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ON THE CONNECTION BETWEEN 
A SYMMETRY CONDmON AND SEVERAL NICE 

PROPERTIES OF THE SPACES S9(A) AND T9(A) 

AF.M. ter Elst 

Abstract. 

In this paper it is proved that seveml topological properties of the spaces S 9(A) and 

T 9(A) are equivalent with a symmetry condition on the directed set 4». 

O. Introduction 

This paper is based on a paper [EGK] of SJ.L. van Eijndhoven. J. de Graaf and P. Kruszynski in 

which the spaces S9(A) and T 9(A) are introduced. In Chapter IV of that paper it is proved that a sym

metry condition implies some topological properties of the spaces S9(A) and T 9(A}' In the underlying 

paper we show that a weaker symmetry condition is equivalent with all those topological properties and 

a lot more. 

For the terminology of locally convex topological vector spaces we refer to [WilJ. 

1. Notations and some known theorems 

Let X be a separable Hilbert space, n E IV and let A It •.. ,A" denote n self-adjoint operators whose 

corresponding specU'al projections mutually commute. There exists a unique specttal measure E on the 

set B (R") of Borel sets of R" so that for every "E {I,··· • n } the map 

A ~ E(Rk- 1 X t\ x R,,-i;). A a Borel set in Ii, equals the specU'al measure of Ak • For every Borel 

measurable function I on R". there can be defined the self-adjoint operator 

I(A)= J IQ..)dE,. 
1R~ 

in a natural manner. (See [EGKJ. page 280.) 

For every A E B (R ") let M be the characteristic function of A. For all m E 7Z" let 



Qm := {1.. e lR" : "lE{l ..... ,,} [1..1 e [ml-l,ml)]} . 

Let Bb(JR") be the set of all bounded Borel sets of m," and let G+ be the set of all maps F from 

B b (m, ") into X with the property 

Define emb: X ~ G+ by [embx](A) := E(A)x, x eX, A e Bb(JR Il
). The map emb is injective. So the 

Hilbert space X is embedded in G+. 

Let cjl be a Borel measurable function on JR" which is bounded on bounded Borel sets. Denote 

!l := {1.. e JR Il : cjl(1..) :;f; O}. (Remark: !l need not be closed.) Let x eX. Define cjl(A)· x e G+ by 

[cjl(A)·x](A) = cjl(A)E(A)x. A e Bb (.R Il
), For every F e cp(A).X there exists a unique x e E@(X) 

such that F = cjl(A) • x. Hence an inner product can be defined on cp(A). X such that the map 

cjl(A)· : E(!l)(X) ~ cjl(A ) • X is a unitary map between two Hilbert spaces. The set B b (.R 11 ) is a 

directed set under inclusion, SO we can define the following subspace of G+: 

D. := (F e G+ : A ~ cjl(A)F(A), A e Bb (JR Il ),is a Cauchy net in X} . 

For every FeD. define cjl(A) * F := lim cjl(A)F(A) eX, Corresponding to the same function cjl we 
A 

can also define an operator cjl(A) : G+ ~ G+ by 

[cjl(A)F](A) := cjl(A)F(A) 

Let c;l) be a set of Borel functions on JRIl. Suppose the set c;l) satisfies the next axiom. 

AXIOM 1. 

c;l) is a directed set of real valued Borel functions on m,1l and every element of c;l) is bounded on 

bounded Borel sets. The set c;l) has the following properties: 

AI. Each cjl e c;l) is nonnegative and the function 1.. ~ cjl(1..r1• 1.. e !l 'is bounded on bounded Borel 

sets. 

AIl. The sets !l. cjl e c;l), cover the whole JR 11 • i.e. JR 11 = U !l. 
+e" 

The set c;l) induces a new set c;l)+. 

DEFINITION 2. 

Let c;l) be a set which satisfies Axiom 1. Then c;l)+ will denote the set of all Borel functions f on lR n 

so that 
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i) I is a nonnegative Borel lunction and the map l. ~ I (l.r1• l. E I is bounded on bounded 

Borel sets. 

ii) \f~(I [sup I (A.) ~(A.) < 00] • 
?.e lR" 

LEMMA 3. 

The set (1)+ satisfies Axiom 1. 

Proof. See [EGKJ. Lemma 1.5. 

Now we can define two subspaces S <ll(A) and T (1(.4) of G +. Let /I) be a set which satisfies Axiom 1. 

DEFINITION 4. 

Let S(I(A):= u ~(A)·X. 
+<=(1 

[] 

The topology GinO. lor S(I(A) is the inductive limit topology generated by the Hilbert spaces ~A). X • 

~ E /I). 

DEFINITION 5. 

Let IE (1)+. Then S<II(A)cDf • The seminorm Sf on S(I(A) is defined by sf(w):=Hf(A)*wl. 

w E S4I(A)' 

THEOREM 6. 

The locally convex topology lor S(I(A) generated by the seminorms Sf' I E (1)+ is equivalent to the 

topology Gindlor S <ll(A)' 

Proof. See [EGK]. Theorem 1.8. IJ 

Remark: It follows that the topology Gind is Hausdorff. 

DEFINITION 7. 

Let T (1(.4) := {F E G+ : \f~(I [~(A)F E emb(X)]). 

The topology 'tproj is the locally convex topology generated by the seminorms t,. ~ E /I), defined by 

t.(F):= nemb-l(~(A)F)I, (F E T<II(A)' ~ E /I). 

There exists a characterisation of bounded sets in T (1(.4). 

THEOREM 8. 

Let B c T (1(.4) be a set. Then B is bounded in (T (I(A).'tproj) iff there exist I E (1)+ and a bounded set 

B 0 c X so that B I (A ) • B o. 

Proof. See [EGK], Theorem 2.4.11 

It follows that T (1(.4) = u I (A) • X . 
fe(l+ 

o 



-4-

DEFINITION 9. 

The topology 'tind for T (1(11.) is the inductive limit topology generated by the Hilbert spaces f (A). X. 

f E <t>+. 

Further a duality between the spaces S (1(11.) and T (I(A) can be introduced. 

DEFINITION 10. 

Define < , > : S(I(A) x T (I(A) ~ q; 

<cjJ(A) • x .F> = (x .emb-1(cjJ(A) F» (cp E <t>, x E E(t)(X), F E T (1(11.»' 

(See [EGK]. page 288.) 

Note: For all f E <t>+, W E S (I(A) and x E X holds: <w.f (A) • x> = if (A) * w.x). 

1HEOREM 11. 

<8(1(11.). T (1(11.» is a dual pair and the topology O'ind resp. 'tproj is compatible with the dual pair 

<8(1(A),T(I(A» resp. <T(I(A),S(I(A»' 

ft2Qf. See [EGK]. Theorem 3.1. [J 

2. The weak symm.etry condition 

Let <t> be a set which satisfies Axiom 1. In Chapter N of [EGK] the authors require the following 

strong symmetry condition on the set <t>. 

AN. "~E(I++ 3te(l 3c>o [C::; c q,1 • 

With this condition they prove several nice properties of the topological spaces (S (I(A)'O'md) and 

(T (I(A).'tproJ. They note that the operator C(A) cjJ(A r 1 x.(A) extends to a bounded operator on X. So the 

set <t> satisfies the following weak symmetry condition. 

AN'. "~E(I++ 3te(l 3c>o £X(M R& :~(A»c +(l.)} (A) = 0] . 

A careful reading of their proofs shows that they use only condition AN' to get the nice properties. 

The next theorem shows that the spaces S(I(A) and T (I(A) cannot have those nice properties without con

dition AN'. 

THEOREM 12. 

Let <t> be a set of Borel functions on R" which satisjies Axiom 1. The following conditions are 

equivalent. 

I. <t> has property AIY'. 

II. (T (I(A).'tproj) = (S (I+(A)'O'~ as topological vector spaces. 
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ill. (r ~),'tproj) = (T ~),tm.t> as topological vector spaces. 

IV. (r 4\(A).'tproj) is bomological. 

V. (T ~),'tproj) is barrelled. 

VI. (T (/I(A)' 'tproj) is quasibarrelled. 

VII. S 4\(A) is complete. 

Vill. S~} is sequentially complete. 

IX. S<II(A)= n D/. 
/e(/l+ 

X. S~) = S (/I++(A) as sets. 

XI. For every bounded set B e S~) there exist • E <1> and a bounded set Bo eX so that 

,(A)· 1Bo: Bo -+ B is a homeomorphism. 

:emm. 
I=> n. 

n=>ill. 

ill => I. 

Theorem 4.2.1 of [EGK]. 

Always (S (/I+(A ),O'in.t> = (T <II(A ),'tm.t> holds. 

Let t E <1>*. Define W : T (/ICA) -+ X by W(f (A).x) := (tf)(ft)x. f E <1>+, X EX. Let 

f E <1>+. Then IW(f(A)·x)U::; Htf)(A)nlxl =U(tf)(ft)lI/(A)'xn'(A}X for all 

x E ~(X). By definition Of'tind. the map W is continuous from (T ~),tm.t> into X. By 

assumption, the map W is continuous from (T <II(A},'tproJ into X, so there exist • E <1> and 

c > 0 such that II W(F)I::; t.<F) for all F E T <II(A). In particular. 

I (tXQ".)(A)x I = I W<xa".(A). x)l::; c I ('XQ".)(A)x I 

for all x E X and m E .z It. So X{le.lt- :tQ.»c t(A)}(A) = O. 

ill => IV => VI and ill => V => VI are trivial. 

VI => ill. 

I => VII. 

Always 'tpmj e'tind' Let 0 e T <II(A) be a 'tmd-neigbbourhood of O. Because 'tind is regular. 

there exist absolutely convex 'tmd-open 0 1 e T~) so that 0 E 0 1 C 0 1 e O. Assertion: 

0 1 is a bornivore in (T <II(A).1:proj). Let BeT <II(A) be a'tpmrbounded set. By Theorem 8 
there exist f E <1>+ and a bounded set B 0 e X so that B 0::: f (A) • B o. Let M > 0 be so 

that I x I ::; M for all x E B ()o Since 0 1 is 'tind-open, there exists e > 0 so, that for all 

x EX. Ixl <e holds f(A)·x E at. Then for all tEe, It I < eM-l we get 

t B e 0 1, This proves the assertion. Hence 0 1 is a bomivore barrel and by assumption a 

'tprorneighbourhood of O. So 'tind e 'tproj. 

See [EGK], Corollary 4.3.m. 

vn => vm. Trivial. 

Vill => IX. Always S<II(A) e n Df . Let FEn Df • For p E IV let 
Je<f>+ fE(/I+ 

Ap:= {AE JR.": IAI ::;p}, xp :=F(Ap) and Fp :=~(A).xp' Then Fp E S<II(A). 

Assertion: (Fp )pe If is a Cauchy sequence in S <II(A). Let f E <1>+ and e > O. There exists 

Ao E B,,(lR") so that for all A.A' E B,,(lR"). Ii::> /io. and A'::> Ao holds 
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If (A)F (A) - I (A)F (A')1 ~ £. Let Po e IV be SO that A"o ::> 40. Let P e IV, P 2. Po

For all AeB,,(IR"), A::>Ao we obtain n/(A)F(A)-/(A)F(Ap)U~e, so 

I/(A) * F - I(A) * Fp 1= R/(A) * F - I(A)F(A"H ~ e. So P H I(A) * Fp is a 
Cauchy sequence in X with limit I (A) * F and the assertion is proved (Theorem 6). Let 

Foe SiI>(A) be the limit of the sequence (Fp)peN' Let A e B,,(R"). Then b e tt>+ and 

F o(A) = XA(A) * Fo = lim b(A) * Fp = XA(A) * F = F(A). So F = Fo e SiI>(A)-
p-

IX => IV_Let W : T iI>(A) -?> q; be a linear map which is bounded on 'tproj-bounded sets. For all 

I e tt>+ the map x H W if (A) - x) from X into q; is bounded on bounded sets by 

Theorem 8, so this map is continuous. In particular: for every A e B,,(IR") there exists 

unique F(A) e X so that for all x e X holds (x,F(A» = W(XA(A)·x). Then F e G+. 

Assertion: F e 1\ D,. Let I e tt>+. There exists y e X so that for all X e X holds 
, •• + 

W(f(A) -x) = (x,y). Let x eX. Then lim (x ,I (A)F(A» = 
A 

= lim (f (A)b(A)x,F(A»::: lim W(XA(A) -I (A)XA(A)x) = lim W(f(A). XA(A)x) = 
== lim (XA(A)x,y) == (x,y). So weak lim I (A)F(A) :::: y. But also lim III (A)F(AH == 

A 4 

==lim sup IW(f(A)-XA(A)x)1 = sup IW(f(A)'x)1 =Hyl. Sostrong 
" IxlSt axlSt 

lim/(A)F(A) = y. Hence F e Df and y =/(A) * F. So F e 1\ Df = SiI>(A). Let 
,eil>+ 

H e T iI>(A). There are I e tt>+ and x e X so that H = I (A) • x. Then 

W(H) = (x,f(A)* F) = <F ,f(A) -x > = <F ,H>. By Theorem 11 it follows that W is 

continuous. 

IX <:;> X. By equivalence ofI and IX: SiI>(A) c S ..... (A) == 1\ D f = 1\ D f . 
/e...... ,.iZ>+ 

I => XI. See [EGKJ, Corollary 4.3.IV. 

XI => VIll. Let WI> W2. - - - be a Cauchy sequence in SiI>(A). Then (w" : n e IV) is bounded. so 

there exist • e tt> and a Cauchy sequence x loX 2. • •. iR X so that w" == t(A) • x" , 

n e IN. Let x := lim x". Then lim w" =t(A)·x inSiI>(A). ,,_ It_ [] 

Remark: It is trivial by now that property AN' is equivalent with (T iI>(A)''tproV is reflexive and also with 

(S iI>(A),O'ind) = (T i1>+(A)''tprov as topological vector spaces. If (T iI>(A),~ happens to be metrizable, then 

property AN' holds. 
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