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Abstract

At the RIKEN Brain Science Institute membrane potential of single neurons is recorded as function
of the applied current stimuli. This particular study deals with the identification of the input-output
dynamics of these single neurons. The goal is to fit the parameters of a known neuronal model on
the measured data. The model to make the fit with was chosen to be the Hindmarsh-Rose 1984
model. Common identification techniques can not be used in combination with the Hindmarsh-
Rose model because the model can not be transformed into a required canonical form. Therefore,
an identification algorithm is developed making use of contracting and wandering dynamics. The
algorithm is successfully validated by simulations with generated signals. A fit with the original
Hindmarsh-Rose model to the recorded signals is not obtained. However, there is strong evidence
that it is possible to make a fit with a slightly modified model.





Contents

1 Introduction 4
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Neuronal Dynamics 6
2.1 Signalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Tonic Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Single Neuron Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Hindmarsh-Rose Neuronal Model 10
3.1 Neuronal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 The 1982 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 The 1984 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Identification: Parameter and State Observations 16
4.1 Adaptive Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Attracting and Wandering Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Contracting Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Wandering Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Searching Domain Ωβ × Ωd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Main Results 26
5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions and Recommendations 32
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Gains Df,β and Df,d 36

B Recorded Signals 38
B.1 Recordings Series 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2 Recordings Series 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C Numerical Algorithm 46
C.1 Matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.2 C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2



D Draft Paper: Non-uniform Attractivity, Meta-stability and Small-gain Theorems 54
D.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
D.4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

D.4.1 Emergence of the trapping region. Small-gain conditions . . . . . . . . . . . . 58
D.4.2 Characterization of the attracting set . . . . . . . . . . . . . . . . . . . . . . . . 61
D.4.3 Separable in space-time contracting dynamics . . . . . . . . . . . . . . . . . . . 63

D.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
D.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
D.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
D.8 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
D.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3



Chapter 1

Introduction

At the RIKEN Brain Science Institute (BSI) in Wako-shi, Japan, different fields of neuroscience are
explored. The institutes research activities can be divided in the following groups:

• Understanding the Brain - what does it mean to be human?

• Protecting the Brain - can humans escape from disease and aging?

• Creating the Brain - what can we learn from the human brain?

• Nurturing the Brain - how does the human mind develop?

Furthermore there are the Advanced Technology Development Group, which focuses on developing new
materials and research technology, and the Research Resources Center, which provides internal research
support. The institute has about 40.000 square meters of laboratory and common space and there are
over 400 employees.

In a recently established collaboration between two laboratories at Riken BSI, the Laboratory for Per-
ceptual Dynamics, part of the Computational Neuroscience Research Group (Creating the Brain), and the
Semyanov Research Unit, part of the Neuronal Circuit Mechanisms Research Group (Understanding the
Brain), a project is set up dealing with identification of the input-output behavior of single neurons.
The Semyanov Research Unit is capable of recording membrane potential, membrane conductances
and even ionic currents in living single neurons or ensembles of neurons. The main idea of this
project is to take a known, mathematical or biophysical, neuronal model and fit the models param-
eters to measured data. Given that neuronal models are nonlinear and the recordings are corrupted
with noise, this is a real challenge. After a successful estimation of the parameters, the model will
be augmented such that it can describe substance induced tonic currents. These tonic currents are
activated by a neurotransmitter that is received by extra-synaptic receptors. The relatively simple
neuronal models can help understanding the complex signalling mechanisms in our brain on a ele-
mentary level, i.e. on the level of the single neuron. Realistic artificial neural networks, using these
models as engines, can be build and compared with measured signals. Ideally, the identified neurons
can be used building artificial brains.

In Chapter 2 a short introduction to neuronal dynamics is given. Some of the measurements of the
single neurons that have been made and how these recordings are obtained can be found in this
chapter as well. In the next chapter some background information of neuronal models is given. Es-
pecially the Hindmarsh-Rose model will be treated extensively. After these necessary preparations a
start can be made with the identification process. The machinery of the used identification algorithm
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is explained in Chapter 4, followed by some obtained results which are written down in Chapter 5.
Chapter 6 completes the report with conclusions and recommendations.

1.1 Notations
Throughout this report the following notations will be used. The symbol R denotes the field of real
numbers. The symbol R+ indicates the positive real numbers. The Euclidian norm in x ∈ Rn

is denoted by ‖x‖. For a vector field f on Rn and a function g on Rm we denote by Lk
f g the kth

directional derivative of g with respect to f thus L0
fg = g, Lk+1

f g = Lf

(
Lk

f g
)

. By Ln
∞[t0, T ] we

denote the space of all functions f : R+ → Rn such that ‖f‖∞,[t0,T ] = sup{‖f(t)‖, t ∈ [t0, T ]} < ∞,
and ‖f‖∞,[t0,T ] stands for the Ln

∞[t0, T ] norm of f(t). Let A be a set in Rn, and ‖ · ‖ be the usual
Euclidean norm in Rn. By ‖·‖A the following induced norm is denoted:

‖x‖A = inf
q∈A

{‖x− q‖}.

Finally, the notation ‖x‖A∆
stands for the following:

‖x‖A∆
=

{ ‖x‖A −∆, ‖x‖A > ∆
0, ‖x‖A ≤ ∆

for some ∆ ∈ R+.
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Chapter 2

Neuronal Dynamics

The brain computes! Sensory signals are transformed into various biophysical variables, such as
membrane potential and firing rates, which are subsequently used in various processes we call com-
putations. An important element in this signaling process is the single neuron. In the beginning
neurons were regarded as single functional units, which could only act in active or resting state. In
the last 50 years the view on signalling and the role of single neurons has been changed tremen-
dously, realizing now information is encoded in membrane potential and firing rates and signals
decay in distance [1].

2.1 Signalling
A single neuron can be represented as an electrical circuit, build of different compartments consisting
of capacitors, conductances and leak voltages. Each neuron has a resting state with corresponding
resting potential Vrest, which value can vary from as high as -30mV to as low as -90mV depending
on circumstances. In this state the neuron is in a dynamical equilibrium. Ionic currents, particulary
sodium and potassium current, are flowing across the membrane in such a way that the net current
is zero. Applying some stimuli will force the neuron from this equilibrium and make the neuron
excitable. If the stimuli is large enough such that a threshold value, the threshold potential Vthres, is
crossed, the neuron will generate action potentials and starts to fire. On the other hand, if the stimuli
is such that Vthres is not passed, the neuron will return to its resting state.

We distinguish two different kind of stimuli; Depolarizing stimuli and hyperpolarizing stimuli. A
depolarizing stimuli, or outward current (+Iinj), that is a positive charge flowing from the inside of
the neuron to the outside, will make the inside of the cell more positive. In neuroscience the neuron

a b c

Figure 2.1: Examples of spiking dynamics. a) Regular spiking. b) Spiking with frequency adap-
tation. c) Bursting.
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is said to be depolarized. An inward current (−Iinj) will make the inside of the cell more negative, the
neuron is called hyperpolarized. The signals generated by the neuron as response on stimuli do exist
in various modes depending on the type of neuron and stimuli. Figure 2.1 shows some examples of
different modes of spiking dynamics or spike trains. Detailed information about biophysical features
and different spiking modes can be found in [6].

2.2 Tonic Currents
Not too long ago, scientists thought communication between neurons took only place in specific
contact areas, synapses. There do exist two types of synapses; Electrical synapses, also referred to
as gap-junctions and the more common chemical synapses. Electrical synapses provide a direct,
high-conductance pathway between neurons, whereas chemical synapses do not offer such a direct
pathway. At chemical synapses there is a presynaptic input at the presynaptic side of the synapse,
which is subsequently translated into a chemical signal. Receptors on the postsynaptic side do re-
ceive these chemical signals and transform them back into electrical signals. During this process of
transitions there is a chance the signal is shunted by the extracellular space. Furthermore there are
also chemicals that are waisted in terms of spillover (Figure 2.2). Quite recently scientists discovered
that besides synaptic receptors also extra-synaptic receptors do exist, mainly tonic GABAAreceptors.
These GABAAreceptors are sensitive for the chemical gamma-aminobutyric acid (GABA), one of the
major inhibitory neurotransmitter in the human body, and give rise to GABA mediated tonic cur-
rents. These tonic currents are, in their turn, said to be modulating the gain and lowering the firing
frequency and have therefore influence on the signalling process [19]. One of the goals of the project
is to model the influence of tonic currents in terms of signalling. Since less is known about the
dynamics of tonic currents, the implementation of the mechanism making a model capable of de-
scribing tonic currents is yet unknown. Assuming a mapping of the influence of tonic currents at the
membrane potential can be made, one can build more realistic single neurons, which can be used in
artificial networks. Nowadays neurons in neural networks are coupled via direct linear or non-linear
interconnections. Building artificial neural networks with this "new" neuron demands a continuous,
distributive approach, which is more close to real world situation.

‘Phasic’ GABA receptorA ‘Tonic’ GABA receptorA

spillover

Axon

Neighboring
synapse

Figure 2.2: Neuron in its natural, chemical environment. Extra-synaptic receptors do receive
chemicals, GABAA, due to spillover of released chemicals from the axon and other neighboring
synapses.
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200 mm

Figure 2.3: Neuron from the hippocampus of mice. One can clearly see its soma, axon and
dendrites. Photo is taken by the Semyanov Research Unit

2.3 Single Neuron Measurements
An important part of this project is the recording of signals of single neurons. We require for the iden-
tification process that at least some input-output behavior of the neuron is known. The Semyanov
Research Unit at Riken performs measurements in a current clamped setup of membrane potential
of single neurons from the hippocampus of mice. Such a neuron is shown in Figure 2.3. The mea-
surement of signals of neurons is a very delicate process. First the neuron has to be extracted from
a slice of the hippocampus, followed by inserting a micropipette in its membrane. In this process
the cell can easily be destroyed. The micropipette acts as measurement probe and stimulator. Be-
cause this micropipette does not disturb the flow of ionic currents across the membrane, the current
clamped setup is close to the natural situation of the neuron. In the current clamped setup a depo-
larizing or hyperpolarizing current input is applied to the neuron. This injected current is kept at
a fixed level (clamped) via some feedback and therefore the membrane potential will change. This
membrane potential is recorded and regarded as output of the neuron. The temperature during the
measurements is controlled which is necessary since the membrane conductances might be influ-
enced by temperature gradients. In this setup measurements are obtained of a neuron in its natural,
chemical environment. A consequence is that the influence of tonic currents is measured as well.
In the sequel this type of measurement will be referred to as the control situation. To eliminate the
tonic currents the antagonist picrotoxin (PTX) is used which blocks the tonic GABAAactivated re-
ceptors. Measurements of where tonic current are blocked will be denoted as the PTX case. These
measurements have to be performed after the measurements in the control case since the treatment
with PTX is irreversible. The equipment in the laboratory did allow measurements with sampling
rates up to 6kHz. A performed measurement of the membrane potential of the neuron in the control
situation is depicted in Figure 2.4. Appendix B shows all the recorded signals.
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Chapter 3

Hindmarsh-Rose Neuronal Model

Throughout the years, many neuronal models are developed for different purposes. These models
vary from true biophysical ones, like the Hodgkin-Huxley model, to simplified models for studying
synchronization theories in large ensembles of neurons. Which model to use depends mainly on the
biological features that need to be described and the costs of implementation.

3.1 Neuronal Models
In this section a brief overview of different neuronal models will be presented. More detailed infor-
mation can be found in [6].

a. Biophysical models
One of the most important model in computational neuroscience is the 1952 Hodgkin-Huxley model
[5]. Hodgkin and Huxley gave an explanation of action potential generation in the axon of the giant
squid in terms of time- and voltage-dependent sodium and potassium conductances, GNa and GK re-
spectively. The state of GNa is governed by three activation particles m and one inactivating particle h.
The sodium conductance is regulated by four activating particles n. The dynamics of these particles
is given by first-order differential equations consisting of voltage dependent terms, time constants
and steady-state activation or inactivation, bringing up the total number of differential equations to
four. Morris-Lecar suggested a simple, two-dimensional model to describe oscillations in barnacle
giant muscle fiber. Just like the Hodgkin-Huxley model, the Morris-Lecar model consists of a mem-
brane potential equation and two currents. However, this model contains two activation particles n
and m, from which only particle n is described using a differential equation. Although this model is
able to reproduce various types of spiking, it can not exhibit bursting modes without adding an extra
equation. These biological models are beloved by biophysicists since they are biophysically plausible
and the parameters are in most cases measurable. However, they are very expensive in terms of flops
and the number of parameters is large. To obtain a fit of the recorded signals to a biophysical model
it is required to measure all individual ionic currents. Since for this study only input-output signals
are measured it is not possible to use a biophysical model.

b. Integrate-and-Fire models
The most simple neuronal model is the so called Integrate-and-Fire model, which is widely used
in computational neuroscience. Perfect Integrate-and-Fire models describe the behavior in a sub-
threshold domain where the neuron is modeled using only a single capacitance. When the threshold
is crossed the neuron is said to be firing. Integrate-and-Fire models come in several flavors. One
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popular variant of the Integrate-and-Fire model is the Leaky-Integrate-and-Fire model,

v̇ = I + a− bv, if v ≥ vth, then v ← c, (3.1)

where v equals the membrane potential, I is the input current, a, b, c are parameters, and vth repre-
sents the threshold value. If state v passes vth,the state is resetted to c. Although these models are
efficient, they can only feature very little types of spiking behavior. Other variants such as Integrate-
and-Fire-or-Burst or Integrate-and-Fire-with-Adaptation are able to produce more of the biological
features. However, none of the Integrate-and-Fire models do give a realistic description of the spik-
ing dynamics of the neuron and therefore they are actually only used to test analytical results or
simulate very large ensembles of neurons.

c. Phase-plane models
Between the biophysical models on the one hand and the simple Integrate-and-Fire models on the
other hand, there is a third category of models which we will refer as phase-plane models, since its
dynamics can be relatively easy understood throughout phase-plane analysis. These models can ex-
hibit a large number of biophysical features and are relatively simple and efficient. These proporties
make phase-plane models very suitable for the goals of this particular project. The identification will
therefore be based on one of the most complete phase-plane models, the Hindmarsh-Rose model.

3.2 The 1982 Model
The Hindmarsh-Rose equations are developed to study synchronization of firing of two snail neurons
without the need to use the full Hodgkin-Huxley equations. The natural choice that time was to
use the FitzHugh-Nagumo model, which is more or less a simplification of the Hodgkin-Huxley
equations. FitzHugh and Nagumo observed independently that in the Hodgkin-Huxley equations,
the membrane potential V (t) as well as sodium activation m(t) evolve on similar time-scales during
an action potential, while sodium inactivation h(t) and potassium activation n(t) change on similar,
although slower time scales. As a result, a model simulating spiking behavior can now be represented
by the following equations

ẋ = a(y − f(x) + I(t)),
ẏ = b(g(x)− y) , (3.2)

where state x represents membrane potential and y an recovery variable. The function f(x) is cu-
bic, the function g(x) is linear, parameters a, b are time constants and I(t) is the external applied
or clamping current as function of time t. However, this model does not provide a very realistic de-
scription of the rapid firing of the neuron compared to the relatively long interval between firing. In
their attempts to achieve a more realistic description of firing, Hindmarsh and Rose did replace the
linear function g(x) in the FitzHugh-Nagumo equations with a quadratic function. How this slight
modification makes the model capable describing rapid firing with a long interspike interval can be
explained looking at the nulcline diagram, shown in Figure 3.1. When the limit-cycle crosses the x-
nulcline at C, it is trapped in the narrow channel between the nulclines and can leave only near point
A. In this channel, both ẋ and ẏ are small since the state is close to both nulclines and therefore
the state changes slowly, which gives rise to a large, more realistic interspike interval. Furthermore,
this model gives an explanation for the approximately linear relationship between firing frequency f
and the applied external current I(t). Let the interspike interval τi be the time spent in the narrow
channel. From a linear combination of the equations (3.2) we obtain

bẋ + aẏ = ab (g(x)− f(x)) + abI. (3.3)
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Figure 3.1: Nulclines ẋ = 0, ẏ = 0 (thin lines) and �ring limit-cycle (thick line) of the 1982 model.

Integration of (3.3) from the time the state enters the channel t = 0 till the time the channel is
left t = τi and ignoring the term ab (g(x)− f(x)) since in the channel f(x) ≈ g(x), results in the
following expression

b∆x + a∆y ≈ abIτi, (3.4)

where ∆x and ∆y are the changes in the x and y when the state is in the narrow channel. Because
∆x and ∆y are not much affected by changes in I , the firing frequency will scale linearly with the
applied current

f ∝ 1
τi
∝ I. (3.5)

3.3 The 1984 Model
Although the 1982 model provided a more realistic description of the rapid firing, the model does not
exhibit many biological features of the neuron such as bursting and adaptation. In order to let the
model describe triggered firing, Hindmarsh and Rose realized the model required more than the one
equilibrium point of the 1982 model. At least one point for the subthreshold stable resting state and
one point inside the firing limit cycle. Since the nulclines in the former model are very close in the
subthreshold region, only a small deformation of these nulclines is required to make them intersect
and thus create the additional equilibrium points. The equations were chosen to be

ẋ = −x3 + 3x2 + y + I,
ẏ = 1− 5x2 − y,

(3.6)

whose nulclines are shown in Figure 3.2. The explanation of the firing mechanism of equations (3.6)
is shown in the nulcline diagram. Initially the neuron is in at resting state, corresponding with point
A in the diagram, which is a stable node. By applying a large enough depolarizing current pulse, the
x-nulcline will be lowered such that the saddle point B and point A meet and finally vanish. From this
point the state will rise up the narrow channel and enter a stable limit cycle. However, terminating
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Figure 3.2: Nulclines ẋ = 0, ẏ = 0 (thin lines) and limit-cycle (thick line) of the 1984 model.
Point A is a stable node, point B is a saddle and point C is an unstable node inside the limit
cycle. The dashed line represents the saddle point separatrix.

of the firing is not possible by simply ending the stimulus. The state will only leave the limit cycle
after a suitable hyperpolarizing pulse is applied. In order to terminate firing the model is augmented
with a third state, the adaptation variable z. This extra variable represents a slowly varying current,
changing the applied current I to the effective input I − z. The value of z needs to raise when the
neuron is in its firing state. An equation fulfilling those requirements is the first order differential
equation

ż = r (s (x− x0)− z) , (3.7)

where x0 is the x-coordinate of the stable subthreshold equilibrium point in the case no external
current is applied, i.e. I = 0. The full set of equations of the model are

ẋ = −x3 + 3x2 + y + I − z,
ẏ = 1− 5x2 − y,
ż = r (s (x− x0)− z) .

(3.8)

Because of this third equation the model can describe adaptation of the firing frequency. Further-
more, suitable choices of parameters s and r made the model exhibit also biological phenomena as
bursting, chaotic bursting and post-inhibitory rebound. Figure 3.3 shows simulations with the 1984
model for r = 0.001 and s = 1. These plots show the x-state, y-state, z-state and a three-dimensional
phase-plot. Figure 3.4 shows the response of the model for r = 0.005 and s = 4 with different inputs.
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the 1984 Hindmarsh-Rose as function of the applied (current) input I.
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Chapter 4

Identi�cation: Parameter and State
Observations

In this chapter the focus will be on the (off-line) technique to estimate the parameters of the Hindmarsh-
Rose model from the measured input-output data. It will be assumed the membrane potential can be
completely described by the Hindmarsh-Rose equations

S =





ẋ1 = 1
Ts

(−ax3
1 + bx2

1 + x2 − x3 + a0u(t)
)
,

ẋ2 = 1
Ts

(
c− dx2

1 − βx2

)
,

ẋ3 = 1
Ts

r (s (x1 − x0)− x3) ,
(4.1)

where x = [x1 x2 x3]T ∈ R3, input u(t) ∈ R and constants a, a0, b, c, d, β, r, s, x0 > 0. The state
x1 represents membrane potential, x2 is an internal fast current and x3 represents a slow varying
current. The constant Ts is a time scaling factor that allows the output of the Hindmarsh-Rose model
to be in the millisecond time range instead of seconds. However, instead of using this time scaling
factor it is also possible to "stretch" the time axis of the measured signals. In this study the time
axis of the measured signal will be multiplied with a factor 1000 and therefore Ts = 1 will be used.
Signals x1(t), u(t) and constant x0 are measurable and therefore assumed to be known. Note this
parametrization of system S is identical to the original 1984 Hindmarsh-Rose equations except for
the constants a0 and a1, which are additional weight factors that provide some extra freedom to obtain
a proper fit.

4.1 Adaptive Observers
The classical way of solving problems where states need to be reconstructed and a number of param-
eters need to be estimated is using adaptive observers [8],[14],[15]. Adaptive observer can be designed
for systems of the form:

ż = Az + ψ0(y, u) +
p∑

i=1

ψi(y, u)θi(t)

y = Cz,
(4.2)
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where z ∈ Rn, y ∈ R, (θ1, · · · , θp) are unknown, possible time-varying parameters and

A =




0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


 , C =

[
0 0 · · · 0 1

]
.

The system (4.2) is said to be in adaptive observer canonical form. However, the Hindmarsh-Rose
equations are given, like most non-linear systems, in the following form:

ẋ = f(x) + q0(x, u) +
p∑

i=1

θiqi(x, u)

= f(x) + q0(x, u) + Q(x, u)θ,

y = h(x),

(4.3)

where x ∈ Rn, u ∈ Rm, θ ∈ Rp, y ∈ R and smooth functions f : Rn → Rn, h : Rn → R and
qi : Rn ×Rm → Rn, 0 ≤ i ≤ p. The parameter vector θ is supposed to be constant, x is the state and
u(t) is the (control) input which is known. System (4.3) has to be transformed into system (4.2) via
a coordinate transformation z = Φ(x). A necessary condition for the existence of such a coordinate
transformation is that (f , h) is an observable pair, i.e. the following should hold:

rank
{

d
(
Lj

fh(x)
)

: 0 ≤ j ≤ n− 1
}

= n, ∀x ∈ Rn. (4.4)

In the case of system S this condition is not fulfilled. Therefore it is not possible to use adaptive
observers for the estimation of the states and parameters for the system.

4.2 Attracting and Wandering Dynamics
Since it is not possible to transform system S into the adaptive observer canonical form, and thus
it is not possible to make use of an adaptive observer, a technique using contracting and wandering
dynamics will be proposed to estimate the parameters of the Hindmarsh-Rose model. Therefore
the system dynamics will be decomposed into two interconnected subsystems. The first subsystem
consists of a stable, contracting part while the dynamics of the second subsystem are wandering.
Detailed information about contracting and wandering dynamics can be found in [21], from which a
preprint version is included in Appendix D.

First some feedback will be designed such the the error equation, that is the equation that describes
the error between signal x1 and the estimated signal x̂1, is of the following form:

˙̃x1 = f0(x̃1, t) + f(ξ(t), θw)− f(ξ(t), θ̂w), (4.5)

where x̃1 = x1 − x̂1, x̃1 ∈ R, θw, θ̂w ∈ Ωθw ⊂ R2, functions ξ : R+ → R, f0 : R → R, f :
R × R2 → R. The function ξ(t) is a function of time which includes available measurements of
the state. The vectors θw, θ̂w contain the unknown and estimated parameters respectively which
belong to a bounded set Ωθw . The function f0(·) represents the contracting dynamics and the part
f(ξ(t), θw)− f(ξ(t), θ̂w) represents the wandering dynamics.

In order to estimate the Hindmarsh-Rose parameters using contracting and wandering dynamics,
the three-dimensional system S will be rewritten into the one-dimensional system:

ẋ1 = −ax3
1 + bx2

1 + ν + f(β, d, t)− sx∗1 + a0u(t), (4.6)
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where

ν =
c

β
, f(β, d, t) = e−β(t−t0)x2(t0) +

t∫

0

e−β(t−τ)dx2
1(τ)dτ.

The expression ν + f(β, d, t) is the analytical solution of the x2-dynamics of S . In the sequel the
exponential decaying part of f(β, d, t) will be neglected such that

f(β, d, t) =

t∫

0

e−β(t−τ)dx2
1(τ)dτ.

The x3-dynamics of the Hindmarsh-Rose equations can be considered as a low-pass filter. The signal
x3 can be written as filter-gain s multiplied by the filtered signal (x1 − x0) using filter

H(jω) =
1

1
r jω + 1

. (4.7)

The signal x∗1 in (4.6) denotes this low-pass filtered (x1 − x0) such that sx∗1 describes the complete
x3-dynamics. The signal x∗1 can be determined a priori. It is given that the x3-dynamics actually only
change the applied input u into an effective input u − x3 and the interspike interval τi is inversely
proportional to u (see Chapter 3). The development of the (normalized) interspike intervals in time
will look like the response of a first-order system on a block-shaped input. Therefore, the parameter
r can be estimated by making a fit of the function 1 − e−r(t−ts) through the points that indicate the
calculated normalized interspike intervals, where ts represents the moment of time where the input
is applied. Figure 4.1 shows the development of interpike intervals in time.
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Figure 4.1: a) State x1 with interspike intervals τi. b) Calculated interspike intervals (circles)
and the �t (solid line) from which parameter r can be obtained.
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Now, consider the following candidate observer to estimate the parameters of (4.6):

˙̂x1 = −âx3
1(t) + b̂x2

1(t) + ν̂ − ŝx∗1(t) + â0u(t) + µ (x1 − x̂1) + f(β̂, d̂, t)
= ζ(t)T θ̂ + µ (x1 − x̂1) + f(β̂, d̂, t),

(4.8)

where µ > 0 and

θ =




a
b
ν
s
a0




, ζ(t) =




−x3
1(t)

x2
1(t)
1

−x∗1(t)
u(t)




.

Combining (4.6) and (4.8) results in the error equation, which is given by:

˙̃x1 = −µx̃1 + ζ(t)T θ̃︸ ︷︷ ︸+f(β, d, t)− f(β̂, d̂, t), (4.9)

where θ̃ = θ− θ̂. In combination with a suitable parameter update law the parameter error θ̃ will be
forced to zero. Then, the underbraced part of (4.9) will be contracting, that is lim

t→∞
x̃1(t) = 0.

In the next two subsections the focus will be on the design of the contracting dynamics and the
wandering dynamics, respectively.

4.2.1 Contracting Dynamics
In this subsection the precieze design of the contracting dynamics is taken into account. Let us start
with (4.9), neglecting the term f(β, d, t)− f(β̂, d̂, t) for this moment:

˙̃x1 = −µx̃1 + ζ(t)T θ̃. (4.10)

The state x̃1 will go to the origin for increasing time if and only if the parameters stored in θ are
estimated correctly. Therefore, the following parameter update law will be used to force θ̂ → θ:

˙̂
θ = γax̃(t)ζ(t), (4.11)

where γa > 0. Equations (4.10) and (4.11) can be combined into the following linear time varying (LTV )
system:

[
˙̃x1

˙̃
θ

]
=

[ −µ ζ(t)T

−γaζ(t) 0

] [
x̃1

θ̃

]
. (4.12)

LTV systems of this form are exponential stable if the following conditions hold [12], [17]:

1. function ζ(t) is piece-wise continuous and bounded,

2. ζ(t) fulfills the persistently exciting condition, that is

Definition 1 (Persistence of Excitation) The function ζ(t) is said to be persistently exciting (PE) if and
only if there exists constants α > 0 and L > 0 such that for all t ∈ R+ the following holds:

∫ t+L

t

ζ(τ)ζ(τ)T dτ ≥ αId, (4.13)

where Id is the identity matrix.
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Since all signals in ζ(t) are known and indeed piecewise continuous and bounded, condition 1 is
fulfilled. Condition 2 has to be investigated (numerically) for each individual case. Assuming both
conditions do hold, system (4.12) is exponentially stable. The rate of convergence ρ is defined as:

‖ w(τ) ‖∞,[t0,t]≤ e−ρ(t−t0) ‖ w0 ‖, (4.14)

where

w =
[

x̃1

θ̃

]
, w0 = w(t = t0).

In the sequel it will be assumed, for simplicity, that the convergence rate of the error x̃1 is equal to
this convergence rate ρ. A rate of convergence larger than ρ does not make the identification method
not going to work. It only indicates that the gain γw, which will be specified in the next section, can
be increased.

4.2.2 Wandering Dynamics
In this subsection the focus will be on the design of the wandering dynamics. Reconsider the error
equation (4.9) given that the contracting dynamics (4.12) are exponentially stable:

x̃1 = −ρx̃1 + f(β, d, t)− f(β̂, d̂, t). (4.15)

The wandering dynamics will search for the values of the remaining parameters in some bounded
domain Ωβ × Ωd, where β, β̂ ∈ Ωβ and d, d̂ ∈ Ωd, until f(β̂, d̂, t) → f(β, d, t) and thus x̃1 → 0. This
search is performed with low speed, such that the contracting dynamics have time to reach its steady
state.

The first thing that is required is boundedness of the function f(·) in terms of its parameters:

|f(β, d, t)− f(β̂, d̂, t)| ≤ |f(β, d, t)− f(β̂, d, t)|+ |f(β̂, d, t)− f(β̂, d̂, t)|
≤ Df,β |β − β̂|+ Df,d|d− d̂|,

(4.16)

where

Df,β = max
β,β̂∈Ωβ ,d∈Ωd

{
1

ββ̂
d ‖ x2

1(τ) ‖∞,[t0,t]

}
, Df,d = max

β̂∈Ωβ

{
1

β̂
‖ x2

1(τ) ‖∞,[t0,t]

}
. (4.17)

The derivation of Df,β and Df,d can be found in Appendix A.

Next, the following auxiliary system will be introduced:

λ̇ = Σ(λ), (4.18)

where λ ∈ Ωλ ⊂ Rλ is bounded and Σ : Rλ → Rλ is locally Lipschitz. System (4.18) is assumed to
be Poisson stable in Ωλ, that is:

Definition 2 (Poisson stability) The system (4.18) is called Poisson stable in Ωλ if

∀λ′ ∈ Ωλ, t′ ∈ R+ ⇒ ∃t′′ > t′ :‖ λ(t′′, λ′)− λ′ ‖≤ ε, (4.19)

where ε is an arbitrary small positive constant. Moreover, the trajectory λ(t,λ0) is dense in Ωλ:

∀λ′ ∈ Ωλ, ε ∈ R+ ⇒ ∃t ∈ R+ :‖ λ′ − λ(t, λ0) ‖< ε, (4.20)

where λ0 = λ(t0).
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Define the system (4.18) with the following set of equations:

λ̇1 = λ2,

λ̇2 = −ω2
1λ1,

λ̇3 = λ4,

λ̇4 = −ω2
2λ3, λ0 = (1, 0, 1, 0)T ,

(4.21)

where ω1, ω2 ∈ R+. Furthermore the Poisson stability criterium is satisfied.

In addition, an output function η(λ) : R4 → R2 is selected that will translate λ into estimations of
the parameter β and d. This output function is required to be locally Lipschitz, that is:

‖ η(λ′)− η(λ′′) ‖≤ Dη ‖ λ′ − λ′′ ‖, λ′, λ′′ ∈ Ωλ, (4.22)

such that η(Ωλ) is dense in Ωβ×Ωd. For Ωβ = [βmin, . . . , βmax] and Ωd = [dmin, . . . , dmax] function
η(λ) = (η1(λ), η2(λ)) is defined as:

β̂ = η1(λ) = βmax−βmin

2

(
2 arcsin(λ1)

π + 1
)

+ βmin,

d̂ = η2(λ) = dmax−dmin

2

(
2 arcsin(λ3)

π + 1
)

+ dmin.
(4.23)

The Lipschitz constant Dη in (4.22) for the chosen η(λ) is given by:

Dη = max
(

(βmax − βmin) · ω1

π
,
(dmax − dmin) · ω2

π

)
. (4.24)

The constants ω1 and ω2 in (4.21) need to be chosen with some care. Only by choosing ω1
ω2

equal to
an irrational number, we ensure that every point in the domain Ωβ × Ωd is visited. More details are
given in Figure 4.2.
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Finally, an accurate interconnection between the contracting dynamics and the wandering dynamics
needs to be determined. This interconnection will be defined as follows:

λ̇1 = γw ‖ x̃1(t) ‖∆(δ) ·λ2,

λ̇2 = −γw ‖ x̃1(t) ‖∆(δ) ·ω2
1λ1,

λ̇3 = γw ‖ x̃1(t) ‖∆(δ) ·λ4,

λ̇4 = −γw ‖ x̃1(t) ‖∆(δ) ·ω2
2λ3, λ0 = (1, 0, 1, 0)T ,

(4.25)

where δ > 0 is a pre-defined error tolerance. Furthermore the gain γw satisfies the inequality:

0 < γw ≤ −ρ

(
ln

ds

κDβ

)−1
κ− 1

κ

1

Dλ

(
Dβ

(
1 + κ

1−ds

)
+ 1

) , (4.26)

with Dβ = 1, Dλ = max(Df,β , Df,d) ·Dη · max
λ∈Ωλ

‖ Σ(λ) ‖, ds ∈ (0, 1) and κ ∈ (1,∞).

By choosing the gain γw according to (4.26), we ensure the contracting part has enough time to reach
its steady-state. More detail about the derivation of (4.26) can be found in the section D.5 of the Ap-
pendix. Now, for some θ′ in a neighborhood of θ, β′ in a neighborhood of β and d′ in a neighborhood
of d, in combination with the observer (4.8), wandering dynamics (4.23) and interconnection (4.25),
the following does hold:

lim
t→∞

‖ x̃1 ‖= 0, lim
t→∞

θ̂ = θ′, lim
t→∞

β̂(t) = β′, lim
t→∞

d̂(t) = d′,

which should result in a successful fit of the measurements to the model.

The identification algorithm is implemented in Matlab, which code can be found in Appendix C.
This implementation in Matlab is rather slow, probably due to the large number of function calls in
the ode-solver. A solution to this problem is found in implementing the algorithm in the low-level
programming langue C++, which turns out to be more then hundred times faster then the Matlab
algorithm with similar accuracy. This implementation can be found in Appendix C as well. Note
that this C++ algorithm is not at its final stage. For instance, it is not possible with the presented
algorithm to keep track of the error, something that is strongly recommended in problems like this.

4.3 Searching Domain Ωβ × Ωd

For the wandering dynamics it is required that the searching domain Ωβ × Ωd is known. Of course
it is always possible to choose some arbitrary domain. However, there is a chance that an arbitrary
chosen searching domain will not include the "real" parameter values. On the other hand, the domain
can be chosen too large such that it will take a long time to find the right parameter values. Therefore
the searching domain will be estimated using a feasibility study based on stability proporties of the
Hindmarsh-Rose model.

It is known that the 1984 model has three equilibrium points, which will be denoted by x0, xth, xsp

representing the stable resting potential, the threshold value and the equilibrium point inside the
limit cycle, respectively. These equilibrium points are given by the roots of the equation:

x3
1 + px2

1 = q, (4.27)

where

p =
1
a

(
d

β
− b

)
, q =

1
a

(
a0u(t) +

c

β

)
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Figure 4.3: Equilibrium points of the Hindmarsh-Rose model.

In the case that u(t) = 0 and the state is thus at its stable equilibrium, we require all three equilibrium
points do exist. The condition for the existence of three equilibrium points is that 27q < 4p3, or that

27
c a2

β
< 4

(
d

β
− b

)3

. (4.28)

Figure 4.3 gives a graphical representation of this condition. Because a, b, c, d, β > 0 it follows im-
mediately that

d

β
> b. (4.29)

When the state reaches the threshold value xth, only two equilibrium points will remain since x0 and
xth meet and become a single point. Furthermore, when the neuron is spiking and thus the state
is in the limit cycle, there will only be one equilibrium point left, that is the one within the limit-
cycle. Let us, in addition, analyse stability proporties of the equilibrium points. In this analysis, the
x3-dynamics will be neglected since the influence of these dynamics are generally small. Only in the
part of the signal where there is firing frequency adaptation the x3-dynamics are involved.

Consider the linear approximation of (4.1)

˙̄x = A(xeq)x̄, (4.30)

where

A(xeq) =
[ −3axeq

2 + 2bxeq 1
−2dxeq −β

]
.

The type of equilibrium point xeq is determined by the signs of the determinant and the trace of
A(xeq). The determinant and trace are given by:

det(A) = 3aβx2
eq + 2(d− bβ)xeq,

tr(A) = −3ax2
eq + 2bxeq − β.

(4.31)

The determinant of A(xeq) is positive for all values of xeq except for those between
−2( d

β−b)
3a and 0

whereas the trace of A(xeq) is negative for all values of xeq besides the ones in the interval [(b −√
b2 − 3aβ)/3a,. . . , (b +

√
b2 − 3aβ)/3a]. From this last interval it follows directly that

b2 > 3aβ. (4.32)
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Table 4.1: Stability regions

region values of xeq sgn(det(A)) sgn(tr(A)) type of equilibrium point
I x <

−2( d
β−b)
3a - + stable focus

II −2( d
β−b)
3a < x < 0 - - saddle node

III 0 < x <
b−
√

b2−3aβ

3a - + stable focus
IV b−

√
b2−3aβ

3a < x <
b+
√

b2−3aβ

3a + + unstable focus
V x >

b+
√

b2−3aβ

3a - + stable focus

Table 4.1 shows the different stability regions and the corresponding type of equilibrium point of the
Hindmarsh-Rose model. As we can see from Figure 3.2, the resting potential x0 is represented by a
stable node and will therefore belong to region I. The threshold value xth is in region II while it can
be described as a saddle-node. The equilibrium point inside the limit-cycle xsp will belong to region
IV. Thus the following set of inequalities should hold:

x0 <
−2( d

β−b)
3a < xth,

b−
√

b2−3aβ

3a < xsp <
b+
√

b2−3aβ

3a .
(4.33)

Moreover, the maximal amplitude of the membrane potential during spiking xsp,max and the mini-
mal amplitude during spiking xsp,min should satisfy:

xsp,min <
b−
√

b2−3aβ

3a ,

xsp,max >
b+
√

b2−3aβ

3a .
(4.34)

The main idea is to use inequalities (4.28), (4.29), (4.33) and (4.34) to find the suitable ranges for
both the parameters β and d. However, simulations have shown that satisfying these inequalities is
not sufficient to bound the range of the parameter d, and therefore the searching domain Ωβ × Ωd

cannot be determined. To put some extra restrictions on the domain, it is possible to include equation
(4.27) for all equilibrium points. Implementing this equation for x0 will not give any problems, but
in the case of xth and xsp some value has to be assigned to a0. Note that the threshold input a0,th

at xth can be determined from the ramp-input in the measurements. It is possible to estimate a0

roughly by taking the derivative of signal x1. At the time the block-shaped unit pulse is initiated,
a peak will arise in the derivation of the signal x1(t). The amplitude of this peak is a measure for
a0 (Figure 4.4). Given this estimation of a0, equation (4.27) can be evaluated for some points in
the neighborhood of a0. However, including these extra equations still do not result in complete
boundedness of the searching domain. An extra restriction is necessary. Therefore, consider the
solution of the x2-dynamics:

x2(t) = e−β(t−t0)x2(t0) +

t∫

t0

e−β(t−τ)
(
c− dx2

1(τ)
)
dτ. (4.35)

Neglecting the exponentially decaying term, (4.35) can be upperbounded by c
β . Its lower bound is

given by 1
β (c − dx2

max), where xmax is the maximal value of x1(t). Furthermore, it is known that at
the points xsp,min and xsp,max, which denote the minimal and maximal value of x1 during spiking
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Figure 4.4: Response of the Hindmarsh-Rose model on block-shaped current stimuli. On top the
state x1 is plotted. The derivative of the signals is plotted below. a) Stimuli with a0 = 1. b)
Stimuli with a0 = 2. In both cases we see the peak at the derivative is a rough estimation of a0

given the input has an amplitude of 1.

respectively, the derivative ẋ1 is equal to zero since the function x1(t) is changing sign at these points.
This will give another restriction on the feasible domain, that is:

1
β (c− dx2

max) < ax3
sp,min − bx2

sp,min − a0 < c
β ,

1
β (c− dx2

max) < ax3
sp,max − bx2

sp,max − a0 < c
β .

(4.36)

Inequalities (4.28), (4.29), (4.33), (4.34), (4.36) together with the equilibrium equation (4.27) evalu-
ated at all equilibrium points will bound the space of all parameters. Therefore searching domain
Ωβ × Ωd can be determined from this feasibility analysis based on the stability proporties of the
Hindmarsh-Rose model.
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Chapter 5

Main Results

In the previous chapter the technique to make a fit of measured signals to the Hindmarsh-Rose
model is presented. To properly validate this technique, a signal is generated using the Hindmarsh-
Rose equations (4.1). Testing with a generated signal will exclude the possibility that the signal could
not be described by the model. Furthermore all parameter values are surely constant and known a
priori.

5.1 Simulations
The signal to test the presented identification technique with will be generated from system (4.1) with
the following set of parameters:

a = 1, b = 4, a0 = 1, c = 1, d = 6, β = 1, r = 0.01, s = 1.

As input signal u(t) two 500s long block-shaped current stimuli with amplitudes 0.75 [−] and 1 [−]
are applied. The signal has a period of 2000s and is repeated constantly during the parameter estima-
tion process. Figure 5.1 shows the input and generated signal.
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Figure 5.1: Simulation generated signal. The �gure on the top shows the output x1(t) of the
system. At the bottom the applied stimuli u(t) is plotted.
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Let us focus on the part describing the contracting dynamics. First it has to be investigated if the
signals are "rich" enough such that estimated parameters values will converge to the desired values.
In other words, it has to be investigated if the persistently exciting condition does hold. Numerical
simulations show that this condition is satisfied for the period L = 2000s with α = 0.022. As a result
the LTV system (4.12) is exponentially stable. The next thing to do is to choose constants µ, γa and
to determine the convergence rate ρ. Figure 5.2 shows the LTV system in block-scheme and the
convergence of signal w. In this block-scheme the following shorthand notation is used:

P (t) =
[ −µ ζ(t)T

−γaζ(t) 0

]
(5.1)

For µ = 0.1 and γa = 100 the minimal convergence rate ρ = 0.11 is found.

Now the contracting dynamics are described and ρ is known, the wandering dynamics can be de-
signed. Therefore, assume Ωβ = [0.5, . . . , 2] and Ωd = [5, . . . , 7]. By choosing constants ω1 = π and
ω2 = 1 we ensure every point in the bounded searching domain Ωβ×Ωd is visited. Gains Dη and Df

are determined using (4.24) and (4.17) where Df = max(Df,β , Df,d). With the given values for ω1

and ω2 these gains are determined to be Dη = 1.50 and Df = 17.00. Furthermore, max ‖ Σ(λ) ‖= 1.
The maximal γw is found from (4.26) after optimization of ds and κ. With ds = 0.58, κ = 1.61 we
obtain γw = 2.74 · 10−4. Simulations are initiated with several initial conditions with the tolerated
error δ = 0.25. The results of the simulation are shown in Figure 5.3. The simulation shows to be
successful. All parameter are estimated correctly and the maximal error stays within the pre-defined
error tolerance δ.
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Figure 5.3: Simulation results for the test case. On the top-left the �t with initial conditions is
shown. The plot in the top-right shows the parameters after convergence. In the bottom-left we
see the successful �t after parameter convergence and the �gure in the bottom-right shows the
error between the signal and the �t.

5.2 Measurements
Now the identification algorithm is successfully validated, the identification using the measured sig-
nals can be started. Therefore a single spike train will be selected from the sequence of measure-
ments. Only a single spike train is selected to minimize the influence of possible time-varying mem-
brane conductances. The criteria for this selection is that the interspike intervals show first order
behavior. Figure 5.4 shows a selected spike spike train with corresponding interspike intervals. This
spike train belongs to the first series of measurements in the PTX case, which can be found in Ap-
pendix B.

The selected signal will be discarded from noise by filtering it with a Bessel filter, that is a linear
low-pass filter that uses Bessel polynomials. Furthermore the signal will be (spline) interpolated to
obtain more measurement points such that smaller time steps can be used in the solver, which in
turn should improve accuracy. The measured signal needs to be scaled such that x1(t) is within
the range [−3, 3] which is a typical output range of the Hindmarsh-Rose model. The signal x1(t)
can be obtained by dividing the measured membrane potential Vm(t) by an arbitrary constant. The
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Figure 5.4: The selected single spike train. The �gure on top shows the membrane potential as
response on a depolarizing current stimuli of 200pA. Below the interspike intervals τi (circles)
and the �t(solid line) are depicted. From these interspike intervals we estimate r = 0.029.

parametrization of system (4.1) fully supports this type of scaling. The following scaling is used:

x1(t) =
1
35

Vm(t)

Furthermore, the input function u(t) will be scaled such that max(u(t)) = 1 and the signal x∗1(t) is ob-
tained by low-pass filtering. Hence, the persistence of excitation of ζ(t) will be evaluated. Calculations
show the persistently exciting condition is fulfilled for L = 1000s and α = 0.0057. The contracting
dynamics (4.12) are exponentially stable with ρ = 0.024 for constants µ = 0.2 and γa = 50.

To design the wandering dynamics properly the searching domains Ωβ and Ωd have to be determined.
In order to perform the feasibility study described in Section 4.3, information about the threshold val-
ues has to be obtained and an estimation of a0 has to be made. As described in Section 4.3 an
estimation of a0 can be made by calculating the derivative of signal x1(t) at the moment of time that
the input is applied. We estimate a0 ≈ 0.4 by calculating that derivative. From the ramp-input the
threshold potential xth and threshold input a0,th are determined. More detail is shown in Figure 5.5.
The feasibility study shows Ωβ = [0.1, . . . , 1.8] and Ωd = [1.5, . . . , 9]. With ω1 = π, ω2 = 1 and
Dλ = 91.07, we obtain γw = 1.68 · 10−5 with values ds = 0.58 and κ = 1.62. Simulations are started
for several initial conditions, but none of these simulations showed satisfying results, i.e. none of
these simulations showed a proper fit. Moreover, the algorithm applied on other selected spike-trains
did not produce a fit as well. Unfortunately the C++ implementation of the algorithm did not allow
to keep track of the error such that it is not possible to determine what is exactly going wrong.

Next, a relaxed problem is investigated with the goal to make a fit on a single spike. A single spike
is isolated from a spike train and used to generate repetitive spiking. This signal is shown in Fig-
ure 5.6. During this spiking there is no firing frequency adaptation and thus is the influence of the
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Figure 5.6: Repeated sequence of a single spike.

x3-dynamics minimal. Therefore, the complete x3 dynamics are neglected. Furthermore the input
involved is constant. Again, the contracting dynamics and the wandering dynamics are designed
properly. However, still there is no fit obtained.

The question arises why it is not possible to obtain a proper fit. There is a possibility that the
Hindmarsh-Rose model is not suitable to describe the measured signals. Parameters might for in-
stance be time-varying while they are assumed to be constant. It is also possible that the parametriza-
tion of system (4.1) is still too restrictive. Consider instead of simple scaling (5.2) the following affine
transformation:

x1(t) = csVm(t) + ct, (5.2)
where cs is a positive constant responsible for the scaling and ct is a constant which realizes the trans-
lation. Figure 5.7 shows the possibilities when affine transformation (5.2) is used. A generated signal
is manually tuned, scaled and translated to obtaine the fit. This Figure actually shows that it might be
very important to include an arbitrary translation. The Hindmarsh-Rose model in its original form
is not capable to deal with this affine transformation. Therefore the following parametrization of the
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Hindmarsh-Rose equations is proposed:

ẋ1 = −ax3
1 + bx2

1 + ψ1x1 + x2 − x3 + a0u,
ẋ2 = c− dx2

1 + ψ2x1 − βx2,
ẋ3 = r (s (x1 − x0)− x3) .

(5.3)

The constants ψ1, ψ2, which have undetermined sign, extend the Hindmarsh-Rose model in such
a way that translation is included. To apply the proposed identification technique with system (5.3)
the contracting dynamics needs to be be extended with an extra dimension and the dimensions of
searching dynamics will increase to three. System (4.18) has to be redefined and new equations have
to be derived to bound the searching domains. Due to time limitation the identification based on (5.3)
is not worked out.
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Figure 5.7: Fit on sequence of single spikes using the a�ne transformation
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions
In this study a method is described to estimate parameters of a neuronal model. The membrane
potential is measured from neurons from the hippocampus of mice in a common current clamped
setup and in a current clamped setup where tonic GABAAreceptors have been blocked by treating
the neuron with the chemical Picrotoxin. The model to make the fit with was chosen to be the
Hindmarsh-Rose model. This phase-plane model describes a large number of biophysical features
with a minimal number of state variables and parameters. The model with the used parametriza-
tion did not satisfy the condition of observability and therefore conventional methods like adaptive
observers could not be used. Without the ability to use conventional identification techniques, a new
technique making use of contracting and wandering dynamics is presented. The contracting dynam-
ics contain parameters that appear linearly in known and measurable signals of the one-dimensional
equivalent of the Hindmarsh-Rose model. With a suitable update law and given that the persis-
tently exciting condition does hold, these parameters are estimated correctly and the dynamics of the
contracting part are exponentially stable. The wandering dynamics perform a search in a bounded
domain for parameter values which can not be estimated by the contracting dynamics. The speed of
the search is mainly determined by the time the contracting dynamics need to reach its steady-state.
Furthermore, inequalities are presented which are used to determine the feasible searching domain.
Next, the algorithm is implemented in Matlab and C++, from which the C++ implementation turned
out to be about hundred times faster then the Matlab solution.

The algorithm is first successfully tested in simulations with a generated signal from the Hindmarsh-
Rose equations. In the case where measured signals are used no fit is obtained. Maybe it is not
possible to fit a Hindmarsh-Rose model on measured membrane potentials since the model does not
deal with time-varying parameter. However, it is more likely that a wrong type of scaling is used.
Preliminary results using an affine transformation instead of scaling are promising.

6.2 Recommendations
Since there are strong indications that a fit with the use of an affine transformation is possible, it is
recommended to work out the presented technique with the contracting and wandering dynamics
using the extended Hindmarsh-Rose model which includes the affine transformation. Therefore new
equations need to be derived to obtain a feasible searching domain and the wandering dynamics
need to be redesigned. Furthermore it might be a better to use a variable step solver, or even a more
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advanced solver, in the C++ algorithm to increase accuracy. Furthermore it is recommended to extend
the C++ implementation such that it is possible to keep track of the error.
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Appendix A

Gains Df,β and Df,d

In this appendix, analytical expressions for the gain Df,β and Df,d in (4.16) are presented. The error
in x̃1(t) caused by errors in the parameters β and d is given by:

f(β, d, t)− f(β̂, d̂, t) =
(
f(β, d, t)− f(β̂, d, t)

)

+
(
f(β̂, d, t)− f(β̂, d̂, t)

)
, (A.1)

where

x2(t) = e−βtx2(t = 0) +

t∫

0

e−β(t−τ)dx2
1(τ)dτ. (A.2)

The first part of the righthand side of (A.2) is monotonic decreasing with respect to the time, and its
value is assumed to be small. Therefore, this part will be neglected in further analysis. Given x(t) is
bounded, f(β, d, t)− f(β̂, d, t) will be bounded by the following expression:

d ‖ x2
1(τ) ‖∞,[t0,t]

t∫

0

(
e−β(t−τ) − e−θ̂1(t−τ)

)
dτ. (A.3)

With the use of Hadamard’s lemma, (A.3) can be explicitly written as some function Df,β(·) mul-
tiplied by (β − β̂). Therefore, introduce β? ∈ [β, β̂] and a dimensionless number ς ∈ [0, 1] such
that

β? = ςβ + (1− ς)β̂ (A.4)
Equations (A.2) and (A.4) can be combined to the following expression:

d ‖ x2
1(τ) ‖∞,[t0,t]

(
1∫
0

∂
∂β?

(
t∫
0

e−β?(t−τ)∂τ

)
∂ν

)
(β − β̂)

= d ‖ x2
1(τ) ‖∞,[t0,t]

(
1∫
0

∂
∂β?

(
1

β?

(
1− e−β?t

))
∂ν

)
(β − β̂)

= d ‖ x2
1(τ) ‖∞,[t0,t]

(
−1
ββ̂

+ βeβt−β̂eβ̂t

ββ̂(β−β̂)e(β+β̂)t

)
(β − β̂)

= Df,β(β, β̂, d, t)(β − β̂).
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Denoting the monotonically decreasing part of Df,β by εβ(t), it is easy to see |f(β, d, t) − f(β̂, d, t)|
will be upperbounded by

Df,β |β − β̂|+ εβ(t), (A.5)

where

Df,β =
(

d

ββ̂

)
‖ x2

1(τ) ‖∞,[t0,t] .

Using the same approach, the bounds of f(β̂, d, t) − f(β̂, d̂, t) will be derived. Let us again neglect
the monotonically decreasing terms, such that the following expression holds:

t∫
0

(
e−β̂(t−τ)

)
(d− d̂)x2

1(τ)dτ

≤
t∫
0

(
e−β̂(t−τ)

)
dτ(d− d̂) ‖ x2

1(τ) ‖∞,[t0,t] .

It is straightforward that (A.6) can be bounded from above by

Df,d|d− d̂|+ εd(t), (A.6)

where

Df,d =
1

β̂
‖ x2

1(τ) ‖∞,[t0,t]

and εd(t) is a monotonically decreasing function in time.

37



Appendix B

Recorded Signals

In this project the membrane potential of single neurons from the hippocampus of mice is measured.
In total two series of measurements have been acquired.

B.1 Recordings Series 1
This first series of measurements have been taken at 20 september 2005. Membrane potential is
measured from neurons from the hippocampus of mice with a sampling rate 2kHz. The stimuli are
shown in Figure B.1.
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Figure B.1: Applied current stimuli. The sequence of inputs plotted in the �gure on the left will
be denoted by input 1. The �gure on the right shows input 2.

Figures B.2 and B.4 show the membrane potential as function of input 1 in the control case and the
PTX case, respectively. The membrane potential as function of input 2 are shown in Figure B.3 and
B.5.
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Figure B.2: Control, input 1.
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Figure B.3: Control, input 2.
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Figure B.4: PTX, input 1.
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Figure B.5: PTX, input 2.

B.2 Recordings Series 2
This series of measurements have been taken on 21 september 2005. Again the used neurons are
from the hippocampus of mice.Measurements are taken in the control case and the PTX case with
sampling rates of 2kHz and 6kHz. Figure B.6 shows the applied current stimuli.
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Figure B.6: Applied current stimuli used for measurements of 21 september 2005.

Figures B.7, B.9 and B.10 show the membrane potential measured with a sampling rate of 2kHz in
the control case and the PTX case. The measurements performed at 6kHz are given in Figures B.8
and B.11.
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Figure B.7: Control, 2kHz.
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Figure B.8: Control, 6kHz.
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Figure B.9: PTX, 2kHz.
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Figure B.10: PTX, 2kHz.
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Figure B.11: PTX, 6kHz.
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Appendix C

Numerical Algorithm

In this appendix the implementation of the identification algorithm in both Matlab and C++ is given.

C.1 Matlab
function identification_algorithm

% created by: Erik Steur
% date: 26-okt-2005
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% inputs
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
%
% v(t) = membrane potential (scaled)
% v_star(t) = low-pass filtered v(t) (cut-off freq. r)
% u(t) = injected current (scaled)
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% constants:
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
%
% mu = coupling signal/observer
% gamma_a = update gain contracting dynamics
% gamma_w = update gain wandering dynamics
% omega1 = omega1
% omega2 = omega2
% ub_beta = upper bound parameter space of beta
% lb_beta = lower bound parameter space of beta
% ub_d = upper bound parameter space of d
% lb_d = lower bound parameter space of d
% delta = delta
% Ts = time interval measurement
% dTs = sample rate measurement
%
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% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% general
clear all;close all;clc

global mu gamma_a gamma_w omega_1 omega_2 ub_beta lb_beta ub_d lb_d ...
delta Ts dTs

% read data
load data

% assign parameter values
mu =
gamma_a =
gamma_w =
omega_1 =
omega_2 =
ub_beta =
lb_beta =
ub_d =
lb_d =
delta =
Ts =
dTs =

% initial conditions
a0 =
b0 =
nu0 =
s0 =
a00 =
x0 =
y0 =

X0 = [x0; y0; a0; b0; nu0; s0; a00];

% generate solution
Tspan = [];

[Tout Xout] = ode23(@id_alg,Tspan,[X0;[1;0;1;0]]);

save Iddata Tout Xout

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
function dx = id_alg(t,x)

global mu gamma_a gamma_w omega_1 omega_2 ub_beta lb_beta ub_d lb_d ...
delta Ts dTs

dx = zeros(11,1);
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% Signal value at time t and make a repetitive sequence
V = v((mod(t,Ts)/dTs)+1);
V_star = v_star((mod(t,Ts)/dTs)+1);
U = u((mod(t,Ts)/dTs)+1);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% regressor part
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

a = x(3);
b = x(4);
nu = x(5);
s = x(6);
a0 = x(7);

dx(1) = -a*V^3 + b*V^2 + nu + s*V_star + a0*U + mu*(V-x(1)) - x(2);

% update law

dx(3) = -gamma_a*(-V^3)*(V-x(1));
dx(4) = -gamma_a*(V^2)*(V-x(1));
dx(5) = -gamma_a*(V-x(1));
dx(6) = -gamma_a*(-V_star)*(V-x(1));
dx(7) = -gamma_a*(U)*(V-x(1));

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% wandering part
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %

% auxiliary system with interconnection
dx(8) = gamma_w*function_delta(V,x(1))*x(9);
dx(9) = -gamma_w*function_delta(V,x(1))*omega_1^2*x(8);
dx(10) = gamma_w*function_delta(V,x(1))*x(11);
dx(11) = -gamma_w*function_delta(V,x(1))*omega_2^2*x(10);

beta = (ub_beta-lb_beta)/2 * ( 2*asin(x(8))/pi + 1 ) + lb_beta;
d = (ub_d-lb_d)/2 * ( 2*asin(x(10))/pi + 1 ) + lb_d;

dx(2) = -d*V^2 - beta*x(2);

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
function y = function_delta(x,xhat)

if abs(x-xhat)<delta,
y = 0;

else
y = abs(x-xhat);

end
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C.2 C++
The algorithm is implemented in C++ with GNU scientific library (GSL). Specific information about
the GNU project and GSL can be found at http://www.gnu.org. In the C++ implementation wandering
dynamics (4.23), (D.7) are approximated with the equations

β(t + ∆t) = β(t) + ω1
π ‖ x̃1((t + ∆t)) ‖∆(δ) ·φ(β, βmin, βmax) ·∆t,

d(t + ∆t) = d(t) + ω1
π ‖ x̃1((t + ∆t)) ‖∆(δ) ·φ(d, dmin, dmax) ·∆t,

(C.1)

where

φ(σ, σmin, σmax) =
{

γw if σmin ≤ σ ≤ σmax

−γw else . (C.2)

This approximation is used to avoid the special function arcsin(·).
// created by: Peter Jurica, Erik Steur
// date: 8-nov-2005

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <time.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_odeiv.h>

const double PI = 3.141592653589793238462643;

const double mu = ;
const double gamma_a = ;
double gamma_w = ;
double gamma_beta = gamma_w;
double gamma_d = gamma_w;
const double ub_beta = ;
const double lb_beta = ;
const double ub_d = ;
const double lb_d = ;
const double delta = ;
const double Ts = ;
const double dTs = ;

// initial conditions
const double x10 = ;
const double x20 = ;
const double a0 = ;
const double b0 = ;
const double nu0 = ;
const double s0 = ;
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const double a00 = ;
const double beta = ;
const double d0 = ;

static const unsigned int NUMEL = 100001;
double u[NUMEL], v[NUMEL];

// load data
void load_data()
{

FILE *f = fopen("data.dat","rb");
fread(u,sizeof(double),NUMEL,f);
fread(v,sizeof(double),NUMEL,f);
fread(vstar,sizeof(double),NUMEL,f);
fclose(f);

}

// function mod
inline double mod(double x, double y)
{

return x < 0 ? y-fmod(-x,y) : fmod(x,y);
}

//function mod
inline unsigned int fround(double x)
{

return (unsigned int)( floor(x + 0.5) );
}

// deadzone
inline double phi(double x, double xhat)
{

return fabs(x - xhat) <= delta ? 0.0 : 1.0;
}

// switch sign of gamma_w
inline void update_gammas(const double x[])
{

if (x[6] > ub_beta || x[6] < lb_beta)
gamma_beta = -gamma_beta;

if (x[7] > ub_d || x[7] < lb_d)
gamma_d = -gamma_d;

}
// algorithm
inline int func (double t, const double x[], double f[], void *params)
{

// linear interpolation
const double di = mod(t,Ts)/dTs;
const unsigned int ifl = floor(di);
const unsigned int ice = ceil(di);
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const double V = v[ifl] + (v[ice] - v[ifl])*(di-ifl);
const double U = u[ifl] + (u[ice] - u[ifl])*(di-ifl);
const double Vstar = vstar[ifl] + (vstar[ice] - vstar[ifl])*(di-ifl);

const double a = x[1];
const double b = x[2];
const double nu = x[3];
const double s = x[4];
const double a0 = x[5];

const double aVx0 = fabs((V-x[0]));
const double pVx0 = phi(V,x[0]);
const double V2 = V*V;
const double V3 = V*V2;

f[0] = -a*V3 + b*V2 + x[8] - s*Vstar + nu + a0*U + mu*(V-x[0]);

f[1] = gamma_a*(-V3)*(V-x[0]);
f[2] = gamma_a*V2*(V-x[0]);
f[3] = gamma_a*(V-x[0]);
f[4] = gamma_a*(-Vstar)*(V-x[0]);
f[5] = gamma_a*U*(V-x[0]);

update_gammas(x);
f[6] = -gamma_beta*aVx0*pVx0;
f[7] = -gamma_d*aVx0*pVx0;

f[8] = -x[7]*V2 - x[6]*x[8];

return GSL_SUCCESS;
}
// solver
int main_fixed(double* X0)
{

const gsl_odeiv_step_type * T = gsl_odeiv_step_rk2;
gsl_odeiv_step * s = gsl_odeiv_step_alloc (T, 10);
gsl_odeiv_system sys = {func, NULL, 10, NULL};

double t = 0, t1 = 100;//1000;
double h = 1e-3;
double y[10], y_err[10];
memcpy(y, X0, 10*sizeof(double));
double dydt_in[10], dydt_out[10];

GSL_ODEIV_FN_EVAL(&sys, t, y, dydt_in);
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FILE* fout = NULL;
fclose(fopen("simlog.dat","wb"));
double trec_start, elapsed;
time_t start, finish;
time(&start);
int count = 0;
while (true) ///(t < t1)
{

int status = gsl_odeiv_step_apply (s, t, h,
y, y_err,
dydt_in,
dydt_out,
&sys);

if (status != GSL_SUCCESS)
break;

memcpy(dydt_in, dydt_out, 10*sizeof(double));

t += h;
count++;
if (count%10 == 0)
{

if (fout != NULL)
{

fwrite(&t,sizeof(double),1,fout);
fwrite(y,sizeof(double),10,fout);

if (t >= trec_start + 10.0)
{

fclose(fout);
fout = NULL;

}
}

if (count == (int)(10.0*1.0/h))
{

char flag = 0;
FILE * f = fopen("plotme.txt","rt");
fread(&flag,sizeof(char),1,f);
fclose(f);
if (flag == '1')
{

f = fopen("plotme.txt","wt");
fprintf(f,"0");
fclose(f);

fout = fopen("res.dat","wb");
trec_start = t;
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}

count = 0;

time(&finish);
elapsed = difftime(finish,start);
if (elapsed > 600.0)
{

f = fopen("simlog.dat","ab");
fwrite(&t,sizeof(double),1,f);
fwrite(y,sizeof(double),10,f);
fwrite(&gamma_beta,sizeof(double),1,f);
fwrite(&gamma_w,sizeof(double),1,f);
fclose(f);

time(&start);
}

}
}

}
fclose(fout);

gsl_odeiv_step_free (s);
return 0;

}

int main(void)
{

load_data();

double X0[] = { x10,
a0,
b0,
nu0,
s0,
a00,
beta0,
d0,
x20 }; // 9 states

int ret = main_fixed(X0);

return ret;
}
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Appendix D

Non-uniform Attractivity, Meta-stability
and Small-gain Theorems

Ivan Tyukin1 Erik Steur2, Henk Nijmeijer 3, Cees van Leeuwen4

November 24, 2005 (preprint version)

abstract

This paper addresses a problem of asymptotic, yet non-uniform in initial conditions, convergence of
state of dynamical systems into a given domain of their state space. The necessity to consider non-
uniform convergence arises when either the system itself is inherently globally unstable (intermittent,
itinerant, or meta-stable) or the problem statements make stable solution impossible (general opti-
mization problems, nonlinear parameter identification and adaptation). Conventional techniques for
analysis of convergence to Lyapunov-unstable equilibria, usually rely on detailed knowledge of the
properties of the vector-fields of systems or a-priori assume boundeness of the state. In contrast to
these we propose a method that does not require boundedness a-priori and relies only on qualitative
information about the system dynamics. This information are mere estimates of the input-output
maps, steady-state characteristics and decomposability into the interconnection of stable, contracting
compartment and unstable, exploratory part. The method can be applied to problems of analysis
asymptotic behavior of locally instable systems and systems in the vicinity of attractor ruins, pa-
rameter identification and non-dominating adaptation in the presence of nonlinear parametrization.
Applications in the design and analysis of models for visual detection and recognition are discussed.

Keywords: non-uniform convergence, small-gain, input-output stability
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D.1 Notation
Throughout the paper we use the following notational conventions. Symbol R denotes the filed of
real numbers, ‖x‖ denotes the Euclidian norm in x ∈ Rn, Ck denotes the space of functions that
are at least k times differentiable. Symbol K denotes the class of all strictly increasing functions
κ : R+ → R+ such that κ(0) = 0. If, in addition, lims→∞ κ(s) = ∞ we say that κ ∈ K∞. Further, Ke

(or Ke,∞) denotes the class of functions whose restriction on [0,∞) is from K (or K∞). Symbol KL
denotes the class of functions β : R+ × R+ → R+ such that β(·, 0) ∈ K and β(0, ·) is monotonically
decreasing.

Let it be the case that x ∈ Rn and x can be partitioned into two vectors x1 ∈ Rq , x1 =
(x11, . . . , x1q)T , x2 ∈ Rp, x2 = (x21, . . . , x2p)T , q + p = n, then ⊕ denotes the concatenation of
two vectors: x = x1 ⊕ x2.

By Ln
∞[t0, T ] we denote the space of all functions f : R+ → Rn such that ‖f‖∞,[t0,T ] = sup{‖f(t)‖, t ∈

[t0, T ]} < ∞, and ‖f‖∞,[t0,T ] stands for the Ln
∞[t0, T ] norm of f(t). Let A be a set in Rn, and ‖ · ‖ be

the usual Euclidean norm in Rn. By symbol ‖·‖A we denote the following induced norm:

‖x‖A = inf
q∈A

{‖x− q‖}

Let ∆ ∈ R+ then notation ‖x‖A∆
stands for the following:

‖x‖A∆
=

{ ‖x‖A −∆, ‖x‖A > 0
0, ‖x‖A ≤ ∆

Symbol ‖·‖A∞,[t0,t] will stand for the following notation:

‖x(τ)‖A∞,[t0,t] = sup
τ∈[t0,t]

‖x(τ)‖A

D.2 Introduction
From systems and control theory to physics, chemistry, or biology, science attributes fundamental
importance to analyzing the asymptotic behavior of dynamical systems. Most of these analyses are
based around the concept of Lyapunov stability [15], [29], [28], i.e. continuity of the flow x(t,x0) :
R+ ×Rn → Ln

∞[t0,∞] with respect to x0 [18], in combination with the standard notion of attracting
set [8]:

Definition 3 Set A is the attracting set iff it is
1) closed, invariant, and
2) for some neighborhood V of A and for all x0 ∈ V the following holds:

x(t,x0) ∈ V ∀ t ≥ 0; (D.1)

lim
t→∞

‖x(t,x0)‖A = 0 (D.2)

Property (D.1) in Definition 3 stipulates existence of the trapping region V (neighborhood ofA), while
property (D.2) ensures attractivity, or convergence, which, due to (D.1), is uniform in x0 in a neigh-
borhood ofA. This uniformity apparently is necessary for continuity in Ln

∞[t0,∞] and, consequently,
Lyapunov stability.

Although conventional concepts of the attracting set and Lyapunov stability are a powerful tandem
in a various applications, some problems cannot be solved in this framework. Condition (D.1), for
example, could be violated in systems with intermittent, itinerant or meta-stable dynamics. And in
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general it does not hold when the dynamics, loosely speaking, is exploring rather than contracting.
Such systems appear in the analysis of: synchronization [4], [19] 5; in global optimization [10]; in
problems of identification and adaptation in the presence of general nonlinear parameterization [25];
in manoeuvring, path searching [23] and decision making in intelligent systems [26], [27]. Even when
it is appropriate to consider a system as stable, the necessity to find a proper Lyapunov function may
be an obstacle when the system’s dynamics is only partially known. Trading stability requirements for
the sake of convergence might be a possible remedy in these cases. Known results in this direction
can be found in [11], [21]6.

Despite property (D.1) might not hold or be intentionally abandoned in all these cases, conver-
gence of x(t,x0) to the set A, property (D.2), should still be maintained. This motivates us to study
conditions of convergence without requiring that it is uniform in a neighborhood of A. Suitable
concept which captures this requirement is the concept of weak or Milnor attraction [17]:

Definition 4 Set A is weakly attracting, or Milnor attracting set if
1) it is closed, invariant and
2) for some set V (not necessarily neighborhood ofA) with strictly positive measure and for all x0 ∈ V

limiting relation (D.2) holds

Conventional methods such as La Salle’s invariance principle [14] or central manifold theory [6],
can, in principle, address the issues of local non-uniform convergence at the expenses of detailed
knowledge of vector-fields of the dynamical systems. When such information is not available and the
system can be though as mere interconnection of input-output maps, small-gain theorems [30],[12]
are usually efficient. These results, however, apply under assumption of stability of each component
in interconnection.

In our present study we aim to compromise between generality of input-output approaches [30],
[12] and specificity of fundamental notions of limit sets and invariance (notions that play central role
in [14], [6]). The object of our study is a class of systems that can be decomposed into an attracting, or
stable compartment Sa and an exploratory, generally unstable part Sw. We show that under specific
conditions, which involve only estimates of the input-output maps of Sa and Sw, there is a set V in the
system state space such that trajectories starting in V remain bounded. The result is formally stated
in Theorem 1. In case an additional measure of invariance is defined for Sa (steady-state characteristic
in our case), weak, Milnor attracting set emerges. Its location is completely defined by the zeros of
steady-state response of system Sa. We demonstrate with examples how this basic result can be used
in the problems of design and analysis of control systems, identification/adaptation algorithms and
systems for processing of visual information.

The paper is organized as follows. In Section 3 we formally state the problem and provide specific
assumptions on class of the systems under consideration. Section 4 contains the main results of our
present study. In Section 5 we provide several corollaries of the main result to specific problems.
Section 6 contains examples, and Section 7 concludes the paper.

5See also [20] where the striking di�erence between stable and "almost stable" synchronization in terms of the
coupling strengthes for a pair of the Lorenz oscillators is demonstrated analytically

6In our own Examples section, we demonstrate how explorative dynamics can solve the problem of simultaneous
state and parameter observation for a system which cannot be transformed into the canonical adaptive observer
form [2]
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D.3 Problem Formulation
The paper is concerned with the study of the asymptotic behavior of a system that can be decomposed
into two interconnected subsystems Sa and Sw:

Sa :(ua,x0) 7→ x(t)
Sw :(uw, z0) 7→ z(t)

(D.3)

where ua ∈ Ua ⊆ L∞[t0,∞], uw ∈ Uw ⊆ L∞[t0,∞] are the spaces of inputs to Sa and Sw

respectively, x0 ∈ Rn, z0 ∈ Rm stand for the initial conditions, and x(t) ∈ X ⊆ Ln
∞[t0,∞],

z(t) ∈ Z ⊆ Lm
∞[t0,∞] are the states.

System Sa represents the contracting dynamics. More precisely, we require that Sa is input-to-
state stable7 [22] with respect to a compact set A:

Assumption 1 (Contracting dynamics)

Sa : ‖x(t)‖A ≤ β(‖x(t0)‖A , t− t0) + c‖ua(t)‖∞,[t0,t], ∀t0 ∈ R+, t ≥ t0 (D.4)

where function β(·, ·) ∈ KL, and c > 0 is some positive constant.

In what follows we will assume that function β(·, ·) and constant c are known or can be estimated a-
priori. Contracting property of unperturbed dynamics of Sa is specified in terms of function β(·, ·) in
(D.4). Propagation of the input to output is characterized in terms of the continuous mappings which,
in our case is chosen for simplicity to be linear. Notice that this mapping should not necessarily be
contracting.

System Sw stands for the searching or wandering dynamics. We will consider Sw subject to the
following conditions:

Assumption 2 (Wandering dynamics) System Sw is forward-complete:

uw(t) ∈ Uw ⇒ z(t) ∈ Z, ∀ t ≥ t0, t0 ∈ R+

and there exists an "output" function h : Rm → R, and two "bounding" functions γ0 ∈ K∞,e, γ ∈ K∞,e

such that the following integral equality holds:

Sw :
∫ t

t0

γ1(uw(τ))dτ ≤ h(z(t0))− h(z(t)) ≤
∫ t

t0

γ0(uw(τ))dτ, ∀ t ≥ t0, t0 ∈ R+ (D.5)

Inequality (D.5) implies monotonicity of function h(z(t)) in t. For convenience, we assume in addi-
tion that there exist functions γ0,1 : R+ → R+ and γ0,2 : R+ → R+ such that

γ0(a · b) ≤ γ0,1(a) · γ0,2(b), (D.6)

for all bounded a, b ∈ R+. Notice that these functions can always be derived for locally Lipschitz
γ0(·). No further assumptions will be imposed a-priori on Sa, Sw.

Let us now consider the following interconnection of (D.4), (D.5) with coupling ua(t) = h(z(t)),
and us(t) = ‖x(t)‖A. Hence, equations of the combined system can be written as

‖x(t)‖A ≤β(‖x(t0)‖A , t− t0) + c‖h(z(t))‖∞,[t0,t]∫ t

t0

γ1(‖x(τ)‖A)dτ ≤h(z(t0))− h(z(t)) ≤
∫ t

t0

γ0(‖x(τ)‖A)dτ,
(D.7)

7In general, as will be demonstrated later with the examples, our analysis can be carried out for (integral)
input-to-output/state stable systems as well.
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Figure D.1: Emergence of a weak (Milnor) attracting set Ω∞

In the present paper we going to address the following set of questions regarding asymptotic behavior
of interconnection (D.7): is there a set (weak trapping set in the system state space) such that trajec-
tories of interconnection which start in this set are bounded? It is natural to expect that, existence of
such set depends on specific functions γ0(·), γ1(·) in (D.7) and also on properties of β(·, ·) and values
of c. In case such set exists and defined, the next question is therefore: where the trajectories will
converge and what are the characterizations of these domains?

D.4 Main Results
In this section we provide formal statements of main results of our present study. In Section D.4.1,
we formulate conditions ensuring that there exists a point x0⊕ z0 such that the ω-limit set of x0⊕ z0

is bounded in the following sense

‖ωx(x0 ⊕ z0)‖A < ∞, |h(ωz(x0 ⊕ z0))| < ∞ (D.8)

Then we show that the set Ω′ of all points x′ ⊕ z′ for which the ω-limit set satisfies condition (D.8)
has non-zero volume in Rn × Rm.

In order to verify whether an attracting set exists in ω(Ω′), that is strictly smaller than ω(Ω′), we
use an additional characterization of the contracting system Sa. This characterization is the intuitively
clear notion of the input-to state steady-state characteristics8 of a system. It is possible to show that
in case system Sa has a steady-state characteristic, then there exists an attracting set in Ω′ and this set
is uniquely defined by the zeros of the steady-state characteristics of Sa. The diagram, illustrating the
steps of our analysis as well as the sequence of conditions leading to the emergence of the attracting
set in (D.7) is provided in Fig. 1

D.4.1 Emergence of the trapping region. Small-gain conditions
Before we formulate the main results of this subsection let us first comment briefly on the machinery
of our analysis. First of all we introduce three sequences

S = {σi}∞i=0, Ξ = {ξi}∞i=0, T = {τi}∞i=0

The first sequence, S (see Fig.2), partitions the interval [0, h(z0)], h(z0) > 0 into the union of shrink-
ing subintervals Hi:

[0, h(z0)] = ∪∞i=0Hi, Hi = [σih(z0), σi+1h(z0)] (D.9)
For the sake of transparency, let us define this property formally in the form of Condition 1

8A more precise de�nition of the steady-state characteristics is given in Section D.4.2
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Condition 1 (Partition of z0) Sequence S is strictly monotone and converging

{σn}∞n=0 : lim
n→∞

σn = 0, σ0 = 1 (D.10)

Sequences Ξ and T will specify the desired rates ξi ∈ Ξ of contracting dynamics in (D.4) terms of
function β(·, ·) and time Ti > τi ∈ T . Let us, therefore, impose the following constraint on the choice
of Ξ, T
Condition 2 (Rates of contraction, part 1) For the given sequences Ξ, T and function β(·, ·) ∈ KL in
(D.4) the following inequality holds:

β(·, Ti) ≤ ξiβ(·, 0), ∀ Ti ≥ τi (D.11)

Condition 2 states that for the given, yet arbitrary, factor ξi and time instant t0 the amount of time τi

is needed for the state x, to reach the following domain:

‖x‖A ≤ ξiβ(‖x(t0)‖A , 0)

In order to specify the desired convergence rates ξi, in addition to (D.11) it will be necessary to define
also a measure of propagation of initial conditions x0 and input h(z0) to the state x(t) of contracting
dynamics (D.4) when the system travels in h(z(t)) ∈ [0, h(z0)]. For this reason we introduce two
systems of functions, Φ and Υ:

Φ :
φj(s) = φj−1 ◦ ρφ,j(ξi−j · β(s, 0)), j = 1, . . . , i
φ0(s) = β(s, 0) (D.12)

Υ :
υj(s) = φj−1 ◦ ρυ,j(s), j = 1, . . . , i
υ0(s) = β(s, 0) (D.13)

where functions ρφ,j , ρυ,j ∈ K satisfy the following inequality

φj−1(a + b) ≤ φj−1 ◦ ρφ,j(a) + φj−1 ◦ ρυ,j(b) (D.14)

Notice that in case β(·, 0) ∈ K∞ functions ρφ,j(·), ρυ,j(·) satisfying (D.14) will always exist [12]. The
properties of sequence Ξ which ensure the desired rate of propagation of the influence of initial
condition x0 and input h(z0) to the state x(t) are specified in Condition 3

Condition 3 (Rates of contraction, part 2) Sequences

σ−1
n · φn(‖x0‖A), σ−1

n ·
(

n∑

i=0

υi(c|h(z0)|σn−i)

)
, n = 0, . . . ,∞

are bounded from above, e.g. there exist functions B1(‖x0‖), B2(|h(z0)|, c) such that

σ−1
n · φn(‖x0‖A) ≤ B1(‖x0‖A) (D.15)

σ−1
n ·

(
n∑

i=0

υi(c|h(z0)|σn−i)

)
≤ B2(|h(z0)|, c) (D.16)

for all n = 0, 1, . . . ,∞
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Figure D.2: Non-uniform contraction

It is desirable to stress that for the large class of functions β(s, 0), for instance Lipschitz in s, these
conditions reduce to more transparent ones which can always be satisfied by the appropriate choice
of sequences Ξ and S . This case is considered in details in section D.4.3 as a corollary of our main
results

In order to prove emergence of the trapping region we consider the following collection of vol-
umes induced by sequence Si and corresponding partition (D.9) of the interval [0, h(z0)]:

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi} (D.17)

For the given initial conditions x0 ∈ X , z0 ∈ Z two alternatives are equally possible. First, the
trajectory x(t,x0) ⊕ z(t, z0) stays in some Ω′ ⊂ Ω0 for all t > t′, t′ ≥ t0. Hence for t → ∞ the state
will converge into

Ωa = {x ∈ X , z ∈ Z| ‖x‖A ≤ c · h(z0), z : h(z) ∈ [0, h(z0)]} (D.18)

Second, trajectory x(t,x0)⊕z(t, z0) subsequently enters the volumes Ωj , and tj are the time instances
when it hits the hyper-surfaces h(z(t)) = h(z0)σj . Then the state of the coupled system stays in Ω0

only if the sequence {ti}∞i=0 disconverges. Conditions specifying such possibility in terms of the
characterizing sequences S , Ξ, T and also depending on the properties of function γ0(·) in (D.7) are
provided in the Theorem 1. The diagram, schematically illustrating our technique is shown in Fig. 2.

Theorem 1 (Non-uniform Small-gain Theorem) Let systems Sa, Sw be given and satisfy Assumptions 1,
2. Consider their interconnection (D.7) and suppose there exist sequences S , Ξ, and T satisfying Conditions
1–3. Let us, in addition, suppose that the following conditions hold:

1) There exists a positive number ∆0 > 0 such that

1
τi

(σi − σi+1)
γ0,1(σi)

≥ ∆0 ∀ i = 0, 1, . . . ,∞ (D.19)

2) The set Ωγ of all points x0, z0 satisfying inequality

γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c) + c|h(z0)|) ≤ h(z0)∆0 (D.20)
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is not empty.
3) Partial sums of elements from T diverge:

∞∑

i=0

τi = ∞ (D.21)

Then for all x0, z0 ∈ Ωγ state x(t, z0)⊕ z(t, z0) of system (D.7) converges into the set specified by (D.18)

Ωa = {x ∈ X , z ∈ Z| ‖x‖A ≤ c · h(z0), z : h(z) ∈ [0, h(z0)]}

Proof of the theorem is provided in Appendix 1.
The major difference between conditions of Theorem 1 and conventional small-gain theorems

[30],[12] is that the latter involve only input-output or input-state mappings (mappings γ0(·) and con-
stant c in our case). This is because interconnected systems are assumed to be input-to-state stable
and their internal dynamics, therefore, can be neglected. In our case, however, this is no longer true as
dynamics of Sw is generally unstable in the Lyapunov sense. Hence, in order to ensure boundedness
of x(t,x0) and h(z(t, z0)), the rate/degree of stability of Sa should be taken into account. Roughly
speaking, system Sa should ensure a sufficiently high degree of contraction in x0 while input-output
response of Sw should be sufficiently small. The rate of contraction in x0 of Sa, according to (D.4), is
specified in terms of the function β(·, ·). Properties of this function that are relevant for convergence
are explicitly accounted for in Condition 3 and (D.21). The domain of admissible initial conditions and
actually the small-gain condition (input-state-output properties of Sw and Sa) are defined by (D.19),
(D.20) respectively. Notice also that Ωγ is not necessarily a neighborhood of Ωa, thus the convergence
ensured by Theorem 1 may not be uniform in x0, z0.

D.4.2 Characterization of the attracting set
Small-gain conditions, even in case of interconnection of Lyapunov-stable systems are usually effec-
tive for establishing boundedness of state or outputs. Yet, it is still possible to derive the estimates
(like, for instance, (D.18)) of the domains to which the state will converge. These estimates, how-
ever, are often too conservative. If a more precise characterization of the domains to which the state
will converge is required additional information on the dynamics of systems Sa and Sw is needed.
The question, therefore, is how detailed this information should be? It appears that some additional
knowledge of the steady-state characteristics of system Sa is sufficient to improve the estimates (D.18)
substantially.

Let us formally introduce the notion of steady-state characteristic as follows:

Definition 5 We say that system (D.4) has steady-state characteristic χ : R→ R+ with respect to the norm
‖x‖A if and only if for each constant ūa the following holds:

∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

‖x(t)‖A ∈ χ(ūa) (D.22)

The key property captured by Definition 5 is that there exists a limit of ‖x(t)‖A as t → ∞ provided
that the limit for ua(t), t →∞ is defined and constant. Notice that the graph of mapping χ should not
necessarily be functional. Therefore, our definition shall allow a fairly large amount of uncertainty
for Sa. It will be of essential importance, however, that such characterization exists for system Sa.

Not every system, however, obeys the steady-state characteristic χ(·) of Definition 5. There are
relatively simple systems whose state does not converge even in the "norm" sense for constant (con-
verging to) inputs as is required in (D.22). In mechanics, physics and biology such systems present a
large class of nonlinear oscillators which can be excited by constant inputs. In order to take such sys-
tems into consideration, we introduce a weaker notion, that is steady-state characteristic on average:
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Definition 6 We say that system (D.4) has steady-state characteristic on average χT : R→ R+ with respect
to the norm ‖x‖A if and only if for each constant ūa and some T > 0 the following holds:

∀ ua(t) ∈ Ua : lim
t→∞

ua(t) = ūa ⇒ lim
t→∞

∫ t+T

t

‖x(τ)‖A dτ ∈ χT (ūa) (D.23)

Steady-state characterizations of system Sa allows us to specify further asymptotic behavior of inter-
connection (D.7). These results are summarized in Lemmas 1 and 2 below.

Lemma 1 Let system (D.7) be given and h(z(t, z0)) be bounded for some x0, z0. Let, furthermore, system
(D.4) has steady-state characteristic χ(·) : R→ R+ . Then the following limiting relations hold

lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) ∈ χ−1(0) (D.24)

As follows from Lemma 1, in case the steady-state characteristic of Sa is defined, the asymptotic
behavior of interconnection (D.7) is characterized by the zeroes of the steady-state mapping χ(·). For
the steady-state characteristics on average a slightly modified conclusion can be derived

Lemma 2 Let system (D.7) be given, h(z(t, z0)) be bounded for some x0, z0, h(z(t, z0)) ∈ [0, h(z0)] and
system (D.4) admits steady-state characteristic χT (·) : R → R+ on average. Furthermore, let there exist a
positive constant γ̄ such that the function γ1(·) in (D.5) satisfies the following constraint:

γ1(s) ≥ γ̄ · s, ∀s ∈ [0, s̄], s̄ ∈ R+ : s̄ > c · h(z0), (D.25)
In addition, suppose that χT (·) has no zeros in the positive domain. Then

lim
t→∞

‖x(t,x0)‖A = 0, lim
t→∞

h(z(t, z0)) = 0 (D.26)

An immediate outcome of Lemmas 1 and 2 is that in case the conditions of Theorem 1 are satisfied
and system (D.4) has steady-state characteristics χ(·) or χT (·) domain of convergence Ωa becomes as
follows

Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, z : h(z) ∈ [0, h(z0)]} (D.27)
It is possible, however, to improve estimate (D.27) further under additional hypotheses on system Sa

and Sw dynamics. This result is formulated in the corollary below

Corollary 1 Let system (D.7) be given and satisfy assumptions of Theorem 1. Let, in addition,
C1) flow x(t,x0) ⊕ z(t, z0) is generated by a system of autonomous differential equations with locally

Lipschitz right-hand side;
C2) subsystem Sw is practically integral-input-to-state stable:

‖z(τ)‖∞,[t0,t] ≤ Cz +
∫ t

0

γ1(uw(τ))dτ (D.28)

and function h(·) ∈ C0 in (D.5)
C3) system Sa has a steady-state characteristic χ(·).

Then for all x0, z0 ∈ Ωγ the state of interconnection converges to the set

Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, h(z) ∈ χ−1(0)} (D.29)
As follows from Corollary 1 zeros of the steady state characteristic of system Sa actually "control"

domains to which the state of interconnection (D.7) might potentially converge. This is illustrated
with Fig. 3. Notice also that in case condition C3 in Corollary 1 is replaced with the alternative:

C3') system Sa has a steady-state characteristic on average χT (·),
it is possible to show that the state converges to

Ωa = {x ∈ X , z ∈ Z| ‖x‖A = 0, h(z) = 0} (D.30)
The proof follows straightforwardly from the proof of Corollary 1 and therefore is omitted.
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Figure D.3: Control of the attracting set by means of system's steady-state characteristics

D.4.3 Separable in space-time contracting dynamics
In the previous sections we have presented convergence tests, estimates of the trapping region, and
also specified characterization of the attracting sets under mild assumptions of uniform asymptotic
stability of Sa and specific input-output relation in system Sw. The conditions were given for rather
general functions β(·, ·) ∈ KL in (D.4) and γ0(·), γ1(·) in (D.5). It appears, however, that these
conditions can be substantially simplified if an additional information on properties of functions
β(·, ·) and γ0(·) is available. This information is, in particular, the separability of function β(·, ·) or,
equivalently, the possibility of factorization:

β(‖x‖A , t) ≤ βx(‖x‖A) · βt(t), (D.31)

where βx(·) ∈ K and βt(·) ∈ C0 is strictly decreasing9 with

lim
t→∞

βt(t) = 0 (D.32)

In principle, as shown in [7], factorization (D.31) is achievable for a large class of uniformly asymptot-
ically stable systems under an appropriate coordinate transformation. An immediate conequence of
factorization (D.31) is that the elements of sequence Ξ in Condition 2 are independent on ‖x(ti)‖A.
As a result, verification of Conditions 2, 3 becomes easier. The most interesting case, however, is
when function βx(·) in factorization (D.31) is Lipschitz. For this class of functions the conditions of
Theorem 1 reduce to a single and easy verifiable inequality. Let us consider this case in detail.

Without loss of generality, we assume that state x(t) of system Sa satisfies the following equation

‖x(t)‖A ≤ ‖x(t0)‖A · βt(t− t0) + c · ‖h(z(τ, z0))‖∞,[t0,t], (D.33)

where βt(0) is grater or equal to unit. Given that βt(t) is strictly decreasing, mapping βt : [0,∞] 7→
[0, βt(0)] is injective. Moreover βt(t) is continuous, then it is surjective and, therefore, bijective. In
the other words there is a (continuous) mapping β−1

t : [0, βt(0)] 7→ R+:

β−1
t ◦ βt(t) = t, ∀ t > 0 (D.34)

Conditions for emergence of the trapping region for interconnection (D.7) with dynamics of system
Sa governed by equation (D.33) are summarized below:

9If βt(·) is not strictly monotone, it can always be majorated by a strictly decreasing functon
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Corollary 2 Let interconnection (D.7) be given, system Sa satisfy (D.33) and function γ0(·) in (D.5) be
Lipschitz:

|γ0(s)| ≤ Dγ,0 · |s| (D.35)
and domain

Ωγ : Dγ,0 ≤
(

β−1
t

(
d

κ · βt(0)

))−1
κ− 1

κ

h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|

(D.36)
is not empty for some d < 1, κ > 1. Then for all initial conditions x0 z0 ∈ Ωγ state x(t,x0) ⊕ z(t, z0) of
interconnection (D.7) converges into the set Ωa specified by (D.18). If, in addition, conditions C1)–C3) of
Corollary 1 hold then the domain of convergence is given by (D.27).

A practically important consequence of this corollary concerns systems Sa which are exponentially
stable:

‖x(t)‖A ≤ ‖x(t0)‖ADβ exp(−λt) + c · ‖h(z(t, z0))‖∞,[t0,t], λ > 0, Dβ ≥ 1 (D.37)

For this case domain (D.36) of initial conditions ensuring convergence into Ωa is defined as

Dγ,0 ≤ max
κ>1, d∈(0,1)

−λ

(
ln

d

κDβ

)−1
κ− 1

κ

h(z0)

Dβ ‖x0‖A + Dβ · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|

In the next section we show how this result can be applied to address the problem of output
nonlinear identification for systems which cannot be transformed into the canonic observer form
or/and with nonlinear parametrization.

D.5 Discussion
In the literature of adaptive control, observation and identification a few classes of systems are re-
ferred as canonic forms for their ability to poses solutions to the problem and, at the same time,
applicability to large variety of relevant physical phenomena. Among these, perhaps, the most widely
known is the adaptive observer canonical form [2]. Necessary and sufficient conditions for trans-
formation of the original system into the observer canonical form can be found, for example, in
[16]. These conditions, however, include restrictive requirements of linearization of uncertainty-
independent dynamics by output injection, and also they require linear parametrization of the un-
certainty. Alternative approaches [3] heavily rely on knowledge of the proper Lyapunov function for
uncertainty-independent part and still assume linear parametrization.

Let us now demonstrate how these restrictions can be lifted by application our result to the prob-
lem of state and parameter observation. Let us consider classes of systems which can be transformed
by means of the feedback, static or dynamic10, into the following form:

ẋ = f0(x, t) + f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t), (D.38)

where
ε(t) ∈ Lm

∞[t0,∞], ‖ε(τ)‖∞,[t0,t] ≤ ∆ε

is external perturbation with known ∆ε, and x ∈ Rn. Function ξ : R+ → Rξ is a function of
time, which possibly includes available measurements of the state, and θ, θ̂ ∈ Ωθ ⊂ Rd are the

10Notice that conventional observers in control theory could be viewed as dynamic feedbacks of the speci�c class
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unknown and estimated parameters of function f(·) respectively and set Ωθ is bounded. We assume
that function f(ξ(t),θ) is locally bounded in θ uniformly in ξ:

‖f(ξ(t), θ)− f(ξ(t), θ̂)‖ ≤ Df‖θ − θ̂‖+ ∆f

and the values of Df ∈ R+, ∆f are available. Function f0(·) in (D.38) is assumed to satisfy the
following condition:

Assumption 3 System
ẋ = f0(x, t) + u(t) (D.39)

is forward-complete. Furthermore, for all u(t) such that

‖u(t)‖∞,[t0,t] ≤ ∆u + ‖u0(τ)‖∞,[t0,t], ∆u ∈ R+

there exist bounded set A, c > 0 and function ∆ : R+ → R+ satisfying the following inequality:

‖x(t)‖A∆(∆u)
≤ β(t− t0) ‖x(t0)‖A∆(∆u)

+ c‖u0(τ)‖∞,[t0,t]

where β(·) : R+ → R+, limt→∞ β(t) = 0 is strictly decreasing function.

Let us consider the following auxiliary system

λ̇ = S(λ), λ(t0) = λ0 ∈ Ωλ ⊂ Rλ (D.40)

where Ωλ ⊂ Rn is bounded and S(λ) is locally Lipschitz. Further, suppose that the following as-
sumption holds for system (D.40)

Assumption 4 System (D.40) is Poisson stable in Ωλ that is

∀ λ′ ∈ Ωλ, t′ ∈ R+ ⇒ ∃t′′ > t : ‖λ(t′′, λ′)− λ′‖ ≤ ε,

where ε is arbitrary small positive constant. Moreover, trajectory λ(t,λ0) is dense in Ωλ:

∀λ′ ∈ Ωλ, ε ∈ R>0 ⇒ ∃ t ∈ R+ : ‖λ′ − λ(t, λ0)‖ < ε

Now we are ready to formulate the following statement:

Corollary 3 Let us consider system (D.38) and suppose that the following conditions hold
C4) vector-field f0(x, t) in (D.38) satisfies Assumption 3;
C5) there exists and known system (D.40) satisfying Assumption 4;
C6) there exists locally Lipschitz η : Rλ → Rd:

‖η(λ′)− η(λ′′)‖ ≤ Dη‖λ′ − λ′′‖
such that set η(Ωλ) is dense in Ωθ;

C7) system (D.38) has steady-state characteristic with respect to the norm

‖·‖A∆(M)
, M = 2∆f + ∆ε + δ

and input θ̂, where δ is some positive (arbitrary small) constant.
Consider the following interconnection of (D.38), (D.40):

ẋ = f0(x, t) + f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t)

θ̂ = η(λ)

λ̇ = γ ‖x(t)‖A∆(M)
S(λ),

(D.41)

65



where γ > 0 satisfies the following inequality

γ ≤
(

β−1
t

(
d

κ · βt(0)

))−1
κ− 1

κ

1

Dλ

(
βt(0)

(
1 + κ

1−d

)
+ 1

)

Dλ = c ·Df ·Dη · max
λ∈Ωλ

‖S(λ)‖
(D.42)

for some d ∈ (0, 1), κ ∈ (1,∞). Then, for λ(t0) = λ0, some θ′ ∈ Ωθ and all x(t0) = x0 ∈ Rn the
following holds:

lim
t→∞

‖x(t)‖A∆(M)
= 0, lim

t→∞
θ̂(t) = θ′ ∈ Ωθ (D.43)

Notice that again, as has been pointed out in the previous section, in case the dynamics of (D.39) is
exponentially stable with the rate of convergence equal to ρ and β(0) = Dβ , condition (D.42) will
have the following form:

γ ≤ −ρ

(
ln

d

κDβ

)−1
κ− 1

κ

1

Dλ

(
Dβ

(
1 + κ

1−d

)
+ 1

)

According to Corollary 3, for rather general class of systems (D.38) it is possible to design estimator
θ̂(t) which guarantees that not only ”error” vector x(t) reaches a neighborhood of the origin, but also
that the estimates θ̂(t) converge to some θ′ in Ωθ. Both these facts together with additional nonlinear
persistent excitation conditions [5],[24]

∃T > 0, ρ ∈ K : ∀ T = [t, t + T ], t ∈ R+ ⇒ ∃τ ∈ T : |f(ξ(τ),θ)− f(ξ(τ), θ′)| ≥ ρ(‖θ − θ′‖)

in principle allow to estimate domains of convergence for θ̂(t).
Concluding this section we would like to mention that statements of Theorem 1 and Corollaries

1–3 constitute additional theoretical tools for analysis of asymptotic behavior of integral input-to-state
systems. In particular they are complementary to the results of [1] where asymptotic stability of the
following type of systems

ẋ = f(x),
ż = q(x, z), f : Rn → Rn, q : Rn × Rm → Rm

was considered under assumption that the x-subsystem is globally asymptotically stable and the z-
subsystem is integral input-to-state stable. In contrast to this our results apply to establishing asymp-
totic convergence in the systems of the following structure

ẋ = f(x, z),
ż = q(x, z), f : Rn × Rm → Rn

where the x-subsystem is input-to-state stable, and z-subsystem could be practically integral input-to-
state stable (see Corollary 1), although in general no stability assumptions are imposed on it.

D.6 Examples
In this section we provide two examples illustrating proposed techniques in application to the prob-
lem of parameter identification of nonlinear parameterized systems and those which cannot be trans-
formed into the canonical adaptive observer form.
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The first example is merely academical illustration to Corollary 3, where only one parameter is
unknown and the system itself is the first-order differential equation. The second example illustrates
possible application of our results to the problems of identification of dynamics in the living cells.

Example 1. Let us consider the following system

ẋ = −kx + sin(xθ + θ) + u, k > 0, θ ∈ [−a, a] (D.44)

where θ is the unknown parameter, and u is the control input. Without loss of the generality we let
a = 1, k = 1. The problem is to estimate parameter θ from the measurements of x and also to
steer the system to the origin. Clearly, choice u = − sin(xθ̂ + θ̂) transforms (D.44) into the following
equation

ẋ = −kx + sin(xθ + θ)− sin(xθ̂ + θ̂) (D.45)
which satisfies Assumption 3. Moreover, system

λ̇1 = λ1

λ̇2 = −λ2, λ2
1(t0) + λ2

2(t0) = 1

with mapping η = (1, 0)T λ satisfy Assumption 4 and therefore

λ̇1 = γ|x|λ1

λ̇2 = −γ|x|λ2, λ2
1(t0) + λ2

2(t0) = 1
(D.46)

would be a candidate for the control and parameter estimation algorithm. According to Corollary 3,
the goal will be reached if parameter γ in (D.46) obeys the following constraint

γ ≤ −ρ

(
ln

d

κDβ

)−1
κ− 1

κ

1

Dλ

(
Dβ

(
1 + κ

1−d

)
+ 1

) , ρ = k = 1, Dβ = 1, Dλ = 1

for some d ∈ (0, 1), κ ∈ (1,∞). Hence, choosing, for example, d = 0.5, κ = 2 we obtain that choice

0 < γ < − ln
(

0.5
2

)
1
2
· 1
6

= 0.1155

suffices to ensure that
lim

t→∞
x(t) = 0, lim

t→∞
θ̂(t) = θ

We simulated system (D.45), (D.46) with θ = 0.3, γ = 0.1 and initial conditions x(t0) randomly
distributed in the interval [−1, 1]. Results of the simulation are illustrated with Figure 4, where the
phase plots of system (D.45), (D.46) as well as the trajectories of θ̂(t) are provided.

Example 2. Let us consider the problem modelling electrical activity in the biological cells from
the input-output data in the current clamp experiments. The simplest mathematical model, which
captures fairly large variety of phenomena like periodic bursting in response to constant stimulation
is the classical Hindmarsh and Rose model without adaptation currents [9]:

ẋ1 = −ax3
1 + bx2

1 + x2 + αu

ẋ2 = c− βx2 − dx2
1

(D.47)

where variable x1 is the membrane potential, x2 stands for the ionic currents in the cell, u is the
input current, and a, b, c, d, α, β ∈ R are parameters. While parameters of the first equation can, in
principle, be identified experimentally by blocking the ionic channels in the cells and measuring the
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Figure D.4: Trajectories of system (D.45), (D.46) (left panel) and the family of estimates θ̂(t) of
parameter θ as functions of time t (right panel)

membrane conductance, identification of parameters β, d is a difficult problem as information about
ionic currents x2 is rarely available.

Conventional techniques [2] cannot be applied immediately to this problem as model (D.47) is not
in canonical adaptive observer form. Let us illustrate how our results can be used to derive unknown
parameters of (D.47) such that reconstructed model fits the observed data. Let us assume, first,
that parameters a, b, c, α in the first equation of (D.47) are known, parameters β, d in the second
equation are unknown. This corresponds to the realistic case where the time constant of current x2

and coupling between x1 and x2 are uncertain. In our example we assumed that

β ∈ Ωβ = [0.3, 0.7], d ∈ Ωd = [2, 3], a = 1, b = 3, α = 0.7, c = 0.5

As a candidate for the observer we select the following system

ˆ̇x = −ρ(x1 − x̂)− ax3
1 + bx2

1 + αu + f(β̂, d̂, t), ρ ∈ R>0 (D.48)

where β̂, d̂ are parameters to be adjusted and function f(β̂, d̂, t) is specified as

f(β̂, d̂, t) =
∫ t

0

e−β̂(t−τ)(d̂x2
1(τ) + c)dτ

Then dynamics of x̃(t) = x(t)− x̂(t) satisfies the following differential equation

˙̃x = −ρx̃ + f(β, d, t)− f(β̂, d̂, t)

Function f(β, d, t) satisfies the following inequality

|f(β, d, t)− f(β̂, d̂, t)| ≤ |f(β, d, t)− f(β̂, d, t)|+ |f(β̂, d, t)− f(β̂, d̂, t)|
≤ Df,β |β − β̂|+ Df,d|d− d̂|+ ε(t),

where ε(t) is exponentially decaying term, and

Df,β = max
β̂,β∈Ωβ , d∈Ωd

{
1

ββ̂
(d‖x1(τ)‖∞,[t0,∞] + c)

}
, Df,d = max

β̂∈Ωβ

{
1

β̂
‖x1(τ)‖∞,[t0,∞]

}
(D.49)
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Furthermore, Assumption 3 is satisfied for system

˙̃x = −ρx̃ + υ(t), ‖υ(τ)‖∞,[t0,t] ≤ ∆u + ‖υ0(τ)‖∞,[t0,t]

with

∆(∆u) =
∆u

ρ
, c = 1

Let us define subsystem (D.40). Consider the following system of differential equations

λ̇1 = λ2

λ̇2 = −ω2
1λ1

λ̇3 = λ4

λ̇4 = −ω2
2λ3, λ0 = (1, 0, 1, 0)T

(D.50)

where Ωλ is the ω-limit set of the point λ0, and ω1, ω2 ∈ R. System, therefore, satisfies Assumption
4. Given that domains Ωβ , Ωd are known, let us select

η : Rn → R2, η = (η1(λ), η2(λ))

β̂ = η1(λ) =
1
2

(
2 arcsin(λ1)

π
+ 1

)
· 0.4 + 0.3, d̂ = η2(λ) =

1
2

(
2 arcsin(λ3)

π
+ 1

)
+ 2

(D.51)

Choosing
ω1

ω2
= π

we ensure that η(Ωλ) id dense in Ωβ ×Ωd. Given that β̂, d̂ are bounded, Df,β and Df,d in (D.49) are
also bounded (for the given range of parameters signal x1(t) is always bounded). Hence, according
to Corollary 3, interconnection of (D.48), (D.51) and

λ̇1 = γ‖x̃(t)‖∆(δ) · λ2

λ̇2 = −γ‖x̃(t)‖∆(δ) · ω2
1λ1

λ̇3 = γ‖x̃(t)‖∆(δ) · λ4

λ̇4 = −γ‖x̃(t)‖∆(δ) · ω2
2λ3, λ0 = (1, 0, 1, 0)T

with arbitrary small δ > 0 and properly chosen γ > 0 ensures that

lim
t→∞

‖x̃(t)‖∆(δ) = 0, lim
t→∞

β̂(t) = β′ ∈ Ωβ , lim
t→∞

d̂(t) = d′ ∈ Ωd

This, would in turn imply successful fit of the observations to the model.
We simulated the system with ρ = 10 and γ = 3 · 10−4 for β = 0.5, d = 2.5. The results of the

simulations are provided in figures 5 (trajectories x1(t), x̂(t)) and 6 (estimates β̂(t) and d̂(t)). It can
be seen from these figures that reconstruction is successful and parameters converge into a small
neighborhood of the actual values.

D.7 Conclusion
We proposed new tools for analysis of asymptotic behavior for a class of dynamical systems. In
particular, we considered an interconnection of input-to-state stable system with an unstable or in-
tegrally input-to-state dynamics. Our results allow to address a variety of relevant problems when
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the convergence might not be unform in initial condition. It is necessary to notice that we do not
require complete knowledge of the dynamical systems in question. Only qualitative information like,
for instance, characterization of input-to-state stability of is necessary for application of our results.
We have also demonstrated how our analysis can be used in the problems of synthesis and design.
In particular, to the problems of nonlinear regulation and parameter identification of nonlinear pa-
rameterized systems. Provided examples show relevance of our approach in those domains where
application of the standard techniques is either not possible or complicated.
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D.9 Appendix
Proof of Theorem 1. Let conditions of the theorem be satisfied for the given t0 ∈ R+: x(t0) = x0,
z(t0) = z0. Notice that in this case h(z0) ≥ 0 overwise requirement (D.20) will be violated. Let us
consider the sequence (D.17) volumes Ωi induced by S :

Ωi = {x ∈ X , z ∈ Z| h(z(t)) ∈ Hi}
To prove the theorem we shall show that 0 ≤ h(z(t)) ≤ h(z0) for all t ≥ t0. For the given partition
(D.17) we consider two alternatives.

First, in the degenerative case, the state x(t) ⊕ z(t) enters some Ωj , j ≥ 0 and stays there for all
t ≥ t0 which automatically guarantees that 0 ≤ |h(z)| ≤ h(z0). Then, according to (D.4) trajectory
x(t) satisfies the following inequality:

‖x(t)‖A ≤ β(‖x0‖A , t− t0) + c‖h(z(t))‖∞,[t0,t] ≤ β(‖x0‖A , t− t0) + c|h(z0)| (D.52)

Taking into account that β(·, ·) ∈ KL we can conclude that (D.52) implies that

lim sup
t→∞

‖x(t)‖A = c|h(z0)| (D.53)

Therefore statements of the theorem hold.
Let us consider the second alternative, where the state x(t) ⊕ z(t) does not belong to Ωj for all

t ≥ t0. Given that h(z(t)) is monotone and non-increasing in t, this implies that there exists an
ordered sequence of time instants tj :

t0 > t1 > t2 · · · tj > tj+1 · · · (D.54)

such that
h(z(ti)) = σih(z0) (D.55)

Hence in order to prove the theorem we must show that the sequence {ti}∞i=0 does not converge. In
the other words, the boundary σ∞h(z0) = 0 will not be reached in finite time.

In order to do this let us estimate the upper bounds for the following differences

Ti = ti+1 − ti

Taking into account inequality (D.5) and the fact that γ0(·) ∈ Ke we can derive that

h(z(ti))− h(z(ti+1)) ≤ Ti max
τ∈[ti,ti+1]

γ0(‖x(τ)‖A) ≤ Tiγ0(‖x(τ)‖A∞,[ti,ti+1]
) (D.56)
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According to the definition of ti in (D.55) and noticing that sequence S is strictly decreasing we have

h(z(ti))− h(z(ti+1)) = (σi − σi+1)h(z0) > 0

Hence h(z0) > 0 implies that γ0(‖x(τ)‖A∞,[ti,ti+1]
) > 0 and, therefore, (D.56) results in the follow-

ing estimate of Ti:

Ti ≥ h(z(ti))− h(z(ti+1))
γ0(‖x(τ)‖A∞,[ti,ti+1]

)
=

h(z0)(σi − σi+1)
γ0(‖x(τ)‖A∞,[ti,ti+1]

)
(D.57)

Taking into account that h(z(t)) is non-increasing over [ti, ti+1] and using (D.4) we can bound the
norm ‖x(τ)‖A∞,[ti,ti+1]

as follows

‖x(τ)‖A∞,[ti,ti+1]
≤ β(‖x(ti)‖A , 0) + c‖h(z(τ))‖∞,[ti,ti+1] ≤ β(‖x(ti)‖A , 0) + c · σih(z0) (D.58)

Hence, combining (D.57) and (D.58) we obtain that

Ti ≥ h(z0)(σi − σi+1)
γ0(σi(σ−1

i β(‖x(ti)‖A , 0) + c · h(z0)))

Then, using property (D.6) of function γ0 we can derive that

Ti ≥ h(z0)(σi − σi+1)
γ0,1(σi)

1
γ0,2(σ−1

i β(‖x(ti)‖A , 0) + c · h(z0)))
(D.59)

Taking into account condition (D.21) of the theorem, the theorem will be proven if we assure that

Ti ≥ τi (D.60)

for all i = 0, 1, 2, . . . ,∞. We prove this claim by induction with respect to index i = 0, 1, . . . ,∞. We
start with i = 0, and then show that for all i > 0 the following implication holds

Ti ≥ τi ⇒ Ti+1 ≥ τi+1 (D.61)

Let us prove that (D.60) holds for i = 0. For this purpose consider the following term (σi − σi+1)/γ0,1(σi).
As follows immediately from conditions of the theorem, equation (D.19), we have that

σi − σi+1

γ0,1(σi)
≥ τi∆0 ∀ i ≥ 0 (D.62)

In particular
σ0 − σ1

γ0,1(σ0)
≥ τ0∆0

Therefore, inequality (D.59) reduces to

T0 ≥ τ0∆0
h(z0)

γ0,2(σ−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

(D.63)

Moreover, taking into account Condition 3 and (D.12), (D.13) we can derive the following estimate:

σ−1
0 β(‖x(t0)‖A , 0) ≤ σ−1

0 φ0(‖x(t0)‖A) + σ−1
0 υ0(c · |h(z0)|σ0) ≤ B1(‖x0‖A) + B2(|h(z0)|, c)

According to the theorem conditions x0 and z0 satisfy inequality (D.20). This in turn implies that

γ0,2(σ−1
0 β(‖x(t0)‖A , 0)+c·h(z0)) ≤ γ0,2(B1(‖x0‖A)+B2(|h(z0)|, c)+c·h(z0)) ≤ ∆0·h(z0) (D.64)
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Combining (D.63) and (D.64) we obtain the desired inequality

T0 ≥ τ0∆0
h(z0)

γ0,2(σ−1
0 β(‖x(t0)‖A , 0) + c · h(z0))

≥ τ0
∆0h(z0)
∆0h(z0)

= τ0

Thus the basis of induction is proven.
Let us assume that (D.60) holds for all i = 0, . . . , n, n ≥ 0. We shall prove now that implication

(D.61) holds for i = n. Consider the term β(‖x(tn+1)‖A , 0):

β(‖x(tn+1)‖A , 0) ≤ β(β(‖x(tn)‖A , Tn) + c‖h(z(τ))‖∞,[tn,tn+1], 0)

≤ β(β(‖x(tn)‖A , Tn) + c · σn · h(z0), 0)

Taking into account Condition 2 (specifically, inequality (D.11)) and (D.12)– (D.14) we can derive that

β(‖x(tn+1)‖A , 0) ≤ β(ξn · β(‖x(tn)‖A), 0) + c · σn · h(z0), 0) ≤ φ1(‖x(tn)‖A) + υ1(c · |h(z)0| · σn)
(D.65)

Notice that, according to the inductive hypothesis (Ti ≥ τi) the following holds

‖x(ti+1)‖A ≤ β(‖x(ti)‖A , Ti) + c · σi · h(z0) ≤ ξiβ(‖x(ti)‖A , 0) + c · σi · h(z0) (D.66)

for all i = 0, . . . , n. Then (D.65), (D.66), (D.12)– (D.14) imply that

β(‖x(tn+1)‖A , 0) ≤ φ1(ξiβ(‖x(tn−1)‖A , 0) + c · σn−1 · h(z0)) + υ1(c · |h(z)0| · σn)
≤ φ2(‖x(tn−1)‖A) + υ2(c · |h(z0)| · σn−1) + υ1(c · |h(z0)| · σn)

≤ φn+1(‖x0‖A) +
n+1∑

i=1

υi(c · |h(z0)|σn+1−i) ≤ φn+1(‖x0‖A) +
n+1∑

i=0

υi(c · |h(z0)|σn+1−i)

(D.67)

According to Condition 3, term

σ−1
n+1

(
φn+1(‖x0‖A) +

n+1∑

i=0

υi(c · |h(z0)|σn+1−i)

)

is bounded from above by the sum

B1(‖x0‖A) + B2(|h(z0)|, c)
Therefore, monotonicity of γ0,2, estimate (D.67) and inequality (D.20) lead to the following inequality

γ0,2(σ−1
n+1β(‖x(tn+1‖A), 0) + c · h(z0)) ≤ γ0,2(B1(‖x0‖A) + B2(|h(z0)|, c) + c · h(z0)) ≤ ∆0

Hence, according to (D.59), (D.62) we have:

Tn+1 ≥ (σn+1 − σn)
γ0,1(σn+1)

h(z0)
γ0,2(σ−1

n+1β(‖x(tn+1)‖A , 0) + c · h(z0))
≥ τn+1

∆0h(z0)
∆0h(z0)

= τn+1

Thus implication (D.61) is proven. This implies that h(z(t)) ∈ [0, h(z0)] for all t ≥ t0 and, conse-
quently, that (D.53) holds. The theorem is proven.

Proof of Lemma 1. As follows from the lemma assumptions, h(z(t, z0)) is bounded. Let us, for
certainty, it and belongs to the following interval [a, h(z0)], a ≤ h(z0). Therefore, as follows from
(D.5) we can conclude that

0 ≤
∫ ∞

t0

γ1(‖x(τ,x0)‖A)dτ ≤ h(z0)− h(z(t, z0)) ≤ ∞ (D.68)
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On the other hand, taking into account that h(z(t, z0)) is bounded and monotone in t (every sub-
sequence of which is again monotone) and applying Bolzano-Weierstrass theorem we can conclude
that h(z(t, z0)) converges in [a, h(z0)]. In particular, there exists h̄ ∈ [a, h(z0)] such that

lim
t→∞

h(z(t, z0)) = h̄ (D.69)

According to the lemma assumptions, system Sa has the steady-state characteristics. This means that
there exists constant x̄ ∈ R+ such that

lim
t→∞

‖x(t,x0)‖A = x̄ (D.70)

Suppose that x̄ > 0. Then it follows from (D.70) that there exists time instant t1 < ∞ and some
constant 0 < δ < x̄ such that

‖x(t)‖A ≥ δ ∀t ≥ t1

Hence using (D.68) and noticing that γ1 ∈ Ke we obtain

∞ > h(z0)− h(z0) ≥ lim
T→∞

∫ T

t1

γ1(δ)dτ = ∞

Thus we obtained the contradiction. Hence, x̄ = 0 and, consequently,

lim
t→∞

‖x(t)‖A = 0

Then, according to the notion of steady-state characteristic in Definition 5 this is only possible if
h̄ ∈ χ−1(0). The lemma is proven.

Proof of Lemma 2. Analogously to the proof of Lemma 1 we notice that (D.68) holds. This,
however, implies that for any constant and positive T the following limit

lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ

exists and equals to zero. Furthermore, h(z(t, z0)) ∈ [0, h(z0)] for all t ≥ t0. Hence, there exists time
instant t′ such that

‖x(t)‖A ≤ c · h(z0) + ε, ∀ t ≥ t′,

where ε > 0 is arbitrary small. Then taking into account (D.25) we can conclude that

lim
t→∞

∫ t+T

t

γ1(‖x(τ)‖A)dτ ≥ γ̄

∫ t+T

t

‖x(τ)‖A dτ = 0 (D.71)

Given that (D.69) holds, system (D.4) has steady-state characteristic on average and that χT (·) has
no zeros in the positive domain, limiting relation (D.71) is possible only if h̄ = 0. Then, according to
(D.4), limt→∞ ‖x(t)‖A = 0. The lemma is proven.

Proof of Corollary 1. As follows from Theorem 1, state x(t,x0)⊕ z(t, z0) converges to the set Ωa

specified by (D.18). Hence h(z(t, z0)) is bounded. Then, according to (D.5), estimate (D.68) holds.
This in combination with condition (D.28) implies that z(t, z0) is bounded. In the over words

x(t,x0)⊕ z(t, z0) ∈ Ω′ ∀ t ≥ t0

where Ω′ is a bounded subset in Rn × Rm. Applying Bolzano-Weierstrass theorem we can conclude
that for every point x0 ⊕ z0 ∈ Ωγ there is an ω-limit set ω(x0 ⊕ z0) ⊆ Ω′ (non-empty).
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As follows from C3) and Lemma 1 the following holds:

lim
t→∞

h(z(t, z0)) ∈ χ−1(0)

Therefore, given that h(·) ∈ C0 we can obtain that

lim
ti→∞

h(z(ti, z0)) = h( lim
ti→∞

z(ti, z0)) = h(ωz(x0 ⊕ z0)) ∈ χ−1(0)

In the other words:

ωz(x0 ⊕ z0) ⊆ Ωh = {x ∈ Rn, z ∈ Rm| h(z) ∈ χ−1(0)}
Moreover

ωx(x0 ⊕ z0) ⊆ Ωa = {x ∈ Rn, z ∈ Rm| ‖x‖A = 0}
According to assumption C1, flow x(t,x0) ⊕ z(t, z0) is generated by a system of autonomous differ-
ential equations with locally Lipschitz right-hand side. Then, as follows from [13] (Lemma 4.1, page
127)

lim
t→∞

dist(x(t,x0)⊕ z(t, z0), ω(x0 ⊕ z0)) = 0

Noticing that

dist(x(t,x0)⊕ z(t, z0), ω(x0 ⊕ z0)) ≥ dist(x(t,x0), Ωa) + dist(z(t, z0), Ωh)

we can finally obtain that

lim
t→∞

dist(x(t,x0), Ωa) = 0, lim
t→∞

dist(z(t, z0), Ωh) = 0

The corollary is proven.
Proof of Corollary 2. As follows from Theorem 1, the corollary will be proven if Conditions 1

– 3 are satisfied and also (D.19), (D.20), (D.21) hold. In order to satisfy Condition 1 we select the
following sequence S:

S = {σi}∞i=0, σi =
1
κi

, κ ∈ R+, κ > 1 (D.72)

Let us chose sequences T and Ξ as follows:

T = {τi}∞i=0, τi = τ∗, (D.73)

Ξ = {ξi}∞i=0, ξi = ξ∗, (D.74)
where τ∗, ξ∗ are positive, yet to be defined, constants. Notice that choosing T as in (D.73) automat-
ically fulfills condition (D.21) of Theorem 1. On the other hand, taking into account (D.33) and that
βt(t) is monotonically decreasing in t, this choice defines constant ξ∗ as follows:

βt(τ∗) ≤ ξ∗ < βt(0) (D.75)

Given that inverse β−1
t exists (see, (D.34)), this choice is always possible. In particular, (D.75) will be

satisfied for the following values of τ∗:

τ∗ ≥ β−1
t (ξ∗) (D.76)

Let us now find the values for τ∗ and ξ∗ such that Condition 3 is also satisfied. For this reason
consider systems of functions Φ, Υ specified by equations (D.12), (D.13). Notice that function β(s, 0)
in (D.12), (D.13) is linear for system (D.33)

β(s, 0) = s · βt(0),
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and therefore functions ρφ,j(·), ρυ,j are the identity maps. Hence, Φ, Υ reduce to the following

Φ :
φj(s) = φj−1 · ξ∗ · β(s, 0) = ξ∗ · βt(0) · φj−1(s), j = 1, . . . , i
φ0(s) = βt(0) · s (D.77)

Υ :
υj(s) = φj−1(s), j = 1, . . . , i
υ0(s) = βt(0) · s (D.78)

Taking into account (D.72), (D.77), (D.78) let us explicitly formulate requirements (D.15), (D.16) in
Condition 3. These conditions are equivalent to boundedness of the following functions

‖x(t0)‖A · βt(0) · κn(ξ∗ · βt(0))n (D.79)

κn

(
βt(0)

c|h(z0)|
κn

+
βt(0)c|h(z0)|

κn−1
+ βt(0)

n∑

i=2

c|h(z0)| 1
kn−i

(ξ∗ · βt(0))i−1

)

= βt(0)c|h(z0)|+ βt(0)c|h(z0)|κ
(

1 +
n∑

i=2

κi−1(ξ∗ · βt(0))i−1

) (D.80)

Boundedness functions B1(‖x0‖A) and B2(|h(z0)|, c) is ensured if ξ∗ satisfy the following inequality

ξ∗ ≤ d

κ · βt(0)
(D.81)

for some 0 ≤ d < 1. Notice that κ > 1, βt(0) ≥ 1 imply that ξ∗ ≤ 1 and therefore constant τ∗

satisfying (D.76) will always be defied. Hence, according to (D.79), (D.80), functions B1(‖x0‖A) and
B2(|h(z0)|, c) satisfying Condition 3 can be chosen as

B1(‖x0‖A) = βt(0) ‖x0‖A ; B2(|h(z0)|, c) = βt(0) · c · |h(z0)|
(

1 +
κ

1− d

)
(D.82)

In order to apply Theorem 1 we have to check the remaining conditions (D.19) and (D.20). This
will involve availability of factorization (D.6) for the function γ0(·). According to assumption (D.35)
of the corollary function γ0(·) is Lipschitz:

|γ0(s)| ≤ Dγ,0 · |s|
This allows us to choose function γ0,1(·) and γ0,2(·) as follows:

γ0,1(s) = s, γ0,2(s) = Dγ,0 · s (D.83)

Condition (D.19), therefore, is equivalent to solvability of the following inequality:
(

1
κi
− 1

κi+1

)
κi

τ∗
≥ ∆0 (D.84)

Taking into account inequalities (D.76), (D.81) we can derive that solvability of

∆0 =
(

β−1
t

(
d

κ · βt(0)

))−1
κ− 1

κ
(D.85)

implies existence of ∆0 > 0 satisfying (D.84) and, consequently, condition (D.19) of Theorem 1.
Given that d < 1, κ > 1 and βt(0) ≥ 1 positive solution to (D.85) is always defined. Hence, the proof
will be complete and the claim is non-vacuous if domain

Dγ,0 ≤
(

β−1
t

(
d

κ · βt(0)

))−1
κ− 1

κ

h(z0)

βt(0) ‖x0‖A + βt(0) · c · |h(z0)|
(
1 + κ

1−d

)
+ c|h(z0)|
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is not empty. The corollary is proven.
Proof of Corollary 3. Let λ(τ, λ0) be a solution of system (D.40). Consider it as a function of

variable τ . Let us pick some monotone, strictly increasing function σ such that the following holds

τ = σ(t), σ : R+ → R+

Given that η(Ωλ) is dense in Ωθ, for any θ ∈ Ωθ there always exists vector λθ ∈ Ωλ such that
η(λθ) = θ + εθ, where ‖εθ‖ is arbitrary small. Furthermore, λ(τ) is dense in Ωλ, hence there is a
point λ∗ = λ(τ∗,λ0), which is arbitrary close to λθ. Consider the following difference

f(ξ(t), θ)− f(ξ(t), θ̂) = f(ξ(t),θ)− f(ξ(t), η(λ∗)) + f(ξ,η(λ∗))− f(ξ, η(λ(σ(t))))

Function f(·) is locally bounded and η(·) is Lipschitz, then

‖f(ξ, θ)− f(ξ, η(λ∗))‖ ≤ Df‖εθ‖+ ∆f = ∆θ + ∆f

where ∆θ is arbitrary small. Hence

‖f(ξ, η(λ∗))− f(ξ, η(λ(σ(t))))‖ ≤ Df‖η(λ∗)− η(λ(σ(t)))‖+ ∆f + ∆θ

≤ Df ·Dη‖λ∗ − λ(σ(t))‖+ ∆f + ∆θ

(D.86)

Noticing that λ∗ = λ(τ∗,λ0) = λ(σ(t∗), λ0) and taking into account Poisson stability of (D.40), we
can always choose λ∗(σ∗, λ0) such that σ∗ > σ(t0) = τ0 for any τ0 ∈ R+. Hence, according to (D.86)
the following estimate holds:

‖f(ξ, η(λ∗))− f(ξ, η(λ(σ(t))))‖ ≤ Df ·Dη‖
∫ σ∗

σ(t)

S(λ(σ(τ)))dτ‖+ ∆f + ∆θ

≤ Df ·Dη · max
λ∈Ωλ

‖S(λ)‖|σ∗ − σ(t)| = D · |σ∗ − σ(t)|+ ∆f + ∆θ, D = Df ·Dη · max
λ∈Ωλ

‖S(λ)‖
(D.87)

Denoting u(t) = f(ξ(t), θ)− f(ξ(t), θ̂) + ε(t) we can conclude now that

‖u(t)‖ ≤ ∆ε + ∆f + ‖f(ξ(t),θ)− f(ξ(t), η(λ∗))‖+D · |σ∗ − σ(t)|
≤ ∆ε + 2∆f + ∆θ + Df‖θ − η(λ∗)‖+D · |σ∗ − σ(t)| (D.88)

Notice that due to the denseness of λ(t,λ0) in Ωλ it is always possible to choose λ∗ such that

Df‖θ − η(λ∗)‖ = Df‖η(λθ)− η(λ∗)‖ ≤ DfDη‖λθ − η(λ∗)‖ ≤ ∆λ

Hence, according to (D.88), we have

‖u(t)‖∞,[t0,t] ≤ 2∆f + ∆ε + δ +D · ‖σ∗ − σ(t)‖∞,[t0,t]

where the term δ > ∆θ + ∆λ can be made arbitrary small.
Therefore Assumption 3 implies that the following inequality holds:

‖x(t)‖A∆(M)
≤ β(t− t0) ‖x(t0)‖A∆(M)

+ c · D · ‖σ∗ − σ(t)‖∞,[t0,t] (D.89)

Let us now define σ(t) as follows

σ(t) =
∫ t

t0

γ ‖ψ(x(τ))‖A∆(M)
dτ (D.90)
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Moreover, let us introduce the following notation

h(t) = σ∗ − σ(t) = σ∗ −
∫ t

t0

γ ‖ψ(x(τ))‖A∆(M)
dτ

then for all t′, t ≥ t0, t ≥ t′ we have that

h(t′)− h(t) =
∫ t

t′
γ ‖ψ(x(τ))‖A∆(M)

dτ

Taking into account equation (D.86), (D.87), equality

∂λ(σ(t), λ0)
dt

=
∂σ(t)

dt
S(λ(σ(t), λ0)) = γ ‖ψ(x(τ))‖A∆(M)

S(λ(σ(t), λ0)),

equation (D.89), and denoting Dλ = cD, we can conclude that the following holds along the trajecto-
ries of (D.41):

‖x(t)‖A∆(M)
≤ β(t− t0) ‖x(t0)‖A∆(M)

+ Dλ‖h(τ)‖∞,[t0,t]

h(t0)− h(t) =
∫ t

t0

γ ‖ψ(x(τ))‖A∆(M)
dτ

(D.91)

Hence, according to Corollary 1, limiting relation (D.43) holds for all |h(t0)|, ‖x(t0)‖A∆(M)
which

belong to the domain

Ωγ : γ ≤
(

β−1
t

(
d

κ · βt(0)

))−1
κ− 1

κ

h(t0)

βt(0) ‖x(t0)‖A∆+δ
+ βt(0) ·Dλ · |h(t0)|

(
1 + κ

1−d

)
+ Dλ|h(t0)|

for some d < 1, κ > 1. Notice, however, that ‖x(t)‖A∆+δ
is always bounded as f(·) is Lipschitz in θ

and both θ and θ̂ are bounded (η(·) is Lipschitz and λ(t,λ0) is bounded according to assumptions
of the corollary). Moreover, due to the Poisson stability of (D.40) it is always possible to choose
point λ∗ such that h(t0) = σ∗ is arbitrary large. Hence choice of γ in (D.91) as (D.42) suffices to
ensure that h(t) is bounded. Moreover, that h(t) converges to a limit as t → ∞. This implies that
γ

∫ t

t0
‖x(τ)‖A∆(M)

also converges as t →∞, and, consequently, λ(t, λ0) converges to some λ′ ∈ Ωλ.
Hence the following holds

lim
t→∞

ˆθ(t) = θ′

for some θ′ ∈ Ωθ. According to the corollary conditions, system (D.39) has steady state characteristics
with respect to θ̂. Then, in the same way as in the proof of Lemma 1 we can show that (D.43) holds.
The corollary is proven.
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