

Parallel stable compactification for ODE with parameters and
multipoint conditions
Citation for published version (APA):
Mattheij, R. M. M., & Wright, S. J. (1992). Parallel stable compactification for ODE with parameters and
multipoint conditions. (RANA : reports on applied and numerical analysis; Vol. 9211). Eindhoven University of
Technology.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/03abcb4e-fb81-41f3-abe3-fff2925021fa

..

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

RANA 92-11
September 1992

PARALLEL STABLE COMPACTIFICATION
FOR ODE WITH PARAMETERS AND

MULTIPOINT CONDITIONS
by

R.M.M. Mattheij
S.J. Wright

Reports on Applied and Numerical Analysis
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands
ISSN: 0926-4507

R. M. M. MATTHEIJt AND S. J. WRIGHT*

Parametrized problems with multipoint conditions:

Parameter identification problems (see, for example, Bock [3]):

t E [a, b]'
x(t), c(t), d E ~j

:i: =A(t)x + c(t),

Max(a) + MbX(b) =d,

min L:}=lIlMjx(Tj) + Nj..\ - dj ll 2 + IINo..\ - doll 2
,

:i: = A(t)x + C(t)..\ + b(t), t E [a, b]
x(t) ERn, ..\ E~, Mj E Irjxn, Nj E Irjxm.

(1.3)

(1.1)

.. This research was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

t Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O.
Box 513, 5600 MB Eindhoven, the Netherlands.

* Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.

1

PARALLEL STABLE COMPACTIFICATION FOR ODE WITH
PARAMETERS AND MULTIPOINT CONDITIONS"

(1.2) :i: =A(t)x + C(t)..\ + c(t), t E [a, b],

L}=l Mix(Tj) + N..\ = d, a ~ Tl ~ ... ~ Tp ~ b,

x(t), c(t) E Ir, ..\ E ~, Mi E R(m+n)xn, N E Rm+n)xm;

1. Introduction. We discuss stable algorithms for solving algebraic linear sys
tems arising from ordinary differential and difference equations. These equations may
include some global parameters, and their solutions are subject to multipoint side con
ditions. To make the discussion in subsequent sections clearer, we group the problems
to be addressed into three categories:

Two-point boundary value problems:

Although these categories appear to be listed in order of increasing generality, the
ordering is not strict: problems of the form (1.2) can be recast in the form (1.1) (see,
for example, Ascher and Russell [2]). For purposes of efficiency, it is usually best to
use the original form when solving such problems.

Key words. ordinary differential equations, two-point boundary value problems, multipoint
conditions, parallel computing

Abstract. Many algorithms for solving ordinary differential equations with parameters and
multipoint side conditions give rise to systems of linear algebraic equations in which the coefficient
matrices have a bordered block diagonal structure. In this paper, we show how these problems can
be solved by using parallel algorithms based on stabilized compactification.

where 11.11 is a suitable function space norm, in either the continuous or discrete setting,
and 1.1 is any Holder norm.

Each of these problem categories has a corresponding "discrete" form, in which the
differential equation is replaced by a difference equation. We categorize the discrete
problems similarly:

(1.6) minE~illlMixi+ Ni>' - dill2 + IINo>' - dol1 2
,

AiXi + BiXi+l + Ci>' = Ci, i = 1"", N,
Xi E R"', >. E ~, Mi E R"'i xn , Ni E R"'i xm .

i= 1,"',N,

Xi, Ci, dER"'j

116XII :5 K; max(ldl, IIclI),

R. M. M. MATTHEIJ AND S. J. WRIGHT

AiXi + BiXi+l = Ci,

MaXl + MbXN+l = d,

(2.1)

(1.4)

The "discrete" categories can be obtained by applying algorithms such as multiple
shooting or finite differencing to the corresponding "continuous" categories. The
widely used collocation algorithm also gives rise to such discrete problems after a
condensation step has been applied.

We will not address the special difficulties caused by stiffness and singularly per
turbed problems. Neither will we specifically address nonlinear problems, though it
is well known that algorithms for such problems often require the solution of linear
systems like those described above as a core operation.

In the next section, we will review the concept of conditioning for the continuous
problems above, and its implications for the conditioning of the linear systems to be
solved in the discrete problems (1.4), (1.5), and (1.6). In §3, a parallel algorithm for
(1.4) is described and is contrasted with previously proposed algorithms (e.g., Wright
[12, 11]). This algorithm is extended to problems of the form (1.5) and (1.6) in §5.
Finally, some numerical results are presented in §6.

2. Conditioning of the Problem and Structure of the Solution Spaces.
The various problems defined in §1 relate to solution spaces of potentially different
types. This variety of solution types influences the possibilities for parallelization that
will be discussed in the next section. Here we characterize these solution spaceSj that
is, we describe certain growth properties of homogeneous modes in the fundamental
solution C)(t). Throughout, we assume that the problem is well conditioned. By
this we mean that small perturbations of inhomogeneities in the ODE and the side
conditions manifest themselves in the solution as quantities that are only a moderate
constant larger in norm than the original perturbations, that is,

2

(1.5) AiXi + BiXi+l + Ci>' =Ci, i =1, .. " N,

E~il MiXi + N>. = d,

Xi, Ci E R'\ >. E~, Mi E R<m+n)xn, N E R<m+n)xm j

STABLE PARALLEL COMPACTIFICATION FOR ODEs 3

In the case of the two-point boundary value problem (1.1), well-conditioning im
plies that the underlying solution space is dichotomic; that is, there exists a projection
P and a moderate constant K such that

(2.2)
{

1cI>(t)PcI>-1(s)1 $ K,

1cI>(t)(I - P)cI>-1(s)1 $ K,

t > s,

t < s.

(See de Hoog and Mattheij [5].) Hence, cI> can be properly split into one set of
solution modes that do not (significantly) increase and another set of modes that do
not (significantly) decrease.

If we have multipoint side conditions (m = 0 in (1.2)), then well-conditioning
allows for a "switch" of growth behavior at any of the internal conditions. This
property was referred to by de Hoog and Mattheij [5] as polychotomy. Specifically,
we can choose projections P1,"', PM (M $ min(p, n)) such that E:;1 Pj = I,
PiPj = PjP, = 6ij Pj, and

(2.3)
{

1cI>(t) E7=1 PjcI>-1(s)1 $ ~,

1cI>(t) E~k+1 PjcI>-1(s)1 $ ~,

t > s,

t < s,

where, again, ~ is a moderate constant and the switching points a = Ih, 132,' . " 13M+1 =
b are a subset of {a, Tl, ••• , Tp , b}. Polychotomy means that cI> is dichotomic on each
subinterval (13k, 13k+1) but that the dimension of the subspace of "nonincreasing" mo
des may become larger - by rank(Pk) - at each switching point 13k.

A more or less complementary result to the foregoing holds for "pure" parameter
problems (for which p = 2, a = T1 and b = T2 in (1.2)). Again, given well-conditioning,
Mattheij [10] showed that there exist a moderate constant ~, projections P1 , . ", PM
with (M $ min(m, n)) satisfying the conditions described above, and a set of switching
points Ok, k = 1,···M + 1 with a = 01 < 02 < .. , < 0M+1 = b such that

(2.4)
{

1cI>(t)E~k+1 Pj cI>-1(S) I

1cI>(t) E7=1 PjcI>-1(s)1

t > s,

t<s

Again, cI> is dichotomic on each subinterval, but the dimension of the subspace of
nonincreasing modes may now become smaller at each switchpoint 0k as we move
from left to right.

In the more general case of m ::j; 0 and p > 2 in (1.2), one should expect that
any combination of (2.3) and (2.4) can occur. We will use the term "polychotomy"
to refer to the multiple splitting of the solution space in this case as well.

Thus, we may expect for (1.2) a total of at most min(p, n) switching points at
which the dimension of the subspace of nonincreasing modes may increase, and at most
min(m, n) switching points at which this dimension may decrease. Note, however, that
a typical "pure" mode of this subspace may undergo only one switch in behavior;
otherwise, it would violate the local well-conditioning on each subinterval (13k, 13k+I)
or (Ok,01:+1)'

It should be noted that the potential switching points Tk (from which the 131: are
chosen) are known beforehand, while the Ok may be anywhere in the interval (a,b).

orthogonal,

orthogonal,
upper triangular,
upper triangular,

i = kj + 1, .. " k j +! - 1,

kp+1 = N,
i = 1", ',p.

i = k j + 1,,,,, kj+l - 1,

=
AiR~j)

Q~j)TBi

k1 = 0,

ki+l ~ ki + 2,

i =kj + 2, .. " kj+},

i = kj + 1, .. " kj+l - 1,

i = kj + 1, .. " kj+l - 1,
i = kj + 1, .. " kj+l - 1,

R. M. M. MATTHEIJ AND S. J. WRIGHT

AiXi + Bixi+! = Ci,

[A.;+1

(3.3)

The recurrence

has now been transformed to

(3.2a)

(3.2b)

(3.1)

such that

The algorithm starts by transforming the recurrence (3.1) to one involving upper tri
angular blocks. Then, explicit decoupling of nonincreasing and nondecreasing modes
is used to find particular and fundamental solutions for this partition. Because of the
decoupling, element growth in the fundamental solution is avoided.

Suppose for the moment that we can choose an n x n orthogonal matrix R?j~l

that is effective in decoupling these two sets of modes. (The choice of R~~l will
be discussed further below.) Starting with this matrix, the transformation process
performs repeated QR (orthogonal) factorizations to find the following matrices, all
of which are square with dimension n:

The j-th partition of the linear system is taken to be

3. The Basic Algorithm. The "stabilized compactification" algorithm has been
described in Ascher, Mattheij, and Russell [1, pp. 157-161]. In this section, we outline
a parallel version and discuss some aspects of its implementation in a message-passing
computational environment. We describe the method for the case of problem (1.4);
this is the simplest of our discrete problems since, when it is well conditioned, the
dimensions of the nonincreasing and nondecreasing subspaces remain constant across
all the stages. We use l to denote the dimension of the nonincreasing subspace. The
dimension of the complementary nondecreasing subspace will therefore be (n -l). For
the moment, we also assume that the value of l is known.

Suppose that the N + 1 indices in the problem (1.4) are split into p partitions of
approximately equal size. This is done by choosing indices k}, k2 , ks,' . " kp+1 such
that

4

5

upper triangular,

STABLE PARALLEL COMPACTIFICATION FOR ODEs

(3.5)

(3.4)

(3.8)

Here, (.)11 is the principal (n - l) x (n - l) submatrix of an n x n matrix; the
three blocks (.h2, (.h2, and (.h1 complete a 2 x 2 block partitioning. Examination
of (3.6) and (3.7) will confirm that the ~~j) are upper triangular. The homogeneous
parts of(3.6) and (3.7) have coefficients (Vi)2"l(Uih2 and -(Ui)ll(Vi)11, respectively.
By our original assumption of well-conditioning, the recurrences are stable; they are
effectively producing components of the nonincreasing modes (forward sweep) and
nondecreasing modes (backward sweep), provided that the initial matrix Rk; has
been chosen in a suitable way.

The particular solution, denoted by

that satisfies the boundary conditions

If one uses the notation Ci = QTCi, the forward and reverse sweeps have the form

for i = k j + 1,· .. , kj+1 - 1

is formed in a similar way. The boundary conditions are

{ ' }kHl
Zi i=k;+1'

for i = kj+l - 1" . " kj +1

(3.9)

(3.6)

Here, (.h,. denotes the first (n -l) rows of a matrix and (.h,. denotes the last l rows.
The remaining components of these two sequences are computed by back substitution
with the matrix formed by the recurrence (3.3). The (.h,. components are calculated
in a forward sweep and the (.h,. components in a reverse sweep. Specifically,

for i = kj + 1,···, kj+l - 1

(Here and subsequently, the superscripts on R~j), QP), etc., will be dropped when
their values are clear from the context.) l.From an implementation point of view,
these operations create little fill-in. The matrices Ui and Vi can be stored in the
upper triangles of the data structures formerly occupied by Ai and Bi. Most of the
information needed to reconstruct the orthogonal matrices Qi and ~ can be stored
in the lower triangles, though an extra n-vector is also needed for each matrix.

We now construct a fundamental solution to (3.3), denoted by

where

R. M. M. MATTHEIJ AND S. J. WRIGHT

for i = kj+l - 1, ... , kj + 1

where C =diag(cl,···, Cn) and S =diag(sl'···' sn), with 1 ~ C1 2: ... 2: Cn ~ 0 and
o~ Sl ~ ••• ~ Sn ~ 1, and c1 + sl = 1, i = 1, ... , n.

Our initial guess for Rkj+l is obtained as follows:
(i) Set A = Ak;+!, B = Bk;+l' and compute W, T, P, Q, C, and S as in

Theorem 3.1.
(ii) Perform a QR factorization to obtain Z (n x n orthogonal) and Y (n x n

upper triangular) such that rTw = ZY.
(iii) Set Rkj+l - P, Rkj+2 - Q, Qk;+l - Z, Ukj+l - YC, Vkj+l - YS.

We note that this construction is valid since, by our assumption that (1.4) is well
conditioned, [Akj+l' Bkj+l] has full rank. It is also easy to check that equations (3.2)
hold for i = k j + 1. Moreover the diagonals of Uk;+l and Vk;+l are ordered properly,
relative to each other. By this, we mean that

• any zero diagonal elements in Vkj+l occur in the upper left of the matrix;
• any zero diagonals in Ukj+l occur in the lower right; and
• for the indices I for which both (Vkj+dll and (Uk;+dll are nonzero, the ratio

6

decreases as I increases.
Using this initial choice of Rk;+l' we now compute a few more successive Qi,

Ri, Ui, and Vi by using the formulae (3.2) and check to see whether the diagonals of
Ui and Vi continue to appear in the proper order. If not, the columns of Rk;+l are
permuted in accordance with the present ordering, and the orthogonal transformation
process is begun anew.

Before computing the fundamental and particular solutions, we need to determine
the dimension I! of the nonincreasing subspace. When the boundary conditions are
separated (that is, zero rows of M a correspond to nonzero rows of Mb, and vice versa)
and the problem is well conditioned, I! may just be taken to be the number of nonzero
rows in M a • Otherwise, we require the lower right I! x I! submatrix (Vih2 of Vi to
dominate the corresponding submatrix (Uih2 of Uj. For "close calls," we can use the

We now deal with the issue of choosing the values of I! and Rk;+!. Mattheij [9,
p. 329] describes a heuristic that, applied to the present situation, would find Rk;+!
so that the diagonal elements of Vi-lUi (namely, (Ui)ll/(Vi)ll, I = 1,···, n) appear
in descending order for most i = kj + 1, ... , kj+1 - 1. We generalize this heuristic
slightly for two reasons. First, we usually do not have boundary condition information
to guide the choice of Rk;+l; and second, we wish to allow possible singularity of Ui
and Vi (that is, of Ai and Bi.)

To make an initial guess at Rk;+l' we make use of the generalized singular value
decomposition. In the following result, which is a direct consequence of Theorem 8.7.4
of Golub and Van Loan [6], all matrices are assumed to be n x n.

THEOREM 3.1. Provided that [A, B] has full rank n, there are orthogonal matrices
P, Q, and Wand an upper triangular matrix T such that

7

i = kj + 1,··.,kj+l,

j = 1,···,p,AjSj + BjSj+l cj,
Mas l + MbSp+l = J.

STABLE PARALLEL COMPACTIFICATION FOR ODEs

(3.15a)

(3.15b)

(3.12)

The remaining equation, obtained from the last partition, is

(3.14)

This system has the same form as the original system (1.4), which immediately
suggests that the partitioning/reduction process can be performed recursively. Such
an approach is indeed desirable when the number of processors is large, making the
reduced system (3.15) too large to solve on a single processor. We return to this point
in §6.

Tables 3.1 and 3.2 compare storage requirements and operation counts for five
algorithms, including the one discussed above (partitioned stabilized compactifica
tion, or PSC). In reporting the operation counts, lower-order (n2) terms are ignored.
We assume that, for each algorithm, the calculation of fundamental and particular
solutions was carried out in separate phases. It is therefore necessary to store enough
information to reconstruct the transformations that were used to factor the matrix
associated with the recurrence (1.4). The statistics for the structured QR algorithm

t:.
Aggregating (3.12), (3.13), and (3.14), and defining sp+l = ZN+l, we see that the
reduced system has the form

(3.11)

where the values of Sj E R'\ j = 1", ',p and ZN+l are determined by solving a
reduced system. The boundary conditions contribute one block row to this system:

The remaining p blocks of the reduced system are obtained by considering the equa
tions that bind adjacent partitions together. These are obtained by taking the last
block equation from each partition. For j = 2, ... , p, we have

is negative, the l-th diagonal element is included in the (2,2) partition. In a multi
processor setting, the formation of this "global" sum requires interprocesssor commu
nication. If vendor-supplied primitives for this type of operation are not available, it
can be implemented easily by making a binary tree out the processors.

In partition j, each component Zi of the true solution can be expressed in terms
of the fundamental and particular solutions in the following way:

test suggested in [9]: If the quantity

Operation counts and storage requirements Jor five algorithms, auuming coupled end conditions
(N = number oj stages, n = dimension oj each Xi, R = number oj right-hand sides, p = number oj
partitions in first level oj PSC)

Operation counts and storage requirements Jor five algorithms, auuming separated end condi
tions (N = number oj stages, n = dimension oj each Xi, l = number oj left-hand end conditions,
R = number of right-hand sides, p = number oj partitions in first level oj PSC)

differ slightly from those reported in Wright [12], since we refer here to an improved
variant of the technique which is based on Givens rotations rather than Householder
transformations. (This variant will be described in a forthcoming report.) The sta
tistics for PSC assume that the reduced system (3.15) is solved by using structured
QR. We use this approach in our implementation in §6, since it can be implemented
stably, in a fashion akin to cyclic reduction, on a binary tree of processors.

For problems with separated end conditions, all five algorithms are stable, while
only structured QR and PSC are guaranteed to be stable when the end conditions
are coupled (although LV and structured LV are almost always stable in these cir
cumstances). The LV and DECOMP/SOLVE algorithms are not parallelizable unless n
is large.

As well as halving the computational cost of structured QR, PSC has a dear
advantage in storage requirement. The Householder vectors that define the orthogonal
matrices Qi and Hi can be largely stored in the lower triangle that is vacated when Ai
and Bi are transformed to Ui and Vi. The only real fill-in is due to the fundamental
solution matrices <Pi. When N is significantly larger than p, the factorization process
requires only about 25% more storage than the cost of storing the original system.

The algorithm PSC can be viewed as a particular factorization of the matrix
corresponding to the recurrence (1.4). We state this result as a theorem.

THEOREM 3.2. Algorithm PSC is equivalent to a particular solution scheme for
the linear system Ax = c, where

R. M. M. MATTHEIJ AND S. J. WRIGHT

Al B 1 Cl

A 2 B 2 C2

A= c=

AN BN CN
Ma Mb d

Algorithm Operation Count Storage
LV (row pivoting) N[~n;j+ 8Rn2] 4Nn2

DECOMP/SOLVE N[f4 n3 +4Rn2] 3Nn2

Structured QR N[.r6 n3 + llRn2] 4Nn2

Structured LV N[~n3 + 8Rn2] 4Nn2

PSC N[~n3 + 6Rn2] +p[~n3 + llRn2] %Nn2 +4pn2

Algorithm Operation Count Storage
LV (row pivoting) N[~n;3+ 3ln" + R(4n" + 2ln)] 3Nn2

DECaMP/SOLVE N[jn3 + (4R +5l)n2
- 2nl2

] 2Nn2

Structured QR N[-2.n3 + llRn2] 4Nn2

Structured LV N[~n3 + 8Rn2] 4Nn2

PSC N[~n3 + 6Rn2] +p[~n3 + llRn2] %Nn2 +4pn2

8

STABLE PARALLEL COMPACTIFICATION FOR ODEs

In this scheme, A is factored in the form

9

(3.16)

where PL and PR are permutat!on matrices, Q and R are block dia90nal matrices with
orthogonal n x n blocks, and £1 is lower triangular. The block A in (3.16) has the
form

A1 fit
..4.2 B2

..4.=
..4.p Bp

Ma Mb

{that is, the coeficient matrix associated with the recurrence (3.15)). The remaining
blocks in (3.16) are defined in the proof.

Proof We prove only the case of p > 1 (trivial modifications are required for
p = 1). The matrices Q and R come from the initial orthogonal transformation
phase. They are defined as

QT = diag(Qi
1
), Q~1), ... ,Q~~~1,I, Q~~~1'"'' Q~~~1' I"", Q~;+1-1' I, I),

R = diag(Ri
1
), R~1), .. " R~~), R~~~1' . ", R~~), R~~~1' .. " R<:;+l' I).

Then QAR is

Uk 2 -1 Vk 2 -1
(Ak2R~~») (Bk2R~~~1)

Uk2+l Vk2+l

Column pivoting is now performed on this matrix. The columns of QAR that contain
the last (n - l) columns of Uk j +1, j = 1, ... , p, are shifted to the right of the matrix,
as are the columns of QAR that contain the first l columns of Vkj-1, j = 2"" ,p+ 1.

j =1,···,p,

R. M. M. MATTHEIJ AND S. J. WRIGHT

U"j+1-1

o(U"j+!).,2
o

(~(i))
"j+1 1,.

Ci)
~"j+2

o
(V"j+1-d.,1 0

iJ~l) = [(B". R(j+1») 0 ... 0] E ~XNj+1 iJ~2) =[0 (B. R(j+1))] E Rnxn
J 1+1 "j+1-1 .,1 , J ",+1 "j+1-1 .,2 ,

A(l) = [(A". R(i)) 1 0] E Rnxn A(2) = [0···0 (AL. RU)) 2] E ~XNj
J 1+1 "j+1·' 'J "'1+1 "j+1·' ,

M(l) = [(M R(l») O... 0] E RnxN
1 M(2) = [0 (M R(l»)] E R"xn.a a 1 .,1 , a a 1 .,2

where

We can now perform a block LU factorization on the remaining matrix. By
restating (3.6) and (3.7) as a system of linear equations, we find that

T1 81
'(2) , (1) '(1) , (2)A1 B1 A1 B1

T2 82
'(2) , (1) '(1) " (2)A2 B2 A2 B2

T3 83
QARPe = "(2) • (1) "(1) " (2)A3 B3 A3 B3

Tp 8 p

0 0 0 Ap 0 0 0 Ap BN
" (1) 0 0 0 " (2) 0 0 0 MbMa M a

(3.17)
The component blocks of this matrix can be described by using the following notation:
Nj =(kj - kj _ 1 -1)n denotes the dimension of the square matrix Tj, (.).,1 denotes
the first n - f. columns of an n x n matrix, and (.).,2 denotes the last f. columns of an
n x n matrix. Then

Denoting the overall pivot matrix by Pc, we write the pivoted form as

10

11

I

I
o 0

I
o 0

I

I

o
• (2)

Ma

I

U(1) -
, 2 -

I

I

U(1)
1

o

I

o

U(l)
1

Now

STABLE PARALLEL COMPACTIFICATION FOR ODEs

(where each I in L(1) is n x n),

A little manipulation using the definitions of the coefficient matrices for the reduced
system (3.15), the definitions of .tW), .J?), iW), and B?), and the fundamental
boundary conditions (3.5) yields

U (1)
1 -

where

Therefore, (3.17) can be written as the following product:

[

L(1)
QARPe = 0

we have that

= [f]·
I

-~1

A1 fit
-~2
..42 B2

-~3

I

I
o 0

I
o 0

I

R. M. M. MATTHEIJ AND S. J. WRIGHT

(2)P,.U1 =P,.

[

"(2)] ["(2)]o ... 0 Ap (2) _ 0 . . . 0 Ap
" (1) U1 - " (1)Ma 0 ... 0 Ma 0 ... 0

P,.QARPe

Then, augmenting P,. with a 2n x 2n identity matrix to obtain

Now, let P,. be a permutation matrix that pivots all zero rows of U~2) to the bottom:

[M£l)
0 "(2)] [0 Ap BN]

... Ap U(2) + ~
0 ... o 2 Ma 0 0 Mb

[M£l)
0 "(1)

BN].
... Ap=
0 0 Mb

Hence, by modifying the factorization (3.17), we find that

QARP, ~ [

L(l)L(2) ;][u:') U(2)

]2
0 0 Ap 0 0 Ap BN

" (1) 0 0 Ma 0 0 MbMa

~ L(2)U~2).

Using the definitions of U~2) and U~2) and of M~l), M~2), Mil), and Mi2), we have
that

(U~2) has the effect of deleting a number of the zero columns) and

I
"(2) I " (1)A 1 B1

I
U~l)

"(2) I "1
= A2 B2

I

Hence

12

=

(3.18)=

By making the obvious identifications

STABLE PARALLEL COMPACTIFICATION FOR ODEs 13

P, [

L(I) L(2) 0] -.- [U?I U(2)
2

0 0 " 2
0 0 Ap BN]Ap I Pr Pr

~ (1) Ma 0 0 MbMa 0 0

[L(3)
~][~ Uf)] ,L(4)

PL = [Po I] A, PR = Pc [PI I]'
L1 = poL(3)P1, L2 = L(4)pl, (12 = plU~3),

we obtain (3.16).
To complete the proof, we note that the quantities in both factors on the right

hand side of (3.16) are quantities that are actually computed by Algorithm PSC. The
remainder of the algorithm consists of

1. performing the orthogonal "preprocessing" of A with Q and R, and operating
with Q on the right-hand side Cj

2. permuting the rows and columns of QAR and the rows of Qc in a predeter
mined waYj

3. performing an LU factorization with no further pivoting, stopping the elimi
nation at stage (N +1- p)nj

=

=

Finally, since linear systems involving each matrix 1j (and hence L(3») can be solved
by a triangular substitution process, it follows that there are permutation matrices
Po and PI such that PoL(3)p1 is lower triangular. Hence

where

~(2) , (1)

[T, J, A1 B1
~(2) " (1)

T2
A2 B2

L(3) = L(4) =
~(2)

Ap
~ (1)

0Ma

[-4, J
A1 fit

-~2
..42 B2

U(3) - A=2 -

-~p
Ap BN

Ma Mb

(A + Ei)s = (c+ ec),

R. M. M. MATTHEIJ AND S. J. WRIGHT

where

(3.20)

(3.19)

where 13 =O(Nn5/ 2 + N 3 np-l/2"Yf,2) and "Y4 =O(n2p l/2N I 1"Y2)'
Proof. We assume throughout the proofthat 11.11 denotes the Euclidean norm 11.112.

Our result depends on standard analysis for Householder QR factorizations (Lawson
and Hanson, [8, pp. 86-89]) and LV factorizations (Golub and Van Loan [6, §3.3]).
The key to the stability argument is the fact that element growth in the Land U
factors of PLQARPR is bounded, because of (i). We stress that our assumption (i)
is reasonable: when (1.4) is well conditioned, a dichotomy exists, and so our use of

decoupling will ensure that (i) holds provided that the starting matrices R~.~1 for
each partition are chosen appropriately. 1

First, we take account of the errors arising from the initial orthogonal transfor
mation. By the argument of Lawson and Hanson [8, p. 87], we have that if C E R" xn
is a general matrix and Q E ~xn is a product of n Householder transformations, then

Then the computed solution x of Ax = b satisfies

where

(3.21)

(ii) the reduced system As = cis solved in a stable way; that is, there is a moderate
constant 12 such that the computed solution s satisfies

where comp(.) denotes the computed value of its argument, taking roundoff error into
account, and

comp(QC) = Q(C + H),

(3.22)

14

4. doing a "forward substitution" with i 2 to get the right-hand side of the
reduced system;

5. continuing the forward substitution with i 1 to ~et the particular solution Zi j

6. solving the reduced system (coefficient matrix A) to obtain the Sj; and
7. doing a back substitution, followed by orthogonal transformations, to recover

all the Xi.

•
Stability of the algorithm can now be proved by using error analysis techniques

from numerical linear algebra. We have the following result.
THEOREM 3.3. Suppose that PSC is used to solve {l.4} in finite-precision floating

point arithmetic, with unit roundoff u ~ 1. Assume that
(i) the growth in the fundamental solution is not excessive; that is, there is a

moderate constant 11 such that

STABLE PARALLEL COMPACTIFICATION FOR ODEs

For the case of a vector c E Jr ,

comp(Qc) = Q(c+ h),

where

IIhil ~ (3n +40)nullcll + O(u2
).

15

Applying these results to the initial orthogonal transformation of A, we find that

Ui = comp(Qr comp(Ai.Rt))

= Qr [(Ai + Hl).Rt + Hl]
= Qf[Ai + Hf]Ri,

where

Similarly,

where

Similar analysis can be applied to comp(MaR~l)) and to the block rows kj that are
not multiplied from the left by an orthogonal transformation. Since the pivoting
operations do not incur any roundoff error,

(3.23)

where

IIbil < (N + 1) [s~p IIHfl1 + s~p IIHtll]

< 4(N + l)n3
/

2(3n + 40)IIAllu + O(u2
).

Similarly,

comp(Qb) =QCb + h),

where

We now examine the LU factorization of compCPLQARPR). Although the Gauss
ian elimination process is terminated prematurely, we can use the proof of Theorem
3.3.1 of Golub and Van Loan [6] to show that

(3.24)

where

R. M. M. MATTHEIJ AND S. J. WRIGHT

Using (3.19), (3.20), and a simple backwards error argument, we can show that the
computed solution ii of (3.28) will satisfy

(3.29) [~1 + I!1 _0] [I U2 + H3] [iii] _ [Ql(b + h)]
L2+H2 A+EJi 0 I ii2 - Q2(b+h)+e

~ (L + EL) (U + EO) ii = PLQ(b + h + e;;),

where Ql consists of the first (N - p)n rows of PLQ, Q2 contains the last (p + 1)n
rows, and EL' EO, and e;; are defined in obvious ways. Now (3.19) and (3.20) imply
that

(3.28)

is,

II ell < "Y2 UIIQ1(b + h) - (£2 + H2)(£1 + Ht}-lQ2(b + h)11

:$ "Y2U (1 + 11£21111£1
1

11 + O(u») (llbll + O(u»

:$ 14ullAlillbii + O(u2),

For the upper triangular factor, we have that

IIUII :$ 2 + IIU211 = 2 + IIU~3)1I

(3.27) :$ 2+m!lJClI~jll+O(u):$2+(Njp}'Y1+0(u).
J

By using some elementary inequalities, we then have from (3.25), (3.26), and (3.27)
that

Hence,

Now

(3.25)

IIHII :$ 6(N + 1)(p + 1)1/2n(3 + (Njphd2l1Allu + O(u).

Consider now the forward and back substitution process involving Land U, that

and so, by using the definitions that appear during the proof of Theorem 3.2,

IIL(3)1I < IIcomp(QAR)1I :$IIAII + O(u),

IIL(4) II < 2(p + 1)1/2 max (mF(IIAiRiII, IIBiRi+lID, IIMaR111) + O(u)

< 2(p + 1)1/2I1AII + O(u),

IIAll :$ 2(p + 1)1/2 max (mjax(IIAjll, IIBjID, 11M-a ll, IIMbll) .

In the last of these inequalities,

IIAjll :$IIAkj+lIl(1 + lI~jll + O(u)) :$IIAII(1 + (Njp)'Yl + O(u)).

Similar inequalities can be derived for IIBjl1 and 11M-a ll, so

IIAII :$ 2(p+ 1)1/2(1 + (NjphdllAIl + O(u).

16

17

PLQ(b + h+ eii)

PLQ(b + h+ eii),

STABLE PARALLEL COMPACTIFICATION FOR ODEs

(Li! + ELi! + LEu + O(u2
)) 17 =

==:} (PLQARPR + fI) 17

where 'Y3 is as defined in the statement of the theorem. Also,

The result follows by making the identifications

•
If the algorithm of this section is applied recursively (that is, if the reduced system

is itself solved on multiple processors by using the same technique), the theorem
indicates the amount of deterioration in accuracy that can be expected in moving
between levels of the recursion.

4. A No-fill-in Variant. In the preceding section, we showed how the funda
mental and particular solutions for the problem (1.4) could be calculated by using
the blocks Ui and Vi from the transformed coefficient matrix. As described there, the
algorithm assumed that the data for the initial orthogonal reduction (that is, the U"
Vi, Qi, and Ri matrices) is not overwritten in storage. This assumption means that
new storage must be used to store the fundamental solution blocks 4>i, resulting in a
fill-in of approximately 25%.

Hence

where

where 'Y3 =O(np-l/2N'Yl'Y2). From (3.23), (3.24), and (3.29), we have that

IIHiII :$ nuliLll1 :$ nuliAIi + O(u2),

IIH211 < nullL211 :$ 2nu(p + 1)1/21IA.1I +O(u2),

IIH3 II :$ nullU211 :$ 2nu(N/p)'Yl.

Hence

IIEL II < IIH11I + IIH211 + IWAII :$ 'Y3u1lAIl + O(u
2
),

liEu II < 2nN'Ylu,

lIeiill < 'Y4uIl Alillbll,

Following Golub and Van Loan [6, p. 106], we find that the remaining error terms in
(3.29) satisfy

The boundary conditions for Wi coincide with (3.5); that is,

R. M. M. MATTHEIJ AND S. J. WRIGHT

The sweeps are defined as follows:

for i = kj + 1, .. " kj+l - 1

where ef-l is the rr- l unit vector with a 1 in the 1position, and

(4.1)

ZR [n-l]
i = e, lEAR,.

Note that Z[(z[f is an f. x f. matrix that is zero everywhere except for ones in the
diagonal positions in which (Uih2 has zeros. Similarly, define

Af = {I I I-th diagonal element of(Uih2 is zero}.

where e1 is the ~ unit vector, with zeros everywhere except for a 1 in position I, and

A~ = {ill-th diagonal element of (Vi)ll is zero}.

In this section, we outline a scheme in which the fill-in is reduced by storing the
components of elli in storage formerly occupied by Ui and Vi. At the same time, we
wish to allow for the possibility that the particular solution is calculated at some later
time than the fundamental solution, that is, the right-hand sides Ci, i =1, ... ,N and
d are not known at the time the fundamental solution is calculated. This situation
may arise when a "chord method" approach is applied to a nonlinear version of (1.4).
In this method, approximate Newton iterations are calculated by using the same
Jacobian information for a number of successive iterations, while the right-hand side
changes from iteration to iteration. In the preceding section, particular solutions are
calculated by using (3.9) and (3.10). Hence, if we plan to overwrite components of Ui
and Vi, we need to devise new formulae for finding the ZiS.

To satisfy both requirements of the preceding paragraph, we need to define a
"general solution" w~j), i = kj + 1" . " kj+l on partition j in such a way that each
w~j) E rr xn is nonsingular. Moreover, w~j) will be identical to the fundamental

solution ellp) whenever all Ui and Vi in partition j are nonsingular. Computation of
the sequence Wi involves a simple modification of the forward sweep/reverse sweep
process (3.6) and (3.7). The only enhancement is that when some (Uih2 or (Vi)ll
are singular, diagonal terms are added to (Uih2(Wih2 or (Vi)ll(Wi+l)ll to prevent
singularity in the next general solution matrix in the sequence. Note that we are taking
advantage here of the fact that Ui and Vi (and also elli and Wi) are upper triangular.
This means that singularity manifests itself as zero elements on the diagonal and is
easily remedied by replacing these zeros by, say, ones, which is what we do.

For i = kj + 1, .. " kj+l - 1, we define

18

and using the boundary conditions (4.1), we obtain

19STABLE PARALLEL COMPACTIFICATION FOR ODEs

for i =kH1 - 1, .. " kj + 1

where Z[contains all ef such that the I-th diagonal of (Ukh2 is zero for some, and
possibly more than one, k = kj + 1, ... , i - 1. For i = kj + 1, Wr and Z[are null.
Assuming that (4.4) is true for k = kj + 1, ... , i, we have from (4.2) that

1{ [-F-FT] F[0]T}("WHd22 = -(Vi)2"2 (Uih2 (<I>ih2 +Wi (Zi) + Zi Z[

= (<I>Hd22 - (Vd2"l(Uih2W{(Z[)T - (Vi)2"lZ[(Zf)T.

We obtain Z41 by merging the columns of Z[and Z[, while W41 is obtained by
merging -(Vi)2"l(Uih2Wr and -(Vi)2"lZ[. We "merge" rather than simply append
Z[to Z[since there is no need for Z41 to have two copies of the same col~mn. (The
same effect can be obtained by adding the two corresponding columns of Wl;.l .) The
corresponding formula to (4.4) for the (1,1) and (1,2) blocks is

(4.6)

(4.4)

In each case, the substantive additional storage requirements are for the matrices Wr
and WiR (the Zi matrices can be stored in a few integer locations.) In the worst case,
this will require the same amount of storage as the general solution itself, but we
usually expect it to be much less. For example, if the (t, t) element of one or more
of th~ (Uih2 matrices is zero, then we need about (kH1 - kj - l)n locations to store
the Wi, or about 2/n of the space required by the entire general solution.

As we noted earlier, a particular solution of the recurrence (3.3) can be calculated
by performing the forward and backward sweeps (3.9) and (3.10). Since we would like
to overwrite some components of the Ui and Vi matrices by components of <I>i, we
now describe an alternative method for calculating the Zi which makes use of the "Wi
but only of selected components of Ui and Vi.

The boundary conditions (3.8) are used for Zi, i = kj + 1", " kj+l, as before.
Defining the change of variables

(4.5)

Note that the extra terms in (4.2) and (4.3) do not disturb the upper triangularity
of each "Wi.

By making use of the relationship between the fundamental and general solution,
we can store the general solution in a compressed format. We show how this is done
for the (2,2) block of "Wi; for the other two nonzero blocks the technique is similar.

First, we show that we can write

("Wih.. =

(4.3) -(Ui)"ll {(Vi)1l("WH1h.. + (Vih2("WH1h•. + (Ui)12("Wih.. + zf [Zf f} .

(4.7) (V,I:;+lh,. = 0,

We now substitute in (3.3) and define Ci =QTCi to obtain

By isolating the last l rows of (4.8), and by considering the (2,2) block of (4.9), we
obtain

R. M. M. MATTHEIJ AND S. J. WRIGHT

(4.11)

We conclude that Vi, i = kj + 1"", kj+ll can be found by doing a forward sweep
using (4.10) followed by a reverse sweep using (4.11). Note that we need to solve
linear systems with coefficient matrices (Vih2, (Ui)l1, (\I!i)l1' and (\I!ih2 in order to
obtain Zi from (4.6) and (4.10),(4.11). If we assume that (1.4) is well conditioned and
that the partitioning is done correctly, these matrices are invertible.

The blocks (U,h2, (Vi)l1, and (Vih2 are not used in (4.10) and (4.11). We can
therefore overwrite these blocks in storage to avoid fill-in. During the forward sweep
(3.6), (Uih2 can be progressively overwritten by (Vih2 in memory, and (~i+lh2 can
be stored in the space vacated by (Vih2. During the reverse sweep (3.7), (~i)l1 and
(~d12 can progressively overwrite (Vi)l1 and (Vih2. The matrices Wr and wl which
are needed to recover \I!i from ~i will need to be stored in new locations.

5. Extension to Problems with Multipoint Conditions or Parameters.
We now show how the algorithm of §3 can be modified to handle problems of the
forms (1.5) and (1.6). As mentioned in §2, the fundamental solution modes in these
problems exhibits not dichotomy but, in general, polychotomy and skew-polychotomy.
The practical consequence for the Algorithm PSC is that the value of l (the number
of "decreasing" fundamental modes) is no longer constant across all partitions; in
fact, it may increase or decrease repeatedly within each partition. It is even possible
for the submatrix [Ai Bi] to be rank deficient. In order to adapt PSC to these cir
cumstances, we need to be able to recognize when l has changed, and to modify the
compactification strategy accordingly.

A change in l is recognized by periodically examining the diagonal elements of
Vi-lUi during the initial orthogonal factorization process (3.2). As mentioned earlier,
these are (Ui)1I / (Vi)11, I = 1, ... , n. If the number of diagonals that are less than 1
is either greater than or less than the current value of l for a few successive stages,
then we deem l to have changed. The most general way of handling such a dichotomy
change is simply to break off the present partition at the current stage point, and start
a new one. Specifically, suppose that at stage i during the orthogonal preprocessing
of partition j, we decide that l has changed. We then set kH = i + 1 and terminate

Here, ('h denotes the last l rows of a vector in R"'. By isolating the first n -l rows
of the expressions (4.8) and (4.9), we find that

(vih = (vi+lh + [{Ui)l1(\I!ihl]-l {z[l(Z[lf(Vi+lh + (cih
+[(Ui)l1 (\I!ih2 + (Uih2(\I!ih2][(Vi+lh - (vihU·

-[(Vih2(\I!i+lh2 + Z{(Z[)T](Vih + (Vih2(\I!i+lh2(Vi+lh =(cih
(4.10) => (Vi+lh = (vih + [(Vi)22(\I!i+lh2]-1[(Cih + Z{(Zrf(Vih]·

Note from (4.2) and (4.3) that

- Ui\I!i = Vi\I!i+l + [Z[l(~r')T z[(~rf]'(4.9)

(4.8)

20

STABLE PARALLEL COMPACTIFICATION FOR ODEs 21

the preprocessing of the current partition after calculating R~'> . Next, we skip a row
1+

and start a new partition by choosing R~~~l as described in §3. The skipped row
must now be added to the reduced system. If 8j+ E R" is the "reduced" variable for
the new partition, the extra equation is

A R(i) [H,(i) . + .(i)] + B R(H) [H,(H) . + ·(H)] -
kj+ kj+ wkj+ 81 Zkj+ k;+ k;++l Wk;++1 81+ Zkj++1 - Ckj+'

To avoid creating a new partition in the case in which I. increases, we can pick
up an extra component during the forward sweep calculation of the "decreasing" part
of <I>i, at the point at which the dichotomy change occurs. Correspondingly, a row is
dropped from the first part of <I>i during the backward sweep. This is essentially the
strategy used by de Hoog and Mattheij [4, §4].

A circumstance that causes more immediate failure of the algorithm occurs when
the submatrix [Ai Bi] fails to have full rank for some i. When this occurs, [Ui Vi]
is also rank deficient, and it is easy to show that for at least one index I = 1"", n,
the I-th diagonals of Ui and Vi are both zero. Hence at least one of (Udu and (Vih2
are singular, so either the forward sweep (3.6) or the reverse sweep (3.7) will break
down at stage i. Since this difficulty can be detected during the initial orthogonal
factorization, the fix is the same as for a dichotomy change - we create a partition
break at stage i.

We assume from this point on that the number of partitions p and the separator
indices kj, j = 1"", p, have been altered where necessary during the partitioned
compactification, to reflect the number of new dichotomy switches that were encoun
tered.

Construction of the reduced system is slightly different for problems of the form
(1.5) than it is for problems of the form (1.4). Rather than (3.11), each Zi is now
expressible as

(5.1)

Since

U.H,(i) + TT.H,(i)
IWi ViWi+1

U.z·(i) + TT.Z·(i)
I i Vi i+1

UiZi + Vizi+! + QfCi)..

= 0,

= QfCi,

QfCi,

i = kj + 1, .. " kj +b

i = kj + 1", .,kj+b

i = kj + 1, .. " kj +b

we have by substitution in (5.1) that

[U.A(i) TT·A(i) QTe] \ - 0
I i + Vi i+l + i i 1\ - ,

We choose A~i), i = kj + 1", " kj+!, to satisfy the recurrence suggested by this
formula, namely,

(5.2) U·A(i) + T1;A(i) - _QTe·
I i Vi i+1 - i I,

Clearly, this recurrence has the same form as the one that is solved for the particular
solution z}i) (except that it has m columns instead of one), and we can solve it in
exactly the same way. The choice of boundary conditions is also the same as for z}i).

When no dichotomy switching is encountered within a partition, we set

(5.3) (A~;~1)n-l+1:n,. = 0, (A~~J1:n-l,. = O.

22 R. M. M. MATTHEIJ AND S. J. WRIGHT

In deriving the scheme (5.2) and (5.3), we are essentially treating the parameter term
as a forcing term.

We can now use (5.1) to construct the reduced system. For the side conditions,
we have

N+1

LMixi+N,X = d
i=1

(5.4)
P kj+1

=> L L MiRP) [4)~j)Sj + A~j),X + z}j)] + N,X
j=1 i=kj+l

d

For the remaining equations, we obtain

p

=> LUjSj +N'x = d,
j=1

Mj

Nj =
dj

E~11l1Mixi + Ni>' - dill2 + IINo>' - do 11
2

= E~=1I1MjSj + ilj >. - djll2 + IINo'x - doll 2,(5.5)

where

6. Numerical Results. We implemented the PSC and SQR algorithms on the
Intel Touchstone at the California Institute of Technology. This machine has a 528
node message-passing architecture based on the Intel i860 chip, with a two-dimensional

- _ (j) (j) (j+1) (H1)
Cj - Ck, +1 + Aki+1 Rki+1 Aki+1 + Bki+1 Rki+1 +1 Aki+1+1'

Again, recursive application of the compactification to the reduced system is
possible, but only up to a point. We would expect to have an intrinsic lower bound
on the number of stages in the smallest possible reduced system, namely, the total
number of dichotomy switches. In other words, the smallest reduced system is one in
which a dichotomy switch occurs at each stage.

For problems of the form (1.6), substitution like that described in (5.4) can be
performed in the least squares objective function. We obtain

AjSj + Bj sj+1 + CjA = ej,

where Aj, Bj and Cj are as defined in (3.15a), and

where

Our first test problem has a change of dichotomy near the point t = 1/3.

mesh interconnection configuration. Underlying the mesh is a high-speed bus which
allows data to be ported between any two nodes in a fashion that is transparent to the
user. Provided the total amount of data being transferred is not too great, the time
to send a message across this bus is not strongly dependent on the physical locations
of the source and destination nodes in the mesh. We chose this architecture since it
seems typical of the new generation of massively parallel machines. The Intel Paragon
will be a commercial version of the Touchstone, while the Thinking Machines CM-5
(already in production) has an essentially equivalent configuration.

Our codes handle two classes of problem - twerpoint boundary value problems
(1.1) and (1.4), and twerpoint problems with parameters «1.2) and (1.5) with Tl =a
and T2 =b). As discussed earlier, the SQR algorithm is similar to the one described in
[12], except that Givens rotations are used in addition to Householder transformations
during the QR factorizations. The extra columns in the shooting matrix that are
due to the presence of parameters are handled as described in Wright [11, §5]. Each
processor compresses its "slice" of the shooting matrix into a single block row, leaving
a reduced system with (p + l)n + m rows and columns. This system is solved by
using a "cyclic reduction" variant of SQR, which we now briefly describe. Assume
that the processors are numbered 0,1,2", ',p - I, where p = 2d for some integer
d ~ O. At the first level of cyclic reduction, the odd-numbered processors 2i + I,
i = 0,1", ·,p/2 - 1 pass their piece of the reduced system (consisting of a single
block row) to the neighboring even-numbered processor 2i. Each processor 2i then
compresses this block row with its own block row to produce a single block row. At
the end of this first level, the size of the reduced system has been approximately
halved - it now has dimension (p/2 + l)n + m. At the second level, the processors
4i+ 2 pass their data to processors 4i. After d levels, processor 0 is left with a reduced
system of dimension 2n + m. It solves this system to produce Xl, xNH, and A. We
then backtrack along the binary tree traversed during the process of compression to
recover all the intermediate solution components.

The implementation of PSC is similar. Each processor is assigned an equal-sized
slice of the original shooting matrix to which it applies the stabilized compactification
algorithm described in §§3 and 5. At the end of this stage, each processor contains
one or, in the case of dichotomy changes, more than one block row of the reduced
system. If a processor contains more than one block row, orthogonal compression like
that used by SQR is applied to obtain a single block row. The cyclic reduction SQR
compression scheme just described is now applied to solve the reduced system that
remains.

In our tests, we form discrete problems by applying the "box scheme" to our
continuous problems. We seek Xi E ~, i = 1" . " N + 1 such that Xi ~ X(ti), where
ti =a + (i - l)h and h = (b - a)/N. The parametrized ODE (1.2) is approximated
by

23

t E [0,1],
]

R(t)x + C(t)A + e(t),
-20

STABLE PARALLEL COMPACTIFICATION FOR ODEs

Example 1 n = 3, m = 1.

[

20
(6.1) x= Q(t) 10(t - 1/3)

with boundary conditions

x E (O,L),

R. M. M. MATTHEIJ AND S. J. WRIGHT

[I I I] x(O) + [I I I] x(l) + [il] A= [~ ~:]
2 3 4 -2 -3 -4 0 9 - ge

(6.3)

PSC is able to detect the change in dichotomy near t = 1/3. On a single processor
with N = 1000, a change from two decreasing modes to one decreasing mode is
reported at t = .406. The "rightward shift" is due to the fact that our heuristic for
detecting dichotomy changes is rather conservative; it reports a switch only when the
behavior is consistently different over a significant number of consecutive intervals.
When we use four processors, each with 1000 intervals (a total of N = 4000), the
situation is a little more complicated. The algorithm for calculating the fundamental
solution detects a number of points at which a dichotomy switch appears to occur
and reports them as such. However, in all but one case, a restart at that point (as
described in §5) indicates that the number of increasing and decreasing modes has
not changed. The exception is, of course, the point at which the one true dichotomy
switch occurs. The spurious switches do not affect the stability of the algorithm and
have only a marginal effect on the computation time, since they add just a single row
to the reduced system. The locations of the "breaks" are summarized in Table 6.1.

Tables 6.2 and 6.3 show timings for SQR and PSC, respectively. In both cases,
the time for initial reduction of each partition remains essentially constant and is
somewhat less for PSC than for SQR. The time to solve the reduced system by the
cyclic reduction algorithm tends to increase as the depth of the tree increases, though
not in a smooth way. Nevertheless, solution of the reduced system is such a small
part of the overall computation that near-perfect speedup is attained.

Our second example arises from transport theory. Consider the single-group one
dimensional transport equation as defined by Jin and Levermore [7, Example 2]:

t .378 .403 .433 .961
No. of decreasing modes 2 1 1 1

where, using the shorthand c =cost, 8 =sint,

[C
8 n, R(t) = [I n, C(,) = [;.]Q(t) = -8 C 1

C-8 C+8

The vector function c(t) is chosen so that x(t) = et (l, 1, l)T and A = 1 is a solution
of the parametrized ODE. The boundary conditions are

Example 1, four proceuors, N =4000. Restart points for stabilized compactification (excluding
the breakpoints due to partitioning into four subintervals) and number of decreasing modes on the
subinterval between this breakpoint and the preceding one.

24

Using the notation

Example 1. psc: Timinga with number oj intervala per proceuor fixed at 1000. All timea are
in aeconda.

25

i = 1" ",n,

cI>i(ll) = 0, i = 1, .. " ~n.

STABLE PARALLEL COMPACTIFICATION FOR ODEs

cI>i(O) =5, i = ~n + 1, .. " n,

n

PicI>~(X) + UT(X)cI>i(X) = !W(X)UT(X) E WjcI>j (x),
j=l

(6.5)

(6.4)

Because ofseparation of the boundary conditions and the well-posed nature of this
problem, we would expect exactly half of the fundamental modes to be nonincreasing
and half to be nondecreasing across the entire interval. Our implementation of PSC
indicates that this is indeed the case. No "spurious" dichotomy changes are flagged
on any of the examples we tried.

Results for the two algorithms are given in Tables 6.4 through 6.7 for the cases
n = 20 and n = 10. A box discretization was used with constant interval length and

and discretizing the boundary conditions in an obvious (though not optimal) way, we
can write the boundary value problem arising from Example 2 of Jin and Levermore
[7] as

Number of processors 1 2 4 8 16 32 64 128
Time for initial reduction .347 .348 .347 .347 .347 .347 .347 .347
Time for reduced system solution .001 .001 .001 .014 .013 .012 .013 .014
Total time .371 .372 .371 .384 .382 .382 .383 .384

Example 1. SQR: Timinga with number oj intervala per proceuor fi:ced at 1000. All timea are
in aeconda.

Number of processors 1 2 4 8 16 32 64 128
Time for initial reduction .613 .613 .614 .614 .614 .613 .614 .614
Time for reduced system solution .001 .002 .002 .012 .013 .014 .014 .014
Total time .642 .643 .644 .654 .655 .655 .656 .656

One widely accepted method for solving this equation, the discrete ordinates method,
proceeds by replacing the integral term in (6.2) by a quadrature approximation. The
resulting two-point boundary value problem in the remaining independent variable x
can then be solved to obtain an approximation to cI>. We use Gaussian quadrature with
an even number of abscissae, in which specification of weights Wi, i = 1", " n, and
abscissae Pi, i =1"", n with -1 < PI < ... < Pn < 1, Pi = -pn-i+l, Wi =Wn-i+1>
and Wi > 0 leads to the approximation

Example 2. sQa: Timings with n =20 and number of inteT1lals per proceuor fixed at 200. All
times are in seconds.

Example 2. PSC: Timings with n =10 and number of inteT1lals per proceuor fixed at 200. All
times are in seconds.

Example 2. PSC: Timings with n =20 and number of inteT1lals per proceuor fixed at 200. All
times are in seconds.

128

128

.452

.034

.504

1.27
.054
1.35

64

64

1.26
.040
1.33

.452

.043

.512

32

16

2.19
.093
2.33

6.38
.206
6.68

32

16

.451

.041

.510

1.26
.034
1.33

16

8

16

8

1.27
.029
1.32

2.19
.113
2.35

6.37
.190
6.66

.451

.028

.497

8

4

8

6.37
.140
6.61

2.21
.088
2.36

4

.450

.034

.502

1.27
.031
1.33

4

2

2.22
.044
2.31

6.38
.049
6.53

2

4

1.27
.016
1.32

.450

.012

.480

2

2

1

2.18
.028
2.26

6.61
.016
6.72

1

.450

.009

.477

1.27
.0lD
1.31

1
.449
.006
.473

1
1.27
.004
1.30

R. M. M. MATTHEIJ AND S. J. WRIGHT

Number of processors

Number of processors

Time for initial reduction
Time for reduced system solution
Total time

Time for initial reduction
Time for reduced system solution
Total time

Number of processors
Time for initial reduction
Time for reduced system solution
Total time

Number of processors
Time for initial reduction
Time for reduced system solution
Total time

Example 2. sQa: Timings with n =10 and number of intervals per processor fixed at 200. All
times are in seconds.

26

STABLE PARALLEL COMPACTIFICATION FOR ODEs 27

a fixed number of intervals per processor. As in Example 1, the time taken to solve
the reduced system tends to increase with the number of levels in the tree (though
not smoothly), but high efficiency is obtained even on a large number of processors.

REFERENCES

[1) U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, 1988.

[2] U. M. Ascher and R. D. Russell, Reformulation of boundary value problem. into ".tandard"
form, SIAM Review, 23 (1981), pp. 238-254.

[3] H.-G. Bock, Recent advance. in parameter identification technique. for O.D.E., vol. 2 of Pro
gress in Scientific Computing, Birkhauser, Boston, 1983, pp. 95-121-

[4] F. R. de Hoog and R. M. M. Mattheij, An algorithm for .olving multi·point boundary value
problem" Computing,38 (1987), pp. 219-234.

[5] --, On the conditioning of multipoint and integral boundary value problem" SIAM Journal
of Mathematical Analysis and Applications, 20 (1989), pp. 200-214.

[6] G. H. Golub and C. F. Van loan, Matrix Computation" The Johns Hopkins University Press,
Baltimore, 2nd ed., 1989.

[7] S. Jin and D. levermore, The di,crete-ordinate method in diffu,ive regimu, Transport Theory
and Statistical Physics, 20 (1991), pp. 413-439.

[8] C. l. lawson and R. J. Hanson, Solving Lea,t Square, Problem" Prentice-Hall. Englewood Cliffs,
1974.

[9] R. M. M. Mattheij, Stability of block LU-decomposition, of matrices ari.ing from BVP, SIAM
Journal on Algebraic and Discrete Methods, 5 (1984). pp. 314-331-

[10] --, On boundary value problem, for ordinary differential equation. with parameter,. in Dif
ferential Equations, C. M. Dafermos et al., eds., Marcel Dekker, New York, 1989, pp. 481
489.

[11] S. J. Wright, Stable parallel elimination for boundary vah/.e ODE" Preprint MCS-P229-0491,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, D
linois, April 1991-

[12] --, Stable parallel algorithm, for two-point boundary value problems, SIAM Journal on
Scientific and Statistical Computing, 13 (1992), pp. 742-764.

