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Introduction

In an interesting and stimulating series of papers [HI], [H2], [H3], Hopper
presents some special exact solutions of the shape evolution of a piece of vis
cous matter driven by surface tension on the free boundary.
Hopper's paper [HI] is of a conceptual nature and consists of two parts. In
his first part Hopper derives an evolution equation for the change of shape in
time: The unknown function in this evolution equation is a Riemann mapping
function from the unit disc onto the region occupied by the fluid at time t.
Hopper's evolution equation is a partial differential equation of a very special
nature, requiring 'compensation of analytic singularities'. In [HI) we find, what
might be called, a pseudo Lagrangian description of the piece of matter and
several other innovative concepts. However, a lot of important mathematical
and physical details are missing in [HI]. In my view e.g. the kinematical aspects
are completely neglected in [HI] (and also in [RJ).
Chapter I in my paper might well be called: 'Mathematical addenda to Hopper's
derivation of Hopper's equation'.
In the second part of [Hl] and also in [H2], [H3], Hopper finds solutions of his
equation which are of type nez, ~(t)). He makes a clever guess of a parametrized
set of analytic functions n(Zj ~), such that substitution of them in the evolution
equation leads to one ordinary differential equation for ~(t).

In Chapter 2 of this paper I study several mathematical aspects of Hopper's
equation. On the 'state space', which is a part of an ellipsoid in Hilbert space,
Hopper's evolution equation can be considered as an infinite system of ordinary
differential equations. For this system there are 3 'exhausting' series of finite
dimensional sub systems leading to solutions which are: 1. Complex polynomials
with real coefficients, 2. Complex polynomials with complex coefficients, 3.
Rational functions. Some local results on these finite dimensional sub systems
are presented.
For numerical solutions to the same problem which use Lorentz- Ladyzhenskaja
potentials I refer to work being done in Eindhoven [VMI], [VM2], [VM3].
I wish to thank Dr. H.K. Kuiken of Philips Research Laboratories for drawing
my attention to these interesting problems.
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1 A shape-evolution equation

1.1 Formulation of a Stokes problem with a free boundary

On a simply connected open domain Gt C JR2 with a smooth boundary aGt we
consider the system of Navier-Stokes equations for the unknown velocity field
l!(~, t) = (Vl(~, t), V2(~, t)), ~ = (x, y) and the unknown pressure p(~, t),

P ~~ =P ~~ + p(l!.V)l! =-Vp + 7]Al! + Pl }
(x, y) E Gt , t > 0 ,

V.l! = 0,

with the boundary condition

Tn = -1(V.n)n = -111:n on aGt •

Here T is the stress-tensor (= stress-matrix)

T=_PI+7][(~:)+(~:)T].
Further, n(~) and II:(~) are the outward normal and the curvature at points
~ E aG t .

The relevant physical constants are: The density p [ML -3], the viscosity
7] [1\1L -IT-l] and the surface tension 1 [MT-2].
Note that with this boundary condition the surface is supposed to behave like a
membrane.

Next we introduce dimensionless quantities. Put
1 _ 7]R -

v=-v ~=Ri. t=-t
- 7]- 1

JJ dO' = 7rR
2

•

G

Then the Navier-Stokes system becomes

Dv - _ R
2
p }S~ = -Vp+Av+- 9

dt - 1- -i. E Gt

V.,Y. = 0
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with
- R _ (O:;;i 0:;;;)
Tij =- Tij =-pOi; + 0- + -0- .

I :Cj :Ci

fYY R2p
If the Suratmannumber S = 2" gR and the Bondnumber B =-- are very

~ I
small, e.g. if R is very small, it suffices to solve Stokes' equations on Gt • (We
omit the tilde"")

Do:!!. = Vp }
in Gt

V.:!!. = 0

T!! = -Ie!! on oGt •

An equivalent formulation is

VT =o.nj =0 }

V.:!!. = 0

T!! = -Ie!!

in Gt

on aGI •

1.2 The general solution of Stokes' equations

In this section we want to describe the general solution of the Stokes system on
a fixed, simply connected open domain G C JR2

02Vl 02Vl op
o:c2+ oy2 = ox

OVl aV2 0
a:c + ay = .

Suppose that the pair (:!!.,p) solves this system on G and let T be stress tensor
obtained from this solution.
Then because of the simple connectedness of G there exists a 'streamfunction'
1/J and an 'Airy function' cP such that

:!!. =(Vl, V2) =(1/Jy ,-1/J3:)

) .
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The latter can be argued as follows: Since V .T =0 the stress tensor T must be
of the form

T = ( fy 9y ) •
- fll: -911:

The symmetry of T then requires - fll: = 9y which says V . (f, 9) = O. Hence
(f, 9) = (-¢Y' ¢II:) for some function ¢. Note that, if lL is given, the streamfunc
tion t/J is determined up to a constant C and the Airy function is determined up
to a linear function Ax + By + C1•

Taking the trace of T we find

P = !(¢II:II: + ¢yy) = !~¢ .

Combining this with the equation ~.!:1. = Vp we find the Stokes equations in
Cauchy-Riemann form

a aax (~~¢) - ay (~t/J) =0

:y (!~¢) + :x (~t/J) =0 .

So (!~¢) + i(~t/J) is an analytic function on G, therefore ~~¢ = 0 and
~~t/J = 0, so the functions ¢ and t/J are biharmonic.
Any biharmonic function ¢ on a simply connected domain G can be represented
as

¢ = 2Re(zil + 91) I z = X + iy

with il and 91 analytic on G. cr. [M], pp. 106-111.
Following the same reasoning we put

t/J =Im(zh + 92)

with hand 92 analytic on G.
From the Cauchy-Riemann representation of Stokes' equations it follows that
f1' = f~'· Consistency in the stress tensor requires 9? =9Q. SO there are constants
A,B,D,E E JR and C,F E C such that

il = h + Az + iBz +C, 91 = 92 + Dz + iEz + F .

Define

ep =h + Az, X =92 .

Then

t/J = Im(zep + X)

¢ = 2Re(zep + z(iBz + C) + X + (D + iE)z + F)

= 2Re(zep + X) + 2Re(zC + (D + iE)z + F) .

4



Omission of the second term leads to the same stress tensor. Summarizing: The
state of the system is described by the analytic functions cp and X and

! ¢ + i1/J = zcp + X •

Note that cp is uniquely determined by the state (ll, p) and that addition of a
complex constant to X leads to the same state. Conversely, any pair of analytic
functions cp and X leads to a solution of Stokes' equations.

1.3 Kinematic and Dynamic Quantities expressed in e.p and X

In a straightforward way the velocity field ll(~) = (VI(X,y),V2(X,y» and the
stress tensor field T(~) = [7ij(x, y)] can be expressed in the analytic potentials
cp and X. Write z = x + iy.

• VI + iV2 = 1/Jy - i1/J:s: = :y Im(zcp + X) - i :x Im(zcp + X)

=Im(-icp + izcp' + iX') - i Im(cp + zcp' + X')

= Re(-cp + zcp' + X') - i Im(cp + zcp' + X')

= -Re cp - i Im cp + zcp' +x'

• Tn +T22 = -2p = -Ll¢ = -2LlRe(zcp + X)

=-8 Re cp' = -4(cp' + cp')

• T22 - Tn + i2T12 = -¢:s::s: + ¢yy + 2i¢:s:y

82 82 82

= (-2 8x2 + 2 8y2 )Re(zcp + X) + 4i 8x8y Re(zcp + X)

82

= 4i 8x8y [i Im(zcp + X) + Re(zcp + X)] = -4(zcp" + X") .

Stress orthogonal to a given curve
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•

= !A~(-1m i + i Re i) + (2tPy ... lm z- ~ ...yRe z) +

+ i(~ ...y1m i + 21/1zy Re i)

=i{A Re(z<p + X)}i - 2{ a~~y (!~ + i1/l)}z

=2i{(<p' + <p'z) + (Z<pll + X")z}

d - -= 2i - (z<p' + <p + X') .
ds

Note that if we replace <p by <PI = <p + C + if3z with C E C, f3 E JR and keep
the same X than a rigid motion is added to the velocity field VI + iV2. However
this modification does not affect T and Tn.

1.4 A road to Hopper's equation

In continuum mechanics there are two conventional ways ofdescribing the motion
of matter. In the Lagrangian description each matter particle gets its own label,
X say, and one wants to find the position ~ of each particle X as a function of
time, i.e. one looks for the function ~ =F(X, t).
On the other hand, users of the Eulerian description are not so much interested
in the position of each particle. In the Eulerian description one wants to calculate
the velocity field

6



.Y.(~, t) = F(F-(~, t), t)

with
. a
F(~, t) = at F(~, t) .

In this paper we want to determine the evolution of the shape of a piece of
matter and the positions F(~, t) of the particular and the velocity fields .Y.(~, t)
are not so relevant.
Instead of the Lagrangian or Eulerian approach we use what we call the "Pseudo
Lagrangian picture": At each time t a fixed domain D in e-space is mapped by
a function ~ = nee I t) onto the actual configuration of the-piece of matter. The
function n is made 'more or less rigid' by requiring. extreme smoothness of it.
In our 2 dimensional case, following Hopper [HI], we require it to be analytic.

y

'Pse... do LOI'jl"iJ"),'''"

(00 "",U"'aies ' -----~....-

'i .

\Ve now gather some convenient kinematical expressions.
The trajectory of particle X in configuration space is

t ~ ~(t) = F(X,t) .

The trajectory of particle X in Pseudo-Lagrangian coordinates is

t t-+ {(X, t) = n-(F(X, t), t) .

Differentiating the identity
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il- (il({, t), t) = S.
according to t leads to

(DU-) (il(s., t))n(s., t) + (il-)e(il(s., t), t) == Q .

Here the dot· denotes partial differentiation to t. So

(o-)e(~,t) = _(DO)-l(O-(~,t))n(il-(~,t),t).

For the velocity field in configuration space we find

1L(~,t) = F(F-(~,t),t) .

Since

oec:;' t) = (Dil-)(F(X, t), t)F(X, t) + (o-)eCFCX, t), t)

we find for the velocity field in Pseudo-Lagrangian coordinates

~(i, t) = (Dn-)(il(i, t), t).!L(ilCi, t), t) + (o-)e(ilCi, t), t)

= (Dil)-l Ci, t)b!.(il(i, t), t) - nCi, t)] .

Our ultimate goal is to calculate

ilCe, t) for Iii = 1

which represents the shape of our piece of matter.
Now suppose that at time t the fluid occupies a domain Ot C JR2. Fix a point
in C t and choose x + iy coordinates such that this point becomes the origin.
Introduce a conformal mapping 0: D - C t , with z = O(e. t), , = { + iT!. D
is the unit disc in the complex' plane and 0(0, t) = O. Note that 0 is uniquely
determined if we require n'(O, t) > O. Suppose further that at time t the state
(1L,p) of the Stokes system is described by the complex analytic 'potentials' I{)

and x. If necessary we may add a uniform rotation velocity field to 1L(~, t) in
order to arrange that SO'(O) E JR. Cf. the remark at the end of section 1.3.

!l =e ,o«s)

At the boundary oCt of Ct, see picture, we have the boundary condition
Tn. = -Kn.. '
With the potentials I{) and X this becomes, in complex notation,
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d - - d .()
2i -(zcp' + cp + X') = i - esa

I ,
ds ds

which leads to

2(zcp' + cp + X') = eia(l) + Cl, at aCt.

The constant Cl can be made zero by addition of a suitable constant velocity
field to jL(~, t).
Then combination at aCt of the latter result with

VI + iV2 = (-cp + zcp' + X')

yields

2(Vl + iV2) = -4cp + eia(I), at aCt.

With the parametrization O(ei8 , t) for aCt this becomes
i8n,( i9 t)

( ( i9 » . ( (i9 ) ) ( (i9 » e u e ,2Vl 0 e , t , t + 2W2 0 e , t , t = -4cp 0 e , t , t + IO'(ei9, t)1 .

Rewrite

~ = (D.m- 1jL - (D.m-1g

in the complex (-plane

;(1' ) = vl(0«,t),t)+ iv2(0«,t),t) _ O«,t)
.. .. ,t O'«,t) O'«,t) .

At aD we have ( = ei9 , () E JR, and

Re e-i9(ei9 ,t) = 0 .

With ei9 =0" and <,0«, t) =cp(O«, t), t) we arrive at

2<,0(0", t) + 0(0", t) = 1 _ (0', t)
O"O'(O",t) O"O'(O",t) 210'(0",t)1 0"

'We now make the important observation that the two terms on the right hand
side are the respective real and imaginary parts of an analytic function .1'(10'«, t) I)
restricted to the boundary aD. This analytic function .1' is uniquely defined by

Re .1'(10'«, t)l) = 210'~(' t)I' (E aD

1m .1'(10'(0, t)l) =0 .

Summarizing, we find on D the relation

2<,0«, t) =(0'«, t) .1'(10'«, t)1) - 0«, t) .

'Ve now proceed to derive an evolution equation for 0 in which the unknown
complex analytic potentials cp and X play no role.
In 2(zcp' + cp + X') on G t substitute z =0«, t) and put x«, t) =X(O«, t), t),
<,0«, t) = cp(O«, t), t). At the boundary aD this leads to

9



( ;p, _ X') 0'0')0')
2 0 0' + II' + 0' = 10'(0')1' 0' E aD .

Suppress'" and substitute 211' = (0'.1" - nand its derivative. Then, at aD

-(0'0'(.1" - I~'I) + ~ (00') - 0(0'.1")' = 2X' .

After complex conjugation and writing ( = 0', 10'1 = 1,

0' 0' 0' .1" - 0(0'0'.1")' + ~(O 0') =2X' .

'8 d '8 d •
VVith 0' = el and dz = -ie-I dO thIs becomes

." d .,,- d-
ie-IV _(eh 00' .1") + -(00') = 2X' on aD .

dO dt

Hopper [HI], writes -Ii = _ie- i9 :8 for 'differentiation along the unit circle'.
Then

~ (00') - ddO' (0'00' .1"(10'1» =2X'

which is Hopper's evolution equation for the shape of a piece of viscous matter
driven by surface tension.

2 Some mathematical analysis on Hopper's
equation

2.1 Mathematical generalities on Hopper's evolution
equation

On the closed unit disk Dee we look for solutions 0(, t), ( E D, t ~ 0 of the
evolution equation

(H) d - d-
dt (0 0') - d( (0 0' .1"(IO'\) = -2x' = analytic on D .

Solutions 0 are required to be (at least) analytic on D and continuous on D.
Remind that, by definition,

- 1
O(,t) = 0(= ,t)

~

and also that .1"(10'1; () is analytic on D and uniquely defined by

(F)
{

Re .1"(IO'(,t)\) = 210,~(,t)l,

1m .1"(10'(0, t)l) =0

10
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The righthand side -2XI of the evolution equation is an unknown analytic func
tion. Therefore the question:
Does the cancellation of singularities inside D determine the shape evolution?

Note that if 0((, t) solves (H) then also eirp(f)O((, t), I{): JR -lo JR arbitrary, is a
solution. This type of nonuniqueness can be resolved by requiring 0 /(0, t) > O.

DEFINITION. (Set of states E C E)

E ={O}, with
00

• O(() = L n(n j D -lo C, analytic
n=l

00

· L nlan /
2 = 1, means: Area O(D) = 1r

n=l

• '1(, 1<1 ~ 1 O/() f. 0 .

o E 'f means: 0 is analytic on D, 0 is continuous on D and O/() f. 0 for 1(1 < 1.

Note that E is a part of an ellipsoid in the Hilbert space.

a~

t

Calculate

O/n = L kakal(k-l-l =
k~O, l~O

00 00

= L { L (i- m+ l)al al - m +1} em =
m=-oo l=max(O,m)

11



Note:
00

m ~ 1 => Um == 2: (i - m + 1)alal-m+l •

l=m

There are two matrix forms for this expression:

U1 ch 2a2 3aa 4a4
U2 a2 2aa 3a4
ua == aa 2a4
U4 a4

=

=

3aa 4a4
2a2 3aa
a1 2a2
o a1

1t J
Izl=1

In short 1! =N(g)Q = M(Q)g.
Note that ifn«,t) = 2::=1 an(t)(n satisfies (H) then

d 00 d
TI(z)n'(z)dz = -d 2: ilal(t)12 == -d U1(t) = 0 .

t l=1 t

Hence
00

1r L: ilal(t)2 = constant =1r ,

l=1

which means 'conservation of area'.

In the next theorem we gather some results on a Taylor series representation
of F(ln'l).

THEOREM.
• For all 0 E E the function

is analytic and single valued on an annulus i < 1(1 < R, R> 1.
• Define

00 00

F(IO'«,t)1) =ao+2 L: an(n =L: (3n(n
n=1 n=O

then F satisfies the conditions (F)

12



• {am} C 1R => {an} C 1R . o

We now calculate the second term in (H)

d
d «(O(~) O'«() F(IO'«()I) =
( (

d
d({(

00 00

I: umCm . I: (3n(n} =
m=-oo n=O

00 00 00 00

I: I: (n-m+1)(3n um(n-m = I: C-k+1)[I: (3n U n+k]Ck .
m=-oo n=O k=-oo n=O

The singular part is
00 00

I: (-k+1)[L: (3n U n+k](-k.
k=l n=O

Now the condition of cancellation of singularities leads to the following infinite
system of ordinary differential equations

a1 2a2 3a3 4a4 a1
0 a1 2a2 3as a2

d 0 0 a1 2a2 as =dt 0 0 0 al as

In short

o 0 0
o (30 (31
o 0 2(30
o 0 0

o
(32

2(31
3(30

3a3 4a4
2a2 3a3
a1 2az
o a1

d=dt {M(g)g} =-B(g)g}, g(O) =go .

Let there be given an initial condition g(O) =go and put !fo =M(~)go' Now if
from the infinite system of quadratic equations

13



M(Q)Q = 1! .

Q is locally solvable as a function of !f around !f = !fo then the initial value
problem is reduced to an initial value problem for the infinite system of quasi
linear differential equations

d
dt !f = -B(Q(!f»!f, !f(O) =!fo .

Not much can be said about the solvability of this dynamical system at this
moment. If every solution is a trajectory on the above mentioned ellipsoid in
Hilbert space then the shape would remain simply connected if the initial domain
is simply connected. Most probably such a deep result does not have a simple
proof.

W;1/ i't ope ..

ih "'o,.dl, ?

2.2 The real polynomial Hopper problem

If we substitute the Ansatz
N

O«(,t)='L: an(t)(n, nElN, an: [O,oo)-JR
n:l

in Hopper's equation (H) we find, e.g. for N =4, the following finite system of
ordinary differential equations

UD =- (
0 0 0

o ) (~),d f30 f31 f32
dt 0 ° 2f3o 2f31

0 0 ° 3f3o

in short !!Jt = -B(Q)1,! with

UD=(1
2a2 3aa 4a4

) U~)
al 2a2 3aa
0 al 2a2
0 0 al

14



=(:: ~~ 
a4 0 T) (~) 

in short 1! = M(g).{! = N(g)g and 

Denote g = (1,0,0, ... ,0) = w. 

The following properties are straightforward 

PROPERTIES of Pn, 1 ~ n ~ N 

1 
[Jo(g) > N' for all gEE • 

• [In (g) --i- 0 als g --i- f!!., 1 ~ n ~ N 

The derivative of 1!, e.g. is N = 4, is found to be 

("' 2a2 3a3 4a,) ("' 2a2 3a3 
4~ ) d1! = a2 2a3 3a4 o + 0 al 2a2 3a3 

dg a3 2a4 0 o 0 0 al 2a2 . 

a4 0 0 o 0 0 0 al 

So 

Applying the Inverse Function Theorem we find that g can be solved locally as 
a function of 1! in a neighbourhood of 1! = f!!.. 
Via the method of variation of constants we find for the components Uj, 

2 :5. j :5. N, 

(j-l) 
IUj(t)1 ~ Gje- n t. 

1 
So f!!. is a local attractor. Near f!!. there is exponential decay: Ii! - f!!.1 ~ Ce-'2 t

• 

15 



Note that there are special solutions g(t) with a1(t) ::f: 0, aN(t) ::f: 0 and
a2(t) =... =aN-1(t) =O. These are the typical solutions in Hopper's work.
He 'guesses' shapes with one parameter and then solves an ordinary differential
equation for this parameter as a function oft, cf. [HI], [H2], [H3].

EXAMPLE (Hopper 1990).
Try to solve Hopper's equation by the function

n«,t) = a(t)(- :~1 (N

with a(t) ~ b(t) > 0 and N E IN fixed.
Calculate

•

•

•

•

•

b2 abnn' = (a2+__)(-1 ,-(N+l) _ ab(-(N-1)
N+l N+l

if a > b then 112~b2 < !
• :F =ao +2CiN(N + 2a2N(2N + ... ,

2..

Cio(a, b) = 4~(a2+b2)-! J(1- a22:
b
b2 cosO)-!dO

o

• d - I • bh ab + ah .
dt (nn) = 2(aa + N + 1)(-1 + ( N + 1 )(-(N+l) + Taylorsenes

• d
d( [(nn'(ao + 2aN(N)] = abao(a, b)--.!!...- (-(N+l) .

N+l
The system of two ordinary differential equations

{

. bh
aa+-=O

N+l

iJ.b + ah = -abCio(a, b)N

16



can be written explicitely

(

ab2N
a= ao(a, b) (N + l)a2 _ b2

. a2bN(N + 1)
b=-ao(a, b) (N + l)a2 _ b2

This system is singular if a = b. At this point the decay of b is faster than
exponential. For small b there is exponential decay

1 1 JoI
b(t) ~ boe-'2 tN (e-'2';"1l" t) .

2.3 The Complex polynomial Hopper problem

If we substitute the Ansatz
N

O«(,t) =L: an(t)(n , NEIN, n: [O,oo)-+C
n=l

in Hopper's equation (H) we find, again, the finite system of ordinary differential
equations

d
dt!! =-B(g.)!! ,

but now with

2". N N 1

f3n(gJ =(2 - OnO) 4~ J{L: L: mfamatei(m-t)s }-'2 e-insds ,
o m=l t=l

and

!! =M(a)g =N(g)Q (8) .

Note that Ul =alal + 2a2a2 + .. , + NaNaN E JR. 80 in order to make quasi
linearization possible, at least locally, we require Ul E JR. Then (unlike Hopper
in [H1]) we find that the system (8) consists of 2n -1 real equations with (2n -1)
unknowns.

Now define

H: JR2n - l -+ JR2n - 1 : Q1--+ !! =M(Q)g

with al E JR, Ul E JR.
The real derivative DH of H at Q is, with complex notation and z =(Zl' ••• , ZN ),

Zl =Zl

17



[
~1 ~2 3~s 4a4] [Z1]+ a2 2as 3a4 0 Z2

as 2a4 0 0 %s'
a4 0 0 0 Z4

The real linear mapping DH(gJ is invertible at!! = f!!.. So also in the complex
case ~ turns out to be a local attractor. With the modifications mentioned in
this section, the complex polynomial Hopper problem can be attacked with the
same methods as the real polynomial Hopper problem in the preceding section.

2.4 The Rational Hopper Problem

The Hopper equation

~ (fin') - ~ (no'.r) =- 2x' = analytic on D

can be written

- 0" 0' -, ...,... 2X'
0[(1 + (n;-).r +(.1'" - O,l - (O.r - 0 == -0' =

Following Hopper we take the Ansatz
N

n =( I: An
n=l 1- Q'n(

N -:- N

?i =I: An +I: Anc¥n
n=l ( - Q'n) n=l ( - Q'n)2 .

After substitution in Hopper's equation and rearranging

(
N An) [ 0" , 0']; (_ an (1 + ( O').r + (.r - 0' +

analytic on D .

N - N..... N--

- [ ; ( ~:n)2] (.r -?; ( ~:n) - ~ (~n~:)2 == analytic on D .

Since 2nd order and 18t order poles have to compensate each other on D we find
the following two sets of ordinary differential equations

(

an = -.r(ln'(Q'n, t)1Q'n

An = _ [On n"(Q'n) an + O'(an)]
An O'(an) Q'n O'(an)
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Remind that, in this special case, :F is a function of ai, ... , aN, Ai, ... , AN.

So we have 2N complex, coupled, explicit ordinary differential equations which
are locally solvable.

EXAMPLE (Hopper 1989).

Exact solution of the problem of coalescence of 2 equal cylinders.
Take

1- v2 (
Z =O«(,v(t)) = 1 1 + v(2 .

(1 + v 2)2

The inverse of the 'parameter function' vet) is
1

t =!v J[k(l + k2)~ K(k)t l dk
II

with K an elliptic integral. See [HI].
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