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Numerical Intemation of a Rate Constitutive Equation for 
IncomDressible IsotroDic Elastic Neo-Hookean Material Behaviour 

Abstract 

The Neo-Hookean equation is a well-known constitutive equation €or isotropic elastic 
incompressible material behaviour. In this report a rate form of the Neo-Hookean 
equation is derived by introducing the so-called Truesdell rate. An integration 
algorithm is proposed for integrating the rate type equation. Also an alternative 
calculation method is presented. 

Purpose of these algorithms is the implementation of Neo-Hookean material 
behaviour in the Finite Element package SEPRAN: It c2n be showr, that there is a 
strong analogy between the proposed forms of the Neo-Hookean equation and the 
constitutive equation for an incompressible Newtonian flow, which is available in 
SEPRAN. In future the Neo-Hookean equation will be applied to the modelling of the 
rubber coating on pressure rollers in capstan drives of magnetic recorders. 

The results of the algorithms strongly depend on the value of a certain 
interpolation parameter. By choosing a correct value, the algorithms will be 
'incrementally objective', i.e. rigid body rotations will not cause any stresses in the 
incremental formulation, and more accurate. 

Several applications of the algorithms are presented, showing that they are 
reliable and robust. 

Keywords : Rub b ers, Ne o -Ho okean mate rial, co nst it ut ave e quat ions, 
numerical integration 
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CHAPTER 1: INTRODUCTION 

Tape transport is one of the main aspects of audio and video recording. All consumer 

recorders and most of the professional recorders are equiped with a capstan pressure 

roller drive to perform this function. In figure 1.1 such a mechanism is represented. 

rubber 

roller 

jig. 1.1: the capstan pressure roller drive 

A rigid metal cylinder covered with a rubber coating is pressed against a rigid drive 

shaft (capstan) by an elastic spring. Due to the frictional forces in the contact zones 

the tape is transported. 

Several phenomena occuring in the capstan drive still do not have a reliable 

explanation. One of these incomprehended phenomena is the self-adjusting property 

of the pressure roller. 
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To clarify the behaviour of the capstan drive a research project has been started with 

the aim to create a three-dimensional numerical model of the tape transport 

mechanism and to verify its results with experiments. 

In the recent past a two-dimensional finite element model of the capstan drive 
L.-- L.--- *--1fi---+-A * +La r>n-r\-itnn n-~rnnn- P T R  rll. Tininrr PTR o n  c)nolx,cip h o a  U U ' U 6  w L L b  U I L  UIICoIJ"1" I IUV  l l c L 3  UCCll ~ l l l p l c l l l C l l b C u  in IJllC L w l l l p u b c l  p u g l a l l l  V I I b  L I J  

been carried out to investigate the sensitivity of the results for variations in the model 

parameters [2]. One of the main conclusions drawn from this analysis was the 

observation of a remarkable and physically inexplicable sensitivity for the value of 

Poisson's ratio of the rubber coating; In CTR this coating is modelled as a linear 

elastic isotropic medium whose material parameters are Young's modulus and 

Poisson's ratio. Rubber is incompressible or nearly incompressible hence its Poisson's 

ratio is close to a half. It is well known that values of Poisson's ratio near 2 half may 

cause problems of numerical nature often referred to as locking phenomena. These 

phenomena form a sound explanation for the observed sensitivity. 

In our three-dimensional model of the capstan drive we wish to avoid this 

sensitivity. That is why we will use a constitutive equation for the rubber material 

which includes its incompressibility. In chapter 2 of this report a general equation for 

incompressible isotropic elastic material behaviour is presented. The simplest 

constitutive equation which can be deduced from this general form is the 

Neo-Hookean constitutive equation. This equation contains only one material 

parameter. The Mooney-Rivlin equation contains two parameters and higher order 

equations even more. Comparable test calculations performed using the MARC finite 

element package [3] on the frictionless indentation of an elastic layer by a rigid 

cylinder showed no differences in the resulting stresses for the Neo-Hookean equation 

and the results for higher order equations such as the Mooney-Rivlin equation. This 

indicates that application of the Neo-Hookean constitutive equation is admissible. 
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In general three dimensional finite element models consume large amounts of 

computing time. Modelling the capstan drive, computing time can be saved when 

applying an Eulerian approach instead of an Lagrangian approach: Only a small part 

of the pressure roller contains stresses and deformations unequal to zero. By using an 

fiülenaii appïûach û d y  the ifiteresting part ûf the press im roller has to be takelnl ilnlte 

account while in a Lagrangian approach the total pressure roller has to  be modelled. 

Using a Lagrangian approach, mesh refinements are ineffectual. In an Eulerian 

approach mesh refinement can decrease the necessary computing time without loss of 

numerical efficiency . 

n. i 

In an Eulerian approach the Neo-Hookean constitutive equation has to be 

adapted. The subject of chapter 3 of this report is the derivation and the numerical 

integration of a rate constitutive eqiiation for the Neo-Hookean material behaviour. 

The proposed algorithm calculates stresses when an estimation of the deformation 

tensor is given. The objectivity of the obtained integration algorithm is discussed. In 

chapter 4 several applications of the algorithm will be presented. 

In chapter 5 an alternative algorithm for computing the stresses is given. Here 

the calculation method is based on an estimation of the velocity gradient. This 

algorithm is illustrated by several examples in chapter 6. 
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CHAPTER 2: THE NEO-HOOKEAN CONSTITUTIVE EQUATION 

2.1 Kinematics 

In this paragraph, we will look at some basic definitions regarding the kinematics of a 

deforming body. In the Euclidean space a three dimensional body B will be 

considered. Each material point P of this body can be identified by a column [ of 

three material coordinates. This column may be considered as a label attached to 

point P. 

Fixed in the Euclidean space an origin O is chosen. The current position vector 

of a point, measured with respect to this origin, is denoted by X(t,t), - being a functicn 

of label [ of the point considered and of time t. We will assume that z([,t) is 
x - 

continuous and differentiable with respect to both [ and t. The complete set of 
I 

position vectors of all material points of body B at time t is called the configuration of 

B at time t, denoted by G(t): 

(2.1 .i) 

The deformation of a continuum will be described with respect to its configuration at 

a chosen time to. This configuration G( t is called reference configuration. 

Let dXo be the distance vector between two neighboring material points P and 

Q of body E in the reference configuration G(to). Vector dx is the distance vector 

between these two material points in the current configuration G(t). 
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reference configuration current configuration 

69.2.1: body B in reference and current configuration 

The deformation tensor F characterizes the deformation of body B in the current 

configuration at a material point with label t - with respect to the reference 

configuration. Tensor F is defined by: 

F = (V,Z)' ; & = F-dX, (2.1 .a) 

Here Vo is the gradient operator with respect to the reference configuration. This 

operator is related to the gradient operator with respect to the current current 

configuration by: 

d = F".do (2.1.3) 

Regarding an infinitesimal small part of B in the surroundings of the material point 

with label t it can be shown that the determinant of deformation tensor F is equal to 

the ratio of the current volume of this part to its reference volume. This can be proven 

using the formal definition of the determinant of a tensor. 

I 

dV J = det(F) = = volume change factor 
O 

(2.1.4) 
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reference configuration current configuration 

dV J=w 
O 

o 

jig.2.2: volume change in point P 

For isochoric deformations the volume change factor will always be equal to 1, as for 

incompressible media. While physically a volume change factor less than or equal to 

zero is impossible, the determinant of F will always be greater than zero. Hence tensor 

F is regular. 

The deformation tensor F can be decomposed into an orthogona! rotation 

tensor R and a positive definite symmetric stretch tensor U: 

R.RC= I ; det(R)=l 
F = R . U  (2.1.5) 

Tensor R describes the rigid-body rotation of the body while U describes the real 

deformation. This decomposition is called the right polar decomposition of F. 

jg.2.3: right polar decomposition of F 
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Based on the deformation tensor several strain tensors can be defined. For geometrical 

nonlinear deformations the Green-Lagrange strain tensor is often used: 

1 E = ~ (  F ' .F - I )  (2.1.6) 

In the sequel we will frequently use the right and left Cauchy-Green strain tensors, 

which are defined in the following manner: 

: right Cauchy-Green tensor 

: left Cauchy-Green tensor 

(2.1.7) 

(2.1.8) 

Let Z i ~ , t )  - be a vector field specifying some property o€ body B. The material 

derivative of 2 in a point with label ( x is equal to the rate of change of x((,t) I with 

respect to time, and is given by: 

Z((,t+At) - at(($) 
l i m  - x + 

a@) = 
a t +  o At 

(2.1.9) 

The velocity $1 - s,t) of a material point is defined as the material derivative of position 

vector x((,t) x of this material point: 

(2.1.10) 
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Using definition (2.1.2) the following equation can be deduced: 

(2.1 .li) 

Tensor L is equal to the velocity gradient (E)c where v denotes the gradient with 

respect to the current configuration. The symmetric part of L is the rate of strain 

tensor (D) while the skew-symmetric part of L is called the spin tensor or rate of 

rot ation tensor (fl). 

= - L + LC) = ; [ (E)"+ 3 ; D = D C  

c ; f l = - Q  

(2.1.12) 

(2.1.13) 
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2.2 Balance laws 

An isothermal deformation process in a non-polar continuum has to satisfy three local 
1- - 1  - - -  ̂ ^  1 ̂ _ _ _ I _  ua1aace laws; 

(I) Balance of mass: 

(2) Balance of momentum: 

(3)  Balance of moment of momentum 

( 2 . 2 4  

(2.2.2) 

(2.2.3) 

where J is the volume change factor, p and po are the specific masses in respectively 

the current and the reference configuration, is the gradient operator with respect to 

the current configuration, a is the Cauchy stress tensor, 6 is the specific load vector 

and is the material derivative of the velocity vector, called the acceleration vector. 

These three local balance laws result in a set of seven equations. The law of 

balance of mass leads to a single equation, while the other two laws both lead to three 

independent equations. The number of unknown variables is equal to thirteen; density 

p is a scalar, position vector 2 is a vector and the Cauchy stress tensor is a second 

order tensor with nine components. When the law of moment of momentum is taken 

into account, the number of equations reduces to four while the number of unknowns 

equals ten. To create a solvable set of equations six extra equations have to be 

formulated. These equations are called constitutive relations and will be the subject of 

the next paragraph. 
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2.3 A constitutive equation for homoneneous incompressible isotroDic elastic material 

In the previous paragraph it was stated that six constitutive relations have to be 

Îormüiaied for a, coiîîplete description ûf â , ~  isûtherma! Uef~rmcttim prams. The 

unknowns to be solved are the density p(t,t), - the position vector X((,t) - and the 

symmetric Cauchy stress tensor a( - &t). 

Based on general constitutive principles it can be shown that €or an elastic 

medium the Cauchy stress tensor may be interpreted as a function of the deformation 

tensor : 

(2.3.1) 

Due to the symmetry of tensor a relation (2.3.1) effectively consists of only six 

equations. 

It is evident that the stress state in a continuum may not change when 

subjecting the continuum to a rigid-body translation or rotation. This fact is a 

manner of formulating the so-called principle of objectivity. This principle must hold 

for all constitutive equations. When using equation (2.3.1) a restriction must be 

formulated to obey this principle. Tensor function N must satisfy the following 

equation 

(2.3.2) 

where tensor Q is an arbitrary rigid-body rotation tensor. 
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For isotropic elastic material behaviour the following constitutive equation can be 

derived based on the internal energy in the continuum. 

(2.3.3) 

Tensor B is the earlier mentioned left Cauchy-Green strain tensor. The scalar 9 is the 

specific internal energy in the continuum. For isotropic materials it can be proven 

that 4 may only depend on the three invariants of the left Cauchy-Green strain 

tensor : 

4 = 4 (JpJyJJ 

with J, = tr(B) 

J2 = 

J, = det(B) 

1 2 2 
[ (tr B) -tr(B ) ] 

(2.3.4) 

It can easily be shown that equation (2.3.3) obeys the principle of objectivity. 

The Cauchy stress tensor can be devided into a deviatoric part ad and a 

hydrostatic part oh. These tensors are related to respectively the change of form and 

the change of volume of the deforming body. When assuming the material behaviour 

to be incompressible volume change is absent and an arbitrary hydrostatic pressure 

can be applied to the body without causing any deformation. So a part of the Cauchy 

stress tensor will be determined not by the deformation but by the boundary 

conditions. The internal energy in the body is no longer dependent on the third 

invariant of B : 

2 2 J, = det(B) = det (F) = J = 1 

9 = NJpJ,) 

(2.3.5) 

(2.3.6) 
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The assumption of incompressibility results in the following equations for the 

hydrostatic and deviatoric part of a. 

a = -pI 

1 a = a -- (tr a)I 3 

1. 

c r =  GI' i- ad I (2.3. .i) 

d @ @  
a = 2p [ [ a ~ 1 +  a ~ z  J,] [ B - 3 (tr B) I] - [ :] [ B2- 5 tr(B2) I] ] 

So for incompressible isotropic elastic behaviour the subsequent constitutive equation 

can be formulated using the definition of the invariants J, and J,. 

(2.3.8) 

% @  i @  2 4 )  
a = -PI + 2p[ [- + - J,] I3 - [%] B2 - [- - 3, + -- J,] I ]  

dJ, dJ, dJ2 3 dJ, 3 dJ, 

Scalar p is the hydrostatic pressure on the body under consideration. This pressure is 

determined by the boundary conditions applied to the body. Using an equation of the 

form (2.3.8) the incompressibility constraint (2.3.5) has to be satisfied. 

In the past several functions $(J1,J2) have been proposed. The most common 

functions can be deduced from the next class of polynomials: 

m n  ~~ 

$ = $(J1,J2) E I: C..(J,-3)'(J2-3)J ; Coo = O 
1J i = O  j=O 

(2.3.9) 

For all members of this class it holds that, when no deformation occurs, the internai 

energy will be equal to zero. 
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The Neo-Hookean constitutive equation is the simplest example of (2.3.9): 

a = - p I + 2 C  [ B - - t r B I  3 o} 

(2.3.10) 

(2.3.11) 

where C is a material parameter equal to the product of density p and parameter Clo. 
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CHAPTER 3: THE NEO-HOOKEAN CONSTITUTIVE EQUATION 

IN AN EULERIAN APPROACH: 

NUMERICAL INTEGRATION OF THE NEO-HOOKEAN 

RATE CONSTITUTIVE EQUATION 

3.1 The Neo-Hookean rate constitutive eauation 

In the previous chapter the Neo-Hookean constitutive equation has been derived: 

r -l 

with: o : the Cauchy stress tensor 

p : the hydrostatic pressure 

C : a material constant 

B : the left Cauchy-Green strain tensor 

AE incompressibility coostraint mmt  be satisfied when using this equation: 

dV avo=1 incompressibility: J = det(F) = 

(3.1.1) 

(3.1.2) 

In this paragraph a rate form of the Neo-Hookean constitutive equation will be 

presented, which will show to be very usefull when implementing the capstan drive 

model in the F.E.M. package SEPRAN. 
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The first step to generate the rate form is the rearranging of equation (3.1.2) 

(r = - [ p + 2C { 3 tr(B) - l}] I + 2C [ B - I ]  (3.1.3) 

- _  - * I + 7  v - 

with: p* = p + 2C { tr(B) - I} 

r =2C [ B - I ]  

Again p* can be interpreted as a (pseudo) hydrostatic pressure, partially determined 

by the applied boundary zmditions. 

Next a time derivative of T will be introduced. Because a constitutive equation 

has to satisfy the principle of objectivity this time derivative must be objective. It can 

easily be shown that the material derivative of r is not objective. In literature several 

proposals for objective time derivatives can be found. In our case the Truesdell time 

derivative is extremely usefull. Its definition is: 

V 
A = A - ( Q + D ) . A - A . ( Q + D ) ~  

t r  

A is an arbitrary tensor 

A 
Cl 

D 

is the material derivative of A 

is the rate of rotation tensor 

is the rate of deformation tensor 

( 3.1.4) 

Using this definition it can be shown that the Truesdell rate of the left Cauchy-Green 

strain tensor B equals the null tensor. 
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It can also be shown that the Truesdell rate of the unity tensor equals minus two 

times the rate of deformation tensor: 

V 
B = O  

t ï  

V 
I = - 2 D  

t r  

So for the Truesdell rate of tensor T the relation (3.1.7) holds: 

v V 
T t r  = 2C [ Btr - I tr ]  = 4C D 

(3.1.5) 

(3.1.6) 

(3.1.7) 

Summarizing, for the Neo-Hookean constitutive equation the following objective rate 

form holds: 

= - p * I +  T 

V 
T = ; - ( R + D ) . T - T - ( R + D ) ' = ~ C D  

t r  
(3.1 .S) 

The incompressibility constraint (3.1.2) that also has to be satisfied can be rewritten 

as : 

J = det(F) = 1 + $ = t r ( D ) = v - v = O  + (3.1.9) 

The latter equation is also known as the continuity equation. 
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3.2 Numerical integration of the Neo-Hookean rate constitutive eauation 

Using the rate constitutive equation as proposed in the previous paragraph, an 

integration procedure for the Truesdell-derivative of tensor r will have to be 
i _...__. 1 L - ^ 1  lurmlllabeu. in this pardgraph süch a iiUiiieïiza! integration proczllUre is exphined. 

This procedure is based on the work of Pinsky et al.[5] and uses an estimation of the 

deformation tensor. 

Introducing tensor T as in formula (3.2.1) a relation between the material derivative 

of T and the Truesdell derivative of r can be deduced: 

(3.2.1) 

(3.2.2) 

Tensor T will be discretized at a discrete number of points in time (l,2,..)n7n+l7..)N). 

The time interval between two subsequent configurations n and n+l is denoted as hn. 

T 
n + a  

T 

n-1 n n+Q iltl 

fig.3.1: schematic representation of time discretization of tensor T 

Assume tensor T to be known at time n. Ta+@ denotes an estimation of the material 

derivative of T at a certain time in the interval (n,n+l). The value of parameter Q is 

in between the limits O and 1. Tensor T at time n+1 now can be approximated by: 

N T  + h  T Tn+l- n n n + a  (3.2.3) 
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In this paragraph an updated approach will be used. So the known configuration at 

time n will be regarded as a reference configuration. The substitution of formula 

(3.2.2) and definition (3.2.1) in equation (3.2.3) results in the following expression for 

'j-n+i' 

(3.2.4) 

Applying an updated approach the deformation tensor in configuration n equals the 

unity tensor. In the configurations at time (n+a) and (n-ti)  the deformation tensors 

are equal to the gradient with respect to the reference configuration of the current 

displacement field. 

F = (vn;,)c = a n 
configuration n: (3.2.5) 

configuration n+a: 

configuration n+l: 

An essential aspect of the numerical integration algorithm is the linear interpolation 

of the displacement field: 

So for the approximation of Fn+, the following equation holds: 

(3.2.6) 

= (i-CE) I + 01 Fn+l (3.2.7) 
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By choosing a linear interpolation of the displacement field, it is possible to formulate 

an approximation for tensor r as a function of tensor Fn+, and interpolation 

parameter 01. 

n+l  

Fn+l-F;;Q = [ (Ga) n-, + 011-1 

n+Q 
D 

Equation (3.2.4) can be rewritten as: 

n+ Q 
7 e 4C hn 'n+í+ n + i  + m  
n + l  

with: 

and: 

n + í  = F n + i  - T n - F;+, 

(3.2.8) 

(3.2.9) 

(3.2.10) 

1 . F-' . F' - D  } 
mn+a  = 4c hn i n + i .  Fnt_a. Dn+ol n+Q n+ i  n+ í  

Together with expressions (3.2.8) and (3.2.9) this formula forms the algorithm for 

integrating tensor r. In appendix B it is shown that for small deformations (when 

F = I -Í- n + l  with Iln,lii << i) tensor mn+@ tends to the null tensor for all 

values of 01. 

n+1 
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3.3 Incremental objectivity of the integration algorithm according to Pinskv C.S. 

Pinsky [5] investigated the objectivity of integration algorithms such as the algorithm 

presented in the previous paragraph. 

According to Pinsky this algorithm is 'incrementally' objective if and only if the 

following conditions are satisfied: 

condition A 

condition B 

If deformation gradient F 

the rate of rotation tensor anta, must be equal to the null tensor. 

is a symmetric stretch tensor U then 
n+1 

in reverse: if R 

symmetric stretch tensor U. 

equals the n~!l tensor then F 
n+@ n+ 1 

must be a 

If deformation gradient Fn+, is an orthogonal rigid body rotation 

tensor R the rate of strain tensor Dn+@ must be equal to the null 

tensor a 

In reverse: if D 

orthogonal rigid body rotation tensor. 

equals the null tensor then Fn+i must be an 
n+ a, 

Pinsky's definition of incremental objectivity does not agree with the formal, 

commonly accepted definition of objectivity as presented in paragraph 2.3. Pinsky 

merely checks the algorithm for two properties which objective algorithms must 

possess. In paragraph 3.4 the formal definition of objectivity will be applied on the 

integration algorithm. 

It can be shown that condition A is satisfied for all values O 5 01 < 1. 
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1 Condition B turns out to be satisfied only for a=2' This last statement can be proven 

as follows: 

prooj  Assume FnS1 is an arbitrary rigid body rotation tensor R. 

- if Dn+a - i [ Ln+& + L:+,] has to equal the null tensor then: 

L = - L C  for all tensors R 
n + a  n + a  

For L,+& holds (see 3.2.9): 

I = [R- I] - [(i-a> I + G! R1-l n+a  51 i ( 3 . 3 4  

Using R-l= Rc and expression (3.3.1) for -L;+@ can be found: 

[-L:+@] = [ [(i-a) I + Q RI* - [I - RIc] 
n 

c-l - R-ll =b[ [ ( ~ - Q ) I + Q R ]  c -1 - [ ( i - a ) I + a R ]  

I =b[ [ { ( i - a ) R + a I } - R ]  c -1 -[(l-a)R+oiI]- '  
n 

(3.3.2) 
n 

1 = & [ [R-I] - [(l-Q) R + aI1-l 
n 

Tensor -Lc has to equal Ln+, for all rigid body rotation tensors. 

Comparing equation (3.3.1) with equation (3.3.2) this can only be true if 

(1-a) equals a. So a has to be equal to 

n+ Q 

1 

Based on the fact that both condition A and B are satisfied when choosing 1 

Pinsky concludes that the integration algorithm is incrementally objective for this 

value of a. 
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3.4 Objectivity of the integration algorithm 

In the previous paragraph the definition of incremental objectivity has been 

introduced. It turned out that the integration algorithm of paragraph 3.2 is 
i incrementaiiy Objective if and only if iiiierpûlaiiun païaïmteï ~r is ehoseo eyua! t~ =. 2 

In this paragraph it will be investigated if the proposed algorithm is also 

objective in the formal sense for a=2. The formal definition of objectivity has been 

introduced in paragraph 2.3: A tensor N(F), where F is the deformation gradient, is 

formally objective if 

1 

N(Q-F) = Q-N(F)-QC (2.3.2) 

for ail (extra) rigid body rotation tensors Q. 

Applying this definition on the integration algorithm, the following statement must 

hold when the algorithm is objective: 

(3.4.1) 

1 This expression has been worked out for a=2 in appendix C. In this appendix it is 

proven that equation (3.4.1) is valid if Fn+, is chosen equal to an orthogonal rigid 

body rotation tensor R. Strong indications can been found that (3.4.1) is invalid for 

symmetric stretch tensors, so for arbitrary deformation tensors Fn+l formal 

objectivity is improbable. This assertion can be verified by formulating a numerical 

example, which denies the equality in (3.4.1). Ending this chapter, such an example 

will be presented. From this example it can be concluded that the algorithm, though 

incrementally objective, is not formally objective for ?I 
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1 For o"=2 the integration algorithm reads: (see appendix C) 

7 = N(Fn+l) (3.4.1) 
n+l  

As is shown in appendix C substitution of (QSF,+~) for FnS1 results in the following 

expression: 

N(Q.Fn+l) = Q.F -7  .F Q" + 16C Q-[V+ VI-&" (3.4.2) 
n+l  n n+1 

Pre-multiplying (3.4.1) with tensor Q and post-multiplying this equation with Q" 

gives : 

Q.N(Fn+,)-Q" = Q-Fn+l-~n*Fn+l Q" + 16C Q-[W + W"]-Q" (3.4.3) 

with: W= { ( I S - F ~ + ~ )  -1 -1 - (1+F-tí)-' - (I-F-' ) - (I+F-" )-'} 
n+l  n+l  

Objectivity requires the right hand side of equation (3.4.2) to be equal to the right 

hand side of (3.4.3), so tensor (V+Vc) has to equal tensor (W+W") for all rigid body 

tensors Q. From (3.4.2) and (3.4.3) there is little reason to assume this to be true. 
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The easiest way to proof the absence of objectivity is by means of a numerical 

example: 

Consider a two-dimensional reet angular body, deforming from configuration 

in) into configuration (li+ 1). The ûefûïm&tiûn cûnsists ûf m is~idumetr ic  elongatien 

of the rectangle with elongation factor A, followed by a rigid body rotation over p 

radians. 

fig. 3.2: elongation and rigid body rotation of a rectangular body 

According to its polar decomposition the deformation matrix F 

Cartesian reference system [ei e2] can be written as: 

with respect to the 
n + l  

- f - f  

F = R  - U  ~ + 1  -n+l -ES.! 

U = stretch matrix 
-n+l 

R = rotation matrix cos(9) -sin(p) 
n + l  

(3.4.4) 

Elongation factor X is chosen equal to 1.01 ( 5  1% elongation). Angle 9 is chosen equal 

rad. (E 5 degrees). In configuration (n) the stress matrix a is assumed to be 7r 
to 36 
equal to: 
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A B The matrices = N(Q-F ) and zn+l = Q-N(F ).Qc will be evaluated for 

several extra rigid body rotation tensors Q: 
n + l  -n+ 1 

where $ varies between O and 3 radians. 

An easy-to-use program to perform the necessary calculations is PC-Matlab [6]. 

In appendix D a PC-Matlab program file is included, which calculates and I ,+~  

for several values of $. In the next series of figures the resulting components of these 

matrices with respect to the fixed reference system [Zl za] are plotted against the 

extra rigid body rotation angle +. 

A B 

component 1 1  2 

0.5 - 

O 50 100 

angle of rotation (degr.) $ 

component 21 O. 6 

0 -  

-0.2 
O 50 1 O0 

angle of rotation (degr.) 

-0.2 ‘ I 
O 50 100 

angle of rotation (degr.) $ 

O 
O 50 100 

angle o f  rotation (degr.) $ 

B jig.3.3: components of ZA and r n + l  -n+l 
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The dashed lines represent components of I:+~ while the solid lines represent the 

components of zn+i. Clearly the dashed and solid lines do not agree. The differences 

are too large to descend from numerical inaccuracies, so it can safely be concluded 

that N(Q.F,+,) and Q-ïV(Fn+l)-QC are not equal and that the proposed algorithm 

B 

can!i be objective for o=-. 1 
2 
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CHAPTER 4: APPLICATIONS OF THE INTEGRATION ALGORITHM 

4-1 Introdi&ion 

In this chapter some two-dimensional applications of the integration algorithm will be 

present ed. 

The first example considers a rigid body rotation. In the second example an 

isovolumetric elongation will be investigated. A more complex deformation pattern is 

the subject of the last example, where the deformation consists of a combination of 

simple shear, isovolumetric elongation and rigid body rotation. The integration 

algorithm is based on the Neo-Hookean constitutive equation for incompressible 

elastic materials. Hence the three examples all deal with isovolumetric deformations. 

Furthermore only the (pseudo-)deviatorie part r of the Cauchy stress tensor a is 

regarded. The hydrostatic part of a will be determined by the boundary conditions. 

The numerical simulations have been performed on a PC using PC-Matlab [6]. 

Program files of these simulations are included in appendix E. In all calculations both 

the value of interpolation parameter Q and the number of increments in which the end 

configuration is realized are varied. 

4.2 Rigid Body Rotation 

-i+ 2n In the (el,e2)-plane a rigid body is rotated over angle v = ~  rad. as is sketched in 

figure 4.1. In the reference configuration stress tensor r is assumed to equal the null 

tensor. Using the algorithm of chapter 3, tensor r in the end configuration will be 

calculated. 
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- t +  Two reference systems are introduced; the global reference system [e1,e2] is fixed in 

space, while the local reference system [el,e2] is attached to the rigid body. -t* +* 

reference configuration end configuration 

jig.d.1: Local  and global reference systems 

The total deformation tensor E', equals: 

(4.2.1) 

F is the matrix representation of F, with respect to the global reference system: -N 

(4.2.2) 

According to the definition in paragraph 3.1 the matrix representation of T~ in the 

end configuration with respect to the global reference system equals: 

-N 7- = 2 c [ E N . E ; - I ]  (4.2.3) 

where I?; is the transposed of EN. 
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Substitution of (4.2.2) in (4.2.3) easily shows that (of course) zN has to equal the null 

matrix. The matrix representation of T~ with respect to the local reference system 

[2;,2;] is denoted by .zN. This matrix, which can be interpreted as the matrix zN 
neutralized for rigid body rotations, also equals the null matrix. 

i n e  components ûf zN are LdlLU1alit;U w11i11 bile pivpvubu 

* 

* -- 1-11 1 a+  fiJ ---;t h t h nrnnnanr f  in tour3 2 1 w n r i  t h  m- m, 

implemented in PC-Matlab. The total deformation is divided into N increments. In 

each increment the same deformation matrix with respect to the local reference 

system is used (updated approach). This deformation matrix is: 

cos<;) -sin(# 1 
s i n(;) 

F. = 
-incr 

(4.2.4) 

Five different values for the interpolation parameter 01 and six different values for the 

number of increments are evaluated. The results are plotted in figure 4.2. 

From this figure, it can be concluded that, even using 480 increments, only for 
1 

0 1 = ~  the components (zJl1 and (zN)22 equal to zero. This agrees with the conclusion 

of paragraph 3.1, stating that the integration algorithm can only be incrementally 
1 objective, thus insensitive for rigid body rotations, for a=T 

* * 
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jig.4.2: results for the rigid body rotation 
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4.3 Isovolumetric Elongation 

The body depicted in figure 4.1 now is elongated along the el-axis. In the 

el-direction the elongation factor is X = 1.3. The deformation is isovolumetric, so in 

the e -direction the eloiigaiiûn factûï eq~a!s 

+ 

+ l i  

Again tensor r in the reference configuration is assumed to equal the null tensor in 

the reference configuration. The material parameter C is chosen equal to 1.0. No rigid 

body rotation occurs so the local reference system [e1,e2] coincides with the global 

reference system [e1)"]. 

x=1.3' 2 

+* +* 

+ +  

The total deformation tensor is given by: 

+ +  I + - )  F, = X e e -i- e2e2 1 1  (4.3.1) 

So the matrix representation of rN in the end configuration (with respect to the local 

ûr the global reference system) can be written as: 

(4.3.2) 

1.3800 T 2 = 2C[ -11 = 2c x -1 o 1, [ O i 2  -i] = [ O -0.8166 

This matrix is approximated using the integration algorithm. The total deformation is 

split in N increments. It can easily be seen that the incremental deformation matrix 

has to equal: 

(4.3 .3)  N so: (Eincr) = E N  1 
The components of xN, resulting from the numerical simulations are presented in 

figure 4.3. 
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jig.4.3: results for the isovolumetric elongation 
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There is a remarkable resemblance with the results of the rigid body rotation 
1 
2 simulation. Again for a=- the results are far more better than for the other values of 

Q. But now, because of the absence of rigid body rotation, this can't be explained by 
1 the incremental objectivity of the algorithm. For the integration algorithm is not 

respectively using rectangular integration or using trapezoidal integration as depicted 

in figure 4.4) 

rec tangu lar  in t egra t ion  trapezoidal  i n t egra t ion  

jg.4.4: rectangular and trapezoidal integration 

4.4 Simple Shear, Isovolumetric Elongation and Rigid Body Rotation 

In this example, the end configuration of the deforming body is reached after: 

(1) simple shear over p=60 degrees 

(2) isovolumetric elongation with X=1.3 

(3) rigid body rotation over $=i20 degrees 

In the reference system stress tensor T is the null tensor. Material parameter C is 

chosen equal to 1.0. The total deformation process is presented in figure 4.5 
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X=1.3 

fig.4.5: Realisation of the end configuration 

- t +  
The deformation matrix EN with respeet to [e1,e2], trclnsfmnifig the refererice 

configuration into the end configuration is given by: 

F -N =E3 . F2 - Fl (4.4. i) 
T ; simple shear over p = - rad. where Fl = 3 

F =  x o ; isovolumetric elong. with X=1.3 

-2 [ o  ]/hl 2 T  ; rigid body rotation,$ = rad. 1 
The matrix representation of T~ with respect to the global reference system is 

calculated using: 

1 T 
T = 2C[  F .F -11 = 5.2676 -7.0739 

-7.0739 5.4359 
-N N -N [ 

* 
Neutralizing zN for rigid body rotations, is calculated by: 

1 * T = F * T  *F = 11.5200 3.4641 IN - 3  -N - 3  [ 3.4641 -0.8166 

(4.4.2) 

(4.4.3) 
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* 
The components of have been approximated using the integration algorithm 

implemented in the program file M1XED.M (see appendix E). In each increment the 

same incremental deformation matrix is used. This matrix is not trivial: It can be 

proven that application of the following incremental deformation matrix (in the 

- - - A - & - A  ---..--nh\ - 4 1 1  , -rrolrlt  ;n t h n  pnrrnot nn ~"~ "aU' upudbcu &yplu&Lll) V V I 1 1  IGDUIIi 111 Ii111i bWIL1 iLU  ULd ~nrlfi~11r&+inn 

(4.4.4) 

F. T n c r  

with: N = number of increments 

0, calculated by: 

The resulting stress components with respect to the local reference system are plotted 

in figure 4.6. 

1 
2 Again for a=- the best results are obtained. From paragraph 4.2 and 4.3 we know 

that this is due to the incremental objectivity and the higher accuracy of the 

integration algorithm. 
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CHAPTER 5: THE NEO-HOOKEAN CONSTITUTIVE EQUATION 

IN AN EULERIAN APPROACH: 

AN ALTERNATIVE CALCULATION METHOD 

5.1 Introduction 

In chapter 3 an algorithm for integrating stress tensor r has been proposed. This 

algorithm is based on the definition of the so-called Truesdell rate of r and uses an 

estimation of the deformation tensor Fn+l. 

In this chapter an algorithm which uses an estimation for the velocity gradient 

will be presented. Like the algorithm in chapter 3 this algorithm can also be 'n+ i 

'incrementally objective' if a correct value for the interpolation parameter is chosen. 

The formal definitions of the deformation gradient and the velocity gradient 

are: 

(5.1.1) 

(5.1.2) 

As can be seen from these definitions the deformation tensor is defined with respect to 

a reference configuration (configuration n). In an Eulerian approach it is desirable to 

avoid quantities defined with respect to a reference configuration as much as possible. 

Then only current values have to be taken into account and no difficult trace-back 

procedures have to be applied. That is why the algorithm in this chapter is preferred 

above the algorithm in chapter 3.  
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5.2 Derivation of the algorithm 

As in chapter 3 an updated formulation will be used when deriving the algorithm. 

Three different configurations will be considered: 

the starting configuration at t=tQ 

the reference configuration at t=tn 

the current configuration at t=t  
n+l  

Deformation tensor F-. describes the total deformation from to to tn 
I1 - 

Deformation tensor Fn+l describes the 

Deformation tensor Fn+l describes the 

so: 

total deformation from to to tn+l 

incremental deformation from tn to t n+ 1 

(5.2.1) 

)" is assumed to be known. The velocity gradient Ln+l = (vn+l~n+l  
According to definition (2.1.11) for an arbitrary velocity gradient L equation (5.2.2) 

must hold: 

f 

SO: L . F = F  

Integrating equation (5.2.3) from t=tn to t=t n+l  results in: 

n t i  I L - P d t = [  F d t  
t n t n 

(5.2.2) 

(5.2.3) 

(5.2.4) 

For the right-hand side it can easily be found that: 

(5.2.5) 
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It can be shown that there must be a value of Q (O 5 Q 5 1) for which the left-hand 

side of (5.2.4) equals: 

n t 

n+l  n+ í  

(u 5 Q 5 i) r 
J J 
n 

ns a Í E - F d t = I  L d t - F  
t 

As in chapter 3 tensor Fn+@ can be approximated by: 

I I - - 
F (i-a) Fn + Q Fn+l = [(1-Q) I + Q Fn+,] - Fn n+ CY 

(5.2.7) 

This approximation is based on a linear interpolation of the position vector ".(t), 

which is allowed for small time steps At. 

For small time steps the integral of L can be estimated by: 

-tn} = L At dt Ln+l On+1 
n+l  

n t 

Substitution of eq. (5.2.5)) (5.2.6)) (5.2.7) and (5.2.8) in equation (5.2.4) gives: 

- I 

Ln+,At . {(I-&) I + Q Fn+i} Fn = (Fn+l - I) - Fn 

(5.2.8) 

(5.2.9) 

This expression can be rearranged: 

F = ( I - Q L ~ + ~  At)-1 - (I + (i-a) L,+,At) (5.2.10) 
n+ 1 

Formula (5.2.10) approximates the incremental deformation tensor F 

given. 

when Ln+l is 
n t l  
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Stress tensor r is defined as: 

- -  
= 2 C {F -FC -I} 'n n n  

(5.2.11) 

(5.2.12) 

and in configuration tn+l: 

(5.2.13) 
- I 

7 = 2 C {Fn+l-F:+l - I} 

= 2 C {Fn+l-Fn-F:-F:+l - I} 

= F 

n+ 1 
I -  

I -  - [2 C {F -FC -I}] -F:+, + 2 C (Fn+,.FE+, -I) n+l  n n  

- - n+î. n . n+i + 2 c (F,+~-F;+~ -I) 

Now tensor r can be calculated when tensor rn is known. 
n+l  

Alternative alqorithm for calculating stress tensor r 

a) 

b) 

e) 

Tensor rn is assumed to be known 

For tensor Ln+l an approximation must be available 

Then the incremental deformation tensor Pn+l can be calculated using: 

F n+l  = (I-aLn+l at)-' (I + (i-a) Ln+,At) 

d) 

e) Finally stress tensor r can be calculated: 

Interpolation parameter a is to chosen from (O i a 51) 

n+1 

r = F - r - FC + 2 C (Fn+l-F:+l -I) n+l n+1 n n+l  
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5.3 Incremental obiectivity of the algorithm 

The proposed algorithm is incrementally objective if and only if two conditions are 

satisfied: 

condition 

A 

condition 

B 

1 C i. If the rate of rotation tensor On+, = {Ln+l-Ln+l} equals to the 

null tensor the deformation tensor FnS1 must be a symmetric 

stretch tensor. 

2. In reverse: if F is symmetric then the rate of rotation tensor 
n+1 

O must be equal to the null tensor. 
n+ 1 

1 i. If the rate of deformation tensor Dn+l = {Ln+l+Lc } equals 
n+ 1 

to the null tensor the deformation tensor Fn+, must be an 

orthogonal rigid body rotation tensor. 

2. In reverse: if F is orthogonal then the rate of deformation 
n+ 1 

tensor Dn+l must be equal to the null tensor. 

In this paragraph it will be proven that the algorithm is incrementally objective if and 

only if the interpoiation parameter Q is chosen equal to a half, just as the algorithm in 

the preceeding chapters. 
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Prooj  

condition A.l 

i 
If R- , , = 

According to paragraph 5.2 the incremental deformation tensor F 

{L- , ,-Ln ,} equals to the null tensor then LnA, equals Ln+,. 
1 1 7  I UTI U + L  -- , - __ 

is calculated by: 
n+l  

F n+l = ( I - aLn+l  At)-' - (I + (1-01) Ln+iat) (5.3.1) 

The conjugate incremental deformation tensor equals: 

FC = (I + (i-0) Ln+int))' - (I - Q L,+,At)< 
n+l 

= (r + (i-a) L;+, At)) - (I - a! L:+iAt)-' 

(5.3.2) 

and if Ln+l = L:+l: 

= (I + (i-a) Ln++t)) - (I - a n + 1  At)-l (5.3.3) 

= (I - a! LnS1 At)-' + (i-a!) L,+,At - (I - a! L,+,At)-' 

Far all tensors A, for which (I -!- A) is regular, holds: 

A . (I+ A)-~  = (I+ A (5.3.4) 

(5.3.5) 
At - (I - a! Ln+iat)-' = (I - 01 Ln+,At)- 1 - (i-a) Ln+,At 

so: ( 1 - 4  =,+I 

Substitution of (5.3.5) in (5.3.3) gives: 

FC n+l  = (I - cYLn+l At)-' + (I - a! Ln+lAt)-l- (1-01) L,+,At (5.3.6) 

= (I - a Ln+l At)-l - (I + (i-a) L n + p  ) 
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The comparison of equation (5.3.6) with equation (5.3.1) shows that tensor F:+, 

equals Fn+i for all values of Q if Ln+l = L:+l. 

condition A.2 

From equation (5.2.10) the following expression for Ln+l can be deduced: 

1 -I) - { (i-a) I + a Fn+l }-I Ln+ i = at (]-n+i 

For L:,, holds: 

If Fn+l is symmetric then: 

1 = at { (1-0) I + Fn+, }-' - (F -I) n+l  

(5.3.7) 

(5.3.8) 

(5.3.9) 

Again after using equation (5.3.4) for L:,, can be found: __ 

L:+i = at 1 tF*+l -I) - { (i-a) I + 01 Fn+l 1-l (5.3.10) 

So if Fn,, equals F:,, tensor L 

rate of rotation tensor 

will be equal to L:+, for all values of Q and the 
n+1 

will be equal to the null tensor. 
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condition B. 1 
1 

If Dn+l = 2 {Ln+l+Lc n+l 

For the conjugate deformation tensor Fn+l was found (eq.(5.3.2)): 

} equals to the null tensor then Ln,, equals (-L:+l). 

If Ln+l= -L:+, then: 

FC = (I + (el) Ln+,At) - (I + u Ln+,nt)-' 
n+ 1 

(5.3.12) 

and for Fn+, - F:+, holds: 

(5.3.13) 

= [I-ctLn+l At]-'. [I+(l-ol)En+lQt] - [I+(a-l)Ln+, At] - [1+~tL~+~At]- '  

= [I - ol Ln+l At]-'- 11 + a/ Ln+,At]-' 

n + 1  -':+i 

- { (i-u)At} 2 [I - Q L,+,At]-l- Ln+l 2 - [I + u L,+,ht]-l 

1 -1 After multiple use of the equality A-(A+B)-'-B = (A-l+B- ) 

can be rewritten: 

equation (5.3.13) 

F n+l -FC n+l = [I - {(W Ln+l At}2] - [I - {u Ln+lAt}2]-1 (5.3.14) 

Incremental objectivity requires F -FC to be equal to the unity tensor; if tensor 

is skew-symmetric then tensor F must be orthogonal. From equation 

(5.3.14) it can be deduced that [I - { (i-u) Ln+lAt}2] has to equal [I - { u Ln+lAt}2] 

to obtain incremental objectivity. This is only possible when equals u2, and 

this can only be true when 01 is chosen equal to 

n+1 n+1 

Ln+ î n+1 

1 
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condition B.2 

If F is orthogonal then Fn,, -F:+, equals to the unity tensor I, so: 
n+l  

For Ln+l was found (equation 5.3.7): 

and: 

- 1 -I) - { (i-a) I + a Fn+, }-l L n+1 - ~ ~ ( ~ n + l  

LC = nt 1 { (i-a) I + F:+, }-' - (F:+,-I) n+l 

(5.3.15) 

(5.3.16) 

(5.3.17) 

For Orthogonal deformation tensors F equation (5.3.17) tramforms into: 
n+ 1 

LC n+l =mu 1-a) I + Q Ir& }-l -- (<;l-I) (5.3.18) 
1 = m [ { (i-a) I + Q Fi t l  }-'- - { (i-a) I + Q F;il }-') ] 

Both tensor products in the last expression can be rewritten using the equality 
A-(A+B)-l-B = (A-l+B- 1 ) -1 . This results in: 

= 1 [ { ( l-a)Fn+l + 
= Ll\t (1 - Fn+J - {(1-Q)Fn+,+ 4 - l  

- F - { ( ~ - Q ) F ~ + ~ +  aI}-l] 
n+l  

LC 
n+l  

1 

= - nt 1 (Fn+l - I) - { ( ~ - Q ) F ~ + ~ +  @I}-' (5.3.19) 

For an orthogonal deformation tensor Fn,, incrementaj objectivity demands the rate 

of deformation tensor DnS1= {Ln+l+Lc } to equal the null tensor, so L has to 

equal (-Lc 

1 
n+l  n+l 

). Comparing eq.(5.3.16) with (5.3.19) the following equality must hold: 
n+l 

(5.3.20) 

nt 1 ( n + i  -I) - {(~-cY)I+cYF~+~ }- 1 = - [- at 1 ( n + 1  -I) - {(l-o~)F~+~+ CYI}-~] 
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This equality holds when: 

(5.3.21) 

Equation (5.3.22) must be valid for all orthogonal tensors FnS1. This is only possible 

when (1-201) equals to zero. So interpolation parameter Q has to be chosen equal to a 

half. U 

Conciusion 

Condition A is satisfied for all values of Q e [0,1]. Condition B is satisfied only when Q 

is chosen equal to 2' So the proposed algorithm is incrementally objective if and only 
1 

if the interpolation parameter Q is equal to 2' 

For 01 equal to a half the algorithm can be presented in the following diagram: 

1 
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CHAPTER 6: APPLICATIONS OF THE ALTERNATIVE ALGORITHM 

6.1 Introduction 

Two examples of applications of the alternative algorithm will be presented; a rigid 

body rotation and an isovolumetric elongation. 

Both examples were also treated in chapter 4, which contained examples of the 

integration algorithm according to Pinsky C.S. All calculations in that chapter were 

performed in an incremental way and during these calculations the deformation tensor 

was kept constant in all increments. 

The calculations performed in this chapter will be carried out with a velocity 

gradient which is constant in time because of the nature of the algorithm. The end 

configurations of both examples correspond with the end configurations of the 

comparable calculations in chapter 4. 

The third example in chapter 4 contained a mixed deformation pattern, 

consisting of simple shear, isovolumetric elongation and rigid body rotation. The end 

configuration was reached with a constant incremental deformation tensor. It was not 

possible to calculate a theoretical velocity gradient, constant in time, which resulted 

in the same end configuration. That is why this example is omitted in this chapter. 

Beside the two examples presented in this chapter some calculations were 

performed on simple shear with a constant velocity gradient. It turned out that this 

simple shear deformation is a quite trivial example; for all values of the interpolation 

parameter and the number of increments the same, correct, results were found. So in 

this chapter only a rigid body rotation and an isovolumetric elongation will be 

treat ed. 
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6.2 Rigid Bodv Rotation 

2 A two-dimensional rigid body is rotated over 4 = 7r rad. The end configuration is 

reached after T = 5 s. The initial stress tensor is chosen equal to the null tensor and 

the material parameter C is eqiiad to 1. Theoreticdly the Uefsrmatiûn tensûï F(i) 

equals: 

F(t) = cos(y(t)) ZIZl - sin(cp(t)) Zie2 + 
+ sin(cp(t)) Z2Zi + cos(cp(t)) ZZc2 (6.2.1) 

2 At  t=O rotation angle p(t) equals to zero. At  t=T(=5 s.) y(t) has to equal O(= 3~ 

rad.). For the velocity gradient the following equality is valid: 

L(t) = F(t)  - F-l = &t) {ZzZi-êlê2} (6.2.2) 

As expected the velocity gradient is skew-symmetric resulting in a rate of 

defromation tensor equal to the null tensor. 

The incremental velocity gradient Ln+l(t) is calculated by equation (5.2.8): 

t+At 

n t 

+ +  - p(t+At),; y(t) {yl e e -ele2} (6.2.3) 

The incremental velocity gradient is constant in time when y(t) is chosen equal to: 

Then for Ln+, holds: 
+ +  Lll+l = +/T {é2Zl- ei"} (6.2.5) 

Ì 
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No stresses may be caused by the rigid body rotation. In appendix F the PC-Matlab 

file AR0TAT.M is included, containing the alternative algorithm applied to the rigid 

body rotation. As in chapter 4 the number of increments and the value of the 

interpolation parameter are varied. The results are presented in figure 6.1. The scales 

in this figure fully ajgree with the scales in figwe 4.2. 

There is no significant difference between the results obtained with the 

integration algorithm and the results obtained with the alternative algorithm. For (u 

equal to a half again the best results are found. Even using 480 increments stresses 

unequal to zero were found for Q unequal to a half. This is due to the incremental 

objectivity which can only be obtained when (u is chosen equal to a half. 

I 
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6.3 Isovolumetric Elongation 

A body is isovolumetrically elongated along the $-axis. In this el-direction the total 

elongation factor A is 1.3 . The end configuration is reached after T = 5 s. There are 

no initial stresses and the materid prme t e r  is chosen eq.;a! to 1 .û .  
The deformation tensor equals: 

1 + +  F(t) = A(t) + + elel + e2e2 (6.3.1) 

where X(t) is the time dependent elongation factor, equal to 1 at t=O and equal to 

A=1.3 at t=T(=5 s.). 

For the velocity gradient L(t) holds: 

L(t) = F(t) - F-l= # {z121-e2z2} 

The incremental velocity gradient L (t) is calculated by: 
n+l  

LIl,l(t) - - nt rAtL(T)dT= 

n t 

(6.3.2) 

(6.3.3) 

Tensor Lntl is constant in time when the time-dependent elongation factor A(t) is 

chosen equal to: 

Then: 

= $ (In(A)) {zlzl- -++  "e2} 

(6.3.4) 

(6.3.5) 
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This velocity gradient is programmed in the file ASTRET.M, included in appendix F. 

Both the interpolation parameter 01 and the number of increments N are varied. In 

chapter 4 it was found that in the end configuration the stress matrix 1 theoretically 

has to be equal to: 

1 O 4.8166 
= 1.3800 (6.3.6) 

The results of the calculation performed with the alternative algorithm are presented 

in figure 6.2. Again the scales in this figure agree with the scales used in figure 4.3. 

The results obtained with the alternative algorithm are better than the results 

of the "Pinsky"-algorithm; in figure 6.2 the absolute errors in the stress components 

T~~ and T~~ are less than half of the errors in figure 4.3 (for a! unequal to a half). 

Just as in the previous paragraph for 01 = 

this the due to the accuracy of the algorithm, being higher for a/ equal to a half. 

1 the best results are found. As in chapter 4 
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Conclusions 

Both proposed algorithms for calculating stress tensor r of the (modified) 

Neo-Hookean constitutive equation showed correct results for several applications. 

The vdüe of the interpolation parameter o turned out to be of great im-portance. 

Extreme improvements of the results have been found when choosing this parameter 

equal to a half. 

1 For wT it can be proven that both algorithms are incrementally objective, i.e. 
LI 

insensitive for rigid body rotations. Even if no rigid body occurs 

algorithms to show best results for a=s. The algorithms are not 

objective for this value of a, but are also more accurate. 
1 recommended to use a=Z. 

1 
we have found the 

only increment ally 

So it is strongly 

The definition of incremental objectivity does not agree with the widely accepted 

formal definition of objectivity; the integration algorithms, though incrementally 
1 objective for a=- are not objective in the general sense for this value of the 2’ 

interpolation parameter. 

i 

P.A.A. van Hoogstraten 

Eindhoven, May 1989 

Philips Research Laboratories 

Nederlandse Philips Bedrijven B.V. 

Eindhoven University of Technology 

Department of Mechanical Engineering 
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APPENDIX A EVALUATION OF TENSORS (Fn+,- F--ia) AND Dn+@ 

--I . A.1: Amroxirnation of (F- - F ~ ~ + ~ )  
u i :  

For tensor (Fn+, -Fi ta)  the following expressions can be deduced using the linear 

interpolation of the deformation tensor (3.2.7): 

F 1 (1-a) I + a Fn+, (3.2.7) n+a 

. F-l - - [ Fn+, - F-l 1-l * n+G!. n+ i 

= [ { (1-01) I + a Fn+l} ' F1 I-' 
n+1 

= [ (i-a) Fiil + a I1-l 

Formula (A. 1.1) can easily be transformed in: 

= F - [ (1-01) I + a Fn+l 1-l 

= [ (i-a) I + Q Fn+, 1-l * Fn+, 
n+l 

F . 
n+1 n + a  

using: 
A . (A+B)-~. B = B . (ht~1- l .  A = (A-~SB- 1 ) -1 

(A. 1.1) 

(A.i.2) 

(A.1.3) 

(A.i.4) 
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A.2: Amroximation of D 
n + a  

In general the rate of strain tensor D is defined as: 

To evaluate tensor Dn+& we will first evaluate tensor Ln+&: 

(A.Z.ij 

(A. 2.2) 

Choosing a linear interpolation for 

by: 

the velocity field Gn+& can be approximated 
n+01 

-i -4 
X - x  

-) i n+l V n + a  = x  n + a  --h--n 
n 

(A.2.3) 

so: (A. 2.4) 

First gradient 

respect to the reference configuration and the deformation tensor Fn+@ : 

is considered. This gradient can be expressed in the gradient with 

proot 

(A.2.5) 
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Applying (A.2.5) to equation (A.2.4) and using the definition of the deformation 

tensor F results in: 
n+l 

- I ]  F-' n+ Q } (A.2.6) 
n 

Since tensor F 

tensor Ln+& can be written as: 

is linearly interpolated (see equation (3.2.6)) the approximation of n+Q 

1 
L n + a  (A. 2.7) 

And the resulting approximation for Dn+a is: (A.2.8) 
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APPENDIX B: EVALUATION OF TENSOR 

FOR SMALL DEFORMATIONS 

Tensor SM,+@ is defined as: 

In this appendix 6Hn+,, will be evaluated for small deformations. A deformation is 

called small when no large rotations or strains occur. Then its deformation tensor can 

be written as: 

holds: For Fn+a 

F = I +  cn+, = I + a €n+l 
n + a  

1 The inverse tensors F i l l  and Fi+, can be approximated using a Taylor series: 

)-I w I - 6 F-l = ( I +  €n+l 
n+l n+l 

n + a  
F-' = ( I+  cn+, ) - L I - * €  n+ 1 

In appendix A an approximation for Dn+a is derived: 

with: = & {  [Fn+i - I] [(i-a) I + a Fn+l]-l ] 
nt -0  
L 



Appendix B.2 

Subtitution of (B.l) in the expression for Ln+& and neglection of the higher order 

term ( cn+l ' fn+l ) gives: 

) -I] ' [(l-Q) I + Q (I + €n+i)]-l } L n+a F{ [(I + fn+1 
1 

II 

- I f  e n+i ] - [ I + Q €n+l)]-l} 

)I I E b (  n * [ I - Q c n + l  
1 

I 1 
n 

1 
N II 'n+i n 

And the rate of strain tensor Dn+& results in: 

Using equation (B. 1) , (B .4) and (B. 6) the following approximation can be made: 

The latter form is found by neglecting higher order terms of 

if the norm of 

which is admissible 

is very small. 
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Rate of strain tensor Dn+l is approximated by: 

1 
D n + i = 2 (  L nS1 +LC n+l  ) 

- '  -h- { 1-F--il} 
n 

For small deformations LnS1 equals: 

1 
n+1 Eh-{ I - ( I - €  n+l 1 } = n + i  
L 

So Dn+l is approximated by: 

'n+i ZT ( n + i  + n + i  " (B.8) 
1 

n 

Substitution of approximation (B.7) and (B.8) in the definition of SH,+a gives: 

conclusion: 

For small deformations tensor 6H,+@ tends to the null tensor. 



Appendix B.4 



Appendix C.1 

APPENDIX C: NOTES ON THE OBJECTIVITY OF 
THE INTEGRATION ALGORITHM 

1 The algorithm for a=-* 2: 

1 For the integration algorithm in the updated approach is: 

Substitution of (C.2), (C.3) and (C.4) in (C.1) results in: 

T = F  -7 -FC + 
n+ 1 n+l  n n+i  

+ 16 C Fn+l- (I+F n+ 1 )-'- [ (I+F-l n+ 1 )-'-(I+F n+ 1 )-'+ 

(I+F'-' n+l  )-l-(I+Fi+l)-l ] -(I+FC n+l  )-l. F:+, 

The products before and after the square brackets c m  be rewritten using: 

A - (A+B)-'- B = (A-l+B-l)-l 

for all regular tensors A and B 
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Thus : 

Application of (C.6) to the second and fourth term in between the brackets and 
multiple use of (A-B)'= BC-AC gives: 

so: 

I- 
n+a 

- - n+i. I - n . n + i  + 1 6 C ( W + W c )  

with: W= (I+F -1 ) -1 -(I+<+l) 1 -1 -(I-<~,)-(I+F~~,)-'} { n+l 

Calculation of Q - N(F 1.62" 
. n+l 

Tensor Q - N( Fn+l) - Q" equals: 

&-N(Fn+l)-Qc = Q-Fn+l-rn-F~+l- Qc + 16 C Q-[W + Wc]-Qc (C.10) 

where Q is an arbitrary orthogonal rigid body rotation tensor and Wis given by (C.9) 
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Calculation of N(Q - Fn+l) 

Substitution of (Q-Fn+l) for F in (C.9) gives: 
n+l  

Thus: 

N(Q-Fn+l) = Q.Fn+l -~n-F~+l -  Qc + 16 C Q-[V + V"1-Q' (C. 12) 

with: v = i$ t F- n+l  )-l. (kF-1 n+ 1 . Q")-1. ( 
I QC) . ( &C+p1)-l 

Obiectivity for rigid body rotations 
For all rigid body rotation tensors F 

objective: 

=R with R-RC=I the algorithm proofs to be 
n+l  

For Fn+i=R both tensors (V+V") and (W+Wc) equal the zero tensor O, so 

tensor N( Q - R) equals tensor Q - N( R) - Q". 

proo$ 

w+wc = (I+R c -1 - ( I+R~)-~.  (I-R~) .(I+R)-~+ (I+R c -1 . (I-R) . (I+R)-~. (I+R)-~ 

= (I+RC)-l - [(I+Rc)>-l-(I+R c ) -1 OR" + (I+R)-l-R-(I+R)-l] - (I+R)-' 

= (I+RC)-l - [(I+RC)-l -( I+R)-'+ (I+R)-l- ( I+RC)-l] - (I+R)-' 

= o  
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v+vc= 
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APPENDIX D: PC-MATLAB PROGRAM FILE FOR CALCULATIONS ON 
THE OBJECTIVITY OF THE INTEGRATION ALGORJTHM 

FILE: 0BJECTIVE.M 

= F(n+l) ; deformation tensor in configuration (n+l) 
= rigid body rotation tensor 
= stretch tensor 

( <- polar decomposition of Fnl) 
( <- polar decomposition of Fnl) 

echo off; 
% 
% 
% 
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% 
% 
% 
% Fnl  
% Rnl 
% Unl 
% 
% 
% Tn = stress tensor in configuration (n) 
% T n l  = stress tensor in configuration (n+i) 
% 
% alpha = interpolation parameter 
% 
% C  = material parameter 
% 
% Q  
% 
% Fna = F(n+alpha) ; deformation tensor in configuration (n+alpha) 
% Dna = rate of strain tensor in configuration (n+alpha) 
% 

Calculations on the objectivity of the integration algorithm 

= extra rigid body rotation tensor 

I" 

% 
% 
% 

% 
% 
% 

% 
% 
% 

% 
% 
% 
% 

interpolation parameter 

alpha = 0.5; 

material parameter 

c = 1.0; 

unity tensor 

I = eye(2); 

stress tensor in configuration n 

Tn = [ 1.5 
O 

O 
0.5 1; 
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% 
% 

% 
% 
% 

% 
% 
% 

% 
% 
% 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

% 
% 
% 

% 
% 
% 

% 
% 
% 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

deformation tensor in configuration (n+l) 

phi = pi/36; 
labda = 1.01; 

- rotation tensor 

Rnl = [ cos(phi) -sin( p hi) 
sin(phi) cos(phi) 1;  

- elongation tensor 

Unl = [ labda O 
O l/labda]; 

- deformation tensor 

Fnl  = Rnl*Unl; 

(1) CALCULATION OF Q*[Tn+l (Fn+l)]* Q' 

(la) CALCULATION OF Tn+l  (FnS1) 

calculation of F(n+alpha) 

Fna = (1-alpha)*I + alpha*Fnl; 

calculation of L(n+alpha)*hn ; hn = dummy parameter = step size 

Lna = (Fnl - I)*inv(Fna); 

calculation of D (n+alp ha) *hn 

Dna = 0.5*(Lna+Lna1); 

calculation of Tn+l(Fn+l) 

T n l  = Fnl*Tn*Fnl'+ 4*C*Fnl*inv(Fna)*Dna*(inv(Fna))'*Fnl'; 

(lb) CALCULATION OF Q*[Tn+l (Fn+l)]*Q' 

* extra rigid body rotation tensor &: 
rotation over 0....90 degrees 
calculation for 13 values of angle of rotation: 
angle = (i-1)*7.5 degrees {i=1,..,13} 

* all results stored in matrix 'resQTQc' 
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% 

% 

% 

for i = 1:13; 

psi = (i-l)*pi/X; 

Q = [  cos(psi) 
sin(psi) 

s in(psi)  
cos(psi) 1; 

% 
QTQc = Q*Tnl*Q'; 

resQTQc( (2*i-1): (2*i), 1 :2) = QTQc; 
% 

% 
end; 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

(2) CALCULATION OF [Tn+l (Q*Fn+l)] 

* extra rigid body rotation tensor Q: 
rotation over 0....90 degrees 
calculation for 13 values of angle of rotation: 
angle = (i-1)*7.5 degrees {i=1,..,13] 

* all results stored in matrix 'resTQF' 

for i = 1:13; 
% 

psi = (i-i)*pi/24; 
% 

s i n (  psi) 
cos(psi) 3 ; 

Q = [  cos( psi) 
sin(psi) 

% 
% 
% 

calculation of new deformation tensor 

QFnl = Q*Fnl; 
% 
% 
% 

calculation of new F(n+alpha) 

Fna = (1-alpha)*I + alpha*QFnl; 
% 
% 
% 

calculation of new L(n+alpha)*hn 

Lna = (QFnl - I)*inv(Fna); 
% 
% 
% 

calculation of new D(n+alpha)*hn 

Dna = 0.5*(Lna+Lnat); 
% 
% 
% 

calculation of Tn+l(Q*(Fn+l)) 

T n l  = QFnl*Tn*QFnl'+ 4*C*QFnl*inv(Fna)*Dna*(inv(Fna))'*&Fn11; 
% 

resTQF( (2*i-l):( 2*i), 1 :2) = Tn 1; 
% 

end; 
% 
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% 
% Make plots 
% 
for i = 1:13; 

a l  (i)=resQTQc((2*i-l) ,l); 
a2(i)=resQTQc( (2*i-1),2); 
a3(i)=resQTQc( (2*i),l); 
a4(i)=resQTQc( (2*i) ,2); 
b 1 (i)=resTQF((2*i-l) i i); 
b2(i)=resTQF((2*i-l) ,2); 
b3(i)=resTQF((2*i),l); 
b4(i)=resTQF(( 2*i) ,2); 

end; 
% 
c k  
% 
x= 1 : 13 ; 
x=(x-1)*7.5; 
% 
subplot (22 i);  

plot (x,al ,x,bl) 
xlabel('ang1e of rotation (degr.)') 
title('component 11') 

plot(x,a2 ,x,b2) 
xlabel('ang1e of rotation (degr.)') 
title('component 12') 

plot (x,a3 ,x,b3) 
xlabel('ang1e of rotation (degr.)') 
title('component 21') 

plot(x,a4,x,b4) 
xlabel('ang1e of rotation (degr.)') 
title( 'component 22 ') 

subplot (222); 

subplot(223); 

subplot( 224); 

pause 
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APPENDIX E PC-MATLAB PROGRAM FILES OF APPLICATIONS 
OF THE INTEGRATION ALGORITHM 

FILE: R0TATE.M 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Example 1: numerical integration according to Pinsky C.S. 
applied to a rigid body rotation 

constitutive equation: rate form of Neo-Hookean equation 

* 
sigma = p I + tau 

* 
with: p = (pseudo) hydrostatic pressure, determined by 

boundary conditions 
sigma = Cauchy stress tensor 
I = Unity tensor 

C = material parameter 
B 

tau = 2C*(B-I) 

= left Cauchy-Green strain tensor 

for tau holds: 

Truesdell rate of tau = 4C*D 
with D = rate of strain tensor 

Numerical integration of tau 

varied parameters: 
- interpolation parameter alpha (alpha = 0.5 -> incrementally objective) 
- number of increments 

-> N resp.: 15, 30, 60, 120, 240, 480 
-> alpha resp.: 0.00, 0.25, 0.50, 0.75, 1.00 

deformation pattern: 

in N increments a rigid body rotation over 120 degrees is reached 
total rigid body rotation angle = 2*pi/3 radians, so the 
incremental rigid body rotation angle = 2*pi/(3*N) radians 
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echo off; 

% 
% 

PHI = 2*pi/3 ; 
% 
% 

C = 1.0; 
% 

TO = [  o o 
0 0 I ;  

% 
I = eye(2); 

% 
% 

aa 
NN = [ 15 30 60 120 240 4801; 

= [ 0.00 0.25 0.50 0.75 1.00 1; 
% 
% 

for iii=l:5; 
alpha=aa( iii) ; 

% 
for ii=l:6; 

N = NN(ii); 
% 
% 
% 
% 

Calculation of incremental deformation tensor 

phi = PHI/N; 
% 

Fnl = [ cos(phi) -sin( p hi) 
sin(phi) cos( p hi) I ;  

% 
% 
% 
% 

% 

% 

% 

% 

% 
% 
% 
% 

Calculation of several matrices 

Fna = (1-alpha)*I + alpha*Fnl; 

Pna = Fnl*inv(Fna); 

Lna = Pna-inv(Fna); 

Dna = 0.5*(Lna+Lna1); 

Tn = TO; 

Calculation of tau(n+l) 

for i=l:N: 
% 

Tnl=Fnl*Tn*Fnl'+ 4*C*Pna*Dna*Pna'; 
% 
% Neutralization of T n l  for rigid body rotations 

(Updated approach !!!) 
Tn =Fn'*Tnl*Fn; 

% 
end; 



% 
% 
% 
% 
% 
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output 

fprintf( ' '1 

fprintf( '\n '1 

fprintf( ' \n'> 

fprintf('\nRigid Body Rotation ') 

fprintf( :\nalpha = '$65 2f ',alpha); 
fprintf('\nnumber of increments = %3.@ \,s',i) ; 

T n  
end; 
fprintf('\n') 

end; 
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FILE: STRETCH.M 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Example 2: numerical integration according to Pinsky C.S. 

applied to an isovolumetric uniform elongation 

constitutive equation: rate form of Neo-Hookean equation 

* 
sigma = p I + tau 

* 
with: p = (pseudo) hydrostatic pressure, determined by 

boundary conditions 
sigma = Cauchy stress tensor 
I = Unity tensor 

C = material parameter 
B 

tau = 2C*(B-I) 

= left Cauchy-Green strain tensor 

for tau holds: 

Truesdell rate of tau = 4C*D 
with D = rate of strain tensor 

Numerical integration of tau 

varied parameters: 
- interpolation parameter alpha (alpha = 0.5 -> incrementally objective) 
- number of increments 

-> N resp.: 15, 30, 60, 120, 240, 480 
-> alpha resp.: 0.00, 0.25, 0.50, 0.75, 1.00 

deformation pattern: 

in N increments a total elongation of 30% is realized; 
total elongation factor LABDA = 1.3, so the 
incremental elongation factor labda = (1.3)*(1/N) 

echo off; 
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% 
% 

LABDA = 1.30 ; 
% 
% 

C = 1.0; 
% 

TO = [  o o 
o o I ;  

% 
I = eye(2); 

% 
% 

aa 
NN = [ 15 30 60 120 240 4801; 

= [ 0.00 0.25 0.50 0.75 1.00 1;  
% 
% 

for iii=l:5; 
alpha=aa(iii) ; 

% 
for ii=1:6; 

N = NN(ii); 
% 
% 
% 
% 

Calculation of incremental deformation tensor 

labda = LABDA- (l/N); 
% 

Fnl = [ labda O 
O l/labda 1 ;  

% 
% 
% 
% 

% 

% 

% 

% 

% 
% 
% 
% 

% 

% 

% 

Calculation of several matrices 

Fna = (1-alpha)*I + alpha*Fnl; 

Pna = Fnl*inv(Fna); 

Lna = Pna-inv(Fna); 

Dna = 0.5*(Lna+Lna1); 

Tn = TO; 

Calculation of tau(n+l) 

€or i=l:N; 

Tnl=Fnl*Tn*Fnl'+ 4*C*Pna*Dna*Pna'; 

Tn =Tnl; 

end; 



% 
% 
% 
% 
% 
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output 

fprintf(' '1 

fprintf( '\n '1 

fprin tf( ' \n'> 

fprintf('\nIsovolumetric elongation') 

fprintf( '\nalpha = %5.2f ',alpha); 
fprintf('\nnumber of increments = %3.0f \.',i) ; 

Tn 
end; 
fprintf( '\n') 

end; 
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FILE: MIXED .M 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

Example 3: numerical integration according to Pinsky C.S. 
applied to a uniform deformation consisting of: 

- simple shear, followed by an 
- isovolumetric elongation and a 
- rigid body rotation 

constitutive equation: rate form of Neo-Hookean equation 

* 
sigma = p I + tau 

* 
with: p = (pseudo) hydrostatic pressure, determined by 

boundary conditions 
sigma = Cauchy stress tensor 
I = Unity tensor 
tau = 2C*(B-I) 
C = material parameter 
B = left Cauchy-Green strain tensor 

for tau holds: 

Truesdell rate of tau 
with D 

= 4C*D 
= rate of strain tensor 

Numerical integration of tau 

varied parameters: 
- interpolation parameter alpha (alpha = 0.5 -> incrementally objective) 
- number of increments 

-> N 
-> alpha 

deformation pattern: 

resp.: 15, 30, 60, 120, 240, 480 
resp.: 0.00, 0.25, 0.50, 0.75, 1.00 

in N increments the following uniform 
deformation is realized 

* simple shear over 60 degrees, followed by 
* uniform isovolumetric elongation, elongation factor = 1.30 
* rigid body rotation over 120 degrees 

parameters: 
PHI1 = total shear angle 
fphil = incremental shear factor 
PHI2 
phi2 
LABDA = total elongation factor 
labda = incremental elongation factor 

= total rigid body rotation angle 
= incremental rigid body rotation angle 
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% 
% 
echo off; 

% 
PHI2 = 2*pi/3 ; 
PHI1 = pi/3 ; 
LABDA = 1.30 ; 
TPHI1 = tan(PHI1); 

% 
% 

C 

TO 

= 1.0; 
% 

= [  o 
O 

O 
0 I ;  

% 
I = eye(2); 

% 
% 

aa 
NN 

= [ 0.00 0.25 0.50 0.75 1.00 3;  
= [ 15 30 60 120 240 4801; 

% 
% 

for iii=l:5; 
alpha=aa(iii); 

for ii=1:6; 
N = NN(ii); 

% 

% 
% 
% 
% 

Calculation of incremental de,drmation tensor 

phi2 = PHI2/N ; 
labda = LABDA^(l/N); 
beta = labda; 
for j=l:(N-1); 

end; 
beta = labda*beta + labda*((labda)^(-j)); 

% 

% 
tphil = LABDA*TPHIl/beta; 

Rnl = [ O 
1 

1 
0 I ;  

% 
Unl = [ O 

i 
1 

tphil 1; 
% 

% 

Rn2 = [ cos(phi2) 
sin(phi2) 

sin( p hi2) 
cos(phi2) I ;  

Un2 = [ labda O 
O l/labda 1; 

% 
Fnl  = Rn2*Un2*Rnl*Unl; 

% 
% 
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% 
% 
% 
% 

Calculation of several matrices 

Fna = (1-alpha)*I + alpha*Fnl; 
% 

Pna = Fnl*inv(Fna); 
% 

Lna = Pna-invfFna); 
% 

Dna = 0.5*(Lna+Lna'); 
% 

Tn = TO; 
% 
% 
% 
% 

Calculation of tau(n+i) 

for i=l:N; 
% 

Tnl=Fnl*Tn*Fnl't  4*C*Pna*Dna*Pna'; 
% 
% 
% 
% 

Neutralization of T n l  for rigid body rotation 
(Updated approach !!) 

Tn =Rn2'*Tnl*Rn2; 
% 

end; 
% 
% 
% 
% 
% 

output 

fprin tf( ' '1 

fprintf('\n '1 

fprintf( ' \n'> 

fprintf( '\nSimple Shear, Elongation and') 
fprintf('\nRigid Body Rotation ') 

fp rintf( '\nalph a = %5.2f ',alpha); 
fprintf('\,nnurnber of increments = %3.0f \.',i) ; 

T n  
end; 
fprintf( '\n') 

end; 
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APPENDIX F: PC-MATLAB PROGRAM FILES OF APPLICATIONS 
OF THE ALTERNATNE ALGORITHM 

% 
% Example 1: numerical integration using the alternative 
% integration algorithm, 
% applied to a rigid body rotation 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

constitutive equation: rate 

sigma = 

* 
- - with: P 

form of Neo-Hookean equation 

* 
- p I + tau 

(pseudo) hydrostatic 
boundary conditions 
Cauchy stress tensor 
Unit tensor 

material parameter 
2C* (B-I) 

pressure, determined by 

left Cauchyareen strain tensor 

calculation of tau(n+l), with tau(n) and L(n+l) given 

varied parameters: 
- interpolation parameter alpha (alpha = 0.5 -> incrementally objective) 
- number of increments 

-> N resp.: 15, 30, 60, 120, 240, 480 
-> alpha resp.: 0.00, 0.25, 0.50, 0.75, 1.00 

deformation : in N increments a rigid body rotation over 
120 degrees is realized 

parameters: 
PHI 
T 

is reached 
dt 
N = number of increments 
alpha = interpolation parameter 
C = material parameter 

= total rigid body rotation angle 
= total time in which the end configuration 

= time step = T / N  

echo off; 
% 
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PHI = 2*pi/3 ; 
T = 5.0 ; 
C = 1.0 ; 

% 

% 

% 

% 
% 

% 

% 
% 
% 
% 
% 

% 
% 
% 

TO = [  O 
O 

O 
0 I ;  

aa 
NN = [ 15 30 60 120 240 4801; 

= [ 0.00 0.25 0.50 0.75 1.00 1; 

fprintf('\nPC Matlab calculation of tensor Tau ') 

fprintf( '\n') 
fprintf('\ntotal elapsed time : %5.2f s. ',T); 
fprintf('\ntotal angle of rotation : %5.2f rad. ',PHI); 
fprintf('\nmaterial parameter : %5.2f N/mm2 ',C); 
fprintf( '\n\n\n\n') 

fprintf('\n '1 

for iii=l:5; 
alpha=aa(iii) ; 

for ii=1:6; 
N = NN(ii); 

Calculation of incremental L matrix 

L = [  o -PHI/T 
PHI/T O 1; 

Approximation of the incremental deformation tensor 

dt  
% 

= T/N; 

Fnl  = (inv(1 - alpha*dt*L))*(I+(l-alpha)*dt*L); 
% 

% 
% 
% 

% 
% 
% 
% 

% 

Tn = TO; 

Calculation of tau(n+l) 

for i=l:N; 
Tnl=Fnl*Tn*Fnl'+ 2*C*(Fnl*Fnl'-I); 

Neutralization of T n l  for rigid body rotation 
(Updated approach !!) 

Rn = [ cos(PHI*dt/T) 
sin(PHI*dt/T) 

-sin( P HI*d t /T) 
cos(PHI*dt/T) 1; 

Tn  = Rn'*Tnl*Rn; 
end; 
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fprintf( ' '1 

fprintf( '\n '1 

fprin tf(' \nt> 

fprintf('\nRigid Body Rotation ') 
fprintf ('\nalternative algorithm') 

fprintf('\nalpha = %5.2f ',alpha); 
fprintf('\nnumber of increments = %3.0f \n',i) 

deter = det(Fn1); 
fprin t€[' \n- > determinant of Fnl  equals: %7.5f' , deter) 
trac = trace(L); 
fprintf( '\n- > trace of L equals: %7.5f' , trac) 
Tn 

; 

end; 
fprintf( '\n') 
end; 
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FILE: ASTRET.M 

% 
% Example 2: numerical integration using the alternative 
% integration algorithm, 
96 applied to a isovolumetric elongation 

% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 
% 

constitutive equation: rate form of Neo-Hookean equation 

* 
sigma = - p I + tau 

* 
with: P = (pseudo) hydrostatic pressure, determined by 

boundary conditions 
sigma = Cauchy stress tensor 
I = Unity tensor 

C = material parameter 
B 

tau = 2C*(B-I) 

= left Cauchy-Green strain tensor 

% 
% 
% varied parameters: 
9% 
% - number of increments 
% 
% -> N resp.: 15, 30, 60, 120, 240, 480 
% -> alpha resp.: 0.00, 0.25, 0.50, 0.75, 1.00 
% 
% 
% deformation: in N increments a isovolumetric elongation with 
% 
% 
% parameters: 
% 
% T = total time in which the end configuration 
% is reached 
% dt = time step = T / N  
% N = number of increments 
% alpha = interpolation parameter 
% C = material parameter 
% 
echo off; 
% 

calculation of tau(n+l), with tau(n) and L(nt-1) given 

- interpolation parameter alpha (alpha = 0.5 -> incrementally objective) 

elongation factor LABDA is reached 

LABDA = total elongation factor 

LABDA= 1.3 ; 
T = 5.0 ; 
C = 1.0 ; 

I 

I r 

% 

% 

TO = [ O  o 
0 0 3 ;  

I = eye(2); 
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% 

% 

% 
% 

% 

% 
% 
% 

% 
% 
% 

% 

% 

% 
% 
% 

% 

% 

% 

% 

aa 
NN = [ 15 30 60 120 240 4801; 

= [ 0.00 0.25 0.50 0.75 1.00 1; 

fprintf('\nPC Matlab calculation of tensor Tau ') 

fprin tf ( ' \n ' ) 
fprintf('\ntotal elapsed time : %5.2f s. ',T); 
fprintf('\ntotal elongation factor : %5.2f E-] 
fprintf('\nmaterial parameter : %5.2f N/mm2 ',C); 
fprintf ('\n\n\n \n') 

fprin tf( '\n ') 

',LABDA); 

for iii=l:5; 
alpha=aa(iii); 

for ii=l:6; 
N = NN(ii); 

Calculation of incremental L matrix 

L = (i/T)*iog(LABDA)* 0 
o -11; 

Approximation of the incremental deformation tensor 

dt  = T/N;  

Fnl  = (inv(1 - alp ha*dt *L))*( I+( 1-alp ha)*dt *L) ; 

Tn = TO; 

Calculation of tau(n+i) 

for i=l:N; 

Tnl=Fnl*Tn*Fnl'+ 2*C*(Fnl*Fnl'-I); 

Tn = Tnl;  

end; 

fprin tf( ' '1 

fp rintf( '\n '1 

fprintf( ' \.'I 

fprintf('\nIsovolumetric Elongation ') 
fp rin tf ('\nalternative algorithm') 

fprin tf ( '\nalp ha = %5.2f ',alpha); 
fprintf('\nnumber of increments = %3.0f \.',i> 

deter = det(Fn1); 
fprin tf( '\n- > determinant of Fnl equals: %7.5f' , deter) 
trac = trace(L); 
fprintf('\n- > trace of L equals: %7.5f' , trac) 
Tn 

; 

end; 
fprintf( '\n') 

end; 
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