

CMAC algorithm for motion control in the presence of friction

Citation for published version (APA):
Hensen, R. H. A. (1996). CMAC algorithm for motion control in the presence of friction. (DCT rapporten; Vol.
1996.099). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/03d7a682-4fc5-4289-848e-f1470ae275f4

CMAC Algorithm for Motion Control
in the Brensence of Friction

R.H.A. Hemen
June 2lSt, 1996

WFW Stage Report no.96.099

Professor: Prof.dr.ir. J.J. Kok
Tutor: D r k . M.J.G. van de Molengraft

Eindhoven University of Technology
Department of Mechanical Engineering

Section: Fundamentals
Group: System and Control Engineering

CMAC Algorithm for Motion Control in the
Presence of Friction

R.H.A. Hensen

June Wt, 1996

Abstract

The objective of control algorithms is to minimize the difference between
the desired and performed motion. Mathemattically, the dynamic system,
which has to be controlled, can be nonlinear. Difficulties in designing control
algorithms are introduced by these nonlinearities. Though human beings
handle easily these problems without extensive computations. The Cerebellar
Model Articulation Controller (CMAC) algorithm is a mathematical model
of the human cerebellar, which controls the movements of human beings.

In this paper the CMAC algorithm is tested on the inverted pendulum.
The friction in the actuator introduces the nonlinearity of the dynamic sys-
tem. The CMAC algorithm can be added (i) on-line or (ii) off-line parallel
to a conventional controller.

In the on-line configuration the conventional controller uses only errors,
such as position and velocity errors, to compute the control action (e.g. PID
controller), The output of the conventional controller is the control objective
which has to be minimized by the CMAC algorithm.
On the inverted pendulum this configuration is tested with a PID controller
as the conventional controller. The results of the on-line configuration are
compared with the results performed with a PID controlller. The results
of the CMAC algorithm are more accurate than the PID controller. This
means that the CMAC algorithm can indeed handle friction. Possibly other
nonlinearities can be faced well with the CMAC algorithm.

In the off-line configuration the CMAC algorithm is able to COPY each
conventional controller for a certain motion. The performance of the CMAC
algorithm is maximal the same as the conventional controller. In other terms
the CMAC algorithm fits the data of the conventional controller for that
motion.

contents

1 Introduction 5

2 Theory 7
2.1 The CMAC System . 7
2.2 The CMAC Mapping Algortihm 11
2.3 Shaping Input-Space Neighbourhoods 12
2.4 Data Storage . 13

3 Experimental 16
3.1 The Inverted Pendulum . 16
3.2 Measurements . 17
3.3 The Desired Accuracy . 18

3.5 The Quantization Functions 19
3.6 Available Memory . 19

3.4 Friction . 18

4 Results and Discussion 20
4.1 0n.line . 20

4.1.1 The Control Algorithms 21
4.1.2 The Desired Trajectory 22
4.1.3 The Control Variables 24
4.1.4 The Results and Discussion 27

4.2 Off-line . 30
4.2.1 The Control Algorithms 30
4.2.2 The Desired Control Function 31
4.2.3 The Control Variables 31
4.2.4 The Results and Discussion 31

5 Conclusions 33

6 Recommendations 34

1

CONTENTS

A The Quantization Functions

2

35

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

The CMAC algorithm . 8
The overlap in two input vectors 9
Linear Quantization of the input component Xi 12
Nonlinear Quantization of the input component Xi 13
The CMAC algorithm added on-line 14
The CMAC algorithm added off-line 15

The inverted pendulum . 16
The sampling time At . 17
The sigmoïde quantization function 19

On-line control configuration 21
The desired trajectory of the motor with &desired = 0.5 [rad/s] 23
The desired trajectory of the motor with &desired = 0.3 [rad/s] 23
The position and velocity errors and the applied torque of

The position and velocity errors and the applied torque of

The position and velocity errors and the applied torque of
Experiment 3 . 28
The position and velocity errors and the applied torque of

The position and velocity errors and the applied torque of
Experim-ent 5 . 30
The desired control function of the off-line experiment 31

Experiment 1 . 27

Experiment 2 . 27

Experiment 4 . 29

4.10 The CMAC response and the response error 32

3

List of Tables

4.1 The on-line PID parameters for the two desired motions. . . . 25
4.2 The optimal PID parameters for one desired motion. 26
4.3 26
4.4 The input-space neighbourhoods Hiz,,, 29

A.l The quantization functions for &desired = 0.5 [rad/s] A: = 15 . 35
A.2 The quantization functions for &desired = 0.5 [rad/s] A: = 25 . 35
A.3 The quantization functions for &desired = 0.3 [rad/s] A: = 15 . 36

The different experiments given in a table.

4

Chapter 1

Introduction

The problem of controlling a manipulator is that of finding the right control
signal for each joint actuator at every point in time and under every set of
conditions. In order that the manipulator carries out any movement, it is
necessary to drive each joint through a trajectory (a sequence of positions)
as a function of time. The control signal is also a function of other variables
such as:

o Position, velocity and acceleration in most, or all, of the joints.

o Force and touch signals (skin in human control systems) from various
points on the manipulator.

o Visual or other feedback measurements concerning the position of the
end point (end-effector).

o Data of bending, twisting and friction in various components of the
manipulator.

o The drive signals depend also on higher level input variables which
identify the desired trajectory of the end point or the movement of the
joints.

Though the particular task which has to be performed may be stated in
simple terms, the solution is often very complicated.

For controlling mechanical manipulator systems, the trajectory each joint
has to make to produce a certain motion of the end-effector is solved by com-
putations based on relationships between physical elements of the manipu-
lator itself. These relationships are based on more or less idealized mathe-
matical formulations. Such formuPations usually take into account only the

5

C H A P T E R i. INTRODUCTION 6

joint velocities and angles. It is possible to include gravity loading and in-
ertial forces. However, in the real world the variables and nonlinearities
introduce a computational problem which cannot be solved appropriately by
these mathematical formulations.

When one examines nature and observes the movements made by bioiog-
ical organisms, one will belief that the solution of mathematical eqautions
is not the adequate method for producing drive signals for a manipulator
control problem.

In human control systems there are two levels of data processing, the
conscious level and the subconscious level. At the conscious level there are
two relevant input variables to the manipulator control computation. First,
the task that has to be accomplished, such as “pick up a glass” in the range
of tasks as “brush teeth”, “comb hair” or ((slap”. Second, it is necessary to
measure the position of the hand (end point) relative to the glass (desired
trajectory) and compute the direction vector which is required to move the
hand towards the glass. The detailed computation of the action of every
muscle for this movement is done at the subconscious level.

One part of the brain that seems to be intimately involved in motor con-
trol processes is the cerebellum [i]. Input to the cerebellum arrives in the
form of sensory and feedback from the muscles, joints and skin together with
the higher level commands concerning the desired trajectory. According to
the theory, this input constitutes an address, which contains the appropriate
muscle actuator signals required to carry out the desired movement. At each
point in time the input addresses an output which drives the muscle control
circuits. The resulting motion produces a new input and the process is re-
peated. The result is the desired trajectory of the manipulator through space.
At each point on the trajectory the state of the manipulator is sent to the
cerebellum as input, and the cerebellar memory responds with the actuator
signals which drive the manipulator to the next point on the trajectory.

This paper describes the control problem of a practical manipulator, the
inverted pendulum. The inverted pendulum is controlled with a cerebellum
controller (Cerebellar Model Articulation Controller). The inverted pendu-
lum is a system with two degrees of freedom and only one actuator. The two
degrees of freedom are the two angles which are measured on-line. Besides
the pendulum itself, the static (Coulomb) and kinetic friction in the actuator
makes the dynamic system nonlinear. Conventional controllers, using these
dynamic models, cannot solve the control problems appropriately. The pur-
pose of this work is to see whether the CMAC algorithm can work on this
inverted pendulum in the presence of friction and second compare the results
with already existing friction compensating algorithms.

--*.

Chapter 2

The CMAC algorithm will be explained in this chapter. In particular the
algorithm applied for the experiment with the inverted pendulum will be
discussed.

2.1 The CMAC System
Every control algorithm has input and output vectors. The input vector S is
a R-ary vector. An input vector S in the cerebellum produces an association
cell vector A which is a binary vector. This association cell vector addresses
the weight matrix Wand produces a response vector F.

Mathematically, the cerebellum may be represented by a pair of mappings

f : S + A
g : A + F

where

S = input vector
A = association cell vector
P = output vector

The function f is generally fixed, but the function g depends on the value of
the weights which may be modified during the data training process.

7

CHAPTER 2. THEORY 8

In the practical system of the inverted pendulum the input vector S and
the output vector P can be defined as followed.

o The R -ary input vector S could contain, for instance, the

1. position of the pendulum (p)
2. velocity of the pendulum (,b)
3. velocity of the motor (&)
4. position error of the pendulum (€0 = ,&e&.& - p)
5. velocity error of the pendulum ('p = /jdesis.ed - ,b)
6. velocity error of the motor (i, = &desis.& - &)

e The response output vector P contains the applied momentum of the
actuator U [Nm].

When an input vector S is presented to the sensory cells of the cerebellum,
it is mapped into an association cell vector A. The non-zero elements of A
are defined as A* as shown in Figure 2.1. The response cell of the cerebellum

Association Weight
Cell Vector

Vector

Only activated memory locations are
summed to give the CMAC resparse.

A* = (b 3 , b 6 , b 8 , b 10, b 13)

Figure 2.1: The CMAC algorithm

sums the ralues of the weights addressed by the active association cells. Only
the nonzero elements A* affect this sum, which is the output vector P. If an
output vector P is desired to be changed, under a given input vector S, then
one only adjusts the weights of the association cells in A*.

The cerebellum does not have sufficient association cells to address a
unique cell or a group of cells for any possible input vector S. This means

CHAPTER 2. THEORY 9

that an association cell may be addressed by different input vectors S. For
example, if there are two input vectors S1) S2 and the sets nonzero associa-
tion cells are AT and AS, it is possible that there are common association cells
as shown in Figure 2.2. This is called overlap or cross-talk between input

Association Weight
CeU Vector

Vector

/
Oniy activated memory locations are
summed to give the CMAC response.

A * l = (b 3 , b 6 , b 8 , b 10 , b 131

A*2= (b 3 , b 6 , b 7 , b 10, b 13)

A* l n A * 2 = {b 3 , b 6 , b 10, b 131

Figure 2.2: The overlap in two input vectors

vectors which in some cases is beneficial and in other cases leads to serious
problems.

If it is desired that the output response cell produces for Si the same
output as for S2 the overlap is beneficial. In that case, the weights addressed
by input vector S2 should not be adjusted to produce the same output vec-
tor. This property is called generalization and means that the cerebellum
generalizes from one learning experience to another. The generalization size
is the number of non-zero elements of A or the number of elements in A*.

On the other hand, if it is desired that the output response cell produces
for S2 a different output then for Si, the overlap AT A AS introduces diffi-
culty. The adjustments of the weights (of the set nonzero association cells)
in Al wiii upset the weights in AT. The output vector of 51 will be changed
after adjusting the weights for the output vector S2. This is called learning
interference, which can be overcome by repeated iteration of the data storage
algorithm for Si and Sz. This iteration leads to large weights outside the
overlap AT A AS , but not in the overlap so that the different output vectors
can be obtained for Sz as well as for Si. The ability to produce dissimilar
outputs for different input vectors, is derived from the difference between AT
and AS. In general, the smaller the overlap AT A AS, the easier it is to find a
set of weights which will produce a dissimilar output for 8 2 as well as for Si.

CHAPTER 2. THEORY 10

The control function for a manipulator is typically a rather smooth con-
tinuous function. This means that for every point in input-space (state of
the input vector S) which requires a certain response, there is a small neigh-
bourhood of input-space points around that point for which nearly the same
response is required. Within that neighbourhood, the control system should
produce approximately the same response. On the other hand, the control
function should be independent for widely seperated points in input-space.
In more precise terms, if two input vectors S; and Sj have a small input-space
distance, then the overlap AZ A A; should be large. On the contrary, if S; and
Sj have a large input-space distance, AZ A A; should be small. The Hamming
input-space distance is defined as

N

k = l

where s;k are the components of the input vector S; and Nis the dimension
of s;:

Sj = (Sjl, s j 2 , - - * , S j N)

If Hij is small, A,* A A; should be large. As Hij grows larger, Ar A A; should
get smaller until, at some value of Hij, AZ A A; should be zero.

In the cerebellum it is believed that for any input vector S , I A* 1' is
less than one percent of the total number of association cells [i]. I A 1 is the
number of association cells physically implemented by the CMAC algorithm.
I A I is typically chosen as at least 100 times I A* I.

There are many ways to address the association vector with a given input
vector. A conventional way of addressing the association vector would be to
assign one association cell for each input space. For example, if we have
an input vector of dimension N = 7, with resolution of each dimension
Ri = 1000, the association vector would require 1021 cells.

With the CMAC algorithm, as d-escribed above, many cells are addressed
for each input vector. The number of cells assigned for an input vector is the
generalization size I A* I. Each state is mapped into I A* I cells, and the next
closest input vector would have 1 A* - 1 1 cells in common. Therefore the
number of cells needed is reduced to I A* I (R;/ I A* I) N . If for the previous
example each input vector was mapped into I A* I= 100 cells, only 100 *
or lo9 association cells would be required. However, these numbers of cells
are still very large for implementation in an experimental environment.

X 1 is defined as the number of elements in X.

CHAPTER 2. THEORY 11

2.2 The CMAC Mapping Algortihm
The CMAC mapping algorithm [a], corresponding to the theory above, is
defined as a series of mappings from an input vector S, to an output vector
Y ,
m

P = H (S)

where H (S) represents the overall mapping.
H (S) consists of three smaller mappings in the following order,

Each dimensional mapping

where S is an input vector, containing both desired and feedback information,
M is the set of quantization functions used to encode S, A is the set of
memory cells addressed by M , and P is the output vector.
As mentioned above, there is still a memory problem. To face this problem a
routine called hash coding [3] can be used. The hash coding routine uses the
large memory set A as input and maps this in a smaller physical memory.
This may introduce collision of the data, but with the right setting of the
parameters this can be optimized.

For the inverted pendulum this algorithm is not used, but another solution
is tested [4]. In this paper, each component X; of the input vector is mapped
into a one-dimensional memory table. The input vector dimension is N . The
total available physical memory size is I A I and the generalization size is
I A* I. If the available memory is shared equally by the dimension of the
input vector, each component of the input vector would have I A; /=I A I / N
memory cells available. The generalization size for a sampled component X ;
of the input vector would be I Af [=I A* I / N . Each component of the input
vector X; is quantized to a value Xin with a resolution of 1 part in I A; 1 . The
memory cells addressed for each input vector component X; are, the memory
cell addressed by Xiq, plus the next I AZ I -1 cells, as shown in Figure 2.3.

This CMAC mapping algorithm also has the advantage of further reduc-
tions in memory size. The number of memory cells needed with this algo-
rithm is only R; * N . For the previous example, there are only 7000 memory
cells required instead of lo9 (other CMAC-algorithm) or 1021 cells. Notice
that the memory reduction increases especially for large input dimensions
N . On the other hand, it is not said that this CMAC algorithm achieves the
same accuracy as the other algorithms. This CMAC approach may need a
larger sampling resolution R; to achieve the same accuracy. For a specific

2i is an input vector component i = 1, . . . , N

CHAPTER 2. THEORY 12

Association Weight
Cell Vector

Vector

Mted memory locations are
o give the CMAC response.

O
Xi,ltliM

Figure 2.3: Linear Quantization of the input component Xi

application this comparison may not indicate the actual difference in memory
requirements.

The essential part of this mapping algorithm is the quantization of the
input vector. The quantization of the input vector must be such that it best
utilizes the available memory cells. Both, for each component of the input
vector and every specific application, different quantization functions f (X ;)
may be needed. Two quantization functions can be distinguished , i.e. (i)
the linear quantization and (ii) the nonlinear quantization. The quantization
functions used for this application are given later.

2.3 Shaping Input-Space Neighbourhoods
The components, X;,i and X Q , of two input vectors 5’1 and 5’2 are in the
same neighbourhood if A,il A A;*,2 is not null, thus there is overlap [2]. The
size of the neighbourhood for each component of an input vector depends on
the number of elements in the set Ar. It also depends on the resolution with
which the input component Xi is mapped into the memory location Xiq. For
each component in the input vector S the Hamming input-space distance is
defined as follows

There is a value Hiz,,, for the Hamming input-space distance where the
amount of overlap I A:,l A A:,2 I between X Z J and Xi,2 becomes zeros. This

CHAPTER 2. THEORY 13

value is a function of 1 A: 1 and the quantization function f i (X;) . Thus,

Now it is possible to give each component Xi of the input vector a different
importance to the output vector P. If X ; +. Xiq is a high resolution mapping
only a small change in X ; is required to address one or more different elements
in A: and to compute a different output vector P. A low resolution mapping
X j + X;, a large change in X j is required to address any different element
in A; and to compute a different output vector P. The resolution of the
mapping is defined in the quantization function f ; (X ;) .

It is also possible to use a nonlinear quantization function, as shown in
Figure 2.4. This means that high resolution mapping of X ; is used in some

Association Weight
Cell Vector

Xi, Vector

memory locations are
e the CMAC response.

O
Xi.&

Figure 2.4: Nonlinear Quantization of the input component X ;

parts of the range along the X ; axis and low resolution mapping in other
parts of the same axis.

2.4 Data Storage
An important step in the CMAC system is the data storage [5, 41. The
data storage system uses an input scalar Z to update the activated mem-
ory locations. This input scalar 2 depends on the total control system, i.e.
whether the CMAC algorithm is applied (i) on-line or (ii) off-line. The objec-
tive function of the learning algorithm is the same for these two situations.

CHAPTER 2. THEORY 14

The learning rules, used in the learning cycle, are the mathematical repre-
sentation of the objective function. The learning cycle is repeated until a
desired accuracy, the difference between a reference response and the CMAC
response, is reached.

The CMAC algorithm is added in parallel with a conventional controller,
i.e. on-line as shown in Figure 2.5. The objective function of the on-line

Algorithm
Control

I I Total Control Action I I
Desired Motion

Inverted

System
Control

Position,
VelociIy

Figure 2.5: The CMAC algorithm added on-line

learning algorithm is to update the activated memory locations in the di-
rection to minimize the difference between the total control action and the
CMAC control action. The learning algorithm is as follows,

1. Calculate the CMAC control response,

where w; is the content of the activate memory locations addressed by
the current input vector S.

2. Compare the total control response from the CMAC and conventional
controllers, utotal, with u,,, and update the content of the active mem-
ory locations by

where /3 is the learning rate.

CHAPTER 2. THEORY 15

3. Repeat until the required accuracy criteria is reached.

The objective function can only be solved if the conventional controller uses
errors, such as position and velocity errors, as input (e.g. PID controller). In
other words, the only way the learning stops is wheïì the tûta! cûntïû! actiori is
equal to the CMAC control action. The action of the conventional controller
is then zero, i.e. perfect tracking is achieved. In practical applications the
action of the conventional controller will never be zero due to the existing
noise level in the system. The required accuracy criteria is then this noise
level.

In the off-line configuration, as shown in Figure 2.6, any controller can
be used during the learning cycle of the CMAC algorithm. The learning al-

- CMAC
-+ CMACcontroi

Action

Desired Motion
Trajectory

Conventional Inverted

System
Position,
Velocity

Figure 2.6: The CMAC algorithm added off-line

gorithm uses data sets of input and output vectors gained from experiments
with the conventional controller. The objective function is to update the
activated memory locations in the direction that the difference between the
applied contïo! actior, from the ccnve&ionéd controller and the CMAC COE-

trol action is minimized. So, the adaptation is the same as for the on-line
application with the remark that in Equation (2.5) utotal = u,,,,,,tional.

Chapter 3

Experimental

3.1 The Inverted Pendulum
The CMAC algorithm is tested with an experimental mechanical system, i.e.
the inverted pendulum as shown in Figure 3.1. The pendulum is connected

Figure 3.1: ï h e inverted penduium

with a computer by several interfaces. The computer receives sampled mea-
surements of the angles a and ,û that can be used for control algorithms.
With these measurements and control algorithms the computer calculates
the torque to be applied to the inverted pendulum. A motor drives the in-
verted pendulum with the computed torque. The on-line computations of
the control algorithms are performed by a C-coded programm. This pro-
gramm contains the control algorithm with the measurements as input and

16

CHAPTER 3. EXPERIMENTAL 17

the computed torque as output. Results of the experiment are summarized
in Matlab format.

3.2 Measurements

The measurements taken of the inverted pendulum are

o the position of the motor, a [rad]

o the position of the pendulum, ,f3 [rad]

as shown in Figure 3.1. The resolution of the two encoders is & = 1.5 *
[rad]. The resoultion of the motor angle is 8 times smaller, because

of a transmission between the encoder and the actual motor angle a. The
resolution of the motor is 2 * [rad]. These two measurements are the
input of the C-coded programm.

The positions are measured at discrete equally spread moments, i.e. the
sampling time At [SI. The sampling time is constant and the sampling fre-
quency is defined as fs = l /At [Hz] (see Figure 3.2). During the sampling

Figure 3.2: The sampling time At

time the programm has to compute the torque as output. This torque is
then sent to the motor and applied to the inverted pendulum in the same
sampling time.

The control algorithm may need more data such as

o the velocity of the motor, [rad/s]

CHAPTER 3. EXPERIMENTAL 18

o the velocity of the pendulum, ,b [rad/s].

Instead of measuring the velocities these are derived by differentiation of the
position measurements (see Equation 3.1 and 3.2 and Figure 3.2).

This differentiation of the position measurements leeds to a resolution of
fs * [rad/s] for the velocity. So, if f s = 200 [Hz] the resolution of the
velocity is 2 * [radls]. The resolution of the velocvity is less accurate
then the resolution of the position.

The integral of the positions may also be needed by the control algorithm.
These are

o the integral of the position of the motor, J a [rad s]

o the integral of the position of the pendulum, JP [rad SI.
The integrals of the positions are also derived in the C-coded programm as
followed

The last term y in Equation 3.3 is represented in Figure 3.2.

3.3 The Desired Accuracy
The desired accuracy is limited to the resolution of the measurements. Thus,
the desired accuracies are as followed

o Position accwacy is 2 *
o Velocity accuracy is fs * 2 * lov4 [rad/s]

[rad]

3.4 Friction
The dynamic system of the inverted pendulum is nonlinear due to static and
kinetic friction in the motor. The static friction is f 16 [Nm] and the kinetic
friction is a function of the velocity of the motor, 01.

CHAPTER 3. EXPERIMENTAL

3.5 The Quantization Functions
As mentioned before, there are two different quantization functions to be
distinguished i.e., (i) linear quantization functions and (ii) nonlinear quan-
tization functions. For the experiments, nonlinear sigmoïde quantization
functions are used. These sigmoïde quantization functions are defined as

with q=I Ai I (3.5) 1 + e - 4 X i - P)
rl xi, =

In Figure 3.3 a sigmoïde quantization function is shown. This nonlinear

19

Figure 3.3: The sigmoïde quantization function

quantization function can also be used as a linear quantization function be-
cause the sigmoïde function is approximately linear for a certain range of X ;
(see Figure 3.3). Another advantage of using these functions is the certainty
that Xiq will be in the range of I Ai I.

3.6 Available Memory
The number of available memory locations are I A I= 8000. This number is
fixed due to the use of PC-Matlab which only allows matrices with a length
of f 8000 cells. The use of Matlab386, with larger memory facilities, will
introduce a memory problem in the C-coded programm if the matrices are
larger than 10000 cells.

Chapter 4

Results and Discussion

There are two kinds of experiments tested on the inverted pendulum, as
described in section 2.4 ‘Data Storage’.

o The CMAC algorithm used on-line in parallel with a PID controller.
The controller is tested as a friction compensation controller.

o An off-line experiment to test whether the CMAC algorithm can copy
a conventional controller for a certain trajectory of the inverted pen-
dulum.

4.1 On-line
This experiment is to test the CMAC algorithm as a friction compensator.
To determine the effectiveness of this controller only the motor has to be
tested, because the friction is due to the motor and not to the pendulum.
Hence, only the position and velocity of the motor have to be measured. The
control configuration of the CMAC algorithm and PID controller is given in
Figure 4.1 with

r adesired (i)

In the PID control algorithm and the CMAC algorithm, the velocity and the
position integral of the motor are derived as described in section 3.2.

28

CHAPTER 4. RESULTS AND DISCUSSION 21

Algorithm

Desired Motion
Trajectoiy

Measurements
-sP *

Position
O f

PID Inverted

Algorithm System
Y control UPID pendulum

Figure 4.1: On-line control configuration

4.1.1 The Control Algorithms
o The PID controller is defined as follows

where P is the Proportional action, I the Integral action and D the
Derivative action and

o In the CMAC algorithm, the input vector S and the output vector P
are

CHAPTER 4. RESULTS AND DISCUSSION 22

Besides the velocity and velocity error of the motor which are charac-
teristic for the friction, the input vector contains the measurements of
the position, position error, integral and integral error of the motor.

e The learning algorithm represents the !earning d e which is defined 2s

4.1.2 The Desired Trajectory
There are two different trajectories tested with each a constant desired ve-
locity of the motor &des i red ,

O &desired = 0.5 [rad/s]

O &desired = 0.3 [rad/s]

This means for the vector y,, - which specifies the desired motion

L p = [0.5] 0.5 * t

0.25 * t2

0.3 * t

0.15 * t2

O

O Ysp = []
The desired motions are represented in Figure 4.2 and Figure 4.3.

(4.8)

(4.9)

CHAPTER 4. RESULTS A N D DISCUSSION

1.5

- ,
3

s o
H
I

0.5

-0.5

23

. - -
I I I

j j f ;. ...: j j I

I I 1 I I I I I I

Desired traiectow af the motor v d . 5 Iradlsl

O 1 2 3 4 5 6 7 8 9 10

Figure 4.2: The desired trajectory of the motor with &desip& = 0.5 [rad/s]

Desired trajectory of the motor vd .3 [rad4

.;;:.

........
I

................ . z

1 2 3 4 5 6 7 8 9 10
Time [SI

1 2 3 4 5 6 7 8 O 10
Time [SI

.;
I

O 1 2 3 4 5 6 7 8 9 10
Time [SI

Figure 4.3: The desired trajectory of the motor with &desired = 0.3 [rad/s]

CHAPTER 4. RESULTS AND DISCUSSION 24

4.1.3 The Control Variables
There are six control variables which have to be determined. For every control
variable there will be an explanation and discussion.

1.

2.

3.

4.

The sampling frequency fs in [Hz] should be chosen large enough, so
the discretization error is small. A small discretization error is required
for the CMAC algorithm which is designed for continuous control func-
tions. On the other hand the sampling time is limited to the time
needed for each computational cycle. The applied sampling frequency
is 200 [Hz]. So,

fs = 200 [Hz] (4.10)

1
200 At = - = 0.005 [SI (4.11)

The learning rate ,B should not be chosen very large. This will introduce
instability of the total system during training. This means that the
weights in the CMAC memory will not converge to stable values. The
learning rate ,O should be small, i.e.,

(4.12)

If the error of the CMAC response Upid is updated completely over the
activated memory locations I A* I in one sampling time , the memory
has no time to generalize from one learning experience to another. The
experimental learning rate Used p = IK4.

The number of learning cycles, which is the number of repeated desired
trajectories of the manipulator during the experiment, is related to
the learning rate p. If the learning rate P is very small, the CMAC
memory is updated with a very small amount of the response error
U p i d . So, there are a large number of learning cycles needed to update
the memory correctly. The smaller ,O the larger the number of learning
cycles which are needed to achieve a desired accuracy. With p =
the number of learning cycles to reach the desired accuracy discussed
in section 3.3 is f 20 cycles.

As mentioned before the total generalization size A* is equally shared
over the components of the input vector S. So, each component has

CHAPTER 4. RESULTS AND DISCUSSION 25

the same generalization size Af.
The desired motion with &desired = 0.5 [rad/s] is tested with two dif-
ferent generalization sizes AT = 15 and Ar = 25. The other desired
motion is only tested with generalization size A: = 15.

5. If the generalization size is fixed, like here, the quzntization functions
have to be determined. There are for each quantization function three
parameters which have to be specified (see Figure 3.3).
System knowledge can be used in chosing the parameters. In this ap-
plication the velocity and the velocity error are very important due to
the friction. The quantization functions for these two input components
should be high resolution mappings. The other components are mapped
with the approximately linear part of the sigmoïde quantization func-
tion and with a lower resolution. The parameters are determined on
trial and error basis. It is very difficult to find the right parameters.
For the different experiments, different parameters are found which are
given in Appendix A Table A.l-A.3. In these tables i is the index of
the input vector component Xi.

6. The parameters of the PID control action (in Equation 4.3) in the
on-line configuration are equal for the experiments with the two dif-
ferent desired motions. The total dynamic system becomes instable

Table 4.1: The on-line PID parameters for the two desired motions.

if the on-line PID parameters are chosen larger. The same parame-
ters are chosen for an experiment with only a PID control action (so no
CMAC algorithm parallel to the PID controller). The results of the on-
line experiment are compared with the results given by the experiment
with this PID controller. This comparison is to determine whether the
CMAC algorithm copies the PID controller.

The results of the on-line experiment are also compared with a PID
controller with optimal PID control parameters. For the desired motion
with &desired = 0.5 [rad/s] the optimal parameters are given in Table
4.2. This comparison is to give an impression of the results of the
CMAC algorithm used as a friction compensation controller.

CHAPTER 4. RESULTS A N D DISCUSSION

&desired

0.5

26

p I D
2000 1000 35

For simplicity, the different experiments are labeled in Table 4.3 with the
different applications and parameters.

Table 4.3: The different experiments given in a table.

CHAPTER 4. RESULTS AND DISCUSSION

111

(,.

- ,$.

27

. , . . , . .
.

.
.

, , i. .:.. - . .
.

.: .i -
.

. .
1 2 . . : ~ . . :... : _. ~ ~. -

.
.

. . . -. -
.

4.1.4 The Results and Discussion

I

Comparing Experiment 1 (Figure 4.4) with Experiment 2 (Figure 4.5) it is
clear that the on-line configuration of the CMAC algorithm does not copy
the PID controller. The CMAC algorithm uses the PID controller as a part

.
. .

. .
.

. :

. . . .
. -

.

0 1 2 1 1 5 6 7 I 10
TrnE [.I

Figure 4.4: The position and velocity errors and the applied torque of Ex-
periment 1.

0.18

. :. . . - <i

-3.02
.

o 1 2 3 4 5 D 7 I B ,o
nwsi

".bCh m r d M "mb,

. 0.s"w , , , , , , , , ,
.

. f.... : :
. . . .

.
. .
.

' 0 1 2 3 4 5 B 7 I * IO
TM 14

Figure 4.5: The position and velocity errors and the appiied torque of Ex-
periment 2.

of the learning algorithm to determine how well the control objective (desired
trajectory) is met. The PID control action upid is nearly zero. Due to the bad
accuracy of the velocity of the motor, which is characteristic for the friction,
the velocity error is in a range of f 0.4 [rad/s]. So, the position error is in
a range of f 0.002 [rad]. A better result would be found if the velocity was
measured and not computed or computed with a higher accuracy.

CHAPTER 4. RESULTS AND DISCUSSION 28

Experiment 3 (Figure 4.6) compared with Experiment 1 gives an idea of
the use of the CMAC algorithm as a friction compensation controller. The

Figure 4.6: The position and velocity errors and the applied torque of Ex-
periment 3.

optimal PID controller has almost the same results as the on-line controller
with the CMAC algorithm. The tracking of the desired velocity in Experi-
ment 3 is less accurate than in Experiment 1. The position error is slower
in reaching the end accuracy which is approximately equal. The CMAC al-
gorithm is not much better than the PID controller, but with better data
of the velocity of the motor the CMAC algorithm might give more accurate
results.

Experiment 4 (Figure 4.7) is the same experiment as Experiment 1, but
with another generalization size A;*. The given A;* = 25 leads to another
set of quantization functions given in Table A.2. The search for the correct
quantization parameters is very difficult. It is possible with another gen-
eralization size to find the right parameters which lead to the same results
as in Experiment 1. The position error in Experiment 4 is smaller than in
Experiment 1. The quantization functions are probably chosen better. The
differerice between the two experiments can be explained with the input-space
neighbourhood. As described in section 2.3 there is for each component in the
input vector S a value for the Hamming input-space distance where there is
no overlap. For the two different experiments these values are given in Table
4.4 for the linear part of the quantization function. The input-space neigh-
bourhoods for the generalization size A: = 25 is larger than for Af = 15.
This does not mean that creating the same input-space neighbourhoods for
generalization size At = 15 will lead to the same results. The results are
influenced by both the generalization size and the quantization functions.

CHAPTER 4. RESULTS A N D DISCUSSION 29

.
. , . . . t . .

.

.

'o 1 2 3 . 5 5 I B B 10
nm 10

.
.

.
o 1 2 3 1 6 6 7 B o I D

rn e1

Figure 4.7: The position and velocity errors and the applied torque of Ex-
periment 4. I I Hizerooverap 1

X ; A: = 15 A f = 2 5
0.00465 0.0076

I i I 0.015 I 0.0255 I I I

I J e I 0.023 I 0.038 I
Table 4.4: The input-space neighbourhoods Hizero

This introduces another difficulty in finding the optimal CMAC parameters.
The generalization size can not be chosen freely and than find the best set
of quantization functions. It is a combination of these two property which
specify the results of the CMAC algorithm.

CHAPTER 4. RESULTS A N D DISCUSSION 30

,
a

Experiment 5 (Figure 4.8) is to test smaller desired velocities of the motor.
The desired velocity of 0.3 [rad/s] is the smallest velocity where the CMAC
algorithm still works well without larger velocity errors of the motor. Smaller

. - g , 1 . :. . . . I ,

. 8 ... :.. :. : :i
o//[..

. .
. . . .

>. < *

.
. . . :. :.... ~ . . ~ . . ~ ~
. . . .

.
... ..I i . i.:. : :. ..i ... i . . 4

Figure 4.8: The position and velocity errors and the applied torque of Ex-
periment 5.

velocities of the desired trajectory makes the dynamic system instable during
training. This is also due to the inaccurate data of the velocity.

4.2 Off-line
This experiment is to test whether the CMAC algorithm can copy a con-
ventional controller for a certain trajectory of the inverted pendulum. The
off-line configuration is given in Figure 2.6. The conventional controller is a
Computed Reference Computed Torque Controller, which keeps the pendu-
lum up and the motor rotates.
In the CRCTC algorithm and the CMAC algorithm, the velocity and the
position integral of the motor are derived as described in section 3.2.

4.2.1 The Control Algorithms
In the CMAC algorithm, the input vector S and the output vector P are

(4.13)

'P = ucmac (4.14)

CHAPTER 4. RESULTS A N D DISCUSSION 31

With B is the angle of the pendulum. The choice of this input vector is free,
but it is clear that it is important to have data of the position and velocity
of the pendulum to keep the pendulum up.

4.2.2 The Desired Control Function
The desired control function performed by the CRCTC is represented in Fig-
ure 4.9. During training different datasets are used. These are necessary for

i 25'...(............ :.. _ .___ . ._ . ._ . ._ : . ._..:........... t . 1 ' I ;

I I I I I I I
i 2 3 4 5 6 7 a -10'

Time [SI

Figure 4.9: The desired control function of the off-line experiment.

the learning of different input states during the trajectory of the pendulum.

4.2.3 The Control Variables
The control variables are the same as those of the on-line configuration, only
the quantization parameters are different.

4.2.4 The Results and Discussion
The results are given in Figure 4.10. The CMAC response is almost the same
as the CRCTC response. The peaks Figure 4.10 are untrained input states S
for the CMAC algorithm. It is important to have enough different datasets
which are collected from experiments with the CRCTC.

CHAPTER 4. RESULTS A N D DISCUSSION

Vcmsc
25

20

15 -
2 10

E 5 3
O

-5

-10
1 2 3 4 5 6 7 8

Time [SI

u-vcmac
4

I I I I I I I
1 2 3 4 5 6 7 8

Time Is]

-2

32

Figure 4.10: The CMAC response and the response error.

Chapter 5

The CMAC algorithm can be used in two applications (i) the on-line config-
uration and (ii) the off-line configuration.

In the on-line configuration the CMAC algorithm needs an input which
specifies how well the control objectives are met. Such an input could be
a PID controller which action is zero if there is perfect tracking, so the
control objective is perfectly met. The CMAC algorithm does not copy
the PID controller but uses it only during training. Nonlinearities, such as
friction, which can not be controlled appropriately with a PID controller are
no difficulty for the CMAC algorithm. The on-line configuration can also
face nonstationary nonlinearities which vary slowly through time.

The CMAC algorithm in the off-line configuration is able to copy a control
action for a desired trajectory performed by another controller. The CMAC
algorithm will only copy that controller for that trajectory. The performance
of the CMAC algorithm is at best the same as that of the original controller.

During the learning cycle the objective is to optimize the performance of
the CMAC memory. The performance after training is completely limited
by one of the following:

o insufficient sensor input data

o insufficient mapping resolution of the various quantization functions

o insufficient speed in the CMAC computational cycle

o insufficient memory locations
The mapping resolution of the quantization functions is an important

part of the CMAC algorithm. The quantization functions and generalization
size specify the CMAC algorithm. Though the right parameters of the quan-
tization functions and generalization size are difficult to find and based on
trial and error.

33

Chapter 6

Recommendations

For the study of the CMAC algorithm as a friction compensation controller
another application has to be tested with more accurate velocity data. This
data can be more accurate if the velocity is measured on-line or the velocity
is computed more precise. The CMAC algorithm can then be compared with
other friction compensation controllers and be classified.

The difficulty of finding the right CMAC parameters could be overcome if
these parameters, quantization function and generalization size, are adapted
on-line during training by learning rules. These learning rules should adapt
the parameters in that direction that the PID action is minimalized. So,

A study of these learning rules could make the CMAC algorithm easier to

During training the dynamic sytem becomes often instable. A study of
the stability of the CMAC algorithm in relation with the learning rules and
CMAC parameters could give more sight in these problems.

us€.

34

Appendix A

1
2
3

The Quantization Functions

1 Y P 'I
0.3 O 1333
2 0.3 1333

0.15 O 1333

1 0.1 O 1333 ~!
6 2 O 1333

Table A.1: The quantization functions for &desired = 0.5 [rad/s] A;* = 15

O 1333

Table A.2: The quantization functions for &desired = 0.5 [rad/s] AT = 25

35

APPENDIX A. T H E QUANTIZATION FUNCTIONS

ml
1 0.4 O 1333

36

pi
O 1333

Table A.3: The quantization functions for &desired = 0.3 [rad/s] Af = 15

Bibliography

[i] J. S. Albus. A Theory of Cerebellar Function. Mathematical Biosciences,
Vol. X:pp. 25-61, 1971.

[a] J. S. Albus. A New Approach to Manipulator Control: The Cerebel-
lar Model Articulation Controller (CMAC). ASME Journal of Dynamic
Systems Measurements and Control, pages 220-227, 1975a.

[3] D. Knuth. The Art of Computer Programming, volume 3 of Sorting and
Searching. Addison Wesely, 1973.

[4] G. A. Larsen, S. Cetinkunt, and A. Donmez. CMAC Neural Network
Control for High Precision Motion Control in the Presence of Large Fric-
tion. ASME Journal of Dynamic Systems Measurements and Control,
Vol. 117:pp. 415-420, September 1995.

[5] J. S. Albus. Data Storage in the Cerebellar Model Articulation Con-
troller (CMAC). ASME Journal of Dynamic Systems Measurements and
Control, pages 228-233, 197513.

37

	Voorblad
	Abstract
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Theory
	3. Experimental
	4. Results and discussion
	5. Conclusion
	6. Recommendations
	Appendix A. The Quantization functions
	Bibliography

