
 

A survey to the multibody program mechanica motion

Citation for published version (APA):
Termeer, M. K. (1996). A survey to the multibody program mechanica motion. (DCT rapporten; Vol. 1996.119).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1996

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8a61968c-3cca-4975-b2a3-11e8940db0ac


A SURVEY TO THE 
MULTIBODY PROGRAM 
MECHANICA MOTION 

M.K. TERMEER 
WFW-REPORT 96.1 19 

JULY 1996 



A SURVEY TO THE MULTIBODY PROGRAM 

PRO-MECHAN ICA MOTION 

Martijn Termeer 

Daf Special Products 

Report TN-056 
WFW report 96.11 9 
July 1996 

Coordination: 
Ronald Schut 
Bert Verbeek 

2 



Table of contents 

SUMMARY 

1. INTRODUCTION. 

2. MULTIBODY DYNAMICS AND FORMULATIONS 

2.1 The choice of a set of coordinates. 

2.2 The choice of the dynamic formulation. 
2.2.1 Augmentation and elimination method. 
2.2.2 Closed-loop and open-loop systems. 
2.2.3 Equations of kinematic unconstraint systems. 
2.2.4 Equations of kinematic constraint systems. 
2.2.5 Kane’s method. 
2.2.6 Recursive formulations. 
2.2.7 Symbolic equations in MECHANICA MOTION. 

3. NUMERICAL INTEGRATION METHODS FOR SOLVING ODE’S. 

3.1 Initial value problems 

3.2 Euler methods. 
3.2.1 Euler forward. 
3.2.2 Euler backward 
3.2.3 Runge-Kutta methods. 

3.3 Multistep methods. 
3.3.1 Adams methods. 
3.2.2 Methods for stiff systems. 

3.4.1 Error estimation. 
3.4.2 Variable timestep and order. 

3.4 Error estimation accuracy and efficiency. 

4. NUMERICAL METHODS IN MULTIBODY DYNAMICS 
4.1 Direct integration 
4.2 Constraint violation stabilization method 
4.3 Coordinate partitioning method. 
4.4 Handle DAE’s as stiff ODES. 
4.5 Projection method 
4.6 Overdetermined DAEs. 

5. OVERVIEW OF MECHANICA MOTION 

6. MODELING IN MECHANICA MOTION. 
6.1 Introduction. 
6.2 Stiff and non-stiff systems. 
6.3 Discontinuities. 
6.4 Flexible beams in MOTION. 

7. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

4 

5 

6 

5 

6 
6 
7 
8 
8 

10 
10 
11 

12 

12 

13 
13 
13 
14 

14 
15 
15 

17 
17 
17 

i a  
18 
18 
18 
20 
20 
21 

22 

22 
22 
22 
26 
30 

33 

References 

Appendix 

34 

1-13 

3 



SUMMARY. 

This report is a study to the multibody package MECHANICA MOTION. The first part 
contains theoretical and numerical aspects of multibody dynamics in general. The 
choice of a set of coordinates, kinematic description, and the dynamic formulation 
used in multibody packages, are discussed in chapter 2. Chapter 3 reviews numerical 
methods for integration of ODE’S. In chapter 4 attention is paid to the routines and 
measures needed to solve DAE’s, a typical set of equations commonly found in 
multibody dynamics. In chapter 5 a brief overview is given of the methods and 
routines used in MOTION. The last part of this report discusses small tests, run with 
MOTION in order to find answers to questions posed in chapter 6. Following 
questions are discussed: What makes a system stiff? What integration routines must 
be used best for what kind of systems? Can discontinuities be modeled by smooth 
functions, so they form less problems with numerical integration? How are flexible 
beams modeled in MOTION, and what is the influence of the internal damping value? 
Chapter 7 contains a brief discussion, conclusions and further recommendations. 

4 



1. INTRODUCTION. 

DAF Speciai Proaucts uses Tne package Pro-lviESnANiCA iviûTiûN as a tooi for 
multiboay ciynamics. it is mosiiy used for the dynamic anaiysis of reconnaissance 
vehicles and helicopter landing gear. The experiences with MOTION are generally 
positive, especially the user-friendly environment. However with complex models, 
unpredictable large computation times can be expected. The objective of this report is 
to get a better insight in the routines and methods used in MECHANICA MOTION and 
in multibody dynamics in general. 

With a better insight in the backgrounds it might be possible to pay more attention to 
the models with respect to numerical efficiency. Especially discontinuities in the 
dynamic response seem to be an important problem. For example crash-simulations 
of landing gear have characteristically a lot of discontinuities, fast changing forces and 
geometries leading to an abruptly changing solution. This leads to problems with 
numerical integration and huge CPU times can be faced. 

The first pari of this report, chapter 1 to 4, will review theoretical and numerical 
aspects of multibody dynamics in general. However, sometimes will be referred to 
MECHANICA MOTION or other commercially available packages. The second part 
will discuss specifically the MOTION models used at DAF Special Products. Small 
problems will be modeled in MOTION in order to distillate different aspects of the 
larger models. By varying design parameters, integration methods and input tables in 
these small models, it will be easier to find relations between model-changes and 
effects in numerical efficiency. It might be possible to find some general applicable 
rules that can be used in the realistic models. 

5 



2. MULTIBODY DYNAMICS AND FORMULATIONS 

2.1 The choice of a set of coordinates. 
An important issue in multibody programs is the choice of a set of coordinates used to 
describe the motion. The most important sets are absolute (or Cartesian) coordinates, 
anci reiative coordinates (or siaie variabiesj. i h e  absoiute coordinates define the 
system with respect to an inertiai frame, this results in a maximal set of Cariesian 
coordinates for each body. The relative coordinates describe the position and 
velocities of a body relative to that of a connected body, this results in a minimal set of 
variables. 

2.2 The choice of the dynamic formulation. 

2.2.1 Augmentation- and elimination method. 
Closely related to the choice of a set of coordinates is the choice of the dynamic 
formulation. In general there are two approaches, the augmentation method and the 
elimination method. In the augmentation method the equations of motion are 
augmented with the constraint equations, in the elimination method the constraint 
equations are eliminated as much as possible. In the first case a set of absolute 
coordinates is chosen, resulting in a maximal number of equations of motion and 
constraint equations, the so called descriptor form. In the second approach relative 
coordinates are chosen and this leads to a minimal set of equations, the so called 
elimination form. 

Both approaches have advantages and disadvantages. The generation of equations 
of motion in the descriptor form is straight forward and therefore easy to automate 
and implement in computer software. The matrices are large, on the other hand quite 
sparse. Special ‘sparse oriented’ solvers are used. The descriptor form is used in the 
packages DADS and ADAMS. 

In the elimination approach the equations of motion are more complex. The equations 
are highly non-linear, the matrices are full. On the other hand the number of equations 
are smaller, so only small matrices have to be inverted. This approach is found in 
several packages such as MADYMO and MECHANICA MOTION. 

This issue will be explained with an 2-D example of a double pendulum. See Figure 

Y2 Y1 

2.1. 

The double pendulum has two 
degrees of freedom and can 
be described in either the 
descriptor form or the 
elimination form. 

Relative Coordinates. Absolute Coordinates 

Figure 2.1 
6 



In the descriptorform the center of mass of each body is described with respect to a 
reference frame by translational x-y- coordinates and a rotational coordinate cp. This 
results in 6 Cartesian coordinates for the two bodies together. These coordinates are 
not independent, they do not satisfy the kinematic constraints automatically. Therefore 
the 6 equations of motion have to be augmented with 4 constraint equations, two 
constraints for each rotational joint. Of course this gives 6 - 4 = 2 degrees of freedom. 
Unknown Lagrange multipliers account for the constraint loads. Hence the resulting 
equations form a combined system of differential equations (the equations of motion) 
and algebraic equations (the constraint equations). Together this is called a set of 
Differential Algebraic Equations or DAE’s. 

In the elimination form there are two relative rotational coordinates cpl and (p2, each 
describing the position of the body relative to a connected body. These independent 
coordinates form degrees of freedom so they do not need to be augmented with 
constraint equations. There are no constraints that can be violated. The results is a 
minimal set of Ordinary Differential Equations or ODE’s, the system is kinematically 
unconstraint. 

2.2.2 Closed-loop and Open-loop systems. 
In fact relative coordinates only result in ODE’s for open loop systems. For closed 
loop system relative description will result in DAE’s. For closed loop systems the 
relative coordinates are not independent anymore, they do not form degrees of 
freedom. 

This is demonstrated in the following example, a crank-slider mechanism, see Figure 
2.2. This is a simple closed loop system and in fact it is a double pendulum with an 
extra constraint. Therefore it has only 1 degree of freedom. The two relative 
coordinates û1 and û2 are not independent, the system is kinematically constraint. 

Closed-loop 

Figure 2.2 

In theory this system can be modeled with only one 
coordinate, the degree of freedom. This will lead to 
only one very complex equation of motion without 
any constraint equations. This way is not used in 
multibody dynamics. The generation of the equations 
of motion described in degrees of freedom would be 
far too complex for real systems. 

A more realistic example of a closed-loop system is the model of a reconnaissance 
vehicle, see Figure 2.3. 

7 



Vehicle Model 

Figure 2.3 

Spanning Tree 

Graph Representation 

Figure 2.4 

Wittenburg developed the idea of opening 
closed chains. The system is transformed 
in a tree-configuration by cutting the 
closed chains, see Figure 2.4. Which 
joints in have to be cut, is decided with 
the aid of graph theory [2,5]. The best 
candidate for base-body is determined by 
graph theory as well. This way results in a 
tree-topology in which the least numerical 
error will accumulate. At the cut-joints it is 
necessary to introduce constraints and 
Lagrange multipliers, to keep the original 
configuration intact’. The result is a 
Spanning-tree, see Figure 2.5. 

Figure 2.5 

2.2.3 Equations of kinematic unconstraint systems. 
So an open loop system can be described with ODE’S when relative coordinates are 
used. In that case the system is kinematically unconstraint. The topology is a tree- 
structure with only open chains. The number of coordinates (n) equals the number of 
degrees of freedom. The equations of motion can be described as follows: 

- 4  = g(q,q,t) J 

with M the matrix containing the mass and inertia terms, 4 the vector with 

translational and rotational accelerations, and g the force vector containing all internal 
and external forces and moments. Gravity is considered an external force, whereas 
force elements within the system, such as springs and dampers, are considered 

In the package MADYMO these constraints are guaranteed by stiff springs and dampers, see also 
paragraph 4.2.4. 

8 



internal forces. Of course, since it is an unconstraint system, there are no constraint 
forces. For numerical integration of ODE’S see chapter 3. 

2.2.4 Equations of kinematic constraint systems. 
If the number of coordinates is exceeds the number of degrees of freedom, the 
system is said to be kinematically constraint. In paragraph 2.2.2, it was found that 
these systems are öpen-iööp systems described in &iiive coordinates, oï closed 
ioop-systems. This kind of: systems can’t be solved with oïdinaiy numeïica! integration 
routines since the equations are mixed differential and algebraic equations (DAE’s). 
The complete set of equations is given by 

Equations of motion, the differential part: 

With 

o M, the mass matrix containing masses inertia terms 
o q , a vector containing the accelerations 

g ,  a vector containing external and internal forces 
0 h , a vector containing the unknown Lagrange multipliers, they account 

for the reaction forces in the constraints. 
0 Qq , the Jacobian matrix, containing the derivatives of the constraint 

equations to the coordinates. 

and M, g, A can be a function of q, 4, and an explicit function of t. 

Constraint equations for the positions, the algebraic part: 

@ = @(q) 

with @ the constraint equations. 

Together this is a semi implicit DAE of index 3. The index of a DAE is a measure of 
‘how algebraic’ the DAE is [5]. Since most numerical methods are only convergent for 
index 1 DAE’s, the DAE must be reduced to index 1 by differentiating the position 
constraints twice. This results in the set: 

= @(q) = o  
@E@ q = o  

4 

The constraint acceleration equations are written together with the equations of 
motion in matrix notation: 

9 



the righthand side of the acceleration equations. Chapter 3 will deal with solving such 
a set of differential algebraic equations of index 1. 

2.2.5 Kane’s Method. 
in paragraph 2.2.i ine advantages ana aisaavantages of the iormuiations in the 
descriptor form with absoiuie coordinates and the elimination form, with reiative 
coordinates were discussed. The Kane’s Method 171 tries to the combine the 
advantages of both formulations. It starts with defining the systems in global 
dependent coordinates. These Cartesian coordinates are transformed by means of a 
‘partial velocity matrix’ to relative coordinates. For open-loop systems this will result in 
a set of ODE’S, however for a closed-loop system the resulting equations will still be 
DAE’s. 

The original Kane’s method is O(n3), which means that the number of numerical 
operations will increase with the power three of the number of bodies (n) in the model. 
This is due to the fact that the sizes of the matrices increase linearly with the number 
of degrees of freedom. Increase in model-size will simply increase the set of 
equations and increase the size of the matrices. The number of operations to invert a 
full matrix depends on the power three of the size of the matrix. In MECHANICA 
MOTION a modified Kane’s method is used, this will be reviewed in the next 
paragraph. 

2.2.6 Recursive Formulations. 
Description of a system in relative coordinates, makes it possible to use recursive 

formulation to generate the 
equations of motion. 
Recursive formulation [5,6] 
is a procedure in which 
elementary relationships 
between two arbitrary 
bodies, can be used all 

1 along the system. The 

R2 

equations of motion are not 
generated for the whole 
system. In a tree-branch 
the motion of one body is 

Chassis 
6 

expressed in terms of the 
motion of the adjacent 
body and the relative 

Backward Path Dynamics Sequence motion of the connecting 
joint. The equations of 
motion are generated by 
starting at an end-point of a 
tree-branch, moving 

Figure 2.6 

recursively back to a base body, see Figure 2.6. 

10 



This recursive approach is of 0-(n) because the number of operations increases only 
linearly with the number of bodies in the system. The sizes of the matrices stay small. 
When a system becomes twice as large, only two times the same recursive algorithm 
has to be used. This makes this description highly compact and efficient. 

A recursive O(n) algorithm is used in MECHANICA MOTION and is called modified 
Kane’s Rosenthal method. MOTION uses this algorithm if the number of coordinates 
is m i e  : h m  15, û:her;~.ise :he original G(n3) Kafie’s method is üsed. PAADYPAC) alm 
üses a recursive atgorithm 

Recursive formulation is highly suitable for parallel processing, since all the tree- 
branches can be handled independently, at the same time. There is a lot of recent 
development in this parallel processing algorithms for multibody dynamics, especially 
in the field of real-time driving- and flight-simulations [5,6]. 

2.2.7 Symbolic equations in MECHANICA MOTION. 
MECHANICA MOTION, as some other packages, formulates all equations 
symbolically. This means that in the equations the ‘design information’ is kept in 
symbols. An advantage of this approach is the fact that the equations can be reused 
in a new job with for example other forces. 

A design study can be done, design parameters can be varied over a certain range, 
without new generation of equations. Another advantage is the availability of explicit 
derivatives of the equations to design-variables. These derivatives can be used in 
optimization analysis. 

A disadvantage of the symbolic description is the memory space required for such 
computations. The ‘design information’ has to be stored in the matrices. Compared to 
symbolic description, in numerical description no ‘design information’ is found in the 
matrices. Then the matrices are only functions of positions and velocities (and 
sometimes explicit functions of time). 

To simplify the symbolic equations as much as possible, MOTION uses a ‘Symbolic 
Equation Manipulator’. Simplifications in the equations are possible in case of a force 
working at a center of gravity, bodies that have inertia in a direction that is fixed, plane 
motion, etc. After this manipulation subroutines are written, compiled and linked. 

11 



3. NUMERICAL INTEGRATION METHODS FOR SOLVING 
ODE’S. 

As explained in the previous chapter the equations of motion, for planar and spatial 
systems, are either a set of ordinary differential equations (ODE’s) or a set of mixed 
differential and algebraic equations (DAE’s). In general these equations have to be 
soiveci numericaiiy, aithough it might De p6SSibie io obtairi a closed form cüiüiiûn for 
highiy simpiified systems. in this chapter the standard numerical integration routines 
for ODE’s are briefly reviewed. 

3.1 Initial value problems 
The equations found in dynamics are often sets of second order ODE’s. Such a set of 
n equations needs to be converted to a set of 2n first order ODE’s, because almost all 
numerical integration routines are developed for first order ODE’s. This conversion 
can always be done by introducing extra state variables. 

The original equations of motion are a set of n second order differential equations: 

4 = f(4,4, t ) .  

After introducing 

_- 
this results in the form 

Y = f ( Y , t ) .  

This is a set of 2n first order differential equations. 

Then the numerical integration at time f=i can be interpreted by the following diagram: 

Y(tZ) integration > y(ti+l) 

In other words, velocities and accelerations at f==t‘yield coordinates and velocities at 
f d ’ .  So these methods involve a step by step process with discrete points in time. To 
start this process, initial conditions have to be specified at t=fo for q,, and &. The 

stepsize h between the discrete points can be constant or variable. 

Numerical integration routines can be roughly classified by issues like: 

0 Singlestep vs. multistep 
0 Implicit vs. explicit 
0 The order of the method 
0 Variable or constant stepsize 

3.2 Euler methods. 
To explain the principle of numerical integration it is convenient to start with Euler 
methods. These algorithms are not suitable for practical use but they illustrate the 
principle clearly. Euler Forward is the basis for explicit integration methods. Euler 

12 



backward is the basic implicit method. Both methods are single-step methods. This 
means that in each timestep only knowledge of yi is used and no points in history like 
yi-7. 

3.2.1 M e r  forward. 
The Scheme can be formulated as 

This can be viewed graphically, see figure 3.1. Here it is shown that at f=tj the function 
f (  y .) t .) is evaluated and used to 

determine the slope. With this slope a 
step h in time is made. At f=f;+7 the point 
y,+7 is found as an approximation of the 
real solution at that point. This method 
is a so called explicit method because 
at the time f=fi there is an explicit 
formulation of Nil, or in other words, in 
the right hand side of the equation only 
variables at f=fj occur. 

1 1  

h 
t. 
l i ‘  

Figure 3.1 
Explicit methods are conditionally 

stable. This means that the time-step h must be within a stability area. As will be seen 
in paragraph 3.4, this stability interval will only be a problem when explicit methods are 
used for stiff differential equations. 

3.2.2 E u Ier backward 
The formulation of the Euler backward algorithm can be written as 

Here y,+, is a function of y,,, and f/+7 . This is a implicit description and needs to be 
/ solved iteratively by a Newton-Raphson 

proces every timestep. This makes a 
timestep for this method more expensive 
than a step with Euler forward. On the other 
hand, this method is unconditionally stable. 
The Newton-Raphson process is ‘searching 
for’ that slope at f=f/+, so that the tangent 
points through the point y,. See figure 3.2. 

/ 

4 M tiCl 

3.2.3 Runge-Kutta methods. 
Figu:e 3.2 

Runge-Kutta methods are widely used in the 
numerical solution of the nonlinear differential equations of mechanical systems. The 
order of these methods is usually higher than one. They use an average slope, 
calculated at several points. The number of slopes or function evaluations each time 

13 



step is the order of the method. Widely used is Runge-Kutta-4 method, which 
calculates 4 slopes each timestep. The slopes are averaged and then, similar to Eder 
forward, this average slope is used to make a step in time. The use of Runge-Kutta 
methods needs more function evaluations each timestep, as compared to Euler 
forward. This price must be paid for the higher accuracy. However, as a result of this 
accuracy, timesteps can be larger. The algorithm of a Runge-Kutta-4 method can be 
written as 

Y'+' = y i  + h .  g where g is the average slope, 

1 
6 

g = - ( f ,  + 2 f 2  +2f3 + f 4 )  

. h  . h  
f 2  = f ( y '  +-f,J' +TI 

2 

f 4  = f ( y i + h f , , t i + h )  

It can be seen that a Runge Kutta method is an explicit method, Y'+' is not a function 
off ' itself. This is an advantage since an implicit method has to be solved iteratively 
with a Newton-Raphson algorithm. On the other hand an explicit method is 
conditionally stable, this means that there is a maximum time step, called the stability 
area, in which the numerical errors stay bounded and stability is guaranteed. 

Runge-Kutta methods are single step methods, no historical information of yiS1 or so is 
used in the computations of the next timesteps. Hence this method is not as 
computationally efficient as some multistep methods. Most used Runge-Kutta 
methods do have a variable time-step selector for efficiency. This is explained in 
paragraph 3.5.2. MOTION uses a Runge-Kutia-45 method with variable timestep. 

3.3 Multistep methods. 
In contrast to the Euler and Runge-Kutta methods, multi-step methods do use 
information of previous computations. It can be more efficient to use this passed 
information. The higher the order of the method the more historical information is 
taken into account. In practice up to ten past values are used. Multistep methods can 
be both explicit and implicit. To start a multistep method a special start routine has to 
be used since there are no previous computations. This can either be done with an 
explicit Runge-Kutta method, or starting with order one and small time-steps, 
increasing the order until enough points are known. Multistep methods can be both 
explicit or implicit. 

3.3.1 Adams methods. 
A general formulation of Adams methods [see 1,2] is 

14 



Yi+l = yi +h.["(y"',t''")+b,f(y', yi)+......+bJ(yi-yp)] 

It can be seen that in case of b-, = O the method is explicit since in that case 

yi+'does not occur on the right side. This class of methods are known as Adams- 

Bashforth algorithms. 

In the case of b-, # O the above equation becomes an implicit formulation and these 

methods are called Adams-Moulton Aigorithms. Of course, this implicit formulation 
has to be solved iteratively until convergence, each integration time-step. This 
provides again the unconditional stability of an implicit method. 

A practical often an efficient combination of Adams-Bashforth and Adams-Moulton is 
used. This is called a predictor-corrector-method. The explicit Bashforth part provides 
an estimation-step for the corrector part, an Adams moulton algorithm. The 
differences between these steps are used for error estimation. 

3.3.2 Methods for stiff systems. 

A stiff system is referred to as any initial-value problem for which the solution contains 
fast, rapidly varying components that damp out to become smooth. In other words it 
contains different time-scales along the solution, or high and low frequency 
components, for which the high frequency component will damp out completely. A stiff 
system is sometimes referred to as a system with widely spread eigenvalues. This 
can be a little confusing, since mathematically spoken, a single differential equation 
can be stiff. The difference between stiff and non-stiff systems will be reviewed in 
paragraph 6.2. An example of a stiff DE, for solution and direction field see figure 3.4. 

Y 

j ,  = a( ë t  - y); A>> 1; t > O .  

Figure 3.3 
For a numerical solution, integration has to be performed over a long time interval in 
order to capture the slow components. On the other hand the time steps need to be 
small to capture the high frequency components. It is obvious that carrying out 
integration over a long time period with small time steps can make computation times 
unrealisticly large. 

15 



P 
For stiff systems it would be convenient to have the possibility to take large timesteps 
when the solution is smooth. What you need then is a method that is numerically 
stable for large time steps. Explicit methods have a small stability interval when the 
differential equation is stiff. Implicit multistep methods will do well in this situation 
since they are unconditionally stable. A family of implicit methods called Backward 
Difference Formulae (BDF), firstly published by Gear, are specially designed for stiff 
systems. 

A general scheme can be wïitten as: 

yi+' = a, (k)y '  +al(k)yi-l+...+ak-l(k)y'-k+l + h * b - l ( k ) f ( y ' + ' , t ' + l ) ,  

where a, ( k )  indicates the dependence of each coefficient on the order k. 

The stiff character of the system is still present in the smooth part of the solution. This 
can be seen from the direction field near the solution in the smooth part. This direction 
field is sharply convergent close to the exact solution, it forms a kind of narrow 
wedge. BDF methods benefit from this convergent direction field, since this implicit 
method searches that slope for which the tangent will 'point back through the previous 
point'. This slope will only be found when the function is evaluated in a point close to 
the exact solution, in other words, the Newton-Raphson process will only find a 
matching y,+? in a small band around the exact solution. A small distance of the exact 
solution the direction is completely different and the tangent will not point back 
through y,. 

For the same reasons an explicit method has a disadvantage from this convergent 
direction-field. Such a method would blindly step forward in time with a computed 
derivative. One step h further in time it will find an approximation for y,+, but, since the 
convergent direction field, it will likely find a false derivative. The error between for 
example 4-th and 5 t h  order computations will be high, and therefore steps have to be 
small. This explains the small stability interval when explicit methods are used for stiff 
DE. 

Although BDF methods are convenient for solving stiff differential equations it is of 
course possible to integrate a stiff DE with for example a explicit Runge-Kutta method. 
But in that case a lot of small time steps are needed even in the smooth part of the 
solution because of the already mentioned small stability interval. 

Mechanica MOTION uses a BDF method from DASSL, a package with six families of 
BDF methods for solving DAE's. The method has an automatic order- step-size 
control mechanism. 

The philosophy of Mechanica MOTION is (told by Customer Support Germany) to 
make their integrators (both explicit and implicit) accurate in the first place, not 
necessarily fast. 

3.4 Error estimation accuracy and efficiency. 

3.4.1 Error estimation. 
An important aspect in numerical integration is the error estimation. Each time step an 
error will be made, called the local error. All these local errors together form a total 

16 



error at the end, called the global error. The order of an integration method is a 
measure of the order of the local error. When a method is of order k, then the local 
error is of order k+l, then the global error is of order k again. 

Since the exact solution is not known, how is it possible to compute an error 
estimation? This can be done by calculating the solution with different orders. A 
Runge-Kutta-4,5 for example uses the difference between a fourth order and a fifth 

I 1113 is elilLieiit ue~dusa the fifih order câleulâticrn uses the same 
points as the fourth order, only one new function evaluation is Reeded. The e::o: 
estimation is used to determine that stepsize for which the error on the exact solution 
stays smaller than the user requested tolerance. Adams methods and BDF methods 
work in a similar way. Besides a relative error indication, good integrator-algorithms 
use a combination of relative and absolute error tolerances. Otherwise for example an 
oscillating motion around zero can form a problem. 

coliiputat~on. TI-:- . -u:-. -I L - I . . _ ^  

3.4.2 Variable timestep and order. 
The stepsize h for each timestep may be optimized by choosing the largest possible 
timestep for which the local error remains bounded below the user specified 
maximum allowable error and for which the algorithm stays numerically stable. When 
a function is smooth the step-size may be increased, when it is changing abruptly, it 
will be decreased. 

With Runge-Kutta methods it is easy to make time steps variable, since only the 
knowledge of one timestep is used. With multistep methods this is somewhat more 
complex because several points in history are used in each time step and varying 
timesteps is only possible after interpolation between the points calculated in history. 

Multistep methods usually can vary their order by taking into account more or less 
points in history. Increase the order k can be efficient when a function is smooth, in 
that case larger step-sizes are possible. When a function is changing rapidly the order 
can be decreased since older information is then of less use than the recent 
information. To make it possible to increase the order enough information must be 
kept in memory. A lot of advanced multistep methods vary both order and time-step. 

17 



4. NUMERICAL METHODS IN MULTIBODY DYNAMICS 
This chapter deals with methods for solving DAE’s. When system equations form 
DAE’s is found in paragraph 2.2.2 and 2.2.4. For a thorough knowledge of DAE’s in 
multibody dynamics see reference [5]. 

1 

4.1 Direct integration. 
A simple but crude method for obtaining the dynamic response of a system 
represented by the equations in paragraph 2.2.4, is direct time integration. This 
method simply integrates the matrix part of the equations, without taking into account 
the position- and velocity- constraints. Only the acceleration constraint will be taken 
into account. Accelerations appear in both the equations of motion and in the 
constraint equations. So when numerically integrated, the accelerations will always 
obey the constraints within the given accuracy. This means that the position and 
velocity constraints can be violated, especially when integration-times are longer. For 
this reason this method is very crude and not practically useful. 

4.2 Constraint violation stabilization method 
The Constraint Violation Stabilization method by Baumgarte is an extension of 
feedback control theory applied to the dynamics of mechanical systems. One of the 
goals in designing a feedback controller is to reduce the error growth and achieve a 
stable response [2]. Baumgarte introduced the stabilization control terms into the 
index one DAE. Instead of the pure acceleration constraints a linear combination of 
acceleration, velocities and position constraints is used with parameters a and p. In 

this way the constraint violations of the position, @ and velocity, 6 are fed back in a 

way that the response will approach to the exact solution in an oscillating way. 

The choice of the parameters is critical and has to be so that the solution for @ = O is 
stable. Often one chooses a = p. Amplitude and frequency of the oscillation around 
the exact solution depend on these parameters. 

4.3 Coordinate partitioning method. 
It was explained in 4.2.1 that direct integration of the equations of motion will lead to 
constraint violations in the positions and velocities. This method makes use of the fact 
that the n coordinates are not independent. The n coordinates can be partitioned into 
m dependent coordinates u and k independent coordinates v. Also the velocity vector 
q can be partitioned in M and C. Only the independent variables are integrated each 
time-step. So the integration a.rrays are: 

18 



Integration of the array y yields the array y ,  each array with dimension 2n. With these 

independent coordinates and velocities (v, r) , the dependent coordinates and 

velocities (u, Li) can be solved at the end of each time-step, out of the algebraic 

constraint equations: 

@(u, v) = o 
auLi = -@vi, 

Now that the vectors q and 4 are completely known, 4 and A can be solved from 

equation 

From 4, v can be transferred to the next integration array y .  A new step can begin. 

The important issue here is that the position constraints and the velocity constraints 
can’t accumulate numerical error, since the dependent variables are not integrated at 
all’ . They are only solved with a Newton-Raphson process out of the algebraic 
constraint equations (both positions and velocities) at the end of a time-step. 

The only problem is to find the right partitioning of dependent and independent 
coordinates. This is possible with Gauss elimination or LU decomposition of the 
constraint Jacobian a,. For a mechanical system with m constraints the Jacobian is a 

m*n matrix. After Gauss elimination the columns of the reordered Jacobian 
correspond to the order of elements in vector q. The first m elements of q can be used 
as the dependent coordinates u, the remaining k elements can be used as the 
independent coordinates v. A specific partitioning can hold until numerical ill 
conditioning of the Jacobian occurs. Then a new set of dependent and independent 
coordinates must be specified. This process can be done fully automatically. 

The package DADS uses a combination of the Coordinate Partitioning method and 
Constrained Stabilization Method. The hybrid method takes advantage of both 
methods, the speed of Constraint stabilization and the reliability of the Coordinate 
Partitioning Method. Not every step the dependent variables are solved. Small 
numerical errors are stabilized with Baumgarte, the constraint violations are 
monitored. Only when violations become too big a Newton-Raphson process will solve 
the dependent algebraic variables. 

4.4 Handle DAE’s as stiff ODE’S. 
This method is completely different from the methods discussed above. This method 
considers the algebraic constraint equations as a special form of differential equations 
in which ike iirne derivatives do not appear. When noriiially the 3AE can be written 
as: 

___ 

Sometimes the dependent coordinates are integrated, then they are estimations for the Newton- 
Raphson process. 

19 



Now the DAE will be written as a stiff ODE: 

This approach is used in MADYMO. This package describes the system in relative 
coordinates as can be found in paragraph 2.2.1. and 2.2.5. In the case of open loop 
systems, this description forms spanning trees leading to a minimal set of ODE’s. For 
closed loop systems the loops are cut. At the cut joints there must be done something 
to prevent the parts from tearing apart. This usually can be done by introducing 
Lagrange multipliers, resulting in a set of DAE’s. See also paragraph 2.2.2. In 
MADYMO this is slightly different, the cut loops are kept together by introducing stiff 
springs and dampers at the cut joints. These elements keep the joints together and in 
this way the kinematic constraint forces are handled in fact as internal forces. The 
result is that the algebraic constraints disappear, therefor artificial internal forces 
appear. This way results in stiff ODE’s. 

Normally such stiff ODE’s would be solved with implicit BDF methods, highly 
optimized for stiff ODE’s, but in MADYMO these stiff ODE’s are solved explicitly with a 
Runge-Kutta method. Reason for this is the fact that crash simulations form a lot of 
discontinuities. Often there will be a discontinuity somewhere in the system, asking for 
small stepsizes. Therefore timesteps have to be small all the time and the advantage 
of implicit BDF methods, with the possibility of large timesteps,‘is unnecessary. In fact 
solving an implicit formulation for lots of degrees of freedom is costly. Another aspect 
is the fact that if an implicit method approaches a discontinuity with a larger stepsize, 
that discontinuity is relatively larger compared to the situation when an explicit 
method, with a conservative small stepsize, approaches the discontinuity. 

4.5 Projection method. 
Drift off effects of the constraints can be avoided by numerically solving a DAE with 
reduced index, combined with a projection of velocities and positions, such that the 
original constraints are satisfied. This projection can be done each timestep or, for 
efficiency, each few timesteps. This method resembles the Coordinate Partitioning 
Method but here there is no partitioning of the coordinates. After every time step the 
coordinates are projected at the original constraints. For more detailed information 
see [5]. 

4.6 Overdetermined DAE. 
Another approach is developed by Fuhrer. To prevent the drift from the constraints, 
not only the position constraints but also the velocity and acceleration constraints are 
used. This forms a set of Overdetermined Diiferentiai Algebraic Equations. l i  this 
overdetermined set is discretized by a BDF method, there is no unique solution. 
Therefore a solution in the least square sense has to be found. This approach is used 
in Mechanica MOTION when implicit integration is chosen. See for further detail [5]. 

20 



P 

5. OVERVIEW OF MOTION. 

A brief technical overview of the methods and algorithms used in MECHANICA 
MOTION: 

e 

e 

e 

e 

e 

Coordinate fsrmuiation and equations: 
* 

* 

Kane’s meinoa: transformation from Cartesian coordinates to relative 
coordinates, an order-(n3) method. 
Tree-branch coordinates makes recursive formulation possible, an order- 
(n) method. This formulation is used if the number of coordinates exceeds 
15. 

Sensitivity analysis or design study possible with same equations 
Optimization possible without finit difference methods (explicit derivatives 
available) 
Re-use of equations in new jobs 

Symbolic formulation of equations 
* 
* 

* 
* Large memory requests 

* 
* 

Explicit: Runge-Kutta-45 

Integrators: 
Plot-intetval is maximum stepsize for integrators 
Mechanica’s philosophy is to make their integrators primarily accurate 
and conservative, not necessarily fast. 

* variable stepsize 
* for non-stiff systems 
* error estimation by difference in 4-th /5-th order 

unconditionally stability, developed for stiff DE’S 
history information is used, variable order and stepsize 
need for solving implicit set of equations with Newton Raphson 

Implicit: BDF method for solving DAE’s (from DASSL) 
* 
* 
* 

Preventing constraint violation: 
Baumgarte constraint stabilization for explicit method 
Overdetermined DAE for implicit method 
Flexible beams 

* 
* 

Handled as six internal loads (in the right hand side of the equations). 
Internal damping is a factor on the six stiffnesses of the beam, 
proportional damping. 

21 



P 

6. TESTS WITH MECHANICA MOTION. 

6.1 Introduction. 
At DAF Special Products the multibody package Mechanica MOTION is used for the 
dynamic analysis of complex systems. These systems are mostly landing gear ana 
reconnaissance vehicles. Characteristic for these rnu!tibody modeis, especiaiiy tne 
crash-models for landing gear, is the appearance of discontinuities. Some examples 
are abruptly opening valves, shearing safety pins, impact of tires and wheels and 
Coulomb friction. 

The following questions were explicitly asked by the MOTION users at DAF Special 
Products, before the start of this project: 

0 What’s the difference between explicit and implicit integration? 
0 What integration methods are most suitable for what kind of models? 

0 What’s the influence of discontinuities on the numerical efficiency? 
0 What are the consequences of stiff elements like flexible beams? 
0 What are the effects of introducing damping? 
0 What is the effect of tolerances and accuracies? 
0 What is the influence of Coulomb friction in models on CPU times? 

After discussion the following questions were found to be interesting too: 

Answers to these questions will lead to more insight in MOTION, and in that way, to 
better defined models. Maybe CPU times can be decreased, and if not, the need for a 
certain amount of CPU time is at least better argumented. 

To find answers to the questions above, simple tests have been done with MOTION. 
These tests are described in the following paragraph, results can be found in the 
appendices. Because of the limited time for this project a selection is made, only the 
first five mentioned questions will be investigated in tests. 

A reason for skipping the question about accuracies and tolerances is the badly 
descrjption of the meaning of these parameters. The MOTION Reference Guide is not 
very clear with respect to this topic. Information conflicting with this manual, is 
recieved from customer support. In other words experimenting with parameters that 
have a badly described function is not very useful. The question about Coulomb 
friction was considered less important for DAF Special Products. 

6.2 Stiff and non-stiff systems. 

In order to investigate whether sytems can be classified as stiff, some simple tests are 
worked out. It will be investigated what integration method is used best in what kind of 
situation. Several double mass-spring-damper systems will be regarded. In all cases 
the system will be given a free (damped) motion. The springs have Linsireched 
lenghts of lol =0.1 O m and Io2 =0.3 m. The masses will be given the initial positions xo = 
[0.15; 0.40 m]. The response will be determined by implicit and explicit integration. 
The used CPU time and integration stepsizes will be regarded. Because of the large 
plotinterval, the grafica1 representation of the motions can be misleading (aliasing). 

22 



P 

0.05 - 
O 

Test la. 
This system has widely spread eigenvalues, the high frequency component will damp 
out completely during the simulation time. This system can be regarded as stiff. 

High frequency motion 
I I I I I 

2e7 

200 

Eig. Freq. Hz. 

71 4 
Damp 5 [-I 

0.1 12 

0.4 1 I * 
Stiff system, positions 

5.02 

0.35 
0.3 

0.25 

0.058 

0.15 o-2 1‘ xl 

23 



Test Ib:  

Eig. Freq. Hz. 

71 4 

5.02 

I 

I 
q 200 I 

Damp 5 [-I 
O 

O 

2e5 < 

Non-stiff system, positions 

1 T x2 lowfreq., xl high freq., 
both undamped (aliasing) 

0.4 

0.3 

0.2 f i  xl 

I I I I I 

O 2 4 6 8 time 10 

In this case the the high-frequency component does not damp out and both implicit 
and explicit integrators have to take small timesteps to follow the solution. Although 
the solution contains fast and slow components, for the numerical integration process 
in fact only the high frequency component plays a role since it is present everywhere. 
By definition this systems is not stiff and therefore is best integrated with the Runge- 
Kutta method. 

The advantage of the implicit method is totally lost, no stepsize increase is possible. In 
fact now the explicit method is a bit faster. An implicit step is more expensive than an 
explicit step (solving an implicit set of equations), so when the timesteps are of the 
same order over the whole solution-time for both explicit and implicit methods, explicit 
integration will be cheaper. 

By adding the right amount of damping, this system can be made stiff and it will be 
like test 1 a. In practice this is an important issue. When a system has widely spread 
eigenfrequencies and is badly damped, carefully chosen damping on the high 
frequency components will make the system stiff and CPU times can be decreased by 
using implicit integration. Of course the added damping must match physical reality. It 
will be clear that the advantage is only gained when giJ high frequency modes are 
damped. 

Non-stiff systems, systems with time-scales of the same order along the solution, are 
usually efficiently integrated with an explicit integrator. Again a two mass-spring- 
damper system will be reviewed, but in this case the eigenvalues will be close 
together. Both eigenfrequencies will be relatively low. 

Test IC: 

24 



q 200 1 0.2 - 

0.15 - 

0.1 - 

0.05 - 

Eig. Freq. Hz. 
0.288 

" 

X l  

I I I I 

0.45 1 Non-stiff svstem. Dositions 
Both motions low frequent 

x2 

0.3 
0.25 

There are no parts in the solution that ask different stepsizes, timescales are of the 
same order all along the solution. In this case the explicit integrator shows its 
advantages. As was to be expected it is faster than the implicit method (see appendix 
A). 

Tests Id: 
This svstem has also eigenvalues of the same order, now both frequencies are high. 
For the same reason this is not a stiff system. Just like in test IC, there are no parts in 
the solution that ask different stepsizes. The explicit integrator shows small 
advantage. 

10 

30 

Eig. Freq. Hz. I Qampk[-I I 
0.0026 

0.001 i 

Non-stiff system, positions 

0.3 

0.2 
Both high frequency motions, (aiiasing) 

I 0.1 
1 1 ' 1  I O I '  

I I I I I I I I I I 

1 

time 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

25 



Compared to test 1 c, more CPU time is needed for both explicit and implicit 
integration, because of the presence of high frequencies. In order to capture the fast 
motion the overall stepsizes are smaller than in test 1 c. 

Conclusions Test 1 : 

Tests l a  to I d  show the differences with respect to numerical integration of stiff and 
non-stiff systems. In a stiff system the solution has different timescales along the 
simulated time. At some parts, the fast components ask small timesteps, at other 
areas the high frequencies are damped out completely, only slow components are 
present. A non-stiff system has a solution that contains the same timescale all along 
the solution time. In fact only the fastest component dictates the timestep. 

A stiff system is best integrated with an implicit method for efficiency. Because of the 
unconditional stability of such methods, they obey increasing stepsizes if the solution 
becomes smooth. Non-stiff systems with widely spread eigenfrequencies can be 
made stiff by adding a right amount of damping in order to lose the high-frequency 
components and make an increase in stepsize possible. The importance of damping 
will be reviewed again in the next chapter. Non-stiff systems are best integrated with 
the explicit Runge-Kutìa method. 

6.3 Discontinuities. 
Discontinuities in non-stiff systems do not seem to be the biggest problem, explicit 
Runge-Kutta methods are used, and for non-stiff systems these methods usually 
outperform the other methods [IO]. Discontinuities are handled efficiently for different 
reasons. No history information is used, only recent information is used so sudden 
changes in the solution can be followed. No implicit set of equations needs to be 
solved, so there is no Jacobian possibly getting singular. 

For this reason attention will be paid to stiff systems with discontinuities, since implicit 
BDF methods seem to have more problems with discontinuities. This is also the 
experience at DAF Special Products. Sometimes stiff systems are integrated explicit 
because of the problems with discontinuities in combination with impiicit integration. 
This is also one of the reasons for the approach of MADYMO to use only explicit 
integration: crash-simulation is a sum of discontinuities (see paragraph 4.2.4). 

Test 2: 
The following model is a one mass-spring-damper system. Although there is only one 
eigenfrequency, the system can be regarded as stiff when motion in the solution 
completely damps out. An implicit method is able to take large timesteps in the rest- 
situation (after motion has decayed). An explicit method still needs to take small steps 
in the rest-situation, because the derivative field is convergent (see paragraph 3.4). 
When this system would be integrated over a time period in which no rest-situation 
occurs (rest-situation can be compared with slow component), this would not be a stiff 
system. 

26 



P 

M= 1 kg 
k= le%N/m 
b= 2e2,2e3 and 2e4 Ndm 
IF 0.5 m 
freq.= 1592 Hz 
<= 0.1 [-] 

At t=O the system is in rest. In different tests a variety of discontinuous forces will be 
put on M at t=2 in positive x direction. In all cases the force will reach a maximum 
value of l e7  N, but by different functions. Due to the external force, M will move to a 
new equilibrium position at x=0.6 m. 

It is interesting to look at the influences of the type of force-functions on the CPU time 
needed to overcome the discontinuity. The types of functions that will be reviewed are: 

0 Step-function 
0 Arctan-function with different slopes 
0 Cycloidal-sine-curve^ 

It is interesting to look at the effect of damping too, since an implicit method only can 
take advantage of it’s possibility to increase step-size when high-frequency motion is 
decayed. With normal plot intervals it is not possible to see whether there may be a lot 
of undamped high-frequency motion immediately after the discontinuity. 

Test 2a: Step-function. 

In this test step-functions will be tested on systems with different damping (see 
b 

2 . m  and 
appendix 5). At first the damping is chosen 5=0.01 and with 4 = 

k=l e%, m=l , this yields b=200. 

Two other damping situations are tested: 5=0.1 with b=2e3 Ns/m and 5=1 with b=2e4 
Ns/m. A decrease of needed CPU time can be seen when the system is more 
damped (in the appendix 5). Over critical damping leads to an increase in CPU-time 
again (this is not printed in the appendix). 

It can be concluded that when a system with a high frequency eigenvalue is badly 
damped, a discontinuity will excitate this vibration and the (implicit) integrator has to 
decrease stepsize for a long time (compared to the period of the vibration) in order to 
capture this badly damped motion. In practice this situation can occur without 
recognition, a complex system passes a discontinuity and somewhere in the system a 
badly damped highfïequencjj component is excitated. Since the plot-interval can be 
much larger than the period-time of this vibration, it will be totally invisible. 

In Dutch: ‘ s c h e v e  sinus’. 

27 



Test 2b: Arctan-function. 

The discontinuity is now an arctan function with the ‘vertical part’ at t=2. The rest of 
the system is the same as the critical damped system of test-2a (5=1). 

The arctai: functior: is: 

arc tan(d( r - l ) )+F)  2 

By the parameter A the slope of the arctan can be controlled, the smaller A, the 
smoother the arctan function. With this function the total force of l e 7  N is reached 
too, but since this function forms a less abrupt discontinuity one would expect the 
integrator to pass it faster. For A=l e4 this is not the case, the CPU-time needed for 
the discontinuity is the same as with a step function (see also appendix B). Other 
slopes are tried but no faster calculations are found than the one with the step-forces 
(therefore this is not plotted in the appendix). 

For a less steep arctan-function, A=le3, even an increase in CPU time, compared to 
a step-function, is found. This can be explained by the fact that it will take longer for 
this force to get a constant value and so it takes longer to reach equilibrium position 
and obey step increase of the integrator. 

Only in the weakly damped case for 5=0.01 a decrease in CPU-time is found 
compared with step-functions for an arctan-function with A=l e3. This lead to a CPU 
time of 16.5 sec compared to 19.5 sec for a step-function. 

So the arctan-function, at least in this simple test, does not show much numerical 
advantage. A clear disadvantage of arctan-functions is the fact that they reach only a 
constant value at infinity. This is very inconvenient to the user in practice, one has to 
specify for example the time for the function to reach 99% of its end-value. A smooth 
function that does not have this disadvantage is the cycloidal-sine-curve, discussed in 
the next test. 

Test 2c: Cycloidal-sine-curve. 

The cycloidal-sine-curve is a smooth function widely used as a profile for cam- 
mechanisms because of its convenient mechanical properties. When used as a cam- 
profile the cam-follower has smooth accelerations and little vibrations are excitated. 
For the ‘same’ reasons this function is convenient for numerical integration. 

A cycloidal-sine-curve can be written as: 

with hl the ‘lift-height’ and TI the ‘lift-time’ 

28 



4 
Lifï time 

The lift-height is exactly 
reached with a horizontal 
slope a% the beginning and 
end of the lift-time. Of 
course in stead of the lift- 
time a cam-angle or a 
spring-displacement can 
be read. 

The same system is tested again with the same maximal force of le7  (lift-height) and 
a series of lift-times, this for two damping situations 5=1 and <=0.01. The cycloidal- 
sine-curve is used with lift-times of 0.001, 0.005 and 0.01 sec. For exact comparison 
only the ‘vertical’ part of the CPU-time-curve is regarded, in other words, only the 
CPU-time needed to integrate the discontinuity. 

For the critical damped situation 5=1, with a lift-time of 0.001 sec, the cycloidal-sine- 
curve reduces CPU-time from 0.79 sec, the situation with the stepforce, to 0.43 sec. 
(see appendix B). For a lift time of 0.01 sec even 0.35 sec is reached, this is 44% of 
.79. These results were not expected since the arctan function showed no advantages 
at all. For the less damped system with 5=0.01 the CPU time is reduced from 16.2 to 
13.8 sec. for a fast lift-time of 0.001 sec. For a bit slower lift-time of 0.01 sec this is 
even reduced to 3.82 sec, a reduction to 24% of the value with the step-function. One 
test is done with a longer lift-time of 0.02 sec but in that case a small increase in CPU- 
time is found for the same reasons as with the arctan-test: it takes longer for the 
system to reach a stable situation, the time area where small stepsizes have to be 
take is longer. 

It can be concluded that the cycloidal sine curve shows numerical advantage 
compared to step-functions. Two effects play a role: 

0 The discontinuity itself is smoother, so it forms less problems for the 
integrator. 

0 The smoother discontinuity excitates less (high-frequency) vibrations 
asking for small timesteps. 

This knowledge may be used in real models. The function can be used for input tables 
with forces as function of displacement, explicit time dependent forces and springs 
that are conditionally active etc. see figure. 



P 

Force F 

/ / This discontinuity in 
L, IC aiiffness ca1 be 
replaced by a part of 
a smooth cycloidal- 
sine-curve. 

+hm -+i 

Smoothening by means of a 
cycloidal-sine-curve will also 
match better the physical 
reality. In practice ‘sharp 
edges’ do not occur. By the 
parameieïs lift-height afid 
lift-time, and for example 
combinations of lineair 
functions with (parts of) 
cycloidal-sine-curves, 
desired functions can be 
made. 

6.4 Flexible Beams in MOTION. 
A flexible beam in MOTION is in fact a six-degree-of-freedom load. A ‘beam-load’ can 
be placed between two joints and the load will consist of six moments and forces all 
function of the six internal degrees of freedom of the beam. Since the beam in 
MOTION is modeled as a load the beam-element itself is massless. The mass of the 
beam in the system has to be divided and put on the two part-joints. When flexible 
beams are used in a model, MOTION gives the advice to use a stiff-system- 
integrator, in other words the implicit BDF method. 

Systems with flexible beams can become stiff, since the six degrees of freedom of the 
load experience very different stiffnesses. The masses at the ends of the beam are 
the same and for slender beams the axial stiffness is much higher than bending and 
torsion stiffness. This results in a system of six mass-spring-damper systems with 
totally different eigenfrequencies. When the high frequency axial vibration is damped 
out slow components stay in the solution and this can be regarded as a stiff system. 

The internal damping of the beam-element can be input in MOTION with the beam- 
load input table, default this damping coefficient is 0.001. This damping value is 
multiplied with the six stiffnesses’ . So for slender beam geometries, the axial 
translational degree of freedom will have the heaviest damping. Mass terms are equal 

it is trivial that the axial motion 
b 

for all six degrees of freedom so with 5 = 
2 . -  

has the largest 5 too and will damp out faster than the other motions. 

It can be found in the MOTION Help: The damping value is multiplied with the ‘stiffness matrix’ but 
there is no real stiffness matrix in the equations since the six stiffness terms appear on the right hand 
side of six equations, so they are handeled as external loads as function of positions. 

30 



P 

Test 3: Stiffness and damping. 

In this test the stiff character of the beam element will be reviewed. The effect of the 
damping value on the vibrations will be regarded. 

A standard flexible beam in MOTION, with a length of 0.5 m, height of 0.05 m and 
width of 0.02 m, is fixed to the ground with one end, the other end is attached to a 
mass of 50 kg. Then this beam is given initial conditions on all six degrees of freedom 
(rotations and positions). A free-damped motion will result. This is integrated with a 
very small plot interval (i.e. max. integration time step). As was to be expected the 
axial motion is of another frequency-order than the other five motions. 

For different damping values. on the left hand side (appendix C) the detailed motion of 
the axial translational vibration is showed, on the right hand side the other five 
degrees of freedom are found. Indeed the axial vibration is of a higher frequency than 
the other five. It can be found that the axial motion is critically damped, when the 
damping value of 6.8e-4 is used. The other vibrations are damped too by the internal 
damping, but they are far from critically damped (slender beam). The damping value 
for which critical damping occurs depends on the geometry of the beam, the attached 
mass etc. If for example this test is done with the same beam but with a mass of 150 

kg (3 times more) critical damping will occur for 1.18e-3 (& times more). Also for a 

mass of 1 O kg (5 times less) critical damping occurs for 3.04e-4 (A times less). This 
shows again that a flexible beam in MOTION is a set of six mass-spring damper 
systems. 

Test 4a: Influence of damping on CPU-times. 

What is the influence of this damping value on the CPU time? The following test is 
made: A flexible beam (with different geometry and mass as with test 3) is connected 
to the ground by a rotational pin-joint. The beam is given an initial rotation of 1 rad. It 
can freely rotate by gravity until the angle 6 between the beam and the horizontal axis 
is zero. Then a stiff rotational spring becomes active. 

lm m= 20kg In this case the fastest 
I= 0.5 m CPU-time is found with 
IXX= le-9 m: the default damping value 

of 0.001 : 160 sec. (see lyy= le-9 m 

appendix D). When the A= 0.001 m2 
E= 1 .gel 1 N/m2 

axial motion is studied in 
detail again, it is found 

that for this system the motion is critically damped for 0.001. It is difficult to find the 
amount of damping for which the system is exactly critical damped, but in these tests 
it was not very sensitive: 5 % more or less damping than criticai darnping is hardiy 
found in the CPU-curve. 

31 



P 

In practice it would be interesting to test each flexible beam with a small plot-interval 
(maybe isolated out of the system with a realistic mass term) for the right amount of 
damping, in order to achieve critical damping and optimal performance. 

Test 4b: Locking axial motion. 

Now the effect of locking the axial translational d.0.f. by means of a constant length 
driver is investigated. The high-frequency axial vibration wili disappear. The five left 
d.0.f. will form a non-stiff system since their eigenfrequencies are of the same order. 
Indeed when this system is integrated explicitly a CPU time of 90 sec. is found 
(appendix D). 

Now even the implicit method will be a bit faster than in test 4a, since no high- 
frequency motion needs to be integrated. Implicit integration of this non-stiff system 
takes 150 sec. That is slower than explicit, but a little faster than implicit with axial 
vibration (test 4a). 

When a system is stiff only because of flexible beams and one is not interested in the 
high-frequency axial motion, then it may be interesting to lock this motion. In that case 
explicit integration can be used (compare the CPU-time of 90 sec. in this test with the 
160 sec. of test 4a). 

Even when the system is stiff because of flexible beams in combination with other 
reasons, it may be an advantage too to make the beams non-stiff by this method. 
Then still implicit integration must be used (since the rest of the system is stiff) but the 
beams do not ask small stepsizes (compare the CPU-time of 150 sec. in this test with 
the 160 sec. of 4a). 

Test 4c: Explicit integration of flexible beam. 

This tests (appendix D) shows that a normal flexible beam, with free axial stiffness, 
must not be integrated with an explicit integrator. A CPU-time of 1200 sec. must be 
faced, compared to test 160 sec. with an implicit integrator in test 4a. This situation 
can be compared with explicit integration in test 1 a. 

32 



7. DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

Discussion 
In the scope of this project, relevant theory of multibody dynamics is reviewed. This 
has led to a clearer insight in backgrounds and methods in general, and especially in 
methods used in the multibody package MECHANICA MOTION. Some of the black- 
box character of MOTION has been taken away. Practical tests have explained the 
questions stated in chapter 6. Results of these simple tests can be used in more 
complex models. The philosophy of Pro/Mechanica is to make user-friendly software, 
not to give the user insight in methods and backgrounds. 

Conclusions 
Integrators in MOTION are more conservative and accurate than fast. 
A stiff system has different timescales along the simulation-time, in other words, during 
integration high-frequency motion is present at some part of the solution, and is 
completely decayed at another part. 
Stiff systems are best integrated with the implicit BDF method. During integration of the 
solution of a stiff system, timesteps of different magnitude are required. The BDF method 
allows stepsize increase in a convergent direction field without losing stability. 
Effectively damping of unnecessary high-frequency motion, can lead to a situation in 
which implicit integration is faster. In fact by making the system stiff it is more suitable for 
implicit integration. 
A flexible beam is modeled in MOTION as a six degree of freedom load. These six loads 
depend on the translations and rotations between the two end-points of the beam. For 
slender beams the axial motion has a frequency of higher magnitude than the other five 
degree of freedoms. When this motion damps out during solution, the beam can be 
considerd as stiff. 
Internal damping of flexible beams is presented by i! factor on the six stiffnesses 
(proportional damping). The internal damping can have great influence on needed CPU 
times. Badly damping of the (axial) motion leads to unrealistic small timesteps and large 
CPU times. 
Cycloidal-sine-curves lead to less discontinue systems. Numerical advantages are gained 
in a test with cycloidal-sine-curves functions as external forces. These smooth functions 
can be used in a lot of practical situations. 

Recommendations: 
e 

e 

Test the influence on integration of accuracy, assembly and velocity tolerance' . 
Try to extrapolate results from the small tests to more complex realistic models. 

* 
* 

look for hidden, unnecessary badly damped high-frequency vibrations. 
try out the use of smooth cycloidal-sine-curves in real models. 

o Compare a representative model run with MOTION, with another multibody package. 

* A received fax from Customer Support Germany can  b e  of use with this. 

33 



P 

References 

[l] E.J. Haug 

P.E. di kravesh 

A.A. Shabana 

A.Sauren 

P.M.E.J.. Wijckmans 

[6] W. Schieten 

T.R. Kane 

D.A. Levinson 

R.M.M. Mattheij 

Reusken 

Computer-Aided Kinematics and Dynamics of 

Mechanical Systems, Vol.1. Allyn and Bacon, 1989. 

Computer-Aided Analysis of Mechanical Systems. 

Prentice Hall, 1988. 

Computational Dynamics. 

Wiley-lnterscience, 1994. 

Multibody Dynamica, 

Dictaat TUE 4659. 

Conditioning of Differential Algebraic Equations and 

Numerical Solution of Multibody Dynamics. 

Ph.D. thesis. TUE 1996. 

Advanced Multibody System Dynamics. 

Kluwer Academic, 1993. 

Dynamics: Theory and Applications. 

McGraw Hill, 1985. 

Numerieke Analyse van gewone Differentiaal 

vergelijkingen, Dictaat TUE 2466. 

Numerieke Methoden en programmatuur, 

Dictaat TUE 2434. 

The Mathworks MATLAB SIMULINK User's Guide. 

34 



Appendix 

Test results: 

Test 1: 

Test 2: 

Tesi 3: 

Test 4: 

Stiff and non-stiff systems. 

Discontinuities. 

Flexible beams. 

Flexible beam with discontinuity. 

1 



Test1 : Stiff and non-stiff systems. 

This serie of tests studies double mass-spring-damper systems, both stiff and non-stiff. See 
chapter 6.2 for descriptions. 

Test 1 a, 
A stiff system is integrated both implicitly and explicitly. Mention the difference in CPU time 
and required stepsize. Implicit integration (above), is much faster than explicit integration 
(be!^w). 

Testla, implicit, CPU time Testla, implicit, average step size 

8~ 

O 2 4 6 8 1 0  
time 

O 2 4 6 8 1 
time 0 

Test l a ,  explicit, CPU time Test 1 a, explicit, average stepsize 
0.0008 

0.0006 

0.0004 

20 o. 0002 

O 
O 2 4 6 8 10 

time 
O 2 4 6 8 10 

time 

2 



Test 1 b. 
This test is almost the same as test 1 a, in this case without any 
damping. The implicit integration loses its advantage, high-frequency 
motion is present during the whole simulation time, stepsize increase 
can not occur. This is a non-stiff system. 

600 -- 
4.OOE-O5 

400 -- 

2.OOE-O5 

Test 1 b, implicit, CPU time 
, \  

800 T 

--r 
- -  

I I I I I 

Test 1 b, implicit, average stepsize 
6.OOE-O5 T 

4.00E-05 - -  

O 2 4 6 8 time 10 O 2 4 6 8 time 10 

Test 1 b, explicit, CPU time (sec) 

T 500 

O 2 4 6 8 time 10 

--. 
3 



Test 1 c. 
This is a non-stiff system, both 
eigenfrequencies are of the same low 
magnitude. Again an explicit method shows 
to be slightly faster. 

Test IC, implicit, CPU time (sec) 31 

O 2 4 6 8 time 10 

Test IC, explicit, CPU-time (sec) 
2 - r  

O 2 4 6 

'.O4 1 Test IC, implicit, average stepsize (sec) 

O-O3I  o. 02 

I I I I 1 

O 2 4 6 8 time10 

Test IC, explicit, average stepsize (sec) 
0 . 0 6 ~  

I 

i 
o.o2 t / 

piot intewai 0.1 sec. 

O > 
O 2 4 6 8 time 10 

4 



Test 1 d. 
Here both eigenfrequencies are of the same high magnitude. Absolutely spoken 
this test takes more CPU time than test IC. The reason for this is the need for small 
timesteps in order to capture the fast motion. Again for a non-stiff system, explicit 
integration is a bit faster 

1.20~-04 - Test Id, explicit, average stepsize 

70 - Test Id, implicit, CPU time (sec) 8E-05 Test Id, implicit, average stepsize (sec) 
60 - 
50 - 
40- 
30 - 
20 - 2E-05 
10 - 

6E-O5 

4E-O5 

O I I I OE+OO 
time 1 O 0.2 0.4 0.6 0.8 time 1 O 

0.2 0.4 0.6 0.8 

5 



Test 2: Discontinuities 

2 

Test 2 studies the behavior of a one-mass-spring-damper system with respect to different 
discontinue external forces. See chapter 6.3 for description. 

0.04 

0.02 

-- 

J 
I I I I 

Test 2a. 
The discontinuity is a step-force at t=2 of le7  N. Different damping values are tested, from 
underdamped to critically damped situations. All situations are integrated implicitly. Mention 
the influence of damping on the CPU time. The discontinuity resulted by the ctep-fsrce is of 
less influence if the system is critically damped. In the badly damped case the high frequecy 
motion, excitated by the step-force, requires small timesteps and leads to long CPU times. 

1.6 

1.2 

0.8 

0.4 

Test 2a, average stepsize (sec) Test 2a, CPU time (sec) 

2o T / 0.06 T 

-- 

-- 

-- 

-- 

;L!L 4 O 0.02 

3 time 4 O 1 2 3 time 4 O 1 2 

+0.1 

Test 2a, CPU time (sec) 

4 T  
Test 2a, average stepsize (sec) 

0.06 T 

5=1 

Test 2a, average timestep (sec) Test 2a, CPU time (sec) 

O 1 2 3 time 4 

0.06 T 

O 1 2 3 time 4 

6 



Test 2b. 

No numerical advantages are found with an ‘arctan-function shaped’ discontinuity. 
Other arctan-functions with different slopes even increase required CPU times. 
Mention the large dip in the stepsize curve, this is due to the fact that the function is 
still changing for a !mg  time (Ir! fact ti!! infinity).The fact that the mass does not reach 
an equilibrium state, is not very convenient for practical use. The same problem is 
found ai the start, where does the function ‘start growing’? 

Test 2b, CPU time Test 2b average stepsize(sec) 0.06 T 

3 time 4 O 1 2 3 time 4 O 1 2 

7 



Test 2c. 5=1 

A cycloidal-sine-curve is used as external force. The lift-height is always the same: 
l e 7  N, lift-times are varied from 0.001 to 0.01 sec (for definitions, see page 9 of this 
appendix). On this page damping is critical: 5=1. Compared to the CPU-times found in 
test 2a, numerical advantage is gained. These smooth functions form a smaller 
discontinuity for the integrator. 

0.06 

0.04 

0.02 

0.8 -- 

o ,  

- 

-- 

-- 

I I I 
I i 

Lift-time 0.005, stepsize (sec) Lift-time 0.005, CPU-time (sec) 

0.4 

O 

4 time O 1 2 3 time 4 O 1 2 

Lift-time 0.01, CPU time (sec) 0.06 T Lift-time 0.01, stepsize (sec) 

0.02 0.4 

II Y 
O 1 2 3 time 4 O 1 2 3 time 4 

a 



test 2c. 5=0.01 
Again cycloidal-sine-curves with different lift-times, now for a weak damped situation: 5=0.01. 
A lift-times of 0.01 sec reduces the CPU time remarkably (compared to 2a). The smooth 
function excitates less high frequency motion. 

a -  

6 

4 

2 

O 

Lift-time 0.001, CPU-time (sec) 

/ Lift-time 0.001, stepsize (sec) 
l8 T 0.06 T 

Lift-time 0.02, stepsize (sec) 

l 

I I I 
I 

. 0.02 

-- 

-- 

O 1 2 4 O 1 2 3 time 4 time 

Lift-time 0.01, CPU-time (sec) 
Lift-tim e 0.01, stepsize (sec) 

0.06 T 

~~ O O 1 2 3 time 4 

O 1 2 3 time 4 

O 1 2 3 time 4 O 1 2 3 time 4 

Mention the slight increase in CPU time for the lift-time of 0.02 sec: it takes longer to reach the 
equilibrium state. 

9 



Cycloidal sine curve I 

Lift-time damping 5=1 

Lift time 

damping 5=0.01 

An overview of the CPU-times found in tests 2c. This must be compared with the table below: 
results of the step-function from test 2a. 

0.001 

0.005 ’ 
0.01 

Cycloidal-sine-curve 

0.43 13.8 

0.42 8.8 

0.35 3.82 - 

CPU time for discontinuous part (sec) 

damping 5=1 

0.79 

damping C=û.OS 

16.2 

CPU times found in test 2a with a step-force of l e 7  N: 

CPU time for discontinuous part (sec) 

There are no plots of this lift-time 1 

10 



Test 3: Flexible beams 
Mention the different frequency magnitudes of the axial motion and the other five d.0.f. of a 
slender beam. 

damping value=0.001 (default) 

0.46 

Test 3, other degrees of freedom (m), (rad) 
Tesi 3, detail axiai vibration (m) 

_,d. .-.__ 

I 1 I I ! 0.49 

O 0.004 0.008 0.012 0.016 0.02 
time time 

I I 1 I 

-- 

damping value=0.0001 

0.49 -- -0.09 

I I I I I 

damping value=0.0005 

Test 3, other degrees of freedom (m), (rad) 



Test 4: Flexible beam with discontinuity. 

Test 4a. 
The influence of the damping value on the CPU time is tested. Fastest integration is found 
with a damping value of 0.001. On the righthand side the rotational motion of the beam can be 
viewed, the damping in the motion is only caused by the internal damping of the beam load. 

Damp= 0.001 ;CPU time (sec.) 

80 

40 

O 1 2 3 4 time 5 

220 - 
damp= 0.002, CPU time 

140 -- 

60 -- 

5 time 3 
-20 - 

O 1 2 

Rotation joint axis (rad) 

0.6 

0.2 

-- 

-- 

I , -i 

-0.2 jJ 1 2 3 4 time 5 

1.2 T 
Rotation joint axis (rad) 

A- - 

O 1 2 3 4 time 5 

12 



test 4b. . 
This test studies the effect of locking the axial motion by a constant lenght-driver. In that case 
the beam is no longer a stiff element, and so is best integrated explicitly: 

3.00E-04 

2.00E-04 -- 
800 -- 

1.00E-04 

O.OOE+OO 

1 O0 

60 

20 

- 

-- 

I I I I 
I I 

I- 
-20 45 

Explicit integration: 

average stepsize (sec) 

I I I I 

1 2 

Implicit integration: 

3 4 5 
time 

CPU time (sec), implicit 
120 

60 

30/ O 

O !  I 
I I I I 

O 1 2 3 4 time 5 

Average timestep (sec), implicit 
0.006 T 

0.004 

0.002 

O 
O 1 2 3 4 time 5 O 1 2 3 4 time5 

test 4c 
This trivial test shows that a standard slender beam (with the same configuration as test 4a), 
is better not integrated explicitly. Compare these CPU times and time-steps with 4a. 

13 


	Voorblad
	Table of contents
	Summary
	1. Introduction
	2. Multibody dynamics and formulations
	3. Numerical integration methods for solving ode's
	4. Numerical methods in multibody dynamics
	5. Overview of motion
	6. Tests with mechanica motion
	7. Discussion, conclusions and recommendations
	References
	Appendix

