized 
(dynamic) feedback controller may prevent particular poles to be placed or to be shifted. This may 

23 
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be highly undesirable, e.g., in the case of unstable poles or stable poles close to the imaginary axis. 
Therefore, during the CC-selection phase, the eventual appearance of decentrally fixed eigenvalues 
caused by a particular control configuration has to be paid strict attention to and desirably has 
to be avoided. In [29], a necessary and sufficient condition is discussed to test the presence of 
decentrally fixed eigenvalues for a particular control configuration. The mathematical formulation 
of this criterion will not be elaborated here. It is expected that the condition can serve as a useful 
tool for screening alternative control configurations. However, a practical application has not been 
encountered in literature. 

For non l inear  control systems, fixed RHP-poles correspond with unstable feedback-invariant 
manifolds. 

4.2 Relative degree 
In [12, 131, the relative degree of an output with respect to an input is used to obtain a characteri- 
zation of the dynamic interactions among the input and output variables. Intuitively, this concept 
is based on "closeness" between controlled and manipulated variables, which is mentioned in [45] 
as an important heuristic commonly used in CSD. In [12], the relative degree is used to evaluate 
and select a control configuration among a set of feasibie ones; concepts reiated to controiiabii- 
ity, such as the system's invertibility, could be used as a criterion for feasibility, but this is not 
elaborated in this report. The proposed method for CC-selection is applicable to both linear and 
n o n l i n e a r  control systems. 

Consider square MIMO affine nonlinear systems in state space form: 
m 

Yi = hi(.) i =  1, ..., m 

with f and gj smooth vector fields on nt" and hi smooth functions on Bn. For this system, the 
relative degree rij of the output yi with respect to an input uj is defined as the smallest integer 
for which: 

LgILjrZ3-'hi(Z) # O (4.3) 
or rij = co if such an integer does not exist [12]. Whenever rij is finite, it can be verified that 
rij 5 n. In (4.3), LaPy denotes the repeated Lie derivative, see, e.g., [67, Section 6.21. 

The relative degree captures the dynamic effect of the manipulated variables on the measurable 
variables to be controlled, i e . ,  y = z.  Its calculation requires only structural information about 
the system, i e . ,  information about the dependence of f and hi on the state variables in x, as 
well as about the zero and nonzero elements in g j .  If the digraph in Fig. 3.2 is considered, 
rij + 1 is equal to the length of the shortest path connecting uj and yi [12]. The relative degree 
is thus related to the number of state variables involved in the particular IO-interaction. This is 
consistent with the interpretation of the relative degree as the number of integrations the input 
has to go through before it affects the output. In this sense, it is a meaningful measure of dynamic 
interaction. Furthermore, in [i21 it is shown, that rij can also be interpreted as a measure of how 
responsive the output yi is for step changes at the input uj: the smaller rij, the faster the initial 
response of the output is. 

The contribution of the concept of relative degree in CC-selection is now explained as follows. 
For a nonlinear system in the form of (4.2), the relative degree matrix is defined as: 

r11 ... rim 
R u =  [ ; ... ] 

rml . . .  rmm 

(4.4) 

where the rij's are the individual relative degrees as defined above. Next, the outputs are re- 
arranged by exchanging rows, so that the minimum relative degree ri in each row of Ru appears 
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in the diagonal, i e . ,  Ru has the form: 

7-12 . . . rln 1 

L rm1 rm2 ... rrn 1 
where rij 2 rg. Under the assumption of feasibility ( i e . ,  "invertibility") of all candidate config- 

this form of Ru indicates the IO-pairings with the dominant interactions. Off-diagonal relative 
degrees in a row indicate the interaction between a specific output and the other inputs, and they 
are necessarily larger than or equal to the diagonal relative degree. Off-diagonal relative degrees 
in a column indicate the interaction between a specific input and the other outputs, and they 
are not necessarily larger than or equal to the diagonal relative degree. Large deviations of the 
off-diagonal terms both of the same row and column from the diagonal ones, imply weak dynamic 
structural coupling of the rest of the inputs and outputs from the particular input/output pair; 
therefore, from a structural point of view, employment of multiloop SISO control for the par- 
ticular IO-pairing appears favorable. It is also possible to identify groups of inputs and outputs 
that are characterized by weak structurai coupling Îrom the other ones, suggesting thus Îavorabie 
candidates for block decentralized control configurations. 

It is emphasized in [12], that the guidelines for CC-selection based on the relative degree 
only have a preliminary and qualitative character; other analytical tools should be employed too, 
towards a more quantitative assessment of the merits or shortcomings of each configuration before 
the final selection. 

.... uratiGinrS, SGch a rearrazlgernezt is a!ways p s i b k  [12]. The G u t p U t  re&mEgemeEt t h t  leads te 

4.3 Achievable performance 
In Section 3.5, it is discussed that the minimum achievable value of an integral quadratic per- 
formance index can be used as a criterion to select an appropriate IO-set. Analogously, such a 
criterion can be applied during the CC-selection phase. 

In [28], a design method for optimal decentralized controllers is discussed. This method is 
based on the optimization of controller parameters: the parameters in a control law based on 
s ta t ic  decentralized output feedback (u = K y ;  y = Cz) are numerically optimizedfor the standard 
auadratic criterion: 

(zTQz + uTRu)dt 

with K the class of decentralized controllers with a certain structure. The choice for the decentral- 
ized structure of K ,  i e . ,  the control configuration, is arbitrary, provided the system is stabilizable. 
Consequently, K must be chosen such, that no unstable decentrally fixed eigenvalues occur. 

With respect to decentralized controllers, the minimization problem can be written: 

min { J = tr [P . E[~(o)z(o)~]]  } 
K E K  

(4-7) 

with P the solution of a particular matrix Lyapunov equation: P = P(A, B ,  C ,  K ,  Q, R) and thus 
J = J(A, B ,  C ,  K ,  Q ,  R, ~ ( 0 ) ) .  So, the minimum value of J ,  i . e . ,  the achievable performance, 
depends on the control configuration represented in K .  The solution K cannot be obtained ana- 
lytically as for centralized optimal state feedback controllers, but it must be obtained numerically 
by an iterative algorithm [28]. A possible criterion for CC-selection is then, to choose the control 
configuration that minimizes J and therefore maximizes performance. 

4.4 Relative gain 
A commonly known tool for attacking the CC-selection problem for single-loop controllers, i. e. ,  
fully decentralized or diagonal controllers (often called "multiloop SISO" controllers), is the so- 
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I 

Figure 4.1: Framework of a decentralized control system with a diagonal controller 

called Relative Gain Array (RGA). It has found widespread use as a measure of interaction in 
square linear decentralized control systems, and may be generalized to block diagonal controllers 
by introducing the Block Relative Gain (BRG). In this section, both the RGA and the BRG and 
their applications in the CC-selection procedure will be shortly discussed. 

The RGA was first introduced by Bristol in 1966 [9] to answer the following question: How is 
the transfer function between a given manipulated variable uj and a given controlled variable zi 
aflected by  complete control of all other controlled variables? 

Originally, the RGA was defined and applied at steady state, but it may easily be extended to 
higher frequencies, see, e.g., [23, 24, 25, 63, 64, 711 in which also applications in process control 
are discussed. For a further discussion of the RGA, the control system in Fig. 4.1 is considered, 
assuming all variables to be controlled z are represented in the measured variables y, i.e., y is to 
be controlled. 

Consider the square m x m plant P(s) :  

When all other outputs are uncontrolled, i e . ,  all other loops are open, the gain from input u j  to 
output yi is pi j ( s ) .  Furthermore, writing (4 .8 )  as u(.) = P-’(s)y(s), it can be seen that the gain 
from u j  to yi with all the other elements in y perfectly controlled ( y j  = O V j # i) is l/[P-l(s)]ji. 
The relative gain is now defined as the ratio of these ”open-loop” and ”closed-loop” gains. If this 
ratio is close to 1, one might infer that control of the other outputs would not have a significant 
impact on the control of the IO-pair under consideration. A matrix of relative gains, the Relative 
Gain Array, can be computed at each frequency (s = ju), using the formula: 

A(s) = P ( s )  * ( P - ’ ( s ) ) ~  (4.9) 

where ” *” denotes element-by-element multiplication (Hadamard or Schur product). The assump- 
tion that all the other loops are perfectly controlled is in practice only justified if it is restricted 
to a specific range of frequencies. This is the main reason that the use of RGA has for a long time 
been restricted to steady state problems (s = O), where perfect control may be achieved by integral 
action. However, the RGA proves to have a number of useful properties at high frequencies as 
well [24, 631. Some of them will be discussed in this section. 

The RGA as defined above has some interesting algebraic properties [38]: 

1. It is independent of input and output scaling. 

2. The sum of all elements in one row or column equals one, i. e., Cy=, A i j  = 2=1 A . .  23 = 1 9 

with A i j  the ij-th element of A. 
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3. Any permutations of rows or columns in P(s)  result in the same permutations in the RGA. 

4. If P(s)  is triangular (and hence also if it is diagonal), h ( s )  = I .  

The RGA is a measure of interaction and is frequently used to decide on the pairing of input 
and output variables, ie., which manipulated variable must be determined by which measured 
variable. Therefore, the RGA is a potential tool for CC-selection. In [9, 24, 25, 38, 631, some 
useful pairing rules are proposed, which will shortly be discussed: 

1. Avoid pairings yi/uj (control configurations) with large RGA elements I X i j l ,  in particular at 
frequencies near cross-over [25, 631. 
Large entries in the RGA indicate strong couplings and a poorly conditioned plant, which 
is clear from the relation Ü(h(P))  5 K * ( P )  [54], indicating that large relative gains imply 
a large optimally scaled, ie., minimal, condition number. The implication of large Xij 's in 
perturbed plants is explained in [24, 63, 661: 

o Diagonal input uncertainty. Consider the input disturbed plant @ = P(I+A) .  The 
diagonal matrix A consists of the relative uncertainty in the gain of each input channel. 

controller is used ("u = P-'"'), trying to reduce interactions, the closed-loop system's 
performance (and even its stability) is lïkeiy to be very sensitive to diagonai input 
uncertainty. Therefore, an inverse-based controller should never be used for plants 
with large RGA elements 

o Individual element uncertainty. Small parametric uncertainties may have large 
consequences for control performance. In [24, 63, 661, this issue is discussed in relation 
to the RGA. The following theorem is proposed and proven: 

The complex matrix P becomes singular if a relative change -l/& in its 
ij-th element occurs, ie., if a single element in P is perturbed from pij  to 

This provides a necessary and sufficient condition for singularity of a system matrix 
with element uncertainty, and has an important control implication. Consider a plant 
with transfer function matrix P(s).  If the relative uncertainty in an element at a given 
frequency is larger than l l / A i j l ,  the plant may have jw-axis zeros and RHP-zeros at 
this frequency. As it has been discussed before (Section 3.2), RHP-zeros are highly 
undesirable, since they limit the achievable bandwidth for any type of controller. A 
large value of A i j  means that only small relative errors on the corresponding plant 
element pij are tolerated. 

It is s~o;'J;i, +L ulrau + ir ' C  +L,. ulLG ,,,:,,1 lIvlltlllal ,l..,+ P has large SUA e!emer,ts a d  2: irirerse-based 

pij = pij(1- l / X i j ) .  

Since modeling errors are always present in practice, a criterion for CC-selection that states 
that input-output pairings causing large RGA elements have to be avoided, seems justified. 

2. Avoid pairings yi/uj with negative values of the steady-state RGA elements /\ij (O) for control 
systems using diagonal controllers with integral action. 
This is because such a pairing will give the closed-loop system at least one of the following, 
undesirable, properties [38, 631: 

o The closed-loop system is unstable. 

o The loop with the negative relative gain is unstable by itself. 

o The closed-loop system is unstable if the loop with the negative relative gain is removed. 

3. Prefer pairings with RGA values close to 1, especially for w in the crossover-region. 
It is emphasized that this "conventional" pairing rule is just an engineering rule of thumb, 
and is not based on any proof. As it is shown by an example in [24], pairing in accordance 
with this rule may result in an unstable system, even if the individual loops are tuned to be 
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stable. Desirably, A M I ,  since this indicates only weakly coupled control loops and therefore 
independent control of each loop is easier to achieve. However, it is not always possible to 
achieve this by row and column changes. If A = I 'd w, stability of the individual loop implies 
stability of the overall system [24]. Unfortunately, it is not known which deviations from 
A = I can be tolerated without impairing stability. 

4. Avoid pairings with different signs of & ( O )  and A i j ( j c o ) .  
In [24, 631, it is proven that if the relative gains A i j ( 0 )  and A i j ( j m )  for any pairing yi/uj 
have different signs, then at ieast one of the foilowing is true: 

pij(s) has a RHP-zero. 

e P(s)  has a RHP transmission zero. 

e Pij(s),  ie., the subsystem with uj and yi removed, has a RHP transmission zero. 

However, it is emphasized that this condition is not a necessary one and there may be RHP- 
zeros present, even if the RGA elements do not change sign. As it is discussed in Section 3.2, 
any such zeros may be detrimental for control of the system. 

One inadequacy of the RGA is, that it only measures two-way interactions, e.g., A = I for a 
triangular plant. Therefore, it may indicate that interactions are not a problem, even if significant 
one-way coupling exists. This is the motivation for the introduction of the so-called Performance 
Relative Gain Array (PRGA), see, e.g., [24, 25, 26, 631. For the discussion of the PRGA, consider 
the undisturbed ( d  = O) system in Fig. 4.1. Assume that, after the variable pairings have been 
determined, the order of the elements in y and u has been arranged such that the diagonal elements 
of the plant transfer function matrix P(s )  correspond to the paired variables. Let y(s) denote the 
output response for the overall system when all loops are closed (u = Ice) and let e(.) = y(.)-r(s) 
denote the output error. The closed-loop response becomes: 

e(.) = -S(s)r(s) (4.10) 

with S = ( I  + PI<)-' the sensitivity function for the overall system. At low frequencies (u < Ui,, 

with wb the frequency where ü[PI<(jw)] crosses one, i e . ,  the cross-over region), the controller 
gains are usually higher and S M (PI<)-'. Equation (4.10) can then be rewritten [25]: 

- 
e M -(PI<)-'r = -(FI<)-'FP-'r x - s r r  for w < W b  (4.11) 

with 3 = ( I  + PK)-' ,  P = diagkii] and ï = PP-'. The matrix ï is termed the Performance 
Relative Gain Array (PRGA), with elements denoted by ?ij. It is noted, that the diagonal elements 
of I' and A are the same and that the PRGA depends only on output scaling. When the effect of 
a setpoint change rj on the error ei is considered if all loops are closed, this gives: 

-Tij 
p. .k . .  3 ei M -r' for w < W b .  

2 2  z a  
(4.12) 

So, the ratio yjj /(pjikji)  gives the magnitude of the error in output i to a setpoint change for 
output j .  In fact, -yij is a measure of performance degradation due to the closing of other loops 
than loop i. The ratio in (4.12) is preferably small, i e . ,  on a Bode plot, the curve for lyijl should 
lie below Ipiikii1 at frequencies where small errors ei are desired. This gives rise to the following 
pairing rules (CC-selection rules) [25]: 

1. Prefer pairings yi/uj where pij puts minimal restrictions on the achievable bandwidth for 
this loop. That is, avoid pairings with RHP-zeros in pij(s) and avoid pairings where pij(s) 
is small. 

2. Avoid pairings with large values of the PRGA in the crossover region, particularly if the 
achievable bandwidth for the corresponding loop i is restricted because of pei(s), see rule 1. 
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As it has already been noted, the RGA may be generalized from multiloop SISO controllers to 
block diagonal controllers by introducing the Block Relative Gain (BRG). This interaction measure 
is introduced in [42]; in [49] the BRG is treated in a more mathematical context. The (left) BRG 
associated with the i-th square subsystem is defined as [42]: 

BRGii = Pii[P-’]ii (4.13) 

The diagonal blocks Pii constitute the subsystems that are under decentralized control. For a mul- 
tiloop SISO control system, the BRG’s reduce to the diagonal elements of the RGA. Analogously 
to the interpretation of the RGA, the BRG of a plant P is the ”ratio” of two transfer matrices of 
the plant, evaluated at a certain frequency; the first transfer matrix is evaluated with the remain- 
ing plant outputs uncontrolled (open loop) and the second is evaluated with the remaining plant 
outputs perfectly controlled. The resulting BRG is a measure for performance deterioration of 
each subsystem due to interactions with the other subsystems. If the plant P is block triangular, 
all BRG’s are identity matrices. 

In [42], it is stated, that an acceptable control configuration is provided, if all the BRG’s corre- 
sponding to the diagonal blocks of the plant P, are close to the identity matrix. If for a particular 
subsystem the BRG is exactly the identity matrix. the closed-loop performance of this subsystem 
is as if it were isolated from the rest of the plant and operating under the influence of only its own 
control law. In [42], a. pïocediiïe is pïoposed foï CC-selection. The essence a€ the procedure is 
to consider candidate configurations for a decreasing degree of decentralization, and to screen out 
those configurations with diagonal elements and eigenvalues of the BRG’s which are not ”close” 
to 1. The BRG’s associated with different configurations are evaluated both at steady state and 
at higher frequencies. 

The concepts of RGA and BRG can be extended to nonsquare systems. In [lo], a modified 
RGA is proposed for systems with 1 2 m, i e . ,  systems which may have a larger number of outputs 
than inputs. If I > m it is not possible to perfectly control all outputs. Therefore, the nonsquare 
RGA is developed under the assumption of least-square perfect control [lo] and is defined as: 

AN = P * [P+IT (4.14) 

with P+ the pseudo-inverse of P, see, e.g., [69]. It is stated that the nonsquare RGA can be used 
as a criterion to square the system down, i.e., to select the same number of outputs as inputs, if 
a square control system is preferred. The outputs associated with a small row sum are eliminated 
to minimize the error of the uncontrolled outputs when the square subsystem is under perfect 
control. For properties of the nonsquare RGA, the reader is referred to [lo]. 

In [55], the BRG for nonsquare (sub)systems is derived, also with the concept of the pseudo- 
inverse. This will not be further discussed here. 

The major criticism related to the use of the BRG (and the RGA) as a closed-loop interaction 
measure is, that it is developed under the assumption of perfect control in the complementary 
subsystems, i e . ,  the other subsystems under decentralized control, which will only hold for a cer- 
tain frequency range. In the notion of the Dynamic Block Relative Gain (DBRG), discussed in, 
e.g., [2, 31, perfect control is not assumed. In [3], the relation between the DBRG and stability 
aad performaace of decedxdized control systeirrs, is discussed. Unfortunately, the D E K  cf B 
particular subsystem depends on the controllers associated with the complementary subsystems, 
and is therefore less appropriate for CC-selection purposes. In [55], the DBRG is extended to 
nonsquare systems. 

In [39, 411, the (Dynamic) Nonlinear Block Relative Gain ((D)NBRG) is introduced as an in- 
teraction measure for decentralized non l inear  control systems. 

Consider a nonlinear plant P connected with a nonlinear block diagonal feedback controller 
K .  Except for K I ,  all controller blocks are incorporated into a single block IC,, see Fig. 4.2. The 
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Figure 4.2: Framework of a nonlinear decentralized control system with a block diagonal controller 

following relations hold: 

(4.15) 

u = [ :i ] = P-'y (assuming P-l can be calculated) (4.16) 

u = K e  (4.i7j 

with F and K operators that describe a nonlinear system's input-output dynamic behaviour, 
see, e.g., [52]. Following the same approach as for linear systems, the NBRG and DNBRG are 
developed. Again, the DNBRG appears to be controller-dependent and is therefore not very useful 
for CC-selection. Under the assumption of perfect control of y z ,  i.e., y z ( t )  = O V t 2 O, the (left) 
NBRG associated with subsystem 1 is defined as the operator: 

NBRGii = P11(P-')11. (4.18) 

with Pi1 the operator "relating" u1 to y1 if U Z  = O, i.e., y1 = Pl(u1, U Z  = O )  = P11ui. Contrary 
to the DNBRG, the NBRG depends only on plant information, and can be used for screening out 
those control configurations for which the NBRG is "far" from the identity operator. For a more 
detailed discussion and a practical 2 x 2 example, the reader is referred to [39, 411. A variant of 
the NBRG for nonsquare (sub)systems has not been encountered in literature. 

4.5 Relative sensitivity 
To circumvent the disadvantages related to the BRG (assumption of perfect control) and the 
DBRG (dependent on controller type and tuning), in [4] the relative sensitivity is introduced as a 
closed-loop interaction measure for performance. Contrary to the (D)BRG, the relative sensitivity 
accounts also for one-way interaction. 

Unfortunately, this measure is developed for a specific controller type, i.e., decentralized In- 
ternal Model Control (IMC), see Fig. 4.3, with K ~ M C  a block diagonal controller and = 
block diag[Pii] consisting of the square subsystems under decentralized control. When each sub- 
system i is treated in isolation, its setpoint response, i e . ,  its response to a change in ri, is given 
by (note that ri is a vector for subsystems with a dimension larger than 1): 

yi = q:ri (4.19) 

with q: = P ~ ~ K I M c ~ ,  the "achievable" performance of the i-th subsystem in isolation. The 
setpoint response of the system in Fig. 4.3 is denoted y = Tr, where: 

T = P l ( r ~ c ( l +  ( P  - F ) I < I M c ) - ~  = P(T*-'F + (P - P))-' (4.20) 

with T* = block diag[qi]. The relative sensitivity between any two subsystems is defined as: 

vji = (2) ($)-I (4.21) 
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Figure 4.3: Decentralized Internal Model Control 

and expresses how much the j-th subsystem is excited relative to the response of the i-th 
subsystem, when a setpoint change ri in the i-th subsystem ocurs. Desirably, this effect is small. 
All the relative sensitivities together make up the relative sensitivity matrix 'ï, which becomes for 
k diagonal blocks: 

. .  1 u,, u,, . : .  I . 
For a totally noninteracting system, 'T is identity, while for a one-way interacting 

(4.22) 

system it is 
either upper or lower triangular, depending on the direction of the interactions. 

In [4], the magnitudes of the interactions are denoted by ü(Tizi), where 'Ti is composed of 
the off-diagonal blocks in the i-th column of T. These magnitudes should be kept as small as 
possible. Therefore, ü(Ti) should be small (compared to 1) within the same bandwidth for which 
CT(!&(U)) 

If Ti = I at w = O, it is concluded from equation (4.20) that T ( w  = O) = I also, and therefore 
'T(u = O) = I .  In [4], the following is derived for high frequencies: 

- 1. The larger this bandwidth is, the better the dynamic interactions are rejected. 

(4.23) 

I 

PklPfil Pk2PG1 ... I 

- 
'ï= lim 'ï= 

W'03 

So, the values of these high-frequency asymptotes do not depend on controller tuning (remind 
that 'T is developed for IMC, so the controller type is fixed), and are therefore a potential tool 
for CC-selection. The following guideline is proposed in order to screen out some undesirable 
configurations [4]: 

o Avoid configurations with asymptotes that persistently exceed 1, since they will decrease 
the bandwidth within which ü('Ti), and therefore interactions, can be made small. Specif- 
ically, configurations must be chosen that minimize the magnitudes of the high-frequency 
asymptotes a(ri), with composed of the off-diagonal blocks in the i-th column of T. 

The relative sensitivity for systems with more inputs than outputs is discussed in [55]. 

4.6 Closed-loop disturbance gain 
The development of the frequency-dependent closed-loop disturbance gain is closely related to 
that of the PRGA, see, e.g., [23, 24, 25, 26, 631. Consider the control system in Fig. 4.1 in which 
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d denotes disturbances. Assume the controller is diagonal and suppose r = O. Furthermore, G d  
may be nonsquare. In analogy to (4.10), the closed-loop response to disturbances becomes: 

e ( s )  = S(s)Gd(s)d(s). (4.24) 

Again, for frequencies below the cross-over frequency W b ,  it is assumed s x (PI<)-'. Equation 
(4.24) can then be written in the following form [25]: 

- 
e X SAd for w < W b  (4.25) 

with 3 = ( I+PK)- l ,  = diagkii] and A = PP-lGd. The matrix A is termed the Closed Loop 
Disturbance Gain (CLDG), with elements denoted by Sij. It is scaling dependent, as it depends 
on the magnitude of disturbances and outputs. The approximate effect of a disturbance d j  on the 
error ei is given by (compare with (4.12)): 

(4.26) 

So, the ratio &j/(p i ik i i )  gives the magnitude of the error in output i to a disturbance d j ,  which 
is preferably small. That Is7 the curve for the CLDG element !&ij! should lie below [pi iki i!  at 
frequencies where large errors ei have to be avoided. 

To get a better physical interpretation of the CLDG, consider the response to a distnrbance 
d j  when all the other loops are open: 

d .  for w < wg. ei w - 9 d i j  
p . . k . .  3 

a z  z a  
(4.27) 

Comparing (4.26) and (4.27), ga,, is replaced by Sij, which explains why the name closed loop 
disturbance gain is chosen for S i j .  

For process control, disturbance rejection is usually more important than setpoint tracking, 
i e . ,  CC-selection for process control systems should be directed by the CLDG rather than by 
the PRGA discussed in Section 4.4. Of course, it is also possible to use a combination of both 
measures for CC-selection. From the point of view of disturbance rejection, one possible pairing 
rule is [25]: 

o Avoid control configurations (pairings) with large CLDG values in the crossover region, 
particularly if the achievable bandwidth wg for the corresponding loop is restricted due to 
pii ,  e.g., due to RHP-zeros (see also Section 4.4). 

4.7 Interaction potential 
In [27], an approach is proposed for selecting IO-pairings in diagonal controllers, which consists 
of two steps. The first is to eliminate as many of the infeasible pairings as possible by applying 
a selection criterion based on the steady-state RGA; the second step is to determine preferred 
IO-pairings by using the "interaction potential", which is a measure that provides information on 
the possible interaction on a particular loop by all the other loops. 

Consider the undisturbed (d = O) multiloop SISO control system in Fig. 4.1. The output y 
can be written: 

y = P K ( I  +- PK)-ir  = T r  (0.28) 

with T the complementary sensitivity function matrix of this system. For an i n d e p e n d e n t  single 
loop, the associated complementary sensitivity function is defined as: 

(4.29) 

In [27], it is demonstrated, that the controller itself has profound effects on the loop interactions, 
see also the remarks on the DBRG in Section 4.4. Therefore, CC-design is coupled with controller 
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design. In [27], it is stated that under the assumption of Internal Model Control, it is possible to 
formulate the system's performance with the following factorization: 

- 
T.. a2 - - xzz . .f (4.30) 

where xii contains all of the NonMinimum Phase (NMP) parts of pi; and 9 designates the desired 
dynamics of an independent loop, and is assumed to have the following form: 

t f . . - f = -  
r s + l '  $ 2  - (4.31) 

The motivation for the introduction of (4.31) is not quite clear from [27]. Moreover, the approach 
may not always be justified since a controller kii which fulfills (4.30) may not always be realizable. 

Each loop in the system may be affected by the outputs of all other loops [27]. If the i-th 
output and j-th input are to be configured as a SISO loop, the strength of these "disturbances", 
i e . ,  interactions, by other loops is represented by a frequency dependent vector hij&). For 
details on the development of hij, the reader is referred to [27]. The vector hij thus contains 
information on interactions and depends, among others, on the functions f and xij, which is 
dufixd as it fitctor that coztaii,s a!! the NXP p r t s  of pij. The iEtegr-1 of the frequency-scaled 
2-norm of hij is designated 4 i j  : 

(4.32) 

The average of dij over a particular interval of r is termed the i n t e r a c t i o n  p o t e n t i a l  associated 
with pij, i .  e.: 

(4.33) 

where [T' rul is a region of e chosen for averaging dij. Finally, the interaction potential matrix 
can be written: - - 

411 ... 4 i m  

4 m i  . - *  4mm 

& [  - i . . *  - i 1 .  (4.34) 

Calculation of 3 only requires process information in terms of P(s) ,  and a region for the parameter 
r; 5 is independent of the control configuration. 

is a lumped sum of the strengths of possible interactions from 
all of the other loops to the loop configured by the pairing yi/uj. Thus, possibly with some 
weightings, the interaction potentials of each loop in a multiloop system can be summed to a t o ta l  
interaction potential for the control system. As a result, the most preferable control configuration 
(IO-pairings), is the one with the least total interaction potential. 

The interaction potential 

The procedure for developing preferable IO-pairings as discussed in [27], is as follows: 

1. E l i m i n a t e  infeasible  pairs:  
Calculate the steady-state RGA and eliminate candidate pairings with X i j  < O to avoid sta- 
bility problems (see Section 4.4). Hopefully, the number of candidate pairings is significantly 
reduced in this way, by which the investigation of dynamic interaction in the subsequent steps 
becomes less time-consuming. 

2. F i n d  a p r e l i m i n a r y  preferable  pair ing:  
Assign an appropriate region [r' T"]. The choice of 7" is related to the choice of r' and is 
dependent on the modeling errors of interest. Start with a small T' and compute 5. Choose 
m numbers from 5, all from different rows and columns, such that the sum of the numbers 
is minimal, i.e., choose the configuration with the least interaction. For each number Jij 
selected, its position in the matrix describes the IO-pairing for this prelzrninary configuration. 
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3. Find the most  preferable pairing by iteration: 
This is a checking procedure, since the current values of r' and ru may not be "feasible" 
for the temporarily chosen pairing of step 2: the stability of the multiloop control system 
indicates the feasibility of the current r'. Since the factorization of the performance of 
the control system (4.30) corresponds to one commonly used in IMC design with SISO 
controllers, r' is chosen based on its ability to stabilize the closed-loop system. If the value 
of r' is feasible, the current configuration is the most preferable one. If it is not, the values 
of r' and r" are increased and steps 2 and 3 are repeated until an appropriate r' and the 
most preferable configuration are found. 

4.8 Numerical invertibility 
In [43], a quantitative measure of the best pairing of IO-variables in a multiloop SISO control 
system is developed, based on the proposition that the best pairing is the one for which the 
system most closely resembles a set of independent single-loop systems, i . e . ,  the one for which the 
system can be represented best by the diagonal terms of its steady state gain matrix. The criterion 
is developed by an analysis of an iterative technique for obtaining the solution to a set of linear 
equations, or the inverse of a matrix. It is shown that the system interactions can De assesseii Dy 
analyzing the effect of the off-diagonal elements of P(0) on the difficulty of obtaining the desired 
solution or matrix inverse by the iterative procedure. The rate of convergence of the iterative 
process for the different variable pairings provides the basis for the pairing criterion. Although the 
development of the criterion is based on purely algebraic properties, its practical validity is shown 
to be evident from the relationship between the pairing criterion and stability characteristics of 
the system. 

Consider the rn x rn system y(s) = P(s)u(s). The changes dy from one steady s ta t e  to another 
resulting from changes in the manipulated variables du are given by: 

dy = P(0)du (4.35) 

in which the elements pi j (0)  of P(0) are commonly called the "process gains". In the rest of this 
section P(0)  will be denoted P. If the process gains are constant over the range of operation for 
all choices of du of interest, (4.35) may be integrated to give: 

Ay = PAu. (4.36) 

Provided the inverse of P exists, (4.36) may be solved for Au to give: 

Au = P-' Ay. (4.37) 

In general, the ease of obtaining P-l by iterative techniques increases with an increase in the 
dominance of the diagonal elements pii .  Since the best pairing of variables is believed to be the 
one that makes the system most closely resemble a set of independent single-loop systems, it is 
also the one whose off-diagonal terms make the smallest contribution to the inverse of the gain 
matrix P. Therefore, the pairing criterion developed in [43] is based on an analysis of the difficulty 
of finding P-l ,  i .e.,  it is based on a measure of the contribution of the interaction elements to 
P-1. 

In [43] it is shown, that after N iterations with P-l = (diag[pi,])-l as an initial guess for P-l,  
the following approximation (P-')N of P-' is obtained: 

(4.38) 

with N the number of iterations and J the Jacobi iteration matrix defined by: 

(4.39) 
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with j i j  = p i j /p i i .  The necessary and sufficient condition for the matrix series (4.38) to converge 
to P-' is that the largest eigenvalue of J in modulus is less than unity (see, e.g., [69, Chapter 71). 
The convergence rate is defined as follows: 

R(J) = -logp(J) (4.40) 

with p ( J )  the spectral radius of J ,  i.e., the largest modulus of the eigenvalues of J ,  see, e.g., [69, 
Chapter 71. Thus, a quantification for the pairing that makes the system most closely resemble a 
sei of single-loop systems has been obtained, and a CC-selection criierion is stated: 

Of all possible pairings (control configurations) choose that pairing whose corresponding 
Jacobi iteration matrix J has the smallest spectral radius. 

In [43], it is shown that the eigenvalues of J not only indicate the desired pairings, but they also 
indicate whether the configuration would be stable with a perfect diagonal controller, defined as 
a controller for which K(0)  = p- (O), or with a diagonal controller containing integral action. 
Some examples are presented to illustate the usefulness of the selection criterion, and criteria for 
CC-selection based on the RGA (Section 4.4), the SVD (Section 4.11) and the criterion proposed 
above are corn-Fared. 

1 

4.9 Performance degradation 
In [21, 54, 561, the CC-selection is based on a performance degradation criterion for decentralized 
control systems. The proposed algorithm has been implemented in a MATLAB toolbox [57]. 

Consider the controller u(.) = K(s)y(s). It is assumed that the selected measurements in 
y represent the variables to be controlled. Partitioning of feedback interconnections among the 
manipulated and controlled variables, i. e., CC-selection, leads then to a decentralized control 
scheme. When a system is not partitioned, each manipulated variable action is determined by 
feedback from all the measured variables; full information exchange takes place and the control 
system is fully connected or centralized. This means that a decentralized control system will 
generally be less complex than a centralized one. However, closed-loop system performance may 
suffer, since the amount of information exchange is reduced. That is, the effect of manipulated 
variable actions on measured variables which were not used to compute those actions, the so-called 
cross-feed, may degrade the overall system performance significantly. Cross-feed can degrade the 
system performance in a number of ways [54]. Not only the n o m i n a l  p e r f o r m a n c e  of the system 
can be endangered, but the n o m i n a l  stability of the closed-loop system as well. Furthermore, the 
robus t  s tab i l i t y  a n d  p e r f o r m a n c e  characteristics of the closed-loop system can degrade as a result of 
cross-feed. Finally, the cross-feed affects the stability of the system when blocks of the controller 
are tuned individually or taken out of service. A necessary condition for low cross-feed performance 
degradation is therefore a potential CC-selection criterion, by only allowing configurations which 
pass the criterion; these configurations are termed viable. 

To determine an appropriate definition of cross-feed performance degradation, the closed-loop 
performance of the partitioned system P(s)  with the decentralized controller K(s )  is contrasted 
with that of the associated block diagonal system p(s) with the decentralized controller K ( s )  
(see Fig. 4.1 with the diagonal controller replaced by a block diagonal one). That is, if the off- 
diagoria! blocks of ô. system were not present and B decentralized ccmtrc!!er with the saxe block 
structure were employed, cross-feed would not take place. In this case, each of the subsystems 
Pit are controlled independently. Thus the performance of the block diagonal system, composed 
of i n d e p e n d e n t  subsystems, would be considered the "ideal", which the decentralized system's 
performance should approximate. 

Closed-loop performance is studied by using the complementary sensitivity function of the 
- partitioned system T = PK(1  + PI-)-' and that of the associated block diagonal system T = 
PK(1  + Here performance includes not just nominal performance issues such w setpoint 
tracking, but also the stability and robustness properties of the closed-loop system [54, 561. That 
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is, T and T specify completely all aspects of respectively the closed-loop performance of the 
partitioned and block diagonal systems. The extent to which T and T differ characterizes the 
impact of the cross-feed on the closed-loop performance. Therefore, one measure of cross-feed 
performance degradation is the "difference" between T and T,  relative to the "ideal" performance 
represented by T: 

Ü[(T - T)T-'] (4.41) 

In [is], a performance degradation measure closely related to this one is discussed. The pro- 
posed CC-selection criterion is based on a necessary and sufficient condition for low cross-feed 
performance degradation [54, Appendix BI: 

- --' 
Ü[(T - T)T ] 5 dT (4.42) 

with dT the specified maximum allowable cross-feed performance degradation margin at each 
frequency. This condition is then weakened to yield a necessary  condition for low cross-feed 
performance degradation [54, Appendix BI: 

Suppose P is a square FDLTI plant with its measurements and manipulations parti- 
~~ 

tioned such that: [ p;l 1:. "k ] 
p k l  ,.. Pkk 

P = [Pij] = 

Under these conditions, there exists a FDLTI controller 
which achieves 

1. Ü[(T - T)T-'] 5 dT, and 

2. ü(T) 5 UT, UT < 1 v w 2 UT 

only if: 

K=block diag[Kl,. . . , Kk] 

(1 - q)ü( V )  < dT v W  2 WT 
1 + (1 - UT)ü(V) - (4.43) 

where: 

o V = (P - F)P-' for = block diag[Pli,. . . , P k k ]  

o UT and WT specify the closed-loop bandwidth of the block diagonal system. 

Note that this condition is quant i ta t ive ,  since performance specifications are stated explicitly in 
provisions 1 and 2. As it is discussed in Section 3.9, these performance specifications on the 
measurements y must be derived from specifications on the performance variables z .  By shaping 
T ,  i .e. ,  choosing UT and UT, the closed-loop performance of the "ideal" system is completely 
specified. In the CC-selection procedure, by the function dT it can be specified how much the 
partitioned system may vary from the ideal one as a result of cross-feed. The design parameter dT 
serves as an upper bound on the maximum cross-feed performance degradation margin permitted 
at each Îrequency. For example, if oifset-Îree steady-state behavior is desired, d~ is zero at w = U. 

The condition (4.43) is also e f i c i e n t ,  since the candidate control configurations can be evaluated 
prior to control law design. However, it could be made significantly more efficient if the scaling 
dependence via a(V) could be relaxed. In [54, 561, it is shown that this can be achieved by 
introducing the "partial row sums" Qi of the elements lying in the diagonal blocks of the RGA 
A(P) :  

- 

41. 
Q i  = A(P)ij  (4.44) 

j=a, 
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where i denotes the i-th row and k denotes the k-th diagonal block of A(P) ,  and f f k  and /3k 
represent respectively the beginning and ending column indices of the k-th diagonal block of 
A(P) .  The "complementary partial row sum" is defined by: 

- 
q i = 1 - * i .  (4.45) 

So, 
block. In [54, 561, it is shown that these definitions can be employed as follows: 

corresponds to the sum of the RGA elements on the i-th row lying outside the diagonal 

T i e  CC-selection procedure remains valid if the foliowing inequality is siibsii'e-iled fur 

5 dT W 2 WT (4.46) (1 - .T) IqImaz 

1 + (1 - CT) ISlmaz 

I is the maximum absolute value complementary partial row 

(4.43): 

where 
sum of A ( P ) ,  for the configuration corresponding to p. 

= m a s  

This modification is a viability criterion based on a weaker  necessary condition for low cross-feed 
performance degradation. Therefore, more candidate configurations will pass this criterion. Note 
that in (4.46) the RGA must be computed at and above the specified closed-loop bandwidth, 
while traditionally the RGA is evaluated only at steady state, see also the discussion in Section 
4.4. The CC-selectie-n, method discussed in this section may n o t  be efieclive,  since it is only based 
on necessary conditions. This implies that configurations passing (4.43) or (4.46) need not be 
feasible in the sense that low performance degradation is guaranteed. 

4.10 Nominal stability and closed-loop integrity 
In [73], the so-called Niederlinski Index (NI) is proposed as a criterion to select input-output 
pairings for multiloop SISO controllers (see Fig. 4.1). Consider square m x rn open-loop stable 
plants P. The Niederlinski index is defined as: 

(4.47) 

So, the NI is a steady-state measure. The importance of the NI  in CC-selection is explained as 
follows: if all the SISO controllers contain integral action and have positive loop gains, a negative 
value of the NI is a sufficient condition for instability of the closed-loop system with this particular 
variable pairing for a n y  controller tuning. A positive value for NI is thus a necessary condition for 
stability, and candidate control configurations with NI  < O are eliminated. 

In [li, 181, the condition on the NI is generalized to block diagonal controllers and open-loop 
unstable systems. For block diagonal controllers, the Niederlinski index associated with the plant 
P(s)  is defined by: 

NI = det[P(O)P(O)-']. (4.48) 
with = block diag[Pii]. The NI is used as a necessary condition for the closed-loop stability of 
the'decentralized control system: 

Assume that: 

o P(s)  and P(s) have the same RHP poles (4.49) 
o P(s)K(s)  is strictly proper (4.50) 

T(s) is stable (4.51) 
o T(o) = I (integral action) (4.52) 

then the closed-loop system T(s)  will be stable only if: 

NI  > O. (4.53) 



38 CHAPTER 4. CRITERIA FOR SELECTION OF THE CONTROL CONFIGURATION 

Here, T and T a r e  defined similarly as in Section 4.9. In [li], the NI  is used in combination with the 
BRG (see Section 4.4) to formulate CC-selection rules for multiloop MIMO control systems, i .e . ,  
for control systems with block diagonal controllers. The criterion for the CC-selection problem is 
based on integriiy considerations: it is required that any decentralized control system is stabilized 
by a stable controller having integral action and maintains its nominal stability in the face of 
any combination of loop failures. A control system with these properties is termed to possess 
Decentralized Closed-Loop Integrity (DCLI). Note that a single loop may be a MIMO system 
itself, in the case of block diagonal controllers. Necessary conditions for DCLI are developed and 
CC-selection criteria based on DCLI are discussed. The results pertain only to stability, and 
dynamic performance is not addressed. 

Before the rules are introduced, a few notational aspects have to be explained. Let J k  be the 
set of integers Jk = {i,. . . , k }  and Jl be a subset of Jk containing 1 (1 5 1 5 k) elements of Jk. 
Let AJ, denote the corresponding principal submatrices of A consisting of blocks A, with indices 
belonging to JI. In the following discussion, ” k-channel” plants are considered, i .e . ,  controllers 
K ( s )  with k diagonal blocks are considered. The diagonal blocks Pii (i = 1,. . . , k) constitute the 
subsystems under decentralized control. In the development of the selection rules, assumptions 
(4.49)-(4.52) are made and additionally det[P~~(O)] # O for I = 1, . . . , k .  

The fc!!cwir,g CC-se!ectim r ~ k s  based or, the r,c?tior, ef DCII are propc?sed aild proven in [lij: 

1. Select control coniiguraiions with det[BRGii[P(C)]] > 3 for i = i, . . . , k. In this case, one of 
the following properties is obtained: 

The closed-loop system can be stabilized and remains stable after the failure of any 

The closed-loop system is unstable and so is the reduced system after the failure of any 

i-th loop only if NI[P(O)] > O. 

i-th loop if NI[P(O)] < O. 

2. Select control configurations with NI[P(O)] > O,  which is necessary for stabilizability. 

Control configurations passing rules 1 and 2 may achieve DCLI against failures of any i-th loop, 
ie., may achieve DCLI if one controller block is out of service. The final CC-selection rule is now 
proposed as: 

3. (a) Select configurations with det[BRGii[PJ,(O)]] > O for I = 2,.  . . , k - 2 and i = 1,. . . , I ,  

(b) Select configurations with NI[PJ,(Q)] > O for I = 2, . . . , le - 2. 

or, equivalently: 

Configurations passing rule 3 may posses DCLI against any combination of ( k  - i) loop failures. 
Since the selection rules 1-3 are based on necessary conditions, a CC-selection procedure based on 
these rules need not be effective. By inspecting rules 1, 2 and 3 successively, an increasing amount 
of alternative configurations is eliminated; the remaining alternatives may be further screened 
using other methods. 

The concept of DCLI is closely related with that of Decentralized Integral Controllability 
(DIC), which is introduced in [47, Chapter 141 in the context of multiloop SISO controllers. A 
plant P is DIC if there exists a diagonal controller with integral action such that: 

the closed-loop system is stable, 

the gains of any combination of loops can be reduced independently with a factor (O 5 
E;  5 1) without affecting the closed-loop stability. 

This implies that the loops can be detuned or taken out of service while maintaining stability. In 
[47], necessary conditions for DIC are developed, which are commonly used for screening candidate 
control configurations. In [li], it is stated that DCLI is a necessary condition for DIC. 
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4.11 Singular value decomposition 
In [34], an approach based on the SVD technique provides a quantitative measure of interactions 
in multiloop SISO control systems. In order to encompass both static and dynamic features, the 
analysis should be carried out over a range of frequencies of practical importance e.g., over the 
frequency band of characteristic disturbances. 

The systems considered are assumed to be described by the input-output relation y(s) = 
P(s)u(s) where P(s)  is an I x m transfer function matrix; the number of measured variables 1 
may thus differ from the number of manipulated variables rn. Furthermore, the controiler K ( s )  is 
assumed to be diagonal with dimension min(1, m); which measurements or manipulated variables 
will be deleted depends on the control configuration to be proposed. The SVD of the transfer 
function matrix P(s)  can be written as [34]: 

P(s)  = W ( s ) C ( s ) V ~ ( s )  (4.54) 

with: 

(4.55) 

with p = rank(P(s)) 5 min(l,m). The entries of the diagonal matrix n(s) define the singular 
values of Pis). With (4.541, the transfer function matrix Pis> can be interpreted georneirically: 
an input vector in the direction of vi(.) propagates through the input space, is scaled by the gain 
ci(s), and reappears in the output direction wi(s). 

A measure is developed in terms of singular values and left and right singular vectors, which 
expresses the extent of interaction of the ij-th loop ("yi = pijuj") with other loops. Those loops 
that interact minimally with other loops, are called natural loops and are preferable t o  control the 
system. 

The transfer function matrix P(s)  can be written in the following form: 

(4.56) 

In this way, P(s)  is expressed as a linear combination of the q nodal contributions. Each of 
the nodal terms consists of a scaling factor ui and a rotation matrix Zi. The entries ij with 
the largest absolute values in each Zi define the natural loops y i lu j  and thereby indicate the 
preferable IO-pairings [34, Appendix i]. A frequency dependent interaction measure is developed, 
that quantifies the "difference" between each rotation matrix and a matrix of the same dimensions 
associated with the ideal natural loop, ie., a matrix with zero elements except one located at the 
entry ij  defined by the preferable pairing yi/uj. 

4.12 Structured singular value 
In [Hl, the notion of Structured Singular Value (SSV) is used to define a new dynamic ( i e . ,  
frequency dependent) interaction measure for square multivariable systems under feedback with 
diagonal or block diagonal controllers. It is stated that this measure can be used not only to 
predict the stabiiity of decentralized control systems Dut also to measure the performance loss 
caused by these control structures. 

Consider the undisturbed system in Fig. 4.1. The system P(s )  is assumed to be square (m x m) 
and the controller is (block) diagonal. The method discussed in [18], is based on the interpretation 
of interactions in decentralized control systems as additive uncertainties, see Fig. 4.4. A block 
diagonal controller K(s )  is now to be designed for the system p(s) = block diag[Pii(s)], such that 
the "nominal" closed-loop system with the transfer function matrix 

- 
T(s)  = P(s )K(s ) ( I  + F(s)K(s))- l  (4.57) 
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Figure 4.4: Framework of a "perturbed" decentralized control system 

is stable. An interaction measure expresses the contraints imposed on the choice of the closed- 
ioop transfer function matrix T(sj for the block diagonal system, which guarantee that the Îuuii 
closed-loop system T(s) is stable. It is shown that the bound on the magnitude of T(s) is imposed 
by the "relative error matrix" 

E(s)  = (P(s )  - F ( S ) ) P ( S )  (4.58) 

arising from the approximation of the full system P ( s )  by the block diagonal system p(s). More 
specifically: assume that P(s)  and p(s) have the same RHP-poles and that T(s) is stable. Then 
the closed-loop system T(s)  is stable if and only if [NI: 

a[T(jw)] < p-1[E(jw)] v U .  (4.59) 

Equation (4.59) is in fact a robustness condition for T(s) to remain stable under the perturbation 
E(s).  It turns out that p is the structured singular value for the analysis of feedback systems 
with structured uncertainties, see, e.g., [7, 381. The value of p depends on the structure assumed 
for T(s). Thus, for stability the magnitudes of the diagonal blocks Tii have to be constrained by 
the reciprocal of the SSV of the relative error matrix, which can be displayed on a magnitude- 
frequency diagram. Such plots can be used to predict stability and achievable performance of the 
decentralized control system. 

It is not explicitly stated in [18], but it seems possible to use (4.59) in CC-selection problems, 
by imposing desirable properties on T(s) and then eliminating candidate configurations which do 
not satisfy this equation. For example, if offset-free performance is desirable, i .e . ,  T(0) = 1 is im- 
posed, candidate configurations for which p[E(O)] 2 1 must be eliminated. Another possibility is 
to screen out configurations which cannot achieve the desired closed-loop bandwidth specified in ?7. 

In [59, 601, a CC-selection procedure is proposed consisting of two steps. The first step is to 
"rank" candidate configurations on a best-to-worst scale by applying the steady-state RGA or 
BRG. The second step is to apply SSV-theory for testing nominal Decentralized Integral Con- 
tro~labi:ity ( D E ,  see Seeiion 4.10 for the definition) and ccim3ined cozstïaizt satisfzctiûn, ïûbxst 
stability and DIC (see also Section 3.11). In [59], it is claimed (not proven) that, under the 
assumptions of stable P, and T,  the unperturbed plant P is DIG' with respect to T if: 

P(E(0))  < 1 (4.60) 

where p is computed based on the structure denoted by T. For the development of the combined 
test, which is also applied at steady state, the reader is referred to [59]. Both the p-test for DIC 
and the combined p-test can be used to eliminate undesirable candidate control configurations. 



Chapter 5 

Applications of control structure 
design 

Appiications o€ the various is- and CC-selection methods discussed in Chapter 3 aïid 4 are re- 
viewed in Section 5.1 of this chapter. All examples are based on numerical simulations; experi- 
mental results have not been encountered in literature. Section 5.2 proposes a different physical 
example, which incorporates a number of relevant aspects to be accounted for in CSD. This ex- 
ample is introduced to evaluate both existing IO- and CC-selection methods, and methods to be 
developed. 

5.1 Applications from literature 
In [SS], the IO-selection method based on control power and speed (Section 3.1) is used to decide 
on regulatory control structures for a distillation column. Unfortunately, the approach is only 
qualitative, i. e ,  control power and speed are designated "small", "moderate", respectively "strong", 
and "slow" or "fast". 

In [46], the IO-selection method based on controllability and observability (Section 3.3) is 
illustrated by the following examples from process control: mixer-blender, double effect evaporator, 
8-tray distillation column, and Williams-Otto plant. Detailed descriptions of these systems are 
not provided in [46]. The examples are used to illustrate the IO-selection procedure proposed; 
closed-loop evaluations of the selected IO-sets are not performed. In [16, 30, 611, examples from 
process control are used to illustrate some features of the structural concepts proposed in these 
papers. Again, only structural models are provided. 

In [17], another process control example is treated, which is a combination of three units, i.e., 
a mixer, a blender, and a heat exchanger. Linear models of the individual units are given. The IO- 
selection procedure based on cause-and-effect graphs (Section 3.4) is illustrated, but subsequent 
steps in control system design are not performed. 

The IO-selection procedure based on accuracy of state estimates (Section 3.6) is performed 
for placement of temperature sensors (from seven collocation points) in a tubular reactor [32], a 
model of which is provided. The effect of varying measurement noise and system noise intensity 
on the optimal sensor locations is investigated. Again, an evaluation of alternative o ~ t p u t  sets by 
closed-loop simulations is not performed. 

In [48], economically optimal IO-sets (Section 3.7) are selected for a double-effect evaporator 
and a flotation circuit. In both cases, some promising IO-sets are generated. The controllability 
of the alternative sets is evaluated by condition number plots. Literature to obtain plant models 
is referred to. 

The use of the MRI (Section 3.8) for input selection is illustrated in [73] by means of a distilla- 
tion column example. From plots of g ( P )  associated with the candidate IO-sets, the optimal set is 
selected. Concepts based on RGA, NI, and Integral Controllability are used to decide on preferable 

41 
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IO-pairings. The following analyses are performed to compare the candidate control structures. 
To investigate closed-loop stability (using SISO PI controllers), characteristic loci are plotted for 
the linearized system, and step responses are simulated for the nonlinear system. Furthermore, 
the alternative control structures are assessed for their ability to reject load disturbances, and 
their closed-loop robustness properties, using two simple measures [73]. 

In [54,56], the IO-selection approach based on the condition number of the plant model (Section 
3.9), is treated for a heat exchanger network with 8 candidate inputs and outputs. The system 
model can be obtained from 6621. 

In [21, 541, CSD is illustrated by an aircraft example, for which a reduced state space model (7 
states) is given. Candidate square subsystems (IO-sets) are selected from 9 candidate outputs and 
4 candidate inputs. For some subsystems selected, the CC-selection method based on performance 
degradation (Section 4.9) is illustrated. Closed-loop simulations to compare the ”most promising” 
control structures are not performed. In [15], a different aircraft problem (obtained from [38, 
Appendix A]) is treated using the same criteria for IO-selection and CC-selection. Three candidate 
inputs and outputs are considered. Closed-loop simulations are performed, applying multivariable 
PI control [is, Appendix 31. 

In [54, Chapter 71, a large-scale problem (50 states, 13 candidate outputs, 12 candidate inputs) 
from chemical process indistry is studied: the Tenessee Eastman plant-wide control problem. 
CSD is performed for a linearized model, for which numerical values are also provided. The IO- 
selection method based on the condition n-iini’oer of the plant and the CC-selection method baed  
on performance degradation are illustrated by this example. Some special interest is paid to the 
implications of integrators for IO-selection. 

In [54, 561, CC-selection based on performance degradation is applied to an industrial variable 
cycle engine (rn = 1 = 3). Unfortunately, details of this system are proprietary. A boiler furnace 
(rn = I = 4) is proposed as a second example to illustrate the CC-selection approach. The control 
configurations selected are compared with those in [42], where the same system is considered and 
the BRG (Section 4.4) is used to decide on preferable control configurations. 

In [31], an input selection procedure based on SVD (Section 3.10) is illustrated for a 20th order 
boiler model with 9 candidate inputs. To decide on the number of dominant inputs to be retained, 
LQ controllers with different numbers of inputs are designed, and the performance indices are stud- 
ied. The SVD is often used to indicate proper locations for temperature measurements: ia [6], 
locations for 2 temperature sensors in a 17-tray benzene-toluene distillation column are selected; 
in [44], placement of 2 temperature sensors in a 50-tray ethanol-water distillation column is consid- 
ered. For both examples, the steady-state SVD is the only system data provided. Unfortunately, 
closed-loop simulations supporting the choice of the sensor locations are not performed. 

The IO- and CC-selection methods based on the structured singular value (Sections 3.11 and 
4.12) are clarified by some examples as well. In [37] and [35, Section 3.61, locations for 2 tempera- 
ture measurements in a high-purity distillation column are selected, using design-specific screening 
tools. A detailed system description can be found in [47, Appendix A]. Only locations symmetric 
to the feed-tray are considered candidates. Disturbances, input uncertainty, and measurement 
noise are present. The results for the selection criterion applying the SSV, i.e., based on robust 
performance, are compared with those resulting from a particular condition number criterion [35, 
Section 3.4.21. Closed-loop simulations (response to step disturbances) with some alternative tem- 
perature sensor locations are performed under IMC control. Almost the same is done in [35, 
Appendix BI. In [35, Section 3.51, another distillation column example is studied. The transfer 
functions between the inputs and the candidate measured variables (ternpeïataïes) are avai!able. 
General screening tools are applied to select the measurements. In [35, Section 4.71, a very brief 
discussion on measurement selection for a heavy oil fractionator can be found. 

For the CSD method discussed in [59, 601, only input selection is illustrated with an example: 
an input set for a heavy oil fractionator is searched for, using p-bounds. Unfortunately, the 
elaboration is very brief. 

In [18], CC-selection based on SSV (Section 4.12) is applied to a distillation column, for which 
a 3 x 3 transfer function matrix P ( s )  is given. The ability of a candidate control configuration to 
guarantee offset-free performance, and the limitations on the achievable bandwidth introduced by 
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the configuration, are addressed. 

Of all tools for CC-selection, the use of RGA and closely related concepts (Section 4.4) is cer- 
tainly most widespread. In [14], the steady-state RGA is used to select IO-pairings (I = m = 5 )  
for a coke oven battery. A linearized state space model of this system (26 states) is provided. In 
[25], the concepts of frequency dependent PRGA and CLDG are illustrated for the fluid catalytic 
cracking process. Both a 5-state nonlinear system model and a linearized and reduced 2-state 
model for this process are given. Also the existence of RHP-zeros for candidate control configu- 
rations is addressed. In [23], the same system is considered. Existence of RHP-zeros, frequency 
dependent RGA and CLDG are used as criteria to asses the two control structures (I = m = 2) 
proposed. Moreover, the sensitivity to changes in operating point and parameter values, and the 
sensitivity to input uncertainty are studied for these control structures. 

The use of frequency dependent PRGA and CLDG is also illustrated in [24, 631, where a 40- 
tray distillation column example with 2 inputs and 2 outputs is discussed. A reduced order (5  
states) linear model is given. In [64], 5 alternative control structures (with different IO-sets) for a 
distillation column example are studied. The quality of the different control structures is assessed 
by frequency dependent RGA analysis and performance with ”optimal” SISO PI controllers. The 
PRGA and RGA are also used in c261 and [71] to indicate interactions of the individual loops in 
distillation column control. In [66], the effect of large RGA elements is illustrated for a simplified 
distillation cûliimn mode! ( l  = rn = 2). Closed-loop responses for 2 different control str~ctUres 
(with different input sets) are performed for diagonal and inverse-based controllers. 

In [42], the use of frequency dependent BRG is illustrated for a boiler furnace (the same system 
is discussed in [54, 561) and a system of heat-integrated reactors. Both systems are square with 
4 inputs and outputs; references to obtain the models are provided. Closed-loop responses to 
setpoint changes are performed for the most promising control configurations. Unfortunately, the 
concept of DBRG, as proposed in [2, 31, is not illustrated with an example. 

In [lo], 2 distillation examples are presented to illustrate the use of the nonsquare steady-state 
RGA. In both examples (I = 4, m = 3 and I = 9, m = 2 respectively), this tool is used to 
square down the system, ie., to choose a square subsystem from the original nonsquare system 
in order to obtain a square control system. The results are compared with those from a SVD- 
based output reduction method. In [55], the nonsquare BRG is applied to a mixing tank with 
2 outputs and 3 inputs; the transfer function matrix consists of first order transfer functions. 
The BRG’s associated with the alternative control configurations are calculated, and the most 
preferable configurations are indicated. Applying IMC, the setpoint responses with the different 
configurations are compared. 

The nonlinear BRG is applied to a chemical process (a model of which is provided) with 2 
inputs and outputs [39, 411. The IO-pairings indicated by the BRG’s of the linearized model 
are compared with those resulting from the nonlinear BRG’s. For the alternative configurations, 
closed-loop simulations to setpoint changes are discussed as well. Unfortunately, the example is 
not very detailed. 

In [4], the concept of relative sensitivity (Section 4.5) is illustrated for a 3 x 3 system. The 
high-frequency asymptotes ü(ri) associated with two alternative IO-pairings are considered. In 
[55], the ”nonsquare relative sensitivity” is clarified for two alternative control configurations of a 
system with 2 outputs and 3 inputs. 

The CC-selection approach based on the concept of interaction potential (Section 4.7) is illus- 
trated fûï 3 systems witk l = 7ii = 2, and 2 systems with I = m = 3. The associated tsaasfer 
function matrices are given; the individual elements represent first order processes with a dead 
time. For the 2 x 2 systems the tracking errors with different IO-pairings are compared. One of 
the examples compares the preferable IO-pairings indicated by the steady-state RGA with those 
obtained by the interaction potential. 

In [43], the CC-selection criterion based on numerical invertibility (Section 4.8) is illustrated by 
4 examples (one 2 x 2 system and three 3 x 3 systems; the physical interpretation of the examples 
is not always explained), and the recommended pairings are compared with those recommended 
by steady-state RGA and SVD. By these examples it is shown, that these pairing criteria not 
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Figure 5.1: Six DOF model of a tractor-semitrailer combination 

always yield the same preferable control configuration. 

4 x 4 transfer function matrix P(O), representing a distillation column at steady state. 
The CC-selection rules based on DCLI discussed in Section 4.10 are illustrated in [li] by a 

5.2 Proposal for a vehicle control example 
At the facirky of Mechaiiicd Eiigineeïiiig of the Eindhoven flr;iveïsity of Techndogy, the devel~p- 
ment of (semi-)active suspension systems for tractor-semitrailer combinations is a major research 
topic. In Fig. 5.1, a 6 Degrees Of Freedom (DOF) model of the vehicle is depicted. 

Three main design goals are distinguished. First, low values of the vertical and pitch accel- 
erations of both the tractor and the semitrailer are important to guarantee good driver comfort, 
respectively cargo protection. In the second place, due to limited suspension working space, the 
suspension travel must be limited. Finally, the dynamic tire forces have to be kept low, in order 
to guarantee good handling and to minimize damaging the road surface. 

An active suspension system is expected to perform better than a passive one for given driving 
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conditions (e.g., speed and road surface). Moreover, contrary to passive suspension systems, the 
characteristics of (semi-) active suspensions can be adjusted to particular driving conditions, trying 
to improve the dynamic behaviour of the vehicle. The excitation of the rear wheels of the tractor 
is believed to be the main cause of the pitch motions of the chassis and the cabin. This is the 
reason that generally the passive suspension at the rear of the tractor is replaced by an active one. 

Eliminating the effects of gravity and assuming the angles qbm and q5mt to be small, the 6 DOF 
model of the tractor-semitrailer combination can be represented by the following linear state space 
descrip tion: 

ki t )  = Ax(t) + Buu(t) + B,ul(t) 
y ( t )  = Cx(t) + Duu(t) + D,ul(t) 
Z ( t )  = Ex(t )  + F,u(t) + F,W(t) 

(5.1) 

with: 
state variables: x T = [ q a j ,  Par ,  q a t ,  qm, 6 m l  4mt . .  

i a j ,  i a , ,  q a t ,  Qm, dm1 d m t ]  
candidate manipulated variables: us = [u j , ur , u t ]  
excitation by road surface: wT = [ q r j ,  q r r ,  qrt 

ZT = I Qcj  - Qa j 1 qcr - Qar I Qct - Qat 
4 r j l  4rr, 4rt l  

Qaf  7 .4r f  > Qar - Qrr I Qat - Qrt 

im, 4 m ,  i m t ,  4 m t 1  

yT = [ q a j  - q r j ,  qar - qrr , qat - qrt 

variables te he cmttrc!hd: 

candidate measured variables: 
Pcj  - Q r j ,  Qcr - Qrr t  Qct - 4rt 
Pc j - Pa j 3 Qcr - Qar 1 Qct - Qat 

6 m l  6 m t  

4cf - i a j ,  4cr - Q a r ,  4ct - qa t  

Q a j ,  i a r ,  qat  

Q c j ,  j c r ,  qct 

i m ,  4 m I  i m t ,  4 m t ~ .  

All displacements in x are relative to the equilibrium position. The vertical displacement at the 
front and the rear of the tractor ( q c j  and qcr respectively) and the vertical displacement at the 
rear of the semitrailer qct depend on the state variables in the following way: 

The various matrices playing a role in (5.1) can be found in Appendix A. 
The first, second and third element in z (variables to be controlled) represent the suspension 

travels to be limited, while z4, z5 and %6 account for the dynamic tire forces. The relevant 
accelerations of both tractor and semitrailer are represented by the elements ~ 7 - ~ 1 0 .  

The column of candidate measurements consists of successively the displacement between the 
axles and the road surface, the displacement between the chassis/semitrailer and the road surface, 
the displacement between the chassis/semitrailer and the axles, the angular displacement of the 
tractor and the semitrailer, the velocities between chassis/semitrailer and the axles, the acceleï- 
ations of the axles, the accelerations at the front and rear of the tractor and at the rear of the 
semitrailer, and finally the vertical and angular accelerations of the center of gravity of the tractor 
and the semitrailer. 

As already noted, currently active suspension is applied to the rear wheels of the tractor only 
(ur).  It seems interesting to check if the correctness of this approach can be confirmed by the IO- 
selection methods discussed in this report. Moreover, it could be investigated how many and which 
type of measurements are suggested by the IO-selection methods, and if these measurements are 
consistent with what is done in practice ( q c j  - q a t l  qcr - q a r l  qcf and Q c r ) .  CC-selection methods 

l 

i 
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may indicate if a centralized controller is preferable to a decentralized one. Furthermore, it seems 
interesting to investigate if it is possible to decouple the design of active suspensions for the tractor 
and the semitrailer by introducing decentralized control. 

As it has been noted in the Introduction, during the stage of CSD it is important to account 
for, among others, modeling errors and nonlinearities. In the system model discussed here, these 
effects can easily be introduced. Therefore, this example seems suitable to evaluate CSD methods 
based on robust performance/stability, or to develop CSD methods for nonlinear systems. 

In practice, modeling errors are always present. In the first place, unmodeled dynamics may 
occur due to neglected sensor and actuator dynamics, or unmodeled resonant modes, e.g., due 
to flexibility of the chassis. Parameter errors, e.g. due to a varying weight of the cargo, or 
wrongly estimated mass, spring or damper parameters, are also very important, Nonlinearities 
are introduced, e.g., if the angles q5m and q5mt are large, if a tire lifts of, or in case nonlinear damper 
or spring characteristics are considered. Moreover, in practice Coulomb friction is expected to play 
a role, which is also a nonlinearity not accounted for in the current model. 



Chapter 6 

Comparison 

In this chapter, the different procedures for IO-selection and CC-selection are compared, based 
on the thirteen criteria listed in Chapter 1. The most promising methods are suggested and their 
merits and limitations are further discussed. 

In Tables 6.1 and 6.2, respectively the IO-selection methods and CC-selection methods are 
assessed for their ability to address the desirable aspects disctlssec! in the  Ir,tr=ducticm. Faï th is  
purpose, four symbols are used, with the following meaning: 

+ 
O 
- 
? 

: 
: 
: 
: 

the aspect of interest is posi t ively  addressed for the particular method 
the aspect of interest is not  sat is factori ly  addressed for the particular method 
the aspect of interest is not  or negat ively  addressed for the particular method 
the possibilities for the aspect of interest are n o t  exact ly  k n o w n  for this method. 

In Table 6.1, the IO-selection procedures explained in Chapter 3 are qualified. It is concluded 
that only two methods explicitly account for robust stability: the method based on the condition 
number of the plant (Section 3.9) and the one based on the SSV (Section 3.11); the latter approach 
also accounts for robust performance. This small number is somewhat disappointing, since the 
issue of robust stability seems to be very important in modern control systems. According to 
Reeves [54,56], the systems requiring control are becoming increasingly complex, leading to higher 
levels of system and environmental uncertainty. Therefore, it seems obvious that robust stability 
is not only accounted for during controller design, but also in the preceding stage of control system 
design, i e . ,  in the CSD phase. Unfortunately, both methods are indirect and restricted to linear 
system descriptions; nonlinear equivalents have not been encountered in literature. 

An important advantage of both methods is their controller independence. Both procedures 
provide efficient testing conditions for screening a large number of candidates. Furthermore, the 
conditions for viability of an IO-set can be weakened or strengthened, by which more or fewer 
candidate IO-sets can be eliminated. This can be done, e.g., by imposing varying quantitative 
requirements on the desired closed-loop bandwidth and the system’s uncertainty to be handled, 
or by modifying certain weighting functions. Moreover, the theory of both methods is rather 
complete and well developed, and although the development of the selection criteria requires 
thorough knowledge of control theory, the application of the tools seems straightforward. 

the SVC is a direct one, i e . ,  it is possible to directly select desirable 
measurements and manipulations from the SVD of the plant description that incorporates all 
candidate measurements and manipulations. Most of the other methods are based on the choice 
of a particular IO-set followed by a feasibility test. In the methods based on economics and 
accuracy of the state estimates, an optimization algorithm is used, which yields one ”optimal” set 
of measured and manipulated variables; therefore, these methods are also considered direct ones. 
In the method based on accuracy of state estimates, only direct selection of the measurement 
locat ions is performed, after specification of the n u m b e r  of measurements. Advantages of the 
SVD method are that it is also applicable to nonsquare plants, and that it is independent of the 

The method Smed 
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~ ~~ ~~ 

section aspect 

3.1:pow./speed - - - - o o - - - -  + + -  
3.2:pole/zero - O - - + ? + - - O + + -  
3.3:ctrb/v5uvb - - - + - ? - - -  + -  + +  
3.4: digraph - - - -  + + + - - O - + +  
3.5:ach.perf. - + - + O ? - - + - + - -  
3.6:accur.est. - - - + - -  + + + o + - o  

O - + + - + - +  3.7:econom. 
3.8:MRI - - -  + - -  + - + + - + -  
3 .g:cond.nr. + + - + - -  + - + + - + +  
3.1O:SVD - - -  + O - + + + + + + +  
3.1 1:ssv + + + + - -  + - + + + o  o 

laXe 6.1: The Iû-selection methods compared 

- - - - -  

m 

controller. Moreover, the theory is rather well developed and many examples in literature have 
proven its value. The scaling dependence of the SVD method is often mentioned as a n  important 
disadvantage. 

The method based on the cause-and-effect graphs seems to be not only applicable to linear 
systems, but to nonlinear systems as well. However, it is expected that the procedure is not 
powerful enough to be applied on its own, in the sense that in many cases the selection criterion 
will pass a very large number of candidate IO-sets. In order to reduce the candidate IO-sets to a 
sufficiently small number, the IO-selection procedure has to be followed by another one, possbily 
making the entire IO-selection procedure inefficient. 

The methods based on controllability criteria, locations of poles/zeros and achievable perfor- 
mance under optimal control are known to have nonlinear equivalents. However, if it is possible 
to translate these into useful tools for IO-selection is unknown, and has to be investigated in 
future research. Although in [16, 461 the concept of structural controllability is used to propose 
feasible IO-sets for nonlinear systems, the ability to address the original nonlinear system’s con- 
trollability by requirements on its structural linearized representation is questionable. So, the 
practical usefulness of this concept must be investigated during future research. Unfortunately, 
theory and practical applications of the methods discussed in Sections 3.2 and 3.5 for the purpose 
of IO-selection, have not been found in literature, even not for linear systems. Moreover, for these 
methods the same remark applies as for the cause-and-effect graphs, z.e., it is expected that the 
criteria are not very powerful, in the sense that a large number of candidate IO-sets may remain 
after screening. For further screening, additional aspects of feasibility must be addressed. 

Selection of inputs and outputs based on control power and speed is qualitative and not very 
systematic. It seems not very useful, particularly not for large-scale systems. The method based on 
the MRI is theoretically not very well-founded and is only used for selecting manipulated variables. 

In Table 6.2, the results for the CC-selection methods discussed in Chapter 4 are displayed. From 
this table, it is concluded that the method based on the SSV is the only one that explicitly accounts 
for robust stability. In the methods based on the RGA/BRG, robust stability is less rigorously 
addressed, since these methods are only provided with ”indications” for circumstances under 
which stability for a particular control configuration may be endangered. For the method based 
on ”performance degradation” (Section 4.9), it is doubtful if robust stability is really achieved for 
candidate configurations passing the criteria. Although it is stated in [54, 561, that robust stability 
can be accounted for by specifying the admissible difference between the ideal closed-loop transfer 
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section aspect 

4.l:fix.eig. - - -  + - ? + - - + + + -  
4.2:rel.degr. - - -  + + + + + o + + + -  
4.3 :ach. p erf. - + - - - -  f -  f - -  

4.4:RGA/BRG o o o + o + + o + + o + +  
4.5:rel.sens. - O - + ( ) - - -  + + + o 0  
4.6:CLDG - O - + - -  + - + + + o -  
4.7:interact .pot. - + - + O - -  o + - + - +  
4.8 :num .invert. - - -  + - -  + - + + ? + +  
4.9:perf.degr. ? + - + - -  + - + + - + +  
4.10:nom.stab./int. - - - + O - O - + O - + + 
4.11:SVD - - -  + O - + + + + + + -  
4.12:ssv + + ? + O - + - + + + o 0  

Table 6.2: The CC-selection methods compared 

f -  

function matrix T and the real one T by means of a frequency dependent real-valued function dT,  
this is not further explained or proven. 

Unfortunately, no CC-selection procedure has been encountered which explicitly accounts for 
robust performance. However, maybe the method based on the SSV offers some possibilities, 
since in [37] it is stated (not elaborated!), that design-dependent screening tools for IQ-selection 
based on robust performance can also be developed for (block) diagonal control configurations. 
If this is true, it would be possible to perform the IO-selection phase and CC-selection phase 
simultaneously! 

The majority of the CC-selection methods considered are not "generally applicable", e.g., the 
methods based on performance degradation are restricted to square (sub)systerns; the methods 
based on nominal stability/closed-loop integrity and numerical invertibility are based on steady- 
state considerations, while the method based on relative sensitivity is developed for high frequen- 
cies; the procedures based on closed-loop disturbance gain, interaction potential and numerical 
invertibility seem to be useful for diagonal controllers only. 

The CC-selection method applying the concept of relative degree seems to be the most general, 
although the systems are assumed to be square. Moreover, the method is applicable to nonlinear 
systems. Unfortunately, the method is believed to be useful only for a preliminary quantitative 
assessment of the alternative control configurations; the relative degree should be combined with 
other analytical tools, towards a more quantitative CC-selection procedure. In [41, 391, the BRG 
has been generalized for use in nonlinear systems. Unfortunately, the proposed method seems to 
require high computational effort and is not simple in use. 

From Table 6.2, it is concluded that the methods based on relative degree and SVD directly 
yield one, or some, favorable control configurations: the entries in particular matrices indicate the 
favorable IQ-pairings (this also applies for the "pre!iminary" TO-pairings i r ~  the method baed  OE 

interaction potential). The method based on the relative gain is only direct if multiloop SISO 
controllers are considered and the RGA can be used; in case of block diagonal controllers, the 
individual BRG's have to be recomputed for each candidate control configuration and the method 
becomes indirect. 

Selection of the control configuration based on a measure of performance degradation seems to 
be the most powerful, in the sense that the number of candidates that is termed viable can easily 
be affected by putting more or less severe requirements on the allowable performance degradation 
margin. The same may be achieved with the methods based on the SSV and interaction potential, 
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- 
by varying specifications on the desired closed-loop system’s ”performance” T.  Since the method 
based on performance degradation uses necessary conditions for feasibility, it may De ineffective. 
The RGA/BRG method is provided with less efficient and less quantitative CC-selection rules. 
Therefore, the method is expected to be effective only if a set  of guidelines for CC-selection (see 
also Section 4.4) is used to form a combined test for viability of a control configuration. Unfortu- 
nately, for some of the pairing rules based on the RGA, the prove is missing [49]. 

As a final remark, it is emphasized that the comparison of the IO/CC-selection procedures in 
this chapter is based on what has been found in literature. For an honest comparison this is not 
sufficient. Instead, a more detailed and more critical analysis of the various methods, in combina- 
tion with a preliminary implementation using a representative example, must be performed. The 
tractor-semitrailer problem discussed in Section 5.2 could be used for this purpose. 



Chapter 7 

Recommendat ions for fut ure 
research 

In this chapter, some important issues for further research will be suggested. Firstly, the goal of 
CSD has to be clearly defined, since this lays the foundation for the development of any CSD 
method. Secondly, some recommendations for improvement of the most promising methods for 
linear control systems are proposed. In the last part of this section, some important issues a CSD 
method to be developed must account for, will be discussed. 

In [21, 54, 561, the goal of control system design is formulated as follows: Minimize control 
system complexity subject to the achievement of accuracy specificatzons in the face of uncertainty. 
That is, robust performance must be achieved, but unnecessary control system complexity cannot 
be tolerated. One might wonder if this paradigm is correct and complete. Firstly, in most control 
systems, achieving the accuracy specifications is not the only control objective, i. e., product yield, 
safety aspects and marginal costs are often important objectives as well, while internal stability of 
the control system is often a prerequisite. Furthermore, uncertainty may not only include modeling 
errors, measurement noises, and external disturbances, but also failures of (a combination of) 
sensors and actuators. Handling of constraints is also very important in practical control systems, 
i.e., the input/output domain is limited, contrary to what is often assumed in controller design. 
Constraints may, e.g., be imposed by actuator/sensor saturation, or safety aspects (e.g., maximum 
pressures in drums, limited working space for mechanical manipulators). Consequently, the goal of 
control system design and therefore the goal of CSD, could be modified: Minimize control system 
complexity subject to the achievement of the control objectives in the face of uncertainties, failures 
and constraints. 

Consider the representation of the uncertain feedback control system in Fig. 7.1. The goal of 
CSD is thus, to select an appropriate set of measured (y) and manipulated variables (u),  that not 
only minimizes controller complexity, but also guarantees satisfactory control of the performance 
objectives ( z )  and internal stability, even in the presence of system (A) and environmental uncer- 
tainties (in to), actuator/sensor failures, and system constraints. 

In this report, different approaches for CSD, particularly for linear control systems, have been 

spect to the IO-selection phase the methods employing the condition number of the plant and the 
one based on the SSV seem the most promising for linear systems. The methods based on the 
performance degradation criterion under decentralized control, the RGA/BRG methods, and the 
method based on the SSV seem the most promising for CC-selection in linear systems. Succes- 
sively applying the condition number and cross-feed degradation criteria is thus one possible way 
to deal with CSD for linear control systems; this method is implemented in the MATLAB Control 
Configuration Design Toolbox [57]. However, this approach has some shortcomings to be solved 
in future research. Two important disadvantages will be explained: 

discussed and corqared. f i ~ m  Ta?& 5.1, the p r e ! i ~ i m y  C O ~ U S ~ O E  is drawn, that with re- 
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z 
> 

U 

u : manipulated variables 
w : exogeneous inputs, e.g., measurement noise, reference trajectory 
z : outputs to be controlled 
y : measurements 

Y 

Figure 7.1: General framework of a perturbed feedback control system 

1. In the IO-selection phase, the measured and manipulated variables are selected to maintain 
stability of Pyu (see Fig. 1.1) in the presence of modeling errors. In [54, 561, it is stated that 
one attempts to control z by controlling the measured variables y. Since this aspect is not 
explicitly accounted for during IO-selection (only robust stability is accounted for), it must 
have been assumed that the variables to be controlled z are always completely represented 
by the selected measurements y, w h a t e v e r  subset of the candidate measurements is selected. 
It is expected that this is not always possible in practice, since to properly control z ,  a 
particular number and type of measurements may always have to be performed. In the 
next phase, i. e., the CC-selection phase, cross-feed performance degradation with respect to 
the measured  variables is investigated, instead of addressing performance degradation in the 
real control objectives z .  This seems contradictory and therefore the issue of i n d e p e n d e n t  
treatment of measurements and variables to be controlled merits further investigation. 

2. Although nonsquare systems P may be considered, the s u b s y s t e m s  under decentralized con- 
trol are always assumed to be square, i e . ,  the number of inputs and outputs of one subsystem 
are the same. The same applies for most of the other approaches discussed. Since this as- 
sumption puts severe limitations on the control systems to be considered, extension of the 
theory to nonsquare subsystems seems to be worthwhile. So, controller matrices, e.g., of the 
form: 

1 x o o o o  
o x x o o  
o x x o o  
o o o x x  

K ( s )  = [ x O 1 , or K ( S )  = 
o x  

u x x o o  
= I n  x x o o 

L -I i u o o x x  o o o o l  
need also be paid attention to. Maybe the nonsquare BRG E551 and the nonsquare RGA 
[lo] are reasonable starting points. In [40], the mathematical development of interaction 
measures for systems whose inputs and/or outputs belong to more than one subsystem, e.g., 

K ( s ) =  [ x ~ 1 ,  
o x  

is proposed as an important research topic. 

Another approach for CSD for linear control systems, is one which employs the SSV theory. 
The method proposed in [35, 36, 371 is only explained for selecting secondary measurements in 
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inferential control systems. Therefore, a recommendation for future research is to extend the 
output selection approach to an input-output selection approach based on maintenance of robust 
performance. The SSV-based method discussed in [59] is provided with viability tests on constraint 
satisfaction, robust stability, DIC, and combinations of these aspects. Unfortunately, the tests are 
developed under the assumption of integral control action and are only applicable at steady-state. 
The development of more general, frequency-dependent, IO-selection and CC-selection criteria 
seems to be worthwhile. 

The CC-selection method based on the notions of RGA and BRG may also be promising for 
use in CSE>. However, to obtain a more effective and powerfui CC-selection procedure, the selec- 
tion criteria must be formulated more quantitatively, since unambiguous selection rules such as 
”avoid pairings with large RGA elements”, or ”prefer pairings with RGA values close to 1” have 
to be avoided. Furthermore, for some existing pairing rules, a theoretical justification has to be 
searched for. 

In the last part of this section, a number of issues are proposed, which certainly must be ac- 
counted for in a CSD method to be developed. Although some of them have been mentioned 
briefly in the Introduction, their importance justifies some special attention. 

In this report, CSD is split up in two stages, i.e., the IO-selection and CC-selection phase. 
The same is usually done in literature: no method has been encountered which treats both stages 
simdtaneous!y. It is expected that this akernative 2pprc2ch wedc! yield 2 mere direct a d  effective 
CSD procedure. An important recommendation is thus to examine if it is possible to develop a 
CSD method solving the IO-selection and CC-selection problems simultaneously. This implies 
that a selection criterion must be searched for which is (efficiently) applicable in both phases, e.g., 
criteria using the SVD, SSV, or the achievable performance under optimal control, or one applying 
the notions of digraphs and relative degree. Particularly, it seems worthwhile to investigate the 
possibilities of a selection criterion based on robust performance, instead of successively performing 
IO-selection and CC-selection respectively based on robust stability and (nominal) performance 
requirements, see Sections 3.9 and 4.9. 

Furthermore, a direct CSD method could be looked for, i.e., a method which yields one, or 
maybe some, favorable control structures given the control objectives, system uncertainty (and 
eventually constraints and potential loop failures) and allowable complexity. In a direct approach, 
identifying all candidate control structures by testing for a specific criterion is not necessary. With 
the criteria discussed, it is expected that it is not possible to directly find the ”optimal” control 
configuration, using only one criterion. Instead, different criteria must successively be applied, 
eliminating an increasing number of candidate control structures. Such an indirect method may be 
very time-consuming, especially for large-scale systems. For an indirect CSD method, development 
of efficient screening tools is therefore an important future research topic. A potential advantage 
of an indirect approach is, that it yields additional insight in the system to be controlled, which 
may be useful for the subsequent steps in control system design. 

Ideally, a CSD method uses only open-loop system data, i.e., information that is independent 
of the controller. The idea is to eliminate candidates for which a controller achieving the control 
objectives (in the presence of uncertainty etc.) does not exist, whatever design method is used. 
A controller-dependent selection criterion is inefficient if prior controller design is required, see, 
e.g., Sections 3.5 and 4.3, and [3](DBRG). Such a criterion should be used only if the number 
of candidate control structures has been reduced to a sufficiently low level. On the other hand, 
a selection criterion which is developed under the assumption of a particdar contrder dgpe may 
still be efficient, if it is not necessary to actually design the controller for each candidate control 
structure, see, e.g., Section 4.5 and [37]. For an efficient approach to CSD, it is thus recommend- 
able to develop selection criteria which do not require controller design, i.e., are independent of 
controller tuning. 

Complexity of the control system is mentioned as an essential issue in CSD. In future research, 
complexity must not only be addressed during CSD, but moreover an unambiguous definition of 
complezily has to be formulated. In [54, Section 5.41, it is stated that at least the following aspects 
must be addressed by the concept of ”complexity”: 
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o the number of selected measured and manipulated variables, 

o the number of feedback interconnections between these variables, 

o sensor and actuator costs, 

o reliability and maintainability, and 

o required effort for controller design and tuning. 

Another important aspect of complexity is the transparency of the control system, and therefore 
of the control structure: for an operator it should be easily to understand how to influence the 
”behavior” of the system, by which he can intervene fast and correctly. In [54, Section 5.41, 
it is suggested that complexity must be addressed after a set of viable control structures has 
been generated. Minimum complexity might be achieved by constructing an objective function 
incorporating the aspects associated with complexity listed above, and minimizing this function 
over all viable control structures. 

The main topic for future research is the development of a CSD method which is applicable 
to nonlinear control systems, e.g., mechanical systems with multiplicative and goniometric terms 
fûï Uisp!aceme;.i. arid *docity, or prccessee with fracticzs cr expor,ectic?! tertr,s fer Senzperatcrrs 
and product concentrations. At this moment, the IO-selection method based on cause-and-effect 
graphs and the CC-selection method based on relative degree, are the only ones directly applicable 
to nonlinear systems. However, these methods are expected to be not effective enough to perform 
CSD ”on their own”, but they could be used as initial screening tools. 

The following procedures discussed in this report are known to have nonlinear equivalents: the 
IO-selection procedures based on controllability and observability, locations of poles and zeros, 
achievable performance under optimal control, and the IO-selection procedure based on economics; 
the CC-selection procedures based on fixed eigenvalues and BRG. Unfortunately, except for the 
nonlinear BRG, theory and applications for nonlinear CSD are lacking and merit further inves- 
tigation. From Tables 6.1 and 6.2, it may be concluded that for linear systems, these methods 
(except for the BRG) suffer from some severe disadvantages, and therefore they are expected to 
be less promising for nonlinear control systems as well. Regarding the nonlinear BRG, theory is 
limited and some proves are missing. Moreover, this method requires solving nonlinear differential 
equations; therefore, the method is expected to be inefficient. Nevertheless, the nonlinear BRG is 
an interesting concept and certainly deserves thorough investigation. 

Another important topic for future research is the development of a CSD method for nonlinear 
systems, which is provided with testing criteria for robust stability and/or robust performance 
(as for the methods discussed in Sections 3.9, 3.11 and 4.12). Preferably, for an efficient test on 
viability, the criterion is expressed in terms of norm bounds (”finite Lp-gains”, see, e.g., [52]) on 
particular desirable system properties (or nonlinear operators). It must be investigated if it is 
possible to formulate such requirements for nonlinear control systems. In [52], it is shown that for 
perturbed nonlinear systems in a specific form, a (dynamic) state feedback controller achieving 
robust stability exists, if the perturbation has finite Lz-gain and a particular Hamilton-Jacobi 
equation (nonlinear analog of Riccati equation) has a solution. 
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Tractor-semit railer model 
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In this appendix, the system matrices in the state space description (5.1) of the tractor-semitrailer 
model are given in detail. 

The equations of motion of the tractor-semitrailer can be written as: 

M$+Bq+ K q =  u* + w* ( A 4  
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in which: 

APPENDIX A. TRACTOR-SEMITRAILER MODEL 

K =  I" 
K44 = ksf + ksr + kst 
l i 4 5  = -aEsf + bAsr + ( b  - c)kst 
K46 = (d + e)k,t 
IC54 = K45 
IC55 = a2ksf  + b2ksr + ( b  - c)'k,t 
K56 = ( b  - c)(d + e)k,t 
K64 = K46 

K65 = K56 

K66 = (d+  e)'k-,t. 

Choosing xT = [qTQT], (A.l) can be written in state space form: 

x = A x  + Buu + B, w 

with: 

( A 4  

I O O ] ; Bu = [ M-1 ] Bu*; B w  = [ M-1 ] BW' 
O 

A =  [ -M-1K -M-1B 

The variables to be controlled z are expressed in terms of x ,  u and w by  the relation: 

with: 

E =  

z = E x  + Fuu + F,w 

O -1 o O 1 -a O 
o -1 o 1 b O o . * *  o 
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&,i Eg,z E9,3 E9,4 E9,5 E9,6 E9,7 . . . E11,12 

. Ai2,i A12,2  A12,3 A12,4 A12,5 A12,6 A12,7 . .. A12,iz 

where: 



61 

where: 

Fw = 

where: 
F w 9 , j  = Bw10,j + ( b  - c)Bwil,j + d B w i 2 , j  

Here, Aj,j denotes the element of A on the i-th row, in the j-th column. 
For the candidate measured variables, a similar relation can be written: 

y=Ca:+D,u+DwU, 

with: 
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where: 

APPENDIX A. TRACTOR-SEMITRAILER MODEL 

where: 
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