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Some Aspects of the Analysis of Stick—Slip Vibrations with
an Application to Drill Strings

B. L. van de Vrande D. H. van Campen A. de Kraker

Department of Mechanical Engineering, Eindhoven University of Technology,
P. O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract—This paper deals with a systematic procedure to calculate periodic solutions of
dynamic systems experiencing dry friction. In this first attempt we limit ourselves to 1 and
2 dof autonomous models where a smooth approximation of the discontinuous friction force
is applied to avoid numerical difficulties. Using the simple shooting method with a numerical
integration scheme suitable for stiff differential equations in combination with a path following
algorithm, branches of periodic solutions can be followed for a varying design variable. This
approach proves to work very well and will be the basis for developing a numerical tool to
investigate more complex mdof dynamic systems with stick—slip phenomena.

1 Introduction

In engineering practice, dry friction often causes undesirable side effects. It can induce a self-
sustained stick—slip vibration that can produce noise and may shorten the lifespan of mechanical
parts. Examples of such a vibration can be observed in grating brakes and chattering machine
tools. Some stick—slip vibrations experienced in everyday life are squeaking chalks and creaking

doors.
The general model to describe a dry friction force is given by

|F| < pofn if ve1 =0 (1)
F = —~uFfNsgnue if Vrel #0

in which F is the friction force, Fiy the normal force, vy the relative velocity, yo the constant
static friction coefficient and g the dynamic friction coefficient which is a function of |vre|. In
literature the dependence of the dynamic friction coefficient on the relative velocity is modeled in
different ways. In Coulomb’s friction law, & is assumed to be constant with g < po. In most other
models, p is modeled as a decreasing function of |veer|. This decrease has also been observed in-
experiments (see Popp and Stelter [8]).

The motivation for this work is the torsional stick—slip vibration that occurs in oil exploration
drill strings, mainly consisting of a slender steel tube called drill pipe. At the lower part of the
drill string, drill collars (thick walled pipes) and stabilizers (cylindrical elements that fit loosely
in the bore hole) are used to avoid buckling. At the top, the drill string is supported by a drilling
rig. Between the drill bit, the drill collars and the stabilizers on the one hand and the soil on the
other hand dry friction occurs, causing the observed stick—slip vibration. During this vibration,
the rotational speed at the top of the drill string is approximately constant, whereas the speed
at the bit varies between zero (the stick phase) and a speed that is several times higher than the
average speed at the top (during the slip phase).

Because of the discontinuity in the friction force, highly nonlinear differential equations arise
when dynamic systems experiencing dry friction are modeled. The objective of this work is to
find systematically periodic solutions of autonomous stick—slip models using module STRDYN of
the finite element code DIANA [1], applying a smooth approximation of the friction force. Module
STRDYN comprises several numerical algorithms to investigate finite element models with local



nonlinearities. The simple shooting method (see Parker and Chua [7] or Van de Vorst [9]) is used
to determine periodic solutions along with a path following algorithm (see Fey [2]) to calculate
branches of periodic solutions if a design variable of the system is changed.

2 Models with Dry Friction
2.1 1 Dof Model

Figure 1: (a) 1 dof model with dry friction, (b) periodic solution at v4r = 0.2 [m/s]

A 1 dof model with dry friction (taken from Galvanetto et al. [3]) is depicted in Fig. 1(a). The
mass m = 1 [kg] is attached to inertial space by the spring k = 1 [N/m]. The mass is riding on
a driving belt that is moving at the constant velocity ver,. Between the mass and the belt dry
friction occurs. The equation of motion of this model reads

mi+kr=F (2)

in which a dot (') denotes a differentiation to time ¢ and F is the friction force acting on the mass
given by (1). Fy = poFn = 1 [N] is the maximum static friction force and vre1 = & — vg; is the
relative velocity of the mass with respect to the belt. The dynamic friction coefficient is given
by u = po/(1 + dlvrei]), where the positive parameter § = 3 [s/m] measures the rate at which u
decreases with an increase in |vre|. The friction force is approximated by the smooth function

—2uFy arctan(evee ) /7 (3)

A large value of € gives a good approximation but causes a steep slope at v = 0 given by
—2eFy/m. This makes (2) stiff so the backward difference method (see Hindmarsh [5]) is used for
numerical integration in the shooting procedure.

In Fig. 1(b) the stable periodic solution at vg; = 0.2 [m/s] is shown fore = 10%,i = 2,...,7. To
investigate the accuracy of the approximation a semi-analytic solution is calculated by applying
Hénon’s [4] method to integrate over the discontinuity with a 4th-order Runge-Kutta scheme.
This solution coincides with the solutions for ¢ > 10° in Fig. 1(b). Using the semi-analytic
solution, the relative errors e, in the absolute maximum of z and ey in the free frequency of the
approximations are determined. Table 1(a) shows these errors as a function of £. Least squares
fits with the function e = be® give a = —0.59, b = 3.3 for e, and ¢ = —0.60, b = 3.9 for ey. The
evolution of the parameters a and b as a function of vg, is given in table 1(b). It can be seen that
a is approximately constant and b increases when the velocity of the belt is decreased. Also a is
about equal for both e, and ey, whereas b is larger for ey than for e,. Therefore, the choice of
parameter ¢ should be based on the error in the free frequency at the lowest value of vy, that is

of interest.



e | 10 10° 104
ez | 0.20 0.059  0.016 Ydr
ef | 024 0062  0.016 €a
e | 10° 10° 107

ez | 0.0040 0.00097 0.00023
e | 0.0041 0.00099 0.00023

0.05 0.1 0.15 0.2
a —058 -0.57 -0.57 -0.59
b 4.7 3.5 3.2 3.3
a
b

-0.60 -0.61 -0.61 -—0.60
11 8.1 5.6 3.9

Table 1: (a) Errors e, and ef at var = 0.2 [m/s], (b) Parameters a and b
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Figure 2: (a) Absolute maximum of z, (b) free frequency

The velocity of the driving belt is used as the design variable and is decreased from 0.2 [m/s]
towards 0. Figs. 2(a) and (b) show the absolute maximum of z and the free frequency of the
periodic solutions as a function of vg, for € = 10%, i = 2,...,7. The branches do not reach vg; =0,
because the step size becomes smaller than the user defined minimum.

If vgr 4 0 the absolute maximum of z should go to 1, because the stick phase ends at z =
F,/k = 1 when the elastic force of the spring equals the maximum static friction force. The free
frequency should go to 0, because of a longer stick phase at lower driving belt velocities. Clearly,
a larger value of € gives a better correspondence to these conditions. It is also noted that for all
values of € at some point the limit cycle vanishes. This does not correspond to the exact system
where a limit cycle exists for all values of vqr # 0. The eigenfrequency of the linear system without
dry friction is equal to \/k/m/2x =~ 0.16. It is verified that this value is approached by the free
frequency if vqr — 00.

2.2 2 Dof Model

A 2 dof model with dry friction (also taken from Galvanetto et al. [3]) is shown in Fig. 3. The
two masses m; and ms are riding on a driving belt that is moving at the constant velocity vq;.
The masses are connected by the spring k. and attached to inertial space by the springs k; and
ks. Between the masses and the belt dry friction occurs with friction forces F; and F acting on
my and me, respectively. It is assumed that m; = ms = m and k; = ks = k. The nondimensional
equations of motion are given by

X{I‘FX]_ +Cl(X1 —Xz) IFf (4)
Xél + X2 + O((XQ - Xl) = F2*
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Figure 3: 2 dof model with dry friction

in which a prime (') denotes a differentiation to 7 = t\/k/m (t is time), X; = z;k/Fy; and
a = k./k. F and F5 are given by

{ |Frl <1 if Vet =0 (5)

FY = —sgn Vet 1 /(1 + 7| Vzer,1l) if Viel,1 # 0

{ |Fz| <8 i Vierz =0 6)
Fy = —[sgn V;-el,z/(l + ’YlVrel,2D if Veel,2 #0

where Vier,; = X}~ Var, Var = (VEkmug:)/Fs1 and B8 = Fya [ Fy;. Fy; is the maximum static friction
force on mass m;. The following values are chosen.

a=12, =13, v=3 &)
Fy and Fy are approximated, respectively, by the smooth functions
—2arctan(eVie,1) /(1 +¥|Vre1]) and —2Barctan(eViei2)/7(1 + ¥|Viel,2}) (8)

According to table 1(b) a minimal accuracy of about 1 % is obtained for Vg, > 0.05 if ¢ = 10°
is chosen. Simple shooting with backward difference integration is used to determine periodic
solutions.
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_ Figure 4: Stable (a) ‘in phase’ and (b) ‘out of phase’ periodic solution at Vg, = 0.14

Fig. 4 shows two stable solutions at Vg, = 0.14, where X, is plotted against X;. Fig. 4(a)
represents an ‘in phase’ period—1 solution, where ‘in phase’ means that the two masses are roughly
moving in the same direction. A period—n solution is defined as a periodic solution that crosses
the Poincaré section defined by X] = 0, n times from a negative to a positive value during its
minimum period. Fig. 4(b) shows an ‘out of phase’ period—4 solution where the two masses are
roughly moving in opposite directions.
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Figure 5: (a) Absolute maximum of X3, (b) free frequency

Path following is performed with Vg, as the design variable. Figs. 5(a) and (b) show the
absolute maximum of X; and the free frequency of the periodic solutions, respectively. In these
figures solid lines represent stable solutions and dashed lines unstable ones. Also +n indicates
an ‘in phase’ period-n solution branch, whereas —n means ‘out of phase’ period—-n. Both for
low driving belt velocities and higher period solution branches the step size becomes very small,
causing long CPU times.

The eigenfrequencies of the linear system without dry friction are given by 1/2m = 0.16 and
V1 +2a/2r = 0.29. It is verified that these frequencies are approached by the free frequencies of
the +1 and —1 branches, respectively, if Vg, — co. ‘
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Figure 6: Bifurcation diagram

A bifurcation diagram similar to that given by Galvanetto et al. [3] is shown in Fig. 6. In this
figure, the Poincaré points of X; are plotted against Vg,. In the lower half of this diagram, the ‘in
phase’ solution branches are located. The ‘out of phase’ solutions are the branches in the upper
half. This bifurcation diagram corresponds very well to that given by Galvanetto. However, we
also found branches with unstable solutions and some extra stable ‘out of phase’ period—4 solutions
at Var =~ 0.111 not given by Galvanetto.



Several bifurcations can be observed. The ‘in phase’ period-1 branch shows super-critical flip
bifurcations at Vg, = 0.081 and 0.141. The period-2 branch starting at 0.081 has a flip bifurcation
at Vg = 0.08. The period-2 branch that is born at 0.141 undergoes a cyclic fold bifurcation at
Var = 0.165. At Vg, = 0.144 a stable period—4 branch originates from the ‘out of phase’ period-2
branch by a flip. This period—4 branch loses its stability at 0.132 and regains it at 0.113 also by flip
bifurcations. Between these bifurcation points, a stable period-8 branch exists. In the period—4
branch, cyclic fold bifurcations occur at Vg, = 0.104 and 0.1112 and another flip is observed at
0.1106. Between the bifurcation points at Vg, = 0.1112 and 0.1106 the extra stable ‘out of phase’
period—4 solutions mentioned before are located.

The CPU time needed to perform the path following calculations for ¢ = 10° is about 9 hours.

3 Drill String Model
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Figure 7: (a) Drill string model, (b) periodic solution at n =4

A 1 dof model for investigating the torsional vibration in drill strings is proposed by Jansen [6].
In this model, the drill pipe is modeled by a linear torsional spring k as shown in Fig. 7(a). The
drill collars are assumed to be rigid and are modeled as an equivalent mass moment of inertia
J1, also taking into account the mass moment of inertia of the drill pipe. Viscous damping is
introduced by the linear torsional damper ¢;. The angular displacement of the bit and the drill
collars is represented by o1 while o is the angular displacement of the rotary table. Between
J1 and inertial space dry friction occurs. Choosing ¢ = @2 — ¢y as the generalized coordinate
and assuming that the rotary table is rotating at the constant speed 22, the equation of motion
becomes

Jig+ o+ ko =—T, +c18ds (9)

in which a dot () denotes a differentiation to time ¢ and T}, is the friction torque acting on J;.
Coulomb friction is assumed with the maximum static friction torque Ty; that is larger than the
constant dynamic friction torque Tg. If {23 > 0, (9) possesses an equilibrium point at ¢ = @eq =
(Ts1 + c1§22)/k. To simplify the analysis the following nondimensional quantities are introduced.

Q T — T c
T=wt, P =¢— Qeq, n=;2, 9=Lk—s—', C=2Jiw (10)

with w = /k/J1 the angular eigenfrequency of the linear system without dry friction. Parameters
# and ( are chosen equal to 4.2 and 0.05, respectively. Now the nondimensional equation of motion

is given by
P +20Y + =Ty (11)



e | 100 1070 102
ey | 0.24 0090 0.023
es | 0077  0.023  0.0053 €y
e | 10—° 1074
ey | 0.0053 0.0012
e | 0.0012 0.00026

1 2 3 4
063 0.55 0.54 0.59
030 0.25 0.28 0.30
0.63 0.51 046 0.62
0.22 0.16 0.093 0.086

€r

SaERS RS IR A

Table 2: (a) Errors ey, and ey at n = 4, (b) Parameters a and b

in which a prime (') denotes a differentiation to 7 and Ty = —(Ty + Tq)/k. It is assumed that
the drill bit does not rotate backwards and thus ¢’ < 1. Then T} can be approximated by the

smooth function
0 if o <n—4e (12)
-0 =)W' —n+4e)3/2Te* Y >n—4e

Decreasing ¢ will improve the approximation.
In Fig. 7(b) the stable periodic solution at the nondimensional speed n = 4 is shown for
= 107%, 4 = 0,...,4, calculated with the simple shooting method using backward difference
integration. Because the exact system is piecewise linear, it can be solved semi-analytically.
During the stick phase, ¥’ = 7. When 1 = 6 — 2(n the stick phase ends and the drill string starts
to slip. In the slip phase, ¥ is given by

P =e¢T (1,/:0 cosv/1—C2m + %6—\/;'_—?4__% siny/1 — (27'> (13)

in which 1o = 8 — 2(n and 9} = n. The slip phase ends when ¢’ = 1. This point can be found
with the Newton-Raphson algorithm. The semi-analytic solution coincides with the solutions for
g < 1072 in Fig. 7(b). Using this solution, the relative errors ey in the absolute maximum of v
and ey in the free frequency of the approximations are calculated. Table 2(a) shows these errors
as a function of . Least squares fits with the function e = be? give a = 0.59, b = 0.30 for ey
and @ = 0.62, b = 0.086 for e;. The evolution of the parameters a and b as a function of the
nondimensional speed 7 is given in table 2(b).
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Figure 8: (a) Absolute maximum of ¢, (b) free frequency

This parameter 7 is used as the design variable in path following and is subsequently decreased
from 4 towards 0 and increased from 4. Figs. 8(a) and (b) show the absolute maximum of 4 and
the free frequency of the periodic solutions as a function of ) for € = 107%,4=0,...,4.



If n | O the absolute maximum of ¢ should approach § = 4.2, the point at which the stick
phase ends. The free frequency should approach 0 because of a longer stick phase at lower values
of . At 1 ~ 4.61 the limit cycle should disappear, because of the fact that due to damping, 9’
does not become equal to 7 anymore and the stable equilibrium point at 3 = 0 is reached. Smaller
values of € show a better correspondence to these conditions. It is noted however that also for all
values of ¢ the limit cycle disappears if 7 J 0, which does not correspond to the exact system. The
free frequency approaches the expected value of 1/27 = 0.16 if n — oo.

4 Conclusions

Using a smooth approximation of the friction force, systems experiencing dry friction can suc-
cessfully be modeled. By application of the simple shooting method with backward difference
integration in combination with the path following algorithm, branches of periodic solutions can
be followed for a varying design variable. The approach applied in this paper promises to be a good
basis for developing a numerical tool to investigate more complex mdof systems with stick—slip

phenomena.
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