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1. Introduction. 

In the past, several researchers made a plasticity model of the cutting 

process. For all these models, the correspondence between theory and 

experiment was moderate. For this reason we made a new model [2J in 

which we assumed the cutting process to be a plastic one. This plastic 

process occurs in one shear plane in the primary shear zone and also 

in the secondary shear zone. This secondary shear zone is the chip-tool 

contact zone. In our view it means that friction in the secondary shear 

zone origins also from a plastic process. We also assumed that the 

frictional force depends upon the shear angle. This assumption differs 

from the known models and is essential for the solution. For both 

deformation zones we can calculate the necessary power as a function of 

the shear angle (Section 2) • We can find a differential equation using the 

principle [2J that the best solution of the permitted geometries 

(determined by the shear angle) is found for the minimum difference 

between the calculated and measured cutting power. This equation 

describes the dependence of the first derivative of the normalized 

frictional force with respect to the shear angle as a function of the 

normalized frictional force, the shear angle, the rake angle of the 

tool and the strainhardening exponent of the workpiece material. This 

normalized frictional/force is defined as the frictional force on the 

tool divided by the specific stress of the workpiece material, the feed 

and the width of cut. This differential equation, combined with a 

boundary condition derived from the upsetting test, can be numerically 

solved. The solution - the normalized frictional force as a function of 

the shear angle for a given workpiece material characterized by the 

strainhardening exponent and rake angle of the tool - has been tested 

by experiments [1J. Comparison of the theoretical and experimental 

results shows some scatter. In order ro obtain more information about 

the validity of the proposed model, we ought to compare theoretical and 

experimental data, not from the solution of the differential equation, 

but from the differential equation itself. This comparison is carried 

out for two workpiece materials, different tool materials, feeds, cutting 

speeds and two rake angles of the tool (Section 3). In the discussion 

(Section 4) we deal with some explanations for the difference between 

the experimental and theoretical data. 
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Summary. 

Starting with the idea that the cutting process is a plastic process,we 

have derived a differential equation using the minimum energy principle 

[1]. This equation shows a relation between the first derivative of the 

normalized frictional force, the normalized frictional force, the 

shear angle and the rake angle of the tool. In this equation the properties 

of the workpiece material are described by the two plastic material 

constants: the specific stress and the strain hardening exponent. This 

differential equation confronted with a boundary condition derived from 

the upsetting test, has been integrated numerically. This yields the 

relation between the normalized frictional force and the shear angle. In 

testing this dependence we found the experimental data scattering around 

the theoretically predicted curves. In order to explain this behaviour, 

more information about the differential equation itself is needed. 

Consequently, we determine this equation numerically and compare the 

results with the experimental data. The cutting tests are performed with 

two workpiece materials, several tool materials and under different 

cutting conditions. 
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2. A cutting model. 

We will start with the idea that cutting is a plastic deformation process 

[1J. The process takes place in 2 regions: the primary shear zone and 

the secondary shear zone (Figure 1). If we assume that the deformation 

in the primary shear zone takes place in only one plane, it holds for 

the power: 

E 
P 

= ~ {cotan cp + tan (cp-Yo)} n+1 bfv 
n+1 h 

with: v = cutting speed, 

b width of cut, 

f = feed, 

C specific stress of the workpiece 

cp = shear angle in the primary shear 

Yo rake angle of the tool, 

material, 

zone, 

n = strain hardening exponent of the workpiece material. 

For the power in the secondary shear zone it holds: 

E 
s 

with F 

= Fv sin cp 
cos (cp-Yo) 

frictional force on the chip. 

This quantity F is defined by: 

F - F = w 

(1) 

(2) 

(3) 

where Ff is the feed force, Fv is the cutting force on the tool and Fw 

is the frictional force on the tool. 

The best solution for the class of geometries. in which only the shear 

angle can vary, is determjned by: 

= 0 ( 4) 

This means that the difference between the measured cutting power and 

the power calculated for the chosen geometry is minimal. Also it is 

proven that for this geometry the calculated power function has a minimum. 
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Figure 1. Schematic representation of the cutting process 

in two dimensions. 

Taking into account the variation of F as a function of the shear angle 

qI and combining Eg. (1), (2) and (4) .it holds after some calculations: 

1 dF F cos Yo cos (qI-Yo) 
Cbf dql = - Cbfcos{qI-Yo) sin qI + h sin qI 

1 } (5) 

It means that the first derivative of the normalized frictional force 

« = C~f • :: » is a function of the normalized frictional force « = C~f », 

the shear angle <p, the strain hardening exponent n and the rake angle of the 

tool Yo' For each workpiece material described by the material constants 

C and n, Eg. (5) has to be valid for every tool material, feed, width 

of cut and cutting speed. The problems are the determination of C under the 

cutting conditions in the primary shear zone and the boundary condition 

for Eg. (5). This boundary condition can be derived from the upsetting 

test. In this test the deformation starts in a plane which is inclined 45
0 

with respect to the upsetting force (Figure 2). Assuming that the location 

of the first deformation in the beginning of both processes is the same, 

it holds: 

F 
w 

(6) 
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f 

Figure 2. The initiation of the deformation process 

in cutting. 

In Eg. (6) L h. is the flow stress of the workpiece material. For an 
s ~ 

ideal plastic material Eg. (6) results in: 

F 
w I sin Yo I 

Cbf = 13 sin245° 
(7) 

For the determination of the specific stress C we proceed from Figure 1. 

In this figure the average shear stress Lshi med in the shear plane is: 

Ir-v
2 F 2 (!p+13) sin + f cos <p 

Lshi med = fb 

with e = arc tan (!:f.) 
Fv 

If the shear velocity in the shear plane is constant and the stress­

strain behaviour of the workpie~e material is described by the Nadai 

relation, it holds for C using Eg. (8) [1]: 

C = v{../ + F/'COS(<P+13) sin <P (n+1) h {/3 }-n 
fb cotan ~ + tan (~-Yo) 

(8) 

(9) 

In [1] we have compared the numerically integrated form of Eg. (5) with 

experimental results. For this numerical integration we used the 

boundary condition defined by Eg. (7) and the specific stress by Ec. (9) 

(10) 
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and (10). The experimental results were optained from two workpiece 

materials, two different rake angles of the tool, five toolmaterials, 

one width of cut, several feeds and cutting speeds. The present work 

contains information about Eq. (5) in a non integrated form. 
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3. Results. 

One of the most important assumptions for the actual model is the 

dependence of the normalized frictional force on the shear angle. 

Amongst others, this assumption led to the differential equation 

represented in Eq. (5). This equation is shown theoretically as well 

as experimentally in the Figures 3 - 11. In all these figures the 

theoretical results are represented by curves and the experimental 

results by symbols. The theoretical curves can be distinguished in 

two types of curves. They are denoted by A and B. A is the first 

derivative of the frictional force with respect to the shear angle as a 

fUnction of the shear angle. This represents both terms of the right 

side of Eq. (5). Curve B represents the first term on the right side 

of Eq. (5). Both terms are derived from the numerical integration of 

Eq. (5) in combination with Eq. (7). The strain hardening exponent is 

determined in the tensile test in the usual way. 

The experimental results [3], [4] denoted by symbols are calculated with 

Eq. (5). In this calculation, besides the measured quantity Fw with 

Eq. (3) and the strain hardening exponent, also the values of the specific 

stress C and the shear angle ~ are used. The specific stress is 

determined by Eq. (10). The shear angle can be derived from the geometry 
/ 

of the process. It holds: 

arc tan 
cos Yo 

(11) ~ = 

- sin Yo 

with h = chip thickness. c 

Figure 3 shows the theoretical curves A and B for a rake angle of the 
o 

tool of 6 • A and B represent two curves. The lower curves of A and B 

have a strainhardening exponent of 0.0; the higher curves one of 0.4. 

These curves illustrate that a small variation of the strainhardening 

exponent does not visibly change the positions of curves A and B. 

Figures 4 and 5 show the response of the workpiece materials C45 and 

X38CrMo5 on the variation of feed. Both figures show a good agreement 

between curves and experimental results, in particular for high values 

of the shear angle. The agreement is less for small values of the shear 
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angle. From these figures we can conclude that small values of the shear 

angle nearly always belong to small feeds. 

Figures 6 and 7 relate to the behaviour of the workpiece material C45 

and X38CrMo5 for different cutting speeds. Again, the agreement between 

the theoretical and experimental results is good for great values of the 

shear angle and moderate for small values. 

Figures 8 and 9 show the correspondence between the theoretical and 

experimental results of the workpiece materials C56 and X38CrMo5 for 

different tool materials. Also in this case the. agreement is good for 

large values and less for small values of the shear angle. 

Figure 10 gives a comparison between theoretical and experimental results 

for the two workpiece materials C45 and X38CrMo5. As already shown in 

figure 3 and as can be deduced from Eq. (5), this figure proves that the 

difference in experimental results between the two workpiece materials 

is not visible because of the small difference of the strainhardening 

exponent (C45 n = 0.236; X38CrMo5 n = 0.200). Again, the accordance 

between theory and experiment is good for high values of the shear angle. 

Figure 11 shows the behaviour of the workpiece material C45 for two 
o 0 different rake angles (-6 , +6 ) of the tool. As can be derived from 

Eq. (5), the thoretical curves A and B have to be different for the 

two rake angles. This difference is also found experimentally. For 

increasing values of the shear angle ~, the agreement between curves and 

symbols improves for situation A as well as for situation B. 
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4. Discussion. 

As already mentioned in the introduction we now pay attention to the 

differential equation itself. This equation, which is represented by 

Eq. (5) combined with the boundary condition Eq. (7) makes it possible 

to calculate numerically - for a given strainhardening exponent and 

rake angle of the tool - the relation between the first derivative of the 

normalized frictional force with respect to the shear angle as a 

function of the shear angle. This solution describes the dependence 

of: - the cutting conditions: feed and width of cut, 

- the plastic properties of the workpiece material: specific stress 

and strainhardening exponent, 

- the geometry of the tool: rake angle, 

- the chipreduction ratio and the friction force on the tool. 

It also demonstrates that the solution is independent of the tool 

material and the cutting speed. Consideration of Eq. (5) shows that 

this relation has two terms. The first term can be verified experimentally. 

The numerical solution of this term is represented by the curves B in 

the Figures 3-11. The second term is a pure theoretical one. It is 

numerically dependent on the shear angle, as is represented by the 

difference curve between A and B in the Figures 3-11. This claimed 

behaviour as derived from Eq. (5) and (7) is confirmed experimentally 

in the Figures 3-11. However, besides this confirmation these figures 

also show a deviation between the experimental and theoretical results. 

This deviation seems to increase with a decrease of the shear angle. 

The comparison of the theoretical and experimental results also shows 

that the experimental results are always lower than the theoretical 

curves. In terms of the "minimum energy principle" this means that the 

power of the cutting process for a given shear angle is in reality lower 

than as computed for our model. This effect is in agreement with the theory, 

stating that the power necessary for an assumed deformation field is 

always higher than the real field. In order to explain this effect 

more results are necessary; in particular cutting tests which give very 

small values of the shear angle. 

Another possible explanation for the deviation of the experimental and 

theoretical results may be found in a faulty determination of the shear 

angle. The shear angle can be calculated with Eq. (11) by measuring the 
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chip thickness h • This measurement is made with a micrometer. Because 
c 

of the irregular chip surface, the value of hc cannot be measured 

exactly but tend to be overestimated. This overestimation leads to a 

deviation of the shear angle (= d~) as determined with Eq(11) by: 

sin (2~-yo) + sin Yo 
d~ = - - --

2 cos Yo 

dhc - relative measuring error of the chip thickness. hc -

(12) 

From Eq. (12) we can derive that the deviation d~ increases with an 

increase of the shear angle for a constant relative measuring error of 

the chip thickness. However, this deviation is opposite to the deviation 

as represented in Figure 4-11. Furthermore we observe that an increase 

of ~ will give a decrease in the first derivative of the normalized 

frictional force. The combination of the two opposite effects makes it 

improbable that an eventual measuring error of ~he chip thickness is 

responsable for the deviation between the experimental and theoretical 

results in the figures 4-11. A final decision can be given by measuring 

the chip thickness in a more accurate way. 

In order to produce the experimental results we need the value of the 

two plastic quantities of the workpiece material: the specific stress 

and the strainhardening exponent. The strainhardening exponent is derived 

from tensile tests [1]. The specific stress is not derived from tensile 

tests but from cutting tests.It is derived from the force balance on the 

primary shear zone(Eq. (10».Figure 12 shows the dependence of the 

specific stress of C45 for different feeds as a function of the cutting 

speed. From this figure we conclude that an increase of the cutting speed 

gives an increase of the specific stress. This behaviour is in agreement 

with the extended Nadai law, which states an increase of flow stress 

following an increase of deformation rate. Furthermore, we see an increasing 

specific stress with a decreasing feed. The deviation from the tensile 

test is most striking for a feed of 0.1 rom/rev. (C from tensile test for 

C45 = 1170 N/rom2). We also found the smallest values of the shear angle at 

low feeds (see Figures 4 and 5). As already stated,the deviation between 

the calculated and measured first derivative of the normalized frictional 

force to the shear angle also has a maximum for these shear angles. The 

dependent behaviour between feed and shear angle means that the specific 
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power for the cutting process increases with decreasing feed. This 

behaviour is well known and may be caused by the unsharpness of the 

cutting edge. In order to clarify this effect more research is necessary. 
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5. Conclusions. 

- The differential equation--derived from the proposed cutting model describes 

the influence of: 

• the cutting conditions: feed, cutting speed and width of cut, 

• the plastic properties of the workpiece material: specific stress and 

strainhardening exponent, 

• the geometry of the tool: rake angle, 

• the tool material, 

• chip thickness, 

• the friction force on the tool. 

- The validity of the differential equation has been proven for two 

workpiecematerials: C45 and X38CRMo5; five toolmaterials: P20, P40, M40, 

M20, K10; different cutting speeds: 1-5 m/s; different feeds: 0.10-0.84 

mm/rev.; two o 
rake angles of the tool: +6, -6 • 

A further comparison between the theoretical and experimental value of 

the first derivative of the normalized frictional force with respect to 

the shear angle as a function of the shear angle shows a difference. 

This difference is insignificant at high values of the shear angle but 

increases with decreasing shear angle. 

- The deviation between the theoretical and experimental results at low 

values of the shear angle seems to concentrate at low feeds. 

The specific stress for the cutting test is higher in comparison with 

the tensile test, as in accordance with the extended Nadai law. 

- Much more experimental results are necessary, especially for those 

workpiece materials, rake angles and cutting conditions which give 

small values of the shear angle. 
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Figure 3: The influence of the strainhardening on the theoretical curves 

of the first derivative of the normalized frictional force with 

respect to the shear angle as a function of the shear angle. 

Curve B is curve A minus the last term of Eq. (5). 
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Figure 4: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for different feeds. 

Curve B is curve A minus the last term of Eq. (5). Workpiece 

material C45. 
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Figure 5: Comparison of theory and experimental for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a funtion of the shear angle for different feeds. Curve 

B is curve A minus the last term of Eq. (5). Workpiece material 

X38CrMo5. 
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Figure 6: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for different cutting 

speeds. Curve B is curve A minus the last term of Eg. (5). 

Workpiece material C45. 
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Figure 7: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for different cutting 

speeds. Curve B is curve A minus the last term of Eg. (5). 

Workpiece material X38CrMo5. 
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Figure 8: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for different materials. 

Curve B is curve A minus the last term of Eg. (5). Workpiece 

material C45. 
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Figure 9: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for different tool 

materials. Curve B is curve A minus the last term of Eq. (5). 

Workpiece material x38CrMo5. 
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Figure 10: Cc)mparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for two different 

workpiece materials. Curve B is curve A minus the last term 

of Eq. (5). 
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15 
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Figure 11: Comparison of theory and experiment for the first derivative 

of the normalized frictional force with respect to the shear 

angle as a function of the shear angle for two different rake 

angles of the tool. Each curve B is the corresponding curve A 

minus the last term of Eq. (5). Workpiece material C45. 
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Figure 12: The specific stress of the workpiece material 

C45 versus the cutting speed, for different 

feeds. 
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