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Preface

This report deals with double circulant codes.

Roughly speaking this report can be divided into two parts. In the chapters

1 and 2 we give, for the sake of completeness, a short introduction to coding

theory and a survey of known results on double circulant codes. In the next

two chapters we introduce and analyse new classes of double circulant codes.

Chapter 4 is the major part of this report.

In more detail this report deals with the following subjects.

Chapter 1: In this chapter a short introduction to coding theory is given,

double circulant codes are defined and the basic-principles of t-designs are

mentioned.

Chapter 2: A sununary of known double circulant codes is given in chapter 2.

For most of the results merely the references are given (cf. §2.1). Only two

classes of double circulant codes are treated in more detail.

In §2.2 possible double circulant representations of extended binary QR-codes

are discussed. The results of this section are taken from [10].

In §2.3 symmetry codes are treated. Besides the well-known results on theSe

codes which can be found in [1] or [12], also an extension of the well-known

theorem on the minimum weight of and a square root bound on the minimum weight

of these codes are given. This extension of the theorem on the minimum weight

is taken from [14] and the square root bound has been established by Robert

Calderbank (private communication).

Chapter 3: In chapter 3 a new class of double circulant codes is introduced,

namely those double circulant codes which are the binary images of extended

cyclic codes over GF(4). Up until now only the binary images of extended

quaternary QR-codes have been studied (cf. [1, Ch.16.§7], [16] and [17]).

In §3.2 a necessary and sufficient condition, in order that the binary image

of an extended quaternary cyclic code is a double circulant code, is derived

(cf. Theorem (3.2.9». This condition is a polynomial equation which has to

be satisfied. This polynomial equation is also analysed in §3.2.

In §3.3 some properties of these quaternary cyclic codes, such as a formula

for the idempotent, a formula for their generator polynomial and a square root

bound for their minimum weight, are discussed. These results have been found

by generalizing some of the results on quaternary QR-codes.

In §3.4 some properties of the corresponding binary double circulant codes,
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e.g. some theorems on the automorphisms and on the dual code, are treated.

The results on the automorphisms have been found by generalizing [1, Ch.16.

Problem(16)J.

In §3.5 a square root bound on the minimum weight of the binary images of

extended quaternary QR-codes is stated and compared with the results of [17J.

The square root bound is taken from [16J.

Using the computer the minimum weights of all [2(n+l), n+1J double circulant

codes which are the binary images of extended cyclic codes over GF(4) have

been determined up to n = 45. These results are reported in Appendix A and

discussed in §3.6.

Chapter 4: Inspired by the results of chapter 3, another class of double

circulant codes is defined in chapter 4, namely those double circulant codes

which are the ternary images of extended cyclic codes over GF(9). As far as

we know this class of codes is completely new.

The first part of chapter 4 is analogous to the corresponding part of chapter 3.

In §4.2 a necessary and sufficient condition, in order that the ternary image

of an extended cyclic code over GF(9) is a double circulant code, is derived

(cf. Theorem (4.2.7» and partially analysed. Unfortunately this condition is

much harder to handle than the corresponding condition in §3.2. The computer

had to be used to find the corresponding ternary double circulant codes.

In §4.3 some properties of these cyclic codes over GF(9), viz. a formula for

the idempotent and a square root bound on their minimum weight, are discussed.

Several results are proved generalizing the corresponding properties of QR­

codes over GF(9).

In §4.4 some theorems on the automorphisms and on the dual code of the

corresponding ternary images are treated.

In §4.5 the [2(n+l), n+1J double circulant codes which are the ternary images

of extended [n+l, ~(n+1)J QR-codes over GF(9), n a prime of the form

n = 12k ± 5, are thoroughly analysed. It will appear that, in case n is a

prime of the form n = 12k - 5, the properties of the [2(n+1), n+1J ternary

images are comparable with those of symmetry codes. For instance those codes

have a generator matrix of the form G = [ I I s J, where S is a Hadamard

matrix of the Paley-type (cf. Theorem (4.5.13». Furthermore a theorem on the

minimum weight of these codes, analogous to Theorem (2.3.5), is proved (cf.

Theorem (4.5.20». As a direct result of this theory we have found self-dual

ternary codes with parameters [16,8,6J, [40,20,12J and [64;32,18J. These. codes
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meet the bound on the minimum weight of ternary self-dual codes (cf. [1, Ch.19.

Th.l?]). The first two codes were already known (cf. [1, Ch.19.§6]), but as

far as we know the [64,32,18] code is new. Moreover this code is the largest

known (with respect to the wordlength) ternary self-dual code which meets the

above mentioned bound. These ternary code contains 3-designs which are in all

propability also new.

In §4.6 a square root bound on the minimum weight of the ternary images of

extended QR-codes over GF(9) is established. The proof of this bound is almost

the same as the proof in [16].

In §4.? the relation between [2(n+l), n+l] symmetry codes over GF(3) and the

[n+l, ~(n+l)] extended QR-codes over GF(9), n a prime of the form n = 12k + 5,

is discussed.

Using the computer the minimum weights of all [2(n+l), n+l] double circulant

codes which are the ternary images of extended cyclic codes over GF(9) have

been determined up to n = 35. These results are reported in Appendix B.

I wish to thank Prof.dr. J.H. van Lint and dr.ir. H.C.A. van Tilborg for their

helpful comments and ire R.M.A. Wieringa for his excellent advice on programming.

AMS Subject Classification: 94B05, 94B15.
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1. Introduction

In this chapter we shall treat in a short way the theory which we need in this

report.

1.1. Definitions

In this section we shall give a short introduction to coding theory. For an

extensive treatment we refer to [1] or [2].

Let R(n) be the n-dimensional vectorspace over GF(q). A~ C of length n over

GF(q) is a subset of R(n). The elements of C are called codewords. The set of

elements of GF(q) is called the alphabet of the code C.
(n) ]A k-dimensional linear subspace of R is called a linear code or en, k -code

over GF(q).

The Hamming-weight wH(~) of a vector ~€R(n) is the number of non-zero coordi­

nates of ~. The Hamming-distance d(~,~) of two vectors ~ and ~ in R(n) is

defined by d (~'~) : = wH(~ - ~). In words: d (~'~) is the number of coordinate

places in which ~ and ~ differ.

A code C is called e- error- correcting if

v V C ( x ;t v .. d(x,v) ~ 2e + 1 ] •
x€C ~€ - L. _L.

The minimum distance d of a code C is defined by

It is easy to see that in a linear code the minimum distance is equal to the

minimum weight among all non-zero codewords.

An en, k]-code with minimum distance d is also called an en, k, d]-code.
(n)

In the vectorspace R we define an innerproduct ( , ) in the usual way

(evaluated in GF(q».

If C is an en, k]-code, then the dual code C~ of C is defined by

v C [ (x,v) = a ] } .
~€ _ L.
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The code c~ is an En, n-kJ-code. The code C is called self-dual, if C = C~, We

remark that, if an [n,kJ-code is self-dual, then n has to be even and k = ~n.

A g,nerator matrix G of an [n, kJ-code C is a kxn-matrix, the rows of which

torm a basis of C. A parity-check matrix H of a linear code C is a generator
.L

matrix of the code C • Both G and H define the code C. The matrices G and H
T

satisfy GH = 0 (evaluated in GF(q».

Let C be an [n, kJ-code. If we add to every vector (c
O

,c
1

' ••• ,cn_
1

) of C an

extra letter c such that c + Co + ••• + C 1 = a, then we obtain a new code
00 00 n-

C which is called the extended code of C. The extra letter Coo is called an

overall parity-check.

The polynomial A(z) ,

A (z) : =
n i
l AiZ ,

i=O

is called the weight enumerator of a code C of length n, if Ai is equal to the

number of codewords of weight i in C.

A monomial matrix is a matrix with exactly one non-zero entry in each row and,
column. An automorphism of a linear code C of length n is an nxn monomial matrix

A over GF(q) such that A.£€C for all .£€C. The automorphisms of a code C form a

group, the automorphism group, denoted by Aut(C). Two codes C
1

and C2 both of

length n are called equivalent, if there is a monomial matrix which maps C
1

onto C2 "

An En, kJ-code Cover GF(q) is called cyclic, if

v( ) C [ (c l'cO'···'c 2)€C J •c
O

,c
1

, ••• ,c
n

_
1

€ n- n-

Let R be the ring of all polynomials in x over GF(q), i.e. R = GF(q)[xJ, and
nlet S be the ideal in R generated by x - 1. The polynomials of degree < n form

given by (a
O
,a

1
, ••. ,a

n
_

1
) ++ a(x) =

do not distinguish between codewords
n(mod (x -

a set of representatives for the residue class ring R mod S. This ring R mod S

(considered as an additive group) is isomorphic to R(n). The isomorphism is
n-la

O
+ a

1
x + .•. + a

n
_

1
x • From now on we

of length n and polynomials of degree < n
n

1». Obviously the polynomial xa(x) mod (x - 1) is associated with

the vector (an_1,aO,al, ••• ,an_2)' so that multiplication by x in the ring

R mod S corresponds to a cyclic shift. From this it follows that a linear code

C is cyclic iff C is an ideal in R mod S. Every ideal in R mod S is a principal

ideal, i.e. an ideal generated by a polynomial g(x) that divides x
n

- 1. We shall

call g(x) the generator(-polynomial) of the cyclic code C. Thus for all codewords
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C(X)EC there is a polynomial a(x)ER of degree ~ n .:. 1 such that c(xl = a(x)q(x).

Naturally this multiplication is performed in the ring R mod S•. The dimension

of the cyclic code C is equal to n - degree(g(x». For cyclic codes of length

n over GF(q) we make the r~striction gcd(n, q) = 1, so that x
n

- 1 has no

multiple zeros.

1.2. Double circulant codes

In this section we shall give the definition of double circulant codes and

explain why we are interested in this class of codes.

First of all we have to introduce circulant matrices.

(1.2.1) Definition: An nXn-matrix is called a circulant matix if each row is

obtained from the previous one by a cyclic shift over one position to the right.

Example

A =

It is well known that the algebra of nxn circulant matrices over the field GF(q)

is isomorphic to the algebra of polynomials in the ring GF(q) [x]/(xn - 1). The

isomorphism is defined by

A =
n-l.•• + a

n
_

1
x

(1.2.2)

(cf. [1, Ch.16, problem(7)]).

From this we may conclude:

(i) The sum and product of two circulant matrices is a circulant
n

matrix. In particular AB = C, where c(x) = a(x)b(x) mod (x - 1).

(ii)A is invertible iff a(x) is relatively prime to x
n

- 1. The
n

inverse, if it exists, is a, where a(x)b(x) • 1 mod (x - 1).
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T
(iii) A is a circulant matrix corresponding to the polynomial

aT(x) = aO + an_IX + ..• ~ a
1
xn- 1

Now we are able to define double circulant codes.

(1.2.3) Definition: A [2n, nJ-code over GF(q) is a double circulant code if it

has a generator matrix G of one of the following forms:

G = [I IAJn
or

"
a 0 . . . 0 c 1 . . . 1

b d

G =

b

I
n-1

d

H

-

(ii) The double circulant codes are particularly simple to encode.

I A J is the generator matrix of such a code and m(x) is a message,

Here 1k is the kxk identity matrix, A and H are circulant matrices and a,b,c

and d are elements of GF(q).

We remark that in our definition the dimension of a double circulant code must

be equal to half of the wordlength, i.e. k = ~n.Furthermore we demand that one

of the two circulant submatrices of the generator matrix G is equal to the

identity matrix.

There are several good reasons to study the class of double circulant codes.

(i) Several good codes of this type are known (cf. Chapter 2).

If G = [ I
n

then the corresponding codeword becomes (m(x) ; m(x)a(x». Here m(x) is a

polynomial of degree < n over GF(q). Of course this multiplication is performed

in the ring GF(q) [xJ/(xn - 1).

1. 3. t-Designs

(1.3.1) Definition: A t-design with parameters (V,k,A) (or a t-(V,k,A) design)

is a collection B of subsets (called blocks) of a set S of v points, such that

each block of B contains k points and any set of t points is contained in

exactly A members of B.
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In our definition repeated blocks are not allowed.

A 2-design is called a balanced incomplete block design.

In a t-design let Ai be the number of blocks containing a given set of i points,

with a < i ~ t, and let AO = b be the total number of blocks. For the parameters

Ai we have the well known relations (cf. [1, Ch.2.Th.9J)

(1.3.2) A. ( k-i )
J. t-i

= (V-i) A
t-i

a $ i ~ t.

From these relations it follows that Ai is independent of the i points original­

ly chosen. This implies that a t-(v,k,A) design is also an i-(v,k,Ai ) design for

1 ~ i ~ t.

It is not known whether there exist non-trivial t-designs with t ~ 6.

The reason, why we have given this introduction, is that many t-designs can be

constructed from codes. The following theorem, due to E.F. Assmus, Jr. and H.F.

Mattson, Jr. (cf. [3J) gives a sufficient condition for a code to contain t­

designs.

J.(1.3.3) Theorem: Let A be an en, kJ-code over GF(q) and let A be the en, n-kJ

dual code. Let the minimum weights of these codes be d and e. Let t be an integer

less than d. Let va be the largest integer satisfying va -
l va + q - 2 J

q - 1
< d

o

~ wo + q - 2 J <
and wo the largest integer satisfying wo - L e, where, if q = 2,

q - 1

we take Vo = Wo = n. Suppose the number of non-zero weights of AJ.., which are less

than or equal to n - t, is itself less than or equal to d - t. Then for each

weight V, with d S v ~ -v
O

' the subsets of S := {1,2, ..• ,n} which support

codewords of weight v in A form at-design. Futhermore, for each weight w, with

e $ w ~ min{n - t, wO}, the subsets of S which support cadewords of weight w

in A form at-design.

Here LxJ denotes the greatest integer less than or equal to x. A subset U of S

is called a support of a codeword c if U consists of the indices i for which

c
1

;l! O.

For the proof of this theorem we refer to [3J.



2. Examples of double circulant codes

2.1. Introduction

In this chapter we shall briefly discuss some classes of well-known double

circulant codes. We do not have at all the intention to give a complete survey

of all known results on double circulant codes. Most of the results we shall only

refer to, while other results will be treated more extensively. In §2.2 we shall

deal with possible double circulant representations of QR-codes, and in §2.3

we shall discuss symmetry codes. In this section an extension of the well-known

theorem on the minimum weight of symmetry codes will be given (cf. Theorem

(2.3.5».

For the results of an exhaustive computer search for the best possible double

circulant codes which have a generator matrix G of the form G = [ I I A J, up

to wordlength 42, we refer to [4J, [5J and [6J.

In [7J and [8J construction methods are discussed which make use of combina­

torial objects, namely difference sets and (v,k,A)-configurations.

In [9J Kasami has proved that there exist double circulant binary codes which

meet a bound slightly weaker than the Gilbert-Varshamov bound.

For a short survey on decoding methods we refer to [1, Ch.16.§9J.

2.2. Quadratic residue codes

In this section we shall introduce the class of quadratic residue codes (QR­

codes) and discuss some results on double circulant representations of QR-codes.

For an extensive treatment of QR-codes we refer [IJ and [2J. The results on the

double circulant representations of binary QR-codes are taken from [10J.

The quadratic residue codes over GF(q) can be defined in the following way.

Let n be an odd prime. An element r of GF(n)\{Ol is called a (quadratic) residue,

if there is an xEGF(n) such that x2 = r. The set of all residues will be denoted

by RO and the set of all nonresidues by R1•

We assume that q is a quadratic residue, i.e. qER
O

' Let a be a primitive n-th

root of unity in an extension field of GF(q). We define polynomials gO(x) and

gl (x) by

(2.1.1) go (x) :=
r

(x - a ) n r
(x - a ).
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nNote that x - 1 = (x - l)gO(x)gl (x). Since qERO' the sets RO and R1 are closed

under multiplication by q. From this it follows that go (x) and gl (x) both have

coefficients from GF(q).

(2.2.2) Definition: The cyclic codes of length n over GF(q) with generators

gO(x), (x - l)gO(x), gl (x) and (x - l)gl (x) are called quadratic residue codes

(QR-codes) •

(2.2.3) Remark: Let JER
1

• Then the transformation x ~ x
j

interchanges the codes

with generators gO(x) and gl (x). Hence these two codes are equivalent. In the

same way the codes with generators (x - l)gO(x) and (x - l)gl(x) are equivalent.

(2.2.4) Remark: In this report we shall only consider QR-codes generated by

gO(x). The dimension of these codes is equal to (n + 1)/2.

We number the coordinate places of the codewords in the extended QR-codes using

the coordinates of the projective line of order n, i.e. GF(n)u{=}. The position

of the overall parity check is =. We make the usual conventions about arithmetic
-1 -1

operations: 0 = =; = = 0; = + a = = for all a GF(n).

Before mentioning the Theorem of Gleason and Prange on the automorphism group of

QR-codes, we have to define PSL(2,n).

(2.2.5) Definition of PSL(2,n): Let n be a prime power, n = pro The set of all

permutations of the elements of the projective line of order n, GF(n)u{oo}, of the

form
ay + b

y~ ----
cy + d

Where a, b, c, dEGF(n) are such that ad - bc = 1, forms a group called the

projective special linear group PSL(2,n).

(2.2.6) Remark: A property of PSL(2,n) which we shall need several times is that

PSL(2,n) is doubly transitive (cf.[l, Ch.16.Th.9J).

(2.2.7) Theorem (Gleason and Prange): The automorphism group of an extended

QR-code over GF(q) of length n + 1 contains a subgroup isomorphic to PSL(2,n) .

o
For the proof of this theorem we refer to [2,Th.4.4.8].
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In this section we shall restrict ourselves to the case q = 2. Since 2 has to

be a residue mod n, we have to require that n = %1 mod 8 (cf. [1, Ch.16.Th.23J).

Double circulant representations of extended binary QR-codes

We shall now give the connection between double circulant codes and extended

binary QR-codes. To be able to do that we need another theorem which we shall

mention without proof (cf. [1, Ch.16.Lemma 14J).

(2.2.8) Theorem: For any prime n > 3, PSL(2,n) contains a permutation n

consisting of two cycles of length ~(n + 1).

In general let n consist of the cycles

o

(2.2.9)

We take any codeword £ from the extended QR-code and arrange the coordinates in

the order 11 ••• 1~(n+1)r1 ••• r~(n+l) given by (2.2.9). Then the codewords

2 ~(n-l)£, n£,n £, .•• , n c form a matrix

(2.2.10)

where Land R are ~(n+l)x~(n+l) circulant matrices. If we can find a codeword c

such that either L or R has full rank, we can obtain, by inverting it, a

generator matrix G for the extended QR-code of the form G = [ I I A J, where A

is a ~(n+l)x~(n+l) circulant matrix.

The problem associated with such a construction can be stated as follows (cf.

[1, Research problem (16.4)J).

(2.2.11) For any odd prime n of the form n = 8m ± 1, is it always possible

to find a codeword £ in the extended binary QR-code, generated by

gO(x), and a permutation n in PSL(2,n) of order ~(n + 1) such that

at least one side (L or R) of the corresponding double circulant

matrix [ L I R J is invertible.

In [10J this problem is partially solved. Besides some theorems, in [10J, also

the results of a computer search are reported. From this computer search
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the next theorem follows.

(2.2.12) Theorem: For any suitable prime n < 200, except for n = 89 and n = 167,

the e~tended binary QR-code, generated by gO(x), has a generator matrix G of the

form G = [ I I A ], Where A is a ~(n+l)x~(n+l) circulant matrix.

(2.2.13) Remark: The counterexamples n = 89 and n = 167 show that not every

extended QR-code has such a generator matrix.

For a second method to construct a possible double circulant representation for

the extended binary QR-code, but now with a generator matrix of the form

a b ••• b

c

G = I~(n+l )

c

A

Where A is a ~(n-l)x~(n-l) circulant matrix and a, b, C€GF(2) , we refer to

[llJ and [1, p.498-S00J.

2.3. Symmetry codes

The sYmmetry codes form another important class of double circulant codes. These

codes were originally defined by V.Pless and therefore they are also called

Pless-codes (cf. [12]). In this section we shall discuss some well-known

properties of the sYmmetry codes and we shall treat an extension of a well-known

theorem on minimum weights of symmetry codes (cf. Theorem(2.3.S».

(2.3.1) Definition: Let q be a power of an odd prime, q =-1 mod 6, and let Cq+1
be the (q+l)x(q+l)-matrix defined in the following way: The rows and columns of

this matrix are labelled using the coordinates of the projective line of order

q, GF(q)u{co}

co •• GF (q) ••

(2.3.2)

co

C = GF(q)q+l

0 1 . . . 1

£

· Q··
£
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where t = 1 if q = 4k + 1, e = -1 if q • 4k - 11 Q is a circulant matrix with

the following properties

o
if a - b is a square in GF(q),

if a - b is not a square in GF(q),

for all a, bEGF(q), a ~ b.

Then the Pless symmetry code sym2q+2 is the [2q+2, q+l]- code over GF(3) with

generator matrix G2q+2 = [ Iq+1 I Cq+1 ].

(2.3.3) Remark: The matrix Q is often called a Paley-matrix. This matrix

satisfies the equation (cf. [13, Lemma 14.1.2J) QQT = qI - J (over m). Here J is

as usual the matrix consisting entirely of ones. Hence C satisfies
q+1

C cT
q+l q+l = qI (over :R).

o

(,£,,£) :: 0 mod 3. This proves the second statement

self-dual.

(2.3.4) Theorem: A sym2q+2 is self-dual and hence all weights are divisible by 3.

Tif follows Cq+1Cq+1 = - I over GF(3), so that

Since the dimension of sym2q+2 is equal to half of

~: From Remark (2.3.3)
T

G2q+2G2q+2 = 0 over GF(3).

the,wordlength, sym2q+2 is

Let ,£Esym2q+2' Then wH(,£) ::

of the theorem.

In describing the weight of a codeword ~ in a symmetry code we shall denote by

wI (~), wr(~) respectively, the contribution to the weight of ~ due to the first

q + 1 coordinates respectively the last q + 1 coordinates.

We shall now give the extension of the theorem on the minimum weight of sym2q+2'

(2.3.5) Theorem: Let x be a codeword in the symmetry code sym2q+2' Then

(i) if wI (~) = 1 then w (x) = q
r-

(ii) if wI (~) = 2 then w (x) (q + 3)/2
r-

(iii) if wI (~) = 3 then w (x) O!: r3(q':' 3)/41r-
(iv) if wI (~) = 5 then w (x) :2: r(q - 9)/2 1r-
(v) if WI (~) = 7 then w (x) :2: r(q - 27)/41r-
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Here ryl is the smallest integer ~ y.

Proof

(i) By definition.

(li) Since multiplication of a column by -1 does not alter weights, we may
assume that x in (ii) is the sum of the following two rows of the generator

matrix

100

010

o 0 1 1

o x
l
O 1

1 1

1 -1

1

-1

a
T

= 1 or -1. Since G2q+2G2q+2 =

a - b = 0

a+b=q-1.

b

(q + 1) I over JR, we mw..

Hence wI(~) = 2 implies w (x) = (q + 3)/2.
r-

(iii), (iv), (v). In order to prove (iii), (iv) and (v) we need some new

notations.

Let ~l' ••• '3q+l be the q + 1 rowvectors of the generator matrix. Thus every

codeword x can be written as

q+l

x = L >'i54
i-I

over GF(3).

Here Ai €{-l, 0, I}. Let x be the same linear combination of the rowvectors

~1' ••• , .2q+l ' but now evaluated over JR, 1.e.
q+l

over JR.

The vector x can be written as x = (A 1 ,>'2' ••• ,Aq+l'~1'~2' ••• '~q+l).

for all 1 Sis q + 1, I~i I S wI (~). We define the vector l.I (~) by

II (_x) := (II II II).. "1'''2' ···'''q+l·

From Remark (2.3.3) it follows that for alliS i, j S q+l

(gi ,gj) = 0ij (q + 1), evaluated over lR,

Note that
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where

<5 •• =
~J

1 if i = j,

o otherwise.

Hence

(2.3.6) (!,,!,) = = (q + 1) wI (!,), over]R,

and for the corresponding ~(~) we have

(2.3.7)
q+1 2
I ~ i = q WI (!,) •

i-l

To indicate how many components of ~(!,) are equal to ±j, we introduce

Type(~(!,» in the following way. If a. components of ~(!,) are equal to ±j ,
J

o ~ j ~ q + 1, then we write

a a
Type(~(!,» = (±(q+1» q+l(±q) q

a a
(± 1) 1 (0) 0

...-a 1P ­1(±2)(2.3.8)

Let x be a codeword in sym2q+2 with wI (!,) = Pl and wr (!,) = P2. We assume that

Pl is odd. Then obviously the number of even components of the vector IJ(~) is

equal to Pl. Let Type(~(!,» be given by

a -1
Pl

Type (~(~» = (± (P
1
-1)

q+l-p -a -a ­135
(±1)

Since w (x)
r-

P2 ' the following equality holds

Hence

(2.3.9)

By (2.3.7) we have
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Hence

(2.3.10)

By combination of (2.3.9) and (2.3.10) we obtain

(2.3.11) q + 1 - Pl - P2 ~ (Pl - 1) (q + l)/S.

This inequality is trivially satisfied when Pl ~ 9. From (2.3.11) it now follows

that:

if wI (~) 3 then w (x) ~ r3(q - 3)/41,r-
if wI (~) = 5 then w (x) ~ I (q - 9) /2 1,r-
if WI (~) 7 then w (x) ~ r(q - 27)/41.r-

This proves (iii) , (iv) and (v) •
0

Remark: The proof of this theorem was originally given in [14J.

Without proof we mention the following theorem on the automorphism group of

sym2q+2 (cf. [1, Ch.16.Th.1SJ).

(2.3.12) Theorem: The automorphism group of sym2q+2 contains the following

monomial transformations:

If a codeword (L i R) is in sym2q+2'

(i) (R i -EL),

so are

where E = 1 if P = 4k + 1 and E

and

-1 if P = 4k - 1,

(ii) (T (L) i T (R» ,

where T is any element of PSL(2,q).

Hence Aut(sym2q+2) contains a subgroup isomorphic to PSL(2,q). o

(2.3.13) Corollary: Let wi and w
2

be integers. Then in a symmetry code:

(i) There is a codeword ~ with wl (~) = wi' wr (~) = w2 iff there is

a codeword 1.. with wl (1..) = w2 and wr (1..) = wi·



-14-

(ii) For all codewords x we have w (x) > O.
r-

(i) This follows from Theorem (2.3.12),

(ii) C is non-singular •
q+l o

Using Theorem (2.3.12), Robert Calderbank (private communication) has

established a square root bound on the minimum weight of symmetry codes.

(2.3.15) Theorem: Let d be the minimum weight of sym2q+2. Then

(i) (d - 1) 2 - (d - 1) + 1 ~ 2q + 1 ifq - -1 mod 12

and

(ii) (d - 1)2 ~ 2q - 1 ifq - 5 mod 12
0

We shall not prove this theorem. The proof of this theorem is completely

analogous to the proof of Theorem (4.6.11).

(2.3.14) Examples of symmetry codes

The first five symmetry codes have parameters [12,6,6J, [24,12,9J, [36,18,12J,

[48,24,15J, [60,30,18J (cf. [1, Ch.16.§8J).

The weight enumerators of these codes can be found in [15J. Applying the

Assmus-Mattson Theorem (cf. Theorem (1.3.3» yields the following 5-designs

(cf. [1, Ch. 16. §8 J) :

[ n, k, dJ designs from min.wt.words other weights giving 5-designs

[12, 6, 6J 5- (12, 6, 1) 9

[24,12, 9J 5-(24, 9, 6) 12, 15

[36,18,12J 5- (36, 12,45) 15, 18, 21

[48,24,15J 5- (48, 15,364) 18, 21, 24, 27

[60,30,18J 5-(60,18,1530) 21, 24, 27, 30, 33
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3. Extended cyclic codes over GF(4) and their binary images

3.1. Introduction

In [1, Ch.16.§7J the authors have defined a class of double circulant codes

which can be considered as the binary images of extended QR-codes over GF(4)

of length n + 1, where n is a prime of the form n = 8k + 3. In [16J a square

root bound on the minimum weight of these codes was established. In [17J the

class of double circulant codes which are the binary images of extended QR­

codes over GF(4) of length n + 1, where n is a prime of the form n = 8k - 3, is

also introduced. However all authors have restricted themselves to the

binary images of extended quaternary QR-codes (i.e. QR-codes over GF(4).

In order to place this class of codes within a bigger framework, we shall

introduce in this chapter a much larger class of double circulant codes, namely

those double circulant codes which are the binary images of extended cyclic

codes over GF(4) .

In §3.2 a necessary and sufficient condition in order that the binary image of

an extended cyclic code over GF(4) is a double circulant code will be derived

(cf. Theorem (3.2.9)). Furthermore it will appear that the double circulant

codes which have a generator matrix of the form G = [ I I A J, A a circulant

matrix, can not be the binary images of cyclic codes over GF(4) (cf. Theorem

(3.2.3)) .

In §3.3 we shall develop some theory on the quaternary cyclic codes over GF(4),

the extended codes of which have double circulant images, e.g. the

idempotent will be given and a square root bound on the minimum weight will be

established.

In §3.4 some theory on the binary images will be discussed, e.g. some theory on

the automorphisms and the dual code.

In §3.5 we shall discuss the known results on the binary images of the extended

quaternary QR-codes. The square root bound on their minimum weight, derived in

[16J, will be mentioned and compared with the results of [17J.

We have also determined, using the computer, the minimum weights of all

[2(n+l), n+1J double circulant codes which are the binary images of extended

cyclic codes over GF(4), up to n = 45. These results and also the weight

enumerators of these double circulant codes, up to n = 19, are reported in

Appendix A. These results will also be briefly discussed in §3.6
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3.2. General theory

3.2.1. A neSS8sary and sufficient condition

In this subsection we shall derive a necessary and sufficient condition for a

double circulant code to be the binary image of an extended cyclic code over

GF (4) •

Let 00 be a primitive element of GF(4), i.e. GF(4) consists of the elements 0, 1,
2

00, 00 = 00 + 1.

The mapping which sends vectors of the n-dimensional vectorspace over GF(4) into

vectors of the 2n-dimensional vectorspace over GF(2) is defined in the following

way.

(3.2.1) Definition: Let (a1+wb
1

, a
2

+wb2 , •.• , an+wb
n

) be a vector of length n

over GF(4), where a" b.E GF(2). Then the binary image of this vector is defined
~ ~

to be

..., b ) •
n

(3.2.2) Remark: The mapping, defined in this way, sends en, kJ-codes over GF(4),

in a one-to-one way, onto [2n, 2kJ binary codes.

Double circulant codes which have a generator matrix of the form G = [ I I A J

can not be the binary images of cyclic codes over GF(4), as stated in the

following theorem.

(3.2.3) Theorem: Let C be a [2n, nJ double circulant code with generator matrix

G = [I H J, where H is an nxn circulant matrix with toprow hex). Then the code

C can not be the binary image of a cyclic code V over GF(4).

Proof: Let C be the binary image of a cyclic code V of lenght n over GF(4). Then

1 + wh(x) has to be a codeword of V. Hence also (a(x) + wb(x» (1 + wh(x» € V,

where a(x) and b(x) are polynomials of degree < n over GF(2). Since

(a (x) + l.\lb (x) ) (1 + wh (x) ) a (x) + b (x) h (x) +

+ w(a(x)h(x) + b(x) + b(x)h(x»,

the binary image of this codeword is
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a(x)h(x) + b(x) + b(x)h(x».

This is an element of C. Hence the following equation must be satisfied

(a(x) + b(x)h(x»h(x) = a(x)h(x) + b(x) + b(x)h(x),

Le.
2

b(x)(h (x) + hex) +1) = O.

Since b(x) can be arbitrarily chosen, we may take b(x) = 1. This yields

2
h (x) + hex) + 1 = O.

Substituting x = 1 in this equation yields h 2 (1) + h(l) + 1 = O. This is

impossible, since h(1)EGF(2). Hence we have proved the theorem. 0

(3.2.4) Remark: In fact all the polynomial equations are congruence relations

mod (x
n

- 1). Thus substituting values of 'x in these 'equations "IDUSt' be 'done

carefully.

Since we want to consider cyclic codes over GF(4), the binary images of which are

double circulant codes, the only quaternary codes we have to study are the codes

generated by a polynomial g(x) of the form g(x) = 1 + wh(x). We repeat that a

cyclic code Dover GF(4), generated by g(x) = 1 + wh(x), is the principal ideal
n

in GF(4) [x]/(x - 1) generated by g(x). In this case we do not require g(x) to

be a factor of xn - 1.

In this report we use the following notation.

2 n-l(3.2.5) Notation: j(x) = 1 + x + x + ••• + x

(3.2.6) ~: Let C be the [2n, n+1J code over GF(2) with generator matrix

o . . . 0 1. • • 1

I H

where H is an nxn circulant matrix with toprow hex). If the polynomial hex)
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satisfies the equation

h
2

(x) + hex) + 1 j (x) ,

then the code C is the binary image of the quaternary cyclic code D generated

by g(x) = 1 + wh(x).

Proof: First of all we have to show that ooj(x)ED. This is true since

(h(x) + 00) (1 + wh(x» = oo(h2 (x) + hex) + 1) = ooj(x). Let

(a(x) + oob(x» (1 + wh(x» be any codeword of D. It suffices to show that the

binary image of this codeword is an element of C. The binary image is given by

(a (x) + b (x) h (x) a(x)h(x) + b(x) + b(x)h(x».

This is a codeword in C iff the following relation holds

(a(x) + b(x)h(x»h(x) + e:j(x) = a(x)h(x) + b(x) + b(x)h(x),

where e: is 0 or 1.

This is equivalent with

e:j(x) = b(x) (h
2

(x) + hex) + 1) = b(x)j(x).

Since b(x)j(x)

e: = b(1).

b(l)j(x), this equation is trivially satisfied by taking

o

(3.2.7) Remark: We have already remarked that all equations are in fact congruence

relations mod (xn - 1). Since xj(x) = j(x) mod (xn - 1), it is easily seen that

b (x) j (x) = b (1) j (x) mod (xn - 1), 1.e. b (x) j (x) = b (1) j (x) •

(3.2.8) Corollary: A sufficient condition for a cyclic code D of length n over

GF(4), generated by g(x) a 1 + ooh(x), to have dimension ~(n + 1) is

2h (x) + hex) + 1 = j(x).

Proof: By subst~tuting x = 1 we obtain j(l) = 1. Hence n must be odd. From

Lemma (3.2.6) it follows that the binary image of D has dimension n + 1, soD

has dimension ~(n + 1). o
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The code C,defined in Lemma (3.2.6),is not really a double circulant code, since

the dimension is n + 1 and the wordlength 2n. In our definition of double

circulant codes the dimension must be equal to half of the wordlength (cf.

Definition (1.2.3)). This problem can be met by looking at the binary ima~e C
of the extended code D. We extend the code D in the usual way. To every codeword

(cO,c1 ' ••• ,cn_
1

)ED we add an overall parity check c~ such that

c + Co + ••• + c 1 = O. Hence the codeword 1 + Wh(X)ED will be extended to
~ n-
(1 + wh(l), 1 + wh(x)). The binary image of this codeword is (1,1,0 ••• O~h(l),h(x)).

(3.2.9) Theorem: A necessary and sufficient condition for the binary image of the

extended code Dover GF(4) of wordlength n + 1 generated by g(x) = 1 + wh(x)

to be a [2(n+l), n+1J double circulant code Cis

2
h (x) + h(x) + 1 = j(x).

The generator matrix G of the code C is given by

0 o • . • 0 1 1 . . . 1

1 h(l)

G = I Hn

1 h(l)

Here H is the nxn circulant matrix with toprow h(x).

Proof: Analogous to the proofs of Theorem (3.2.3) and Lemma (3.2.6). 0

Hence for given nE~ we can determine all [2(n+1), n+1J double-circulant codes C

which are the binary images of extended cyclic quaternary codes D of length n + 1,

generated by g(x) = 1 + wh(x), provided that we know all solutions hex) of the

equation h2 (x) + h(x) + 1 = j(x).

23.2.2. Analysis of the equation h (x) + h(x) + 1 = j(x)

In this subsection we shall analyse the equation

(3.2.10) 2
h (x) + h(x) + 1 = j(x).
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Obviously this equation depends on n.

(3.2.11) Definition: We call an odd integer n feasible if the set S = {1,2, ••• ,n-1}

can be divided in two disjoint subsets S1 and S2 such that

(3.2.12) VaES 2a mod n E S2 ]

The meaning of this definition will be clarified by the following lemma.

(3.2.13) Lemma: For given nE m, n odd, there exists a solution hex) of {3.2.10)

iff n is feasible.

Proof: Let hex) + ... +
iR,

x be any solution of (3.2.10). Then

j(x) h2 (x) + hex) + 1

2iR,
+ ••• + x

iR,
+ ••• + x + 1) mod (xn - 1).

Obviously it follows that R, ~ ~(n- 1) if h(O) = 0 and R, ~ ~(n + 1) if h(O) 1.

Furthermore hex) + j(x) is also a solution of (3.2.10), since

(h(x) + j(x»2 + hex) + j(x) + 1 = h2 (x) + hex) + 1 = j(x).

L
r

= x ,
rES,

1.

0
1 + L xr i = 1,2, satisfy equation (3.2.10).

rES
i

respectively hex)

Hence it follows that R, ~ ~ (n • 1) if h (0) '"' 0 and R, ~ ~ (n + 1Y if h(O) =.1­
2Now we may conclude that the polynomials h (x) and hex) have no coefficients in

common, unless h(O) = 1. In this case h2 (x) and hex), have only the coefficient
o

of x in common. So we have proved the first part of the lemma.

Let n be feasible. Then obviously the polynomials h(x), ~fined:~ hex)

Because of this lemma, the only thing we have to do, in order to determine all

solutions hex) of (3.2.10), is to calculate all feasible values of n.

We shall prove some lemmas on the feasibility of n.

2i+1
(3.2.14) Lemma: Let nEE. Then n is feasible iff nand 2 - 1 are relatively

prime for all i E IN.
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Proof: By definition

n is not feasible ~ 3 3 [s = 22i+l s mod n ] •
i s<n

The later statement is equivalent with

3. 3 [n I s(22i+l - 1) ] •
]. s<n

Since s < n this is equivalent with

3. [ gcd(n, 22i+l - 1) ~ 1 ] •
]. D

(3.2.15) Corollary: Let n
i
€~, i = 1, 2. Then n

l
and n

2
both are feasible iff

n l n2 is feasible. D

(3.2.16) ~: Prime numbers p of the form p = 8k - 1 are not feasible.

Prime numbers p of the form p 8k ± 3 are feasible.

D

Proof: Let e be the multiplicative order of 2 mod p, i.e. 2e
E 1 mod p and for---

all 1 ~ i ~ e 2
i

t 1 mod p. Let g be a primitive element of GF(p) and let t be

chosen such that 2 = gt Then

p - 1
e =

gcd(p-l, t)

If P = 8k - 1, then 2 is a quadratic residue mod p, so that t is even and

e = (4k - 1)/gcd(4k-l, t/2) is odd. Because of Lemma (3.2.14) p = 8k - 1 is not

feasible.

If P 8k ± 3, then 2 is a nonresidue mod p. Hence t is odd and e is even, so

that p = 8k ± 3 is feasible.

(3.2.17) Remark: Prime numbers of the form p = 8k + 1 mayor may not be feasible.

This follows from the fact that p = 17 is feasible and p = 73 not.

The proof of Lemma (3.2.16) is adapted from [18, Th.37].

Using Lemma (3.2.16) and Corollary (3.2.15) the feasible values of n, n < 100,

can easily be calculated. These values are shown in Fig.3.1.
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3, 5, 9, 11, 13, 15, 17, 19, 25, 27, 29, 33, 37, 39, 41, 43, 45,

51,53,55,57,59,61,65,67,75,81,83,85,87,91,95,97,99

Fig.3.1. Feasible values of n, n ~ 100.

For some values of n, the sets 51 and 52' defined in (3.2.11), are uniquely

determined, up to mutually interchanging, namely for those values of n, for which

the order of 2 mod n is equal to n - 1. Obviously those values must be prime

numbers, because of the Theorem of Euler. The prime numbers n < 100 which have

2 as a primitive element are shown in Fig.3.2.

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83

Fig.3.2. Prime numbers < 100 which have

2 as a primitive element.

To illustrate the theory of this section we shall give two examples of double

circulant codes which are the binary images of extended cyclic codes over GF(4).

(3.2.18) Examples

(i) n = 3.

In this case 51 and 52 are particularly simple to determine, namely 51 = {1},

and 52 = {2}. Let hex) = 1 + x. Then the generator matrix of the [8, 4] double

circulant code is given by

o 000 1

1 100 0

111

110

G = 1 010 0 011

1001010 1

This double circulant code is equivalent to the extended [8,4,4] Hamming code

(cf. [1, p.508]).

(ii) n = 11.
r

In this case 51 = {1,4,5,9,3} and 52 = {2,8,10,7,6} • Let hex) = 1 + LX,
n:5

1
then the generator matrix of the [24, 12] double circulant code' is given by
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00 ••• 011 ••• 1

G

1

1

o

o

H

where H is the circulant matrix with toprow h(x).

This code is the [24,12,8J extended binary Golay code (cf. [1, p.S08J).

For a complete list of all [2(n+l), n+1J double circulant codes which are the

binary images of extended cyclic codes over GF(4), up to n = 45, we refer to

Appendix A.

For the rest of this chapter we shall need some special properties of the function

h(x) which are mentioned in the following lemma.

(3.2.19) Lemma: Let h(x) satisfy equation (3.2.10). Then

h 3 (x) = 1 + (1 + h (1) ) j (x) , h 4 (x) = h (x) •

2Proof: The polynomial h(x) satisfies h (x) + h(x) + 1

h(x) yields h 3 (x) + h2 (x) + h(x) = h(l)j(x), so that

1 + (1 + h (1) ) j (x) •

Once again multiplying by h(x) yields

h4 (x) = h (x) + h (1) (1 + h (1) ) j (x) = h (x) •

3.3. Some properties of the cyclic code Dover GF(4)

j(x). Multiplying by

o

In this section we shall show some properties of the cyclic code Dover GF(4)

generated by g(x) = 1 + wh(x), where h(x) satisfies the equation (3.2.10). The

wordlength of the code D is denoted by n.

3.3.1. The idempotent of D

First of all we have to introduce the idempotent of a cyclic code (cf. [2,

Th. (3.3.1) J).
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(3.3.1) Theorem: Let C be a cyclic code of length n over GF(q). Then there is a

unique polynomial F(X)E C, called the idempotent, with the following properties:

(1)

(ii)

(iii)

2
F (x) = F (x),

F(x) generates C,

"C(X)EC [ c(x)F(x) = c(x) ], i.e. F(x) is a unit for C.

Proof: (i) Let go(x) be the generator polynomial of C. Since gO(x) divides x
n

- 1,
nthere exists a unique polynomial ho(x) in GF(q)[x] such that go(X)ho(x) = x - 1.

On account of the restriction gcd(n,q) = 1, which we have made for cyclic codes
n

over GF(q), x - 1 has no multiple zeros. Hence gcd(go(x), hO(x» = 1. Therefore

there are polynomials p(x) and q(x) such that in GF(q) [x]

(3.3.2)

Set F(x) = p(x)go(x). Then from (3.3.2)

Hence in GF(q) [x]!(xn - 1) the following relations holds: F
2

(X) + a = F(x). So

we have proved (i).

(ii) Obviously F(x) is an element of the code generated by go (x) • Since
n

gcd(F(x), x - 1) = gcd(p(x)go(x), gO(x)ho(x» = gO(x), gO(x) is an element of

the code generated by F(x). This proves (ii).

(iii) By (ii) every codeword C(X)EC is a multiple of F(x). Let c 1 (x)
2c(x)F(x). Then c

1
(x)F(x) = c(x)F (x) = c(x)F(x) = c 1 (x). 0

The idempotent of the cyclic code Dover GF(4) can easily be expressed in terms

of the function hex).

(3.3.3) Theorem: Let hex) satisfies h2 (x) + hex) + 1 j(x). Then the idempotent

of the cyclic quaternary code D, generated by g(x) 1 + wh(x), is given by

and

if h(1) = a

Fa (x)
2 2

w h (x) + wh (x) if h(1) 1.
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~: (i) Let h(l) = O. Then F (x) = (j(x) + wh(x» (1 + wh(x», so that
e

Fe (x) E D. If h(l) = 1, then we find FO(X) = wh(x) (1 + wh(x», so that

F0 (x) ED.

(ii) F2 (x) 2
+ 1)

2 4 .
+ 1)= w(h (x) + w (h (x) =e 2 2w(h (x) + 1) + w (h (x) + 1) = F (x), if h (1) 0

e

2 w4h
4 (x) + w2h2 (x) = wh(x)

2 2
F0 (x) + w h (x) =

= FO(X)' if h(1) = 1 (by Lemma (3.2.19»

(iii) Let h(l) = O. Then by Lemma (3.2.19) it is easy to prove that

F (x)g(x) = {w
2

(h(x) + 1) + w(h2 (x) + 1)}(1 + wh(x» =
e

= 1 + wh(x) = g(x).

If h(l) = 1, then we find also that FO(X)g(x) = g(x).

By (i), (ii) and (iii) Fe(X), respectively FO(X) is the idempotent of D, when

h(l) = 0 respectively h(l) = 1.

Remark: We have found this theorem by generalizing the formula of the idempotent

of the quaternary QR-code (cf. [1, Ch.16.Th.4]).

3.3.2. The generator polynomial of D

We repeat that D is the cyclic code over GF(4) generated by g(x) = 1 + wh(x).
nHowever we have not demanded g(x) to be a factor of x - 1, so that g(x) is not

really a generator polynomial. For a subclass of the cyclic codes over GF(4)

generated by polynomials of the form 1 + wh(x) , where hex) satisfies
2

h (x) + hex) + 1 = j(x), we have been able to determine a generator polynomial
n

y(x) (i.e. a polynomial of lowest degree in the ideal of GF(4)[x]/(x - 1)

consisting of multiples of 1 + wh (x»). Unfortunately it will appear that this

subclass of codes contains only quaternary QR-codes.

Let n be feasible. We assume that the set S = {1,2, ••• ,n-l} can be divided

in two mutually disjoint subsets Sl and S2 satisfying (3.2.12) and

[ ab mod n E Sl ] ,



-26-

(3.3.4) [ ab mod n E S2 ]

[ ab mod n E S1 ]

(3.3.5) Theorem: Let n be a feasible prime. Let Sl and S2 satisfy (3.2.12) and

(3.3.4). Then the polynomial y(x),defined by

i
(x - a ) ,y(x):= IT

iES
1

is a generator polynomial of the cyclic code Dover GF(4) generated by g(x)

= 1 + wh(x). Here a is a suitable chosen n-th root of unity in an extension

field of GF(4); the polynomial hex) satisfies (3.2.10).

Proof: We restrict ourselves to the case h(l)

goes along the same lines.

0, since the proof in case h(l) = 1

Obviously 1 has to be an element of Sl' Let r be any element of Sl. Then

rj
a •

. r 2 r 2
Since Sl and S2 satisfy (3.3.4), we f~nd h(a ) = h(a). Hence also h (a ) = h (a).

s 2
Let s be any element of S2. Then in the same way we are led to h(a ) = h (a) and

2 s 4
h (a ) = h (a) = heal.

So we may conclude that for rEs
1

r
F (a )

e
2 r 2 r= w (h(a ) + 1) + w(h (a )

2 2
w (h(a) + 1) + w(h (a) +

+ 1) =

1) = F (a).
e

choose a such that F (a) = O.
e

= 0 for all r E Sl'

2
Since F (a) = F (a), F (a) is equal to 0 or 1. Let us

e e e
This can be done, as n is a prime. Then we find that F (a

r
)e

Let s E S2' Then

2 s 2 s 2 2w (h(a ) + 1) + w(h (a ) + 1) = w (h (a) + 1) + w(h(a) + 1) =

w2 (h(a) + 1) + w(h2 (a) + 1) + h 2 (a) + heal =

F (a) + j (a) + 1 = 1.
e

Furthermore
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2 2
00 (h (1) + 1) + 00 (h (1) + 1)

2
00 +00=1.

Hence we may conclude

for all i € 5.

IJ

Thus F (x) is an element of the code generated by y(x). The dimension of the
e

code D is equal to ~(n + 1), just as the dimension of the code generated by y(x).

As F (x) is the idempotent of D, we now have proved that y(x) is the generator
e

polynomial of D.

Unfortunately the set of feasible values of n which permit a partition of the

set 8 into the sets 51 and 82 , which satisfy (3.2.12) and (3.3.4),is limited, as

we shall see in the following lemma.

(3.3.6) Lemma: Let n be feasible. Then the set 8 = {1,2, ,n-1} can be divided

into two disjoint subsets 51 and 52' satisfying (3.2.12) and (3.3.4),iff n is a

prime of the form n = 8k ± 3, 51 is the set consisting of the quadratic residues

mod nand 52 is the set of all nonresidues.

Proof: Let 8 permit such a partition into the sets 51 and 52' Then

(i) Obviously n must be a prime. Otherwise let pin. Then 0 = (p.n/p)

is an element of 5
1

U5
2

• This is impossible.

-1
(ii) Let n = 8k + 1 be a feasible prime. Then in this case 2 and 2 are

2 -1
residues mod n • Let a € GF(n) be such that a = 2 • Then a X2a = 1 mod n. 5ince

a and 2a may not be elements of the same set 5
i

, 1 has to be an element of 52'

This contradicts 1 € 51'

(iii) 5ince prime numbers of the form n = 8k - 1 are not feasible, the

only remaining possibility is that n is a prime number of the form n = 8k ± 3.

In this case let a E 5. Then 2a2
= a X2a € 52' Hence a 2

€ 51' This implies that

51 has to contain all quadratic residues mod n. 5ince the cardinality of 51 is

equal to the cardinality of 52' 52 has to contain all nonresidues mod n.

Clearly if n = 8k ± 3 is a prime, ·then the set S1' consisting of all residues

mod n, and the set 82 , consisting of all nonresidues, satisfy (3.2.12) and

(3.3.4) • o
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(3.3.7) Corollary: Let n be a prime of the form n = 8k ± 3, Sl the set of all

residues mod nand h(x) the polynomial defined by h(x) L xr • Then the
rES

1
quat~rnary cyclic code generated by g(x) = 1 + wh(x), is a QR-code of length n

and dimension ~(n + 1).

Proof: This is a consequence of Lemma (3.3.6), Theorem (3.3.5) and the definition

of QR-codes.

3.3.3. A square root bound on the minimum weight of D

o

be the principal ideal in
2 2

+ wh (x). We note that h (x) is also a

Hence the binary image of the extended

In this subsection we shall establish a square root bound on the minimum weight

of the code D. We repeat that the code D is a pricipal ideal in GF(4) [x]/(xn - 1)

generated by g(x) = 1 + wh(x). Here h(x) is a solution of (3.2.10) and n denotes

the wordlength of D.

We define the cyclic code D* over GF(4) to

GF(4)[x]/(xn - 1) with generator g*(x) = 1
4

solution of (3.2.10), since h (x) = h(x).

code n* is also a double circulant code.

(3.3.8) Lemma: Let D and D* be the cyclic codes over GF(4) as defined above. Then

D n D* = < j(x) >,

nwhere < j(x) > is the ideal in GF(4)[x]/(x - 1) generated by j(x).

Proof: The binary images of the extended codes D and D* are denoted by C and C* •

Let H be the nxn circulant matrix with toprow h(x). Then H
2

is the circulant

matrix with toprow h2 (x). The generator matrices of C and C* are called G and G*

respectively, i.e.

G

o O ••• 0

1

I

1

1

h (1)

h (1)

1 • • • 1

H G*=

o O. • • 0

1

I

1

1

h (1)

h(1)

1 • 1

It suffices to show that
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c n C*

where a and 1 are vectors of length n + 1. Let (a , a(x)
00

Then

b (x) = a (x) h (x) + E: 1j (x) ,

since this codeword is an element of C. Furthermore

b , b (x» E C n C*.
00

b(x)
2

a(x)h (x) + E:
2
j(x),

since this codeword is an element of C*. Substituting x = lin these two

equations yields E:
1

E:
2

= a(l)h(l) + b(l). Hence it follows

a 2
a (x) (h (x) + h (x) ) a (x) (1 + j (x) ) •

Thus a(x) a (1) j (x) and b (x) b (1) j (x) • o

Using this lemma we can prove a square root bound for the minimum weight of the

code D.

(3.3.9) Theorem: Let c(x) be a codeword of D, c(l) ~ 0, and let d be the weight

of c (x). Then

(i) d
2

;::.: n,

(ii) d
2

- d + 1 ;::.: n, if hex) satisfies the extra condition

2 -1
h (x) = h (x ).

Proof: (i) Since c(x) E D, c(x) can be written as c(x) = (a(x) + wb(x» (1 + wh(x».
2 2 2 2 2 2

Thus, since hex ) = h (x), c(x ) = (a(x ) + wb(x » (1 + wh(x » E D*. Hence

2
c(x)c(x ) c D n D*.

As we have made the restriction c(l) ~ 0, we may conclude, by Lemma (3.3.8), that
2 2

c(x)c(x) cO(x)j(x), where Co E GF(4)\{O}. Obviously wH(c(x » = wH(c(x» = d.

Thus
2 2

d ~ wH(c(x)c(x » = n.

(ii) If the polynomial hex) satisfies the extra condition h
2

(x) = h(x-
1
),

then in the same way as in (i) it follows that c(x) E D implies that c(x- 1) E D*,

so that
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-1
c(x)c(x ) E D n D*.

-1
8ince c(l) ~ 0, there exists c

1
E GF(4)\{0} such that c(x)c(x )

Hence
-1

n = wH(c(x)c(x )) ~

o

(3.3.10) Remark: The set of feasible values of n, for which there exists a
2 -1

polynomial h(x), which satisfies (3.2.10) and the extra condition h (x) = h(x ),

consists of the values of n, which permit a partition of the set 8 = {1, 2, ... ,
n-l} into 8

1
and 8

2
, satisfying 8

2
= -8

1
and (3.2.12). This set of feasible

values contains in any case all prime numbers of the form n = 8k + 3. For, if

n = 8k + 3 is a prime, then -1 and 2 are nonresidues mod n. Hence the set 8
1

,

containing all residues mod n and the set 8
2

, consisting of all nonresidues mod n,

satisfy 8
2

-8
1

. The feasible values of n ~ 100, for which 8
1

and 8
2

satisfy

8 = -8 can easily be calculated by hand. These values are shown in Fig.3.3.
2 1

3, 9, 11, 19, 27, 33, 43, 51, 57, 59, 67, 81, 83, 91, 99

Fig. 3.3. Feasible values of n $ 100, for which 8
2

= -8
1

.

3.4.8ome properties of the double circulant codes C which are the binary images

of extended cyclic ocdes Dover GF(4)

3.4.1. Introduction

In this section let D be a cyclic code over GF(4) of length n generated by

g(x) = 1 + wh(x), where h(x) satisfies h
2

(x) + h(x) + 1 = j(x). The [2(n+l), n+1J

double circulant code which is the binary image of the extended code D is

denoted by C. Furthermore the nxn circulant matrix with toprow h(x) is denoted

by H.

In this section we shall derive some properties of the code C, e.g. some

properties of the automorphism group of C and some properties of the dual of C.

Let G be the generator matrix of C, i.e.

R, R,O ... R,
n-l

r r
O

r
n-l00 00

a a . . . a 1 1 . 1

1 h (1)

(3.4.1) G I H

1 h (1)
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In this introduction we shall prove an eas~ lemma on the codewords of C which

we shall need'several times in this chapter.

(3.4.2) Lemma: Let (a , a(x) ; b , b(x» be a codeword of C. Then
--- co co

a = a(1), b = b(1) and b(x) = a(x)h(x) + (b + a h(1»j(x).
co co 00 co·

Proof: Let (a
co

' a(x) ; b
co

' b(x» be in C. Then there exists a vector (w
co

' w(x»

of length n + 1 such that

i.e.

(w
co

' w(x»G (a , a(x)
co

b , b (x) ) ,
co

a w(1), a(x) = w(x), b = w + w(1)h(l), b(x) = w(x)h(x) + w j (x).
00 00 00 00

From these relations the lemma easily follows.

3.4.2. On the automorphism group of C

o

In this subsection we shall derive some properties of the automorphism group of

C. We have found these properties by generalizing some theorems on the

automorphism group of the binary images of extended quaternary QR-codes. (cf. [1,

Ch.16.Problem(16)]).

(3.4.3) Theorem: Let (a , a(x) ; b , b(x» be a codeword of C. Then also
co co

2 2(b , b(x ) ; a , a(x » is in C.
co co

Furthermore, if the extra condition h(x- 1) h(x2) is satisfied, then

-1
a , a(x » is also in C.

co

Proof: Let (a
oo

' a (x) b , b(x» e: C. Then by Lemma (3.4.2)
00

b(x2)
2 2 (b +ah(1»j(x2)(3.4.4) a (x )h (x ) + =

00 00

2 2 (b + a h (1) ) j (x) •a(x )h (x) +
00 00

From Lemma (3.4.2) it easily follows that
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2 2
a(x) = b(x )h(x) + (aoo + b ooh(1»j(x).

This is true, since by (3.4.4)

2
b(x )h(x) + (aoo + b

oo
h(l»j(x) =

2 3
• a(x )h (x) + (boo + a ooh(l»h(l)j(x) + (aoo + booh(l»j(x)

a(x
2

) +a(1)(1 +h(1»j(x) +a (h
2

(1) + l)j(x) =
00

2= a(x ).

The second assertion can be proved in the same way. o

(3.4.5) Corollary: Let (a
oo

' aa' ••• , a
n

_
1

(boo' b
a

, b~(n+l)' b
1

, b~(n+3)1 b
2

, ... , b ,b~ ) ;
n-1 (n-l

a
00' aO' aJ, (n+1) , a

1
,
a~(n+3) , ... , a

n-1' aJ,(n-1» E C.

Furthermore if the extra condition h(x-1) 2
is satisfied, then also= hex )

n-1
+ b 1X • Thenn-

+ b x 2 (n-l) mod (xn - 1)
n-1

234
= b a + bJ,(n+1)x + b 1x + bJ,(n+3)x + b 2x + ••• +

n-2 n-l
+ b n _ 1x + b~(n_1)x •

and

o

(3.4.6) Lemma: Let T be the permutation of the elements of the set {m, 0, 1, •••

,n-1} defined by: ~ = m; Ts = s + 1 mod n ,Os s S n - 1.

If (L ; R) is a codeword in C then also (T(L)

~: by observation.

T(R» is an element of C.

o
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In case C is the binary image of an extended quaternary QR-code of length n + 1,

where n is a prime of the form n = 8k ± 3, the code C has a large automorphism

group, as stated in the following theorem (cf. [1, Ch.16.Problem(16)J).

(3.4.7) Theorem: Let n be a prime of the form n = 8k ± 3. Let C be the [2(n+l), n+1J

double circulant code which is the binary image of an [n+l, l:2(n+l)J extended

quaternary QR-code. Then the automorphism group of C, Aut(C), contains PSL(2,n)

applied simultaneously to both sides of the codewords of C, i.e. for all

codewords ( L; R ) in C and for any element T in PSL(2,n), (T(L) ; T(R» is

an element of C.

Proof: By the Theorem of Gleason and Prange (cf. Theorem (2.2.7» the automorphism

group of the [n+l, ~(n+l)J extended quaternary QR-code contains a subgroup

isomorphic to PSL(2,n). Due to our choice of the mapping, which sends codewords

of the (n + l)-dimensional vectorspace over GF(4) into codewords of the 2(n + 1)­

dimensional vectorspace over GF(2) (cf. Definition (3.2.1», the theorem easily

follows.

3.4.3. The dual code of C

D

D

In this subsection we shall prove that the double circulant code C is equivalent

with its dual ~. To show this we need several lemmas.

(3.4.8) Lemma: Let (~ ; £) be a codeword in C. Here a and b are both vectors of

length n + 1. Then also (~+ £ ~) and (£ ~ + £) are elements of C.

Proof: Since (~ ; ~.> E C, it follows that ~ + w£ E D. Thus also W (~ + w£) E D
2 -and w (~+ w£) E D. The binary images of these two vectors are (£ a + £) and

respectively (~+ ~ ~). Hence the lemma is proved.

(3.4.9) Corollary: The [2(n+l), n+1J binary double circulant codes CO' C1 and C2
with generator matrices GO' G

1
and G

2
respectively, defined by

o 0 ••• 0 1

1 h (1)

I

1

H

-
1 o O ••• 0 1

1 h(1)+l

I

-
1 ••• 1

H+I

1 h (1) 1 h(1)+l
-
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a a . . . a 1 1 . . . 1

1 h (1)

G
2

I H
2

1 h (1)

are equivalent.

Proof: (i) By Lemma (3.4.8) the codes Co and C
1

are equivalent.
2

(ii) The codes C
1

and C
2

are the same, for H = H + I + J, so that adding

up the first row of G
1

to all other rows of G
1

yields the matrix G2 • 0

(3.4.10) Lemma: Let A be an nxn circulant matrix with toprow a(x),
n-1a(x) = aD + a

1
x + .•. + a

n
_

1
x . Furthermore let S be the nxn permutation matrix

defined by

1

S

1

Then SAS
T

A •

Proof: This lemma can be proved by straightforward calculation.

Now we are able to prove the following theorems.

o

(3.4.11) Theorem: The [2(n+1), n+lJ double circulant code C is equivalent with

its dual cf.

Proof: The generator matrix of C is given by (3.4.1). It can easily be verified

that the generator matrix G~ of the dual code C~ is given by

(3.4.12)
~

G =

a o. . . 0

I

1

1

h (1)

h (1)

1 • 1
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Because of Corollary (3.4.9) if suffices to prove that there exist permutation
.1

matices P and Q such that PG Q = G
2

, where G
2

is the matrix as defined in

Corollary (3.4.9). Let S be the nxn permutation matrix as defined in Lemma (3.4.10).

rurther~orelet P and Q be permutations matrices defined by

P

1 O. • • 0

o
S

o

Q =
P

o

o

P

where 0 is the (n+1)x(n+1) zero-matrix. Then by Lemma (3.4.10) it is straight­
.1

forward to check that P and Q satisfy PG Q = G2 • 0

2 -1
(3.4.13) Theorem: If the extra condition h (x) = h(x ) is satisfied, then the

[2(n+1), n+1J double circulant code C is self-dual.

Proof: The toprow of the matrix HT is given by

i.e.
h

T
(x)

T
h (x)

-1
h (x ).

h
n-1,

+ ••• + 1x

Thus if the extra condition h2 (x) = h(x-1) is satisfied, then H2 = H
T

,

(H2
)T = H. Hence the theorem follows from (3.4.12).

i.e.

o

For the extended cyclic code Dover GF(4) we can prove an analogous theorem.

(3.4.14) Theorem: Let D be the cyclic quaternary code of length n generated by
2

g(x) = 1 + wh(x), where h(x) satisfies both h (x) + h(x) + 1 = j(x) and
2 -1 -

h (x) = h(x ). Then the extended code Dis self-dual.

Proof: Obviously the rows of the matrix G;D defined by

1 + wh(1)

G=-= I + wH
D

1 + wh(1)

span the extended code D .



Since h 2 (x)

-36-

-1 2
h(x ), the matrix H satisfies H

T
H • Hence

T 2 T
~ = (1 + wh(l» J + (I + wH) (I + wH ) =

I + (1 + h(l»J + H3 + w(H + H2 + H3 + h(l)J) = 0

(cf. Lemma (3.2.19». Since D has dimension ~(n + 1), the theorem is proved.
o

3.5. A square root bound for the minimum weight of the binary images of extended

quaternary QR-codes

Let n be a prime of the form n = 8k ± 3 and let Q be the set consisting of all

quadratic residues mod n. The en, ~(n+1)J quaternary QR-code will be denoted by

E. We have already shown that this code E is also generated by g(x) = 1 + wh(x),
iwhere h(x) L x (cf. Corollary (3.3.7». The polynomial h(x) defined in this

iEQ

way satisfies h2 (x) + h(x) + 1 = j(x), so that the binary image of the extended

code E is a [2(n+1), n+1J double circulant code B.

In this section we shall mention without proof a square root bound on the

minimum weight of the double circulant code B (cf. [16J). Furthermore we shall

give a list of known examples of these double circulant codes and compare their

minimum distance with the lower bound which we can find using the square root

bound.

We have already shown that the code B has a large automorphism group. Using

theorems analogous to Theorem (3.4.3) and Theorem (3.4.7) on the automorphism

group of B, Calderbank has established a square root bound for the minimum weight

of the code B in case n is a prime of the form n = 8k + 3 (cf. [16J). Using his

paper we have proved, in the same way, a square root bound for the minimum weight

of the code B in case n is a prime of the form n = 8k - 3.

(3.5.1) Theorem: Let B be the [2(n+1), n+1J double circulant code which is the

binary image of the extended [n+1, ~(n+1)] quaternary QR-code. Here n is a prime

of the form n = 8k ± 3. Then the minimum weight d of the code B satisfies

(i) (d - 1)2 - (d - 1) + 1 ~ 2n + 1

(ii) (d - 1) 2 ~ 2n - 1

if n = 8k + 3 ,

if n = 8k - 3.
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3 and d = 4. o

For the proof of this theorem we refer to [16J. It is true that in [16J only

the first statement of this theorem is proved, but using the theorems of [16J

the second statement can analogously be proved. Further in §4.6 an analogous

theorem on the minimum weight of the ternary images of extended QR-codes over

GF(9) will be completely proved. The proof of that theorem is almost the same

as the proof of Theorem (3.5.1). Therefore we may also refer to §4.6.

(3.5.2) Remark: Theorem (3.5.1) answers [1, Research problem (16.7)J •

A lemma which we can use very well when we want to determine the minimum weight

of the [2(n+l), n+1J double circulant code B, in case n is a prime of the form

n = Bk + 3, is the following.

(3.5.3) Lemma: Let n be a prime of the form n = Bk + 3. Let BO be the [2(n+l), n+1J

double circulant code which is the binary image of the extended [n+l, ~(n+l)J

quaternary QR-code EO' Then

(i) BO is self-dual,

(ii) all weights of BO are divisible by 4.

~: (i) The code EO is generated by g(x) = 1 + wh(x) , where hex) = L
iEQ

ix

and Q is the set consisting of all residues mod n. Since n is a prime of the

form n = Bk + 3, both 2 and -1 are nonresidues mod n, so that h
2

(x) = h(x-
1
).

Hence by Theorem (3.4.13) B
O

is self-dual.

(ii) All weights of the rows of the generator matrix of BO are divisble

by 4. Hence all weights of BO are divisible by 4. For let £1 and £2 be two

codewords in BO which satisfy w
H

(c
1

) =w
H

(c
2

) E a mod 4. Without loss of

generality we may assume

1

1

p

1 1

1 a

q

1 a

o 1

r

a a

1 a

s

a

a

Then for the parameters p, q, and r we find the following relations:
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p + r o mod 4 and o mod 2.

2p + q + reO mod 4.

Since 2p e 0 mod 4, we find q + r • 0 mod 4. Thus w (c
1

+ c
2

) e 0 mod 4. So we
H - -

have proved that all weights of BO are divisible by 4 (by induction). 0

(3.5.4) Examples: From [17J we have taken a list of the minimum distances of the

[2(n+l), n+1J double circulant codes which are the binary images of extended

quaternary QR-codes, up to n = 59. Here n has to be a prime of the form n = 8k ± 3.

We shall compare these examples with the lower bounds which we have found using

Theorems (3.5.1) and (3.5.3).

n

3

5

11

13

19

29

37

43

53

59

minimum weight of the a lower bound on the

[2(n+l), n+1J code B minimum weight of B

4 4

4 4

8 8

8 6

8 8

12 10

12 10

16 12

~ 18 12

~ 16 16

From these examples it follows that the square root bound (3.5.1) in combination

with Theorem (3.5.3) yields a good lower bound on the minimum weight of the

[2(n+l), n+1.J double circulant codes B, certainly in case n is a prime of the

form n = 8k + 3.

3.6. Notes on chapter 3

Using the computer we have determined the minimum weights of all [2(n+1), n+1J

double circulant codes which are the binary images of extended quaternary cyclic

codes of length n + 1, up to n = 45. These results are shown in Appendix A. A

description of the computer program can be found in Appendix c.



-39-

From the theory, which we have derived in this chapter, and from the computer

results it follows that the binary images of the extended quaternary QR-codes

are the most interesting codes. These codes have a good minimum weight and a

large automorphism group. Furthermore they admit a square root bound for the

minimum weight (Theorem (3.5.1» comparable with the square root bound for the

minimum weight of QR-codes. In case n is a prime of the form n = 8k + 3, the

first four examples, which have parameters [8,4,4J, [24,12,8J, [40,20,8J and

respectively [88,44,16J, all have the greatest possible minimum distance for

self-dual codes over GF(2) with weights divisible by 4 (cf. Theorem of Mallows

and Sloane [1, Ch.19.Th.17J). Unfortunately the next example, the [120,60,16J ­

code (cf. Examples (3.5.4» does not have this property.

In [16J Calderbank has established in fact a square root bound on the minimum

weight of the binary images of extended generalized QR-codes (cf. [19J) over

GF(4) of length q + 1, where q is a prime power, q • 3 mod 8. In this way he has

also found a [56,28,12J binary self-dual code with weights divisible by 4. Also

this code has the greatest possible minimum distance. We did not discuss this

theorem in general, since in the case where q is not a prime the corresponding

matrix H is not really a circulant matrix. For the details we refer to [16J.

We have also applied the Assmus-Mattson Theorem (cf. Theorem (1.3.3» on the

computer results in order to find t-designs. The only t-designs, t ~ 2, which we

have found in this way, are the well known t-designs which are contained in the

[8,4,4J extended Hamming-code and the [24,12,8J binary Golay code.
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4. Extended cyclic codes over GF(9) and their ternary images

4.1. Introduction

In chapter 3 we have found double circulant codes by looking at the binary

images of extended cyclic codes over GF(4). It appeared that this class of codes

contains a class of good double circulant codes, namely the class consisting of

the binary images of extended quaternary QR-codes.

Inspired by the results of chapter 3 we have also analysed the class of double

circulant codes which are the ternary images of extended cyclic codes over

GF(9), hoping to find a class of good ternary double circulant codes. As far as

we know this class of double circulant codes which are the ternary images of

extended cyclic codes over GF(9) is completely new. It will appear that many

results of this chapter can be found by generalizing the theorems of chapter 3.

The first part of this chapter is almost the same as the corresponding part of

chapter 3.

In §4.2 a necessary and sufficient condition in order that the ternary images of

extended cyclic codes over GF(9) are double circulant codes will be derived (cf.

Theorem (4.2.7». Furthermorealso in this case it will appear that the double

circulant codes which have a generator matrix of the form G = [ I I A J~ A a

circulant matrix, can not be the ternary images of cyclic codes over GF(9).

In §4.3 we shall develop some theory on the cyclic codes over GF(9), e.g. the

idempotent will be given and a square root bound on the minimum weight will be

established.

In §4.4 some theory on the corresponding ternary images will be discussed, e.g.

some theorems on the automorphism group and the dual code will be proved.

In §4.5 it will be shown that the ternary images of extended QR-codes over GF(9)

of length n + 1 are double circulant codes, provided that n is a prime of the

form n = 12k ± 5. The subclass consisting of the ternary images of QR-codes will

be analysed very thoroughly. In §4.5 it will appear that these [2(n+1), n+1]

ternary double circulant codes, in case n is a prime of the form n = 12k - 5,

have a generator matrix G = L I I S J, where S is a Hadamrd matrix of the Paley

type. For these codes a theorem on the minimum weight, analogous to Theorem (2.3.5)

will be proved (cf. Theorem (4.5.20». As a direct result we have found ternary

self-dual codes, with parameters [16,8,6J, [40,20,12J, and [64,32,18J, which meet

the bound on the minimum weight of self-dual codes (cf.[1,Ch.19.Th.17J). Applying

the Assmus-Mattson Theorem on these codes we have found 3-designs which are also
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discussed in §4.5. The codes with parameters [16,8,6J and [40,20,12J were already

known (cf. [1, Ch.19.§6J). The [64,32,18J code is in all propability new. As far

as we know this code is the largest known (with respect to the wordlength) ternary

self-dual code which meets the above mentioned bound. The designs which are

contained in this code are propably also new.

In §4.6 a square root bound on the minimum weight of the ternary images of

extended QR-codes over GF(9) is established.

In §4.7 the relation between symmetry codes and the ternary images of extended

QR-codes over GF(9) will be described.

Using the computer the minimum weights of all [2(n+1), n+1J double circulant codes

which are the ternary images of extended cyclic codes over GF(9), have been

calculated, up to n = 35. These results are reported in Appendix B.

4.2. General theory

4.2.1. A necessary and sufficient condition

In this subsection we shall derive, analogously to §3.2.1,a necessary and

sufficient condition for a double circulant code to be the ternary image of an

extended cyclic code over GF(9).

First of all we have to construct GF(9). It is easily seen that the polynomial

p(x), defined by

(4.2.1) 2p (x) : = x + x + 2,

is a primitive polynomial over GF(3). Let a be a primitive element of GF(9) which

is a zero of p(x). Then every element of GF(9) can be uniquely written as a power

of a. In Fig. 4.1 the elements of GF(9) are shown.

Any vector of the n-dimensional vectorspace over GF(9) can be uniquely represen-

ab2 , ••• , a + ab ), where ai' b. E GF(3).
n n ~

(4.2.2) Definition: Let (a1 + ab1, a 2 + ab2, ••• , an + abn) be a vector of length

n over GF(9), where ai' b
i

E GF(3). Then the ternary image of this vector is

defined to be



-42-

as a 2-tuple as a polynomial as a power ()f a.

00 0 0

10 1 1

01 a. a

12 1 + 2a 2a

22 2 + 2a 3a

20 2
4

a

02 2a 5a

21 2 + 6
a a

11 1 + 7a a

Fig.4.1. GF(9).

(4.2.3) Remark: The mapping defined in this way sends en, kJ -codes over GF(9) ,

in a one-to-one way, onto [2n, 2kJ ternary codes.

(4.2.4) Remark: The elements of GF(3) will be taken from either {-1, 0, 1} or

{O, 1, 2}, depending on which form is more convenient at that moment.

Double circulant codes which have a generator matrix of the form G = [ I I A J

can not be the ternary images of cyclic codes over GF(9), as we shall show in

the next theorem.

(4.2.5) Theorem: Let C be a [2n, nJ double circulant code over GF(3) with

generator matrix G = [ I I H J, where H is an nxn circulant matrix with toprow

hex). Then C can not be the ternary image of a cyclic code V over GF(9).

Proof: If G is the generator of the ternary image of the code V, then 1 + ah(x)

has to be an element of V. Hence also (a(x) + a) (1 + ah(x» E V, where a(x) is

a polynomial of degree ~ n - 1 in GF(3)[xJ. The ternary image of this codeword is

(a (x) + h (x) a (x) h (x) + 1 + 2h (x) ) •

This word has to be an element of the code generated by G, i.e.

(a(x) + h(x»h(x) = a(x)h(x) + 1 + 2h(x).

This is equivalent with
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h2
(X) + hex) + 2 = o.

Substituting x = 1 in this equation yields h
2

(1) + h(l) + 2 a

is impoSsible, since h(l) E GF(3).

o mod 3. This

IJ

Since we want to consider cyclic codes over GF(9), the ternary images of which

are double circulant codes, the only cyclic codes over GF(9), we have to study,

are the codes generated by a polynomial g(x) of the form g(x) = 1 + ah(x). Just
n

as in chapter 3 we do not require g(x) to be a factor of x - 1.

(4.2.6) Lemma: Let C be the [2n, n+1J ternary code with generator matrix

o • . . 0 1. • • 1

I H

where H is an nxn circulant matrix with toprow hex). If the polynomial hex)

satisfies the equation

h 2 (x) + hex) + 2 = €j(x),

where € may be taken to be 1 or -1, then the code C is the ternary image of the

cyclic code of length n over GF(9) generated by g(x) = 1 + ah(x).

Proof: Analogous to the proof of Lemma (3.2.6). D

Just as in the binary case the code generated by GO' defined in Lemma (4.2.6), is

not really a double circulant code, since the dimension is not equal to half of

the wordlength. To meet this problem, we consider also in this case the extended

cyclic code Dover GF(9) generated by g(x) = 1 + ah(x). We extend the code D in

the usual way, i.e. to every codeword (cO' c
1

, ••• , c
n

_
1

)ED we add an overall

parity check c~, say in front, c~ E GF(9), such that c~ + Co + + cn_1 = o.

(4.2.7) Theorem: A necessary and sufficient condition for the ternary image of

the extended cyclic code Dover GF(9) of wordlength n + 1 generated by

g(x) = 1 + ah(x), to be a [2(n+l), n+1J double circulant code C is that hex)

satisfies one of the following two equations
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2

(x) + hex) + 2

(ii) h
2

(x) + hex) + 2
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j (x) ,

-j (x) •

The generator matrix G of the code C is given by

G

o O. • • 0

2

I

2

2h (1)

2h (1)

1 • • • 1

H

Here H is the nxn circulant matrix with toprow hex) and E

Proof: Analogous to the proof of Theorem (3.2.9).

-n mod 3.

D

(4.2.8) Remark: By "h(x) satisfies h2 (x) + hex) + 2 = ±j(x)" we shall mean that

hex) satisfies either h2 (x) + hex) + 2 = j(x) or h
2

(x) + hex) + 2 = ~j(x).

From Theorem (4.2.7) it follows that for given n E IN we can determine all

[2(n+l), n+1J double circulant codes C which are the ternary images of extended

cyclic codes over GF(9) of length n + 1 generated by polynomials of the form

g(x) = 1 + ah(x), if we know all solutions of the equation h 2 (x) + hex) + 2 =
= ±j(x).

4.2.2. Analysis of the equation h 2 (x) + hex) + 2 ±j (x)

In this subsection we shall consider the equation

(4.2.9)

where E

2
h (x) + hex) + 2 = Ej(X),

1 or -1, in more detail.

(4.2.10) Definition: We call nE IN feasible, if there exists a solution hex) of

equation (4.2.9).

(4. 2 • 11) Lemma: Let n E IN. Then

(i) n is not feasible, if n a 0 mod 2 or n 5 0 mod 3,
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(ii) n is feasible , if n is a prime of the form n = 12k ± 5.

~: (i) Let n be even, then -1 is a zero of the polynomials x
n

- 1 and j(x).

Therefore substituting x =-1 in (4.2.9) yields h
2

(_1) + h(-l) + 2 _ 0 mod J. This

is impossible, since h(-l) E GF(3).

In case n = 0 mod 3 substituting x = 1 leads to a contradiction.

(ii) The second assertion of this lemma will be proved in §4.5. o

In general,equation (4.2.9) is much harder to analyse than the corresponding

equation (3.2.10) for the polynomial hex) in the binary case. This difficulty is

caused by the fact that squaring in the ring GF(3)[x] is much more difficult than

squaring in the ring GF(2)[x]. To partially obviate this difficulty, we multiply

(4.2.9) by hex) + 2, yielding

(4.2.12) 3
h (x) + hex) + 1 = dh(l) + 2)j(x).

This equation is much easier to solve than (4.2.9). First of all we remark that

if hex) satisfies (4.2.12), then the polynomials hi (x) and h
2

(x), defined by

hi (x) = hex) +j(x), and h2 (x) = hex) + 2j(x), satisfy

3
hi (x) + h

1
(x) + 1 = (dh(1) + 2) + 2)j (x) ,

Therefore we may assume, without loss of generality, that the polynomial hex) is

a solution of

(4.2.13) h
3

(x) + hex) + 1 = j(x).

For the sake of convenience we introduce the following notation: S = {1, 2,

n-l} and A and B are mutually disjoint subsets of S. Let hex), defined by

... ,

(4.2.14) hex) = L
iEA

i
x + 2 L

jEB

be a solution of (4.2.13). Substituting hex) in this equation yields

n-l

l
iEA

3ix + 2 l
jEB

3jx + l
iEA

ix + 2 l
jEB

+ 1 = l
i=O

ix
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It is easily verified, by comparing the coefficients of the same powers of x,

that the following conditions on the sets A and B must hold:

B = 3B,

A, 3A and B form a partition of the set s\{ol.

Here 3A = {3a mod n I a E A l.
If the sets A and B satisfy these conditions, then the function hex), defined by

(4.2.14), is a solution of equation (4.2.13). The only thing we have further to do

is to check whether the polynomial hex) also satisfies (4.2.9).

Using this analysis, we have made a computer program in order to determine for a

given value of n all solutions of (4.2.13) and further to check whether these

polynomials also satisfy (4.2.9).

The feasible values of n, n S 100, which we have found in this way, are shown in

Fig.4.2. We do not know whether n = 91 is feasible or not. We have let the

computer run for 300 seconds, but we did not find any solution.

5, 7, 17, 19, 25, 29, 31, 35, 37, 41, 49, 53, 61, 67,

73, 79, 85, 89, 91? 95, 97

Fig.4.2. Feasible values of n, n S 100

In §4.5 we shall return to equation (4.2.9) by giving solutions of this equation

in case n is a prime of the form n = 12k ± 5.

4.3. Some properties of the cyclic code Dover GF(9)

In this section we shall establish, just as in §4.3, some properties of the cyclic

code Dover GF(9) generated by g(x) = 1 + ah(x), where hex) satisfies

h
2

(x) + hex) + 2 = ±j(x).

4.3.1. The idempotent of D

The idempotent of the cyclic code Dover GF(9) can easily be expressed in terms of

the polynomial h(x).

(4.3.1) Theorem: Let hex) satisfy h2 (x) + hex) + 2 = ±j(x). Then the idempotent

F(x) of the cyclic code Dover GF(9) generated by g(x) = 1 + ah(x), is given by
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5 7 3
1 + a hex) + a h (x)

5 7 31 + 2j(1)j(x) + a hex) + a h (x)

if h (1) = 0,

if h(1) = 1,

3 3a h (x) + ah (x) if h (1) = 2.

~: We shall prove this theorem only for the case h (1) = 1. The other two

cases can be settled in the same way.

Let h(l) = 1. Then the funcion hex) satisfies

2
h (x) + h (x) + 2 = j (1) j (x) •

Multiplying by hex) + 2 yields

3
h (x) + hex) + 1 = o.

From these equations it easily follows

h
5

(X) + hex)

= 2 j (1 ) j (x) ,

2j(1)j(x),

h6 (x) + 2h (x) + 1 = j (1) j (x) •

Using these properties and Fig.4.1 we find, if we define

F (x) 1 + 2j (1) j (x) 5 7 3
:= + a h (x) + a h (x) =

1
7 7 5 + 2j (1) j (x)+ 2a + (2a + a )h (x) =

5 6
+ 2j (1) j (x)= a + a h (x)

that indeed

(i) F
2

(x)
5 6 ., 2

{a + a hex) + 2J(1)J(x)} =

2 4 7
a + a {2h(x) + 1 + j(1)j(x)} + j(l)j(x) + a hex) +

5. 6 5 6+ a j (1) J (x) + a j (1) j (x) = a + a h (x) + 2j (1) j (x) = F (x) •
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(ii) F (x) (1 + ah (x» = {as + a6h (x) + 2j (1) j (x) }{ 1 + ah (x)} =

+ j (1) j (x)} + 2aj (1) j (x) 1 + ah(x).

(iii) F(x) = (a7j(1)j(x) + 4
a h (x) ) (1 + ah (x) ), so that F (x) E D.

From (i), (ii) and (iii) it follows that F(x) is the idempotent of the code D.

o
(4.3.2) Remark: We have found this theorem, just as Theorem (3.3.3), by

generalization of the formula for the idempotent of the QR-code over GF(9)r.(cf.

[1, Ch.16.Th.4] and §4.S).

4.3.2. A square root bound on the minimum weight of D

In this subsection we shall establish, just as in §3.3, a square root bound for

the minimum weight of the code D. For this purpose we introduce the code D*. We
n

repeat that the code D is the principal ideal in GF(9)[x]/(x - 1) generated by

g(x) = 1 + ah(x). Here hex) is a solution of (4.2.9) and n denotes the wordlength
nof D. We define D* to be the principal ideal in GF(9)[x]/(x - 1) generated by

g*(x) = 1 + ah3 (x). It is easy to verify that the polynomial h 3 (x) also satisfies

(4.2.9), so that the ternary image of the extended code D* is also a double

circulant code.

(4.3.3) Lemma: Let D and D* be the cyclic codes over GF(9) as defined above. Then

D n D* = < j(x) >,

where < j(x) > is the ideal in GF(9)[x]/(xn - 1) generated by j(x).

Proof: Let C and C* be the [2(n+l), n+l] double circulant codes which are the

ternary images of the extended codes Dand D* respectively. The generator matrices

of these codes C and C* are called G and G* respectively, i.e.

0 o ... 0 <5 1 ... 1 0 o ... 0 <5 1 1

2 2h (1) 2 2h (1)

G I H G* = I H
3

2 2h (1) 2 2h (1)
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where 0 is chosen in such a way that 0 + n - a mod 3.

It suffices to show that

Here Q is the a-vector and (o,!) is a vector of length n + 1 with first component

equal to 0 and all other components equal to 1.

Let (aoo ' a(x) ; boo' b(x» E C n C*. Then there exists an element y E GF(3) such

that

b(x) a(x)h(x) + yj(x)

and

b(x) = a(x)h
3

(x) + yj(x),

namely j(l)y = b(l) + 2a(1)h(1). From these equations it follows

a (x) (h3 (x) + 2h (x» = a.

We restrict ourselves to the case h(l) = a. The other two cases can be treated in

the same way. In this case hex) satisfies h 3 (x) + hex) + 1 = j(l)j(x), so that

a (x) I h (x) + 2 + j (1) j (x) } a,
Le.

a (x) (h (x) + 2) 2a (1) j (1) j (x) •

Squaring both sides of this equation ~elds

2 2 2
a (x) {h (x) + h (x) + 1} = a (1) j (1) j (x)

i.e.

a 2
,(x) (2j(1)j(x) + 2) = a 2 (1)j(1)j(x).

Hence
2 2a (x) = a (1) j (1) j (x) •

Multiplying both sides by a(x) yields

3 3 3 3a (x ) = a (x) = a (1) j (1) j (x) = a (1) j (1) j (x ),

so that

a (x) a (1 ) j (1) j (x) •

This proves the theorem. o
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Now we are able to prove a square root bound for the minimum weight of the cyclic

code V over GF (9) •

(4.3.4) Theorem: Let c(x) be a codeword of V, c(l) ~ O. Let d be the weight of

c(x). Then

(ii) d
2

- d + 1 ~ n, if hex) also satisfies h 3 (x) = h(x-1).

Proof: The proof of this theorem is completely analogous to the proof of Theorem

(3.3.9) • o

4.4. Some properties of the double circulant codes C which are the ternary images of

extended cyclic codes V over GF(9)

4.4.1. Introduction

In this section we shall establish, just as in §3.4, some theorems on double

circulant codes which are the ternary images of extended cyclic codes over GF(9) •

In this section let V be the cyclic code of length n over GF(9) generated by

g(x) = 1 + ~h(x), where hex) is a solution of h
2

(x) + hex) + 2 = ±j(x). The

ternary image of V is a double circulant code which we denote by C. The generator

matrix of C is called G, i.e.

(4.4.1) G

o O. • • 0

2

I

2

2h (1)

2h (1)

1 • • • 1

H

Here H is the nXn circulant matrix with toprow hex) and 0 is chosen such that

o + n :: 0 mod 3.

We shall need the following lemma several times in this section.

(4.4.2) Lemma: Let (aoo ' a(x)

2a (1) , boo

b , b(x» be a codeword of C. Then
00

2b(1) and b(x) = a(x)h(x) + yj(x),

where y = j(1)-l{b(1) + 2a(1)h(1)}.



-51-

Proof: Let (aoo ' a(x) ; boo' b(x» E C. Then there exists a vector (woo' w(x» of

length n + 1 such that

i.e.

(woo' w(x»G = (aoo ' a(x) boo' b (x) ) ,

a oo = 2w (1), a (x) w(x), boo = ow + 2w (1) h (1), b (x)
00

From these relations the lemma easily follows.

4.4.2. On the automorphism group of C

o

In this subsection we shall derive, just as in §3.4, some theorems on the

automorphism group of C.

(4.4.3) Theorem: Let (a , a(x) ; b , b(x» be a codeword of C. Then also
00 00

3 3(b , b (x ) ; 2a , 2a (x » E C.
00 00

3 -1
Further if the extra condition, h (x) = hex ), is met, then

-1 -1
(boo' b (x ) ; 2aoo ' 2a (x ) )

is also an element of C.

Proof: Let (aoo ' a(x) 1 boo, b(x» E C. Then by Lemma (4.4.2)

(4.4.4) 333 333b(x) = a(x )h(x ) + yj(x ) = a(x )h (x) + yj(x).

We restrict ourselves to the case h(l) = 1. In the other two cases the proof goes

along the same lines. In this case h 4 (x) = 2 + 2j(1)j(x). Hence

3 3 4
b(x )h(x) • a(x )h (x) + yj(x) =

3
= 2a (x ) + (y + 2a (1) j (1» j (x) ,

so that
3 32a(x) = b(x )h(x) + 2(y + 2a(1)j(1»j(x).

From this relation and Lemma (4.4.2) it follows that
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3
(boo' b (x )

3
2aeo , 2a(x » E C.

The second statement can be proved in exactly the same way. o

(4.4.5) Theorem: Let T be the permutation of the elements of the set S = {co, 0, 1,

••• , n-l} defined by Teo := co; Ti := i + 1 mod n for all i IS {a, 1, ••• , n-l}.

Let ( L ; R ) be an element of C. Then ( T(L) T(R) ) is also an element of C.

Proof: By observation. o

The theorem, analogous to Theorem (3.4.7), on the automorphism group of the

ternary images of extended QR-codes over GF(9) will be proved in §4.5 (cf. Theorem

(4.5.18».

4.4.3. The dual code of C

of the dual code is given by

a a . . . a 1 1 . . . 1

n nh (l)

G
1

== I (H3) T

n nh (1)

In this subsection we shall show that the double circulant code C is equivalent

with its dual ~.

The dual of the ternary double circulant code C can easily be determined. The

generator matrix G of the code C is given by (4.4.1). Using the fact that
4

h (x) == 2 + (h(l) + 1)j(1)j(x), it is straightforward to check that the generator

matrix G.l

(4.4.5)

where n IS GF(3) such that n = n mod 3.

Using this representation of the dual code C1 we can prove the following theorem.

(4.4.6) Theorem: The [2 (n+1), n+1J ternary double circulant code C, the generator

matrix of which is defined by (4.4.1), is equivalent with its dual C
1

.

Proof:

easily

The generator matrix of ~ is given by (4.4.5). Using Lemma (3.4.10)

shown that the code ~ is equivalent with the code Co generated by

it is
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0 o . . • 0 0 1 • 1

2 2h (1)

GO I H
3

2 2h (1)

where 0 satisfies 0 + n = 0 mod 3.
3 3

Since gcd(3,n) = 1 and h (x) = hex ), the following relation obviously holds

(aco ' a (x)
3

bco ' b(x» E C * (aco ' a(x )

o

o

Let P be the permutation of the elements of the set {co, 0, 1, ••• , n-1} defined

by pro := co, Pi := 3i mod n, 0 ~ i ~ n - 1. Then ( L ; R ) is a codeword of C

implies that (P(L) peR) is a codeword of CO. Therefore the permutation P

applied simultaneously to both sides of the codewords of C, changes the code C

into CO. Since we already have shown that Co is equivalent with ~, the proof of

this theorem is finished.

(4.4.7) Theorem: If n = 2 mod 3 and the polynomial hex) satisfies the extra

condition h 3 (x) = h(x- 1) then the ternary code C is self-dual.

-1 T 3-1Proof: Since hex ) = h (x), the condition h (x) = hex ) is equivalent with
~
(H) = H. Hence the theorem follows immediately from (4.4.5).

4.5. Extended QR-codes over GF(9) and their ternary images

4.5.1. Introduction

In the previous chapter we have seen that the binary images of extended quaternary

QR-codes of length n + 1, where n is a prime of the form n = 8k ± 3, are double

circulant codes. It appeared that these double circulant codes are rich in

structure. For instance they have a large automorphism group, they allow a square

root bound for their minimum distance comparable with the square root bound for

the minimum distance of QR-codes, and their minimum weights are high.

In this section we shall show that the ternary images of extended QR-codes over

GF(9) of length n + 1, where n is a prime of the form n = 12k ± 5, are double

circulant codes which also have a nice structure.

We want to point out one number-theoretical resemblance between these two classes
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of codes. In the binary case the wordlength of the corresponding quaternary

QR-code has to be a prime of the form n = 8k ± 3, i.e. 2 is a nonresidue mod n.

In the ternary case the wordlength has to be a prime of the form n = 12k ± 5. In

this case 3 is a nonresidue mod n. This latest statement follows" from the

next theorem.

(4.5.1) Theorem: Let n be a prime. Then 3 is a quadratic residue mod n iff

n = ±1 mod 12.

For the proof of this theorem we refer to [1, Ch.16.Problem(25)]. We shall use

this theorem several times in the rest of this chapter.

4.5.2. An explicit form of the solution of (4.2.9), in case n is a prime of the form

n = 12k ± 5

2The analysis of the equation h (x) + h(x) + 2 = ±j(x), as described in §4.2 is

not satisfactory. The only method we have indicated in that section was completely

based on a computer search. We did not succeed in finding an explicit form of the

polynomial h(x). However, when n is a prime of the form n = 12k ± 5, we can indeed

derive such an explicit form. It will appear that the resulting double circulant

codes are the ternary images of extended QR-codes over GF(9). The determination of

the polynomial hex) is based on the following theorem of Perron which we shall

mention without proof (cf. [1, Ch.16.Th.24J).

(4.5.2) Theorem: (i) Suppose p is a prime, p = 4k - 1. Let r 1 , ••• , r 2k be the 2k

quadratic residues mod p together with 0, and let a be a number relatively prime

to p. Then among the 2k numbers r i + a there are k residues (possibly including 0)

and k nonresidues.

(ii) Suppose p is a prime, p = 4k - 1. Let n1 , ••• , n2k- 1 be the

2k - 1 nonresidues and let a be prime to p. Then among the 2k - 1 numbers ni + a

there are k residues (possibly including 0) and k - 1 nonresidues.

(iii) Suppose p is a prime, p = 4k + 1. Among the 2k + 1 numbers

r, + a are, if a is itself a residue, k + 1 residues (including 0) and k nonresidues;
1

and, if a is a nonresidue, k residues (not including 0) and k + 1 nonresidues.

(iv) Suppose p is a prime, p = 4k + 1. Among the 2k numbers n, + a
1

are, if a is itself a residue, k residues (not including 0) and k nonresidues; and,

if a is a nonresidue, k + 1 residues (including 0) and k - 1 nonresidues.O
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Using this theorem, it is easy to prove the following theorem.

(4.5.3) Theorem: Let p be a prime, Q the set of all residues mod p and N the set

of all nonresidues. Then in the polynomial ring ~[xJ/(~ - 1) the following

relations hold:

(i) if P is of the form p = 4k - 1

I r ) 2 !:l(p - 3) I r
!:l(p + 1) I s

x x + x
rEQ rEQ sEN

I s ) 2
~(p + 1) I r

~(p - 3) L s
x x + x

sEN rEQ sEN

I r
)( L s !:l(p-3)j(x) ~ (p + 1)x x = + ,

rEQ SEN

(ii) ifp is of the form p 4k + 1

I r ) 2 ~(p - 5) I r
!:l(p - 1) I s

~ (p - 1)x x + x + ,
rEQ rEQ SEN

I s ) 2 !:l(p - 1) I r
!:(p - 5) I s

~ (p - 1)x x + x + ,
SEN rEQ sEN

I
SEN

s
x ~ (p - 1) j (x) l:J (p - 1).

Proof: (i) cf. [1, Ch.16.Lemma 5J.

(ii) Let P be a prime of the form p 4k + 1. Using Theorem (4.5.2) we find

r
l
+r

2
x

r
x +

s
x + 2k

l:J (p - 5) I
rEQ

r
x + l:J(p - 1) I

SEN

s
x + ~ (p - 1).

The other two cases can be settled in the same way. o

(4.5.4) Corollary: Let n be a prime of the form n = 12k ± 5. Let Q be the set of

all quadratic residues mod nand N the set of all nonresidues. Then the functions

h l (x) and h
2

(x), defined by
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h
l

(x) I s
h

2
(x) I r

:= x "= x
sEN rEQ

satisfy
2

+ h (x)h (x) + 2 ±j (x) .

Proof: 12k - 5. nLet n Then in GF(3)[x]/(x - 1)

I S )2 2 I r L S
x x + x

SEN rEQ sEN

so that

I s )2 L s
2 2 j (x) •x + x +

SEN sEN

12k + 5. nLet n Then in GF(3)[x]/(x - 1)

I S ) 2 I rx x + 2 ,
SEN rEQ

so that

I S ) 2 I s
j (x) •x + x + 2

SEN sEN

The statement on h
2

(x) follows in the same way. 0

As expressed in this corollary we have now found an explicit form of the polynomial
2

hex) satisfying h (x) + hex) + 2 = ±j(x), in case n is a prime of the form

n = 12k ± 5.

4.5.3. A double circulant representation of the ternary images of extended QR-codes

over GF (9)

In this subsection let n be a prime of the form n = 12k ± 5. The set of all

residues mod n will be denoted by Q and the set of all nonresidues by N. We shall

show that the en, ~(n+l)] QR-code over GF(9) also is generated by g(x) = 1 + ah(x) ,
s

where hex) Lx. Then because of Corollary (4.5.4) we have proved that the
SEN

ternary image of the extended QR-code is a double circulant code. For this purpose

we need the following theorem (cf. [1, Ch.16.Th.4]).

(4.5.5) Theorem: Let D be the QR-code over GF(9} of length n with generator
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polynomial y(x) = IT (x - e
r
), where e is a suitably chosen primitive n-th root

rEQ

of unity in some extension field of GF(9). Then the idempotent of D is given by

F (x)

1 + 5 \' s
a L x

SEN
if n = 12k - 5,

ifn 12k + 5.

Proof: We restrict ourselves to the case n

treated in the same way.

12k - 5. The other case can be

(i) F
2

(x) = F (x) (by Theorem (4.5.3».

(ii) Let rEQ. Since the sets Q and N are closed under multiplication by r, we

find F(Sr) = F(e). Since F
2

(S) = F(e), F(e) can only take the values a or 1. Let

us choose S such that F(S) = o. Then

a ] .

Let SEN. Then

F (e
s

) 1 + a 7 L SS + as L Sr
SEN rEQ

as L e
r 5

+ a
6 r e

r
+ a

rEQ rEQ

1 + a
7

(j (e) + 2 + 2 L e
r

) +
rEQ

2(a + a
2 L e

r
) 1 ,

rEQ

since we have chosen e such that

a F (e) 1 + a
7 L e

r
+ as L eS = 1 + a

7 L e
r

+
rEQ SEN rEQ

as (j (S) + 2 + 2 L Sr) 1
2 L e

r
+ + a + a

rEQ rEQ

i.e.
2 L e

r
2 •a + a

rEQ

(iii) F (1) = 1.

Because of (ii) and (iii) we have shown that F (e
i

) = a iff y (e
i

) = a for all

i E {a, 1, ... , n-1} • Hence we have proved that F(x) is the idempotent of D.

o
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(4.5.6) Corollary: Let Dbe the QR-code as defined in Theorem (4.5.5). Then Dis

also generated by

g(x) 1 + a I
SEN

s
x

where N is the set of nonresidues mod n.

Proof: This follows immediately form Theorem (4.3.1) and Theorem (4.5.5)'IJ

Because of Corollary (4.5.4) and Corollary (4.5.6) we may conclude that the

ternary images of extended QR-codes over GF(9) of length n + 1, where n is a prime

of the form n = 12k ± 5, are double circulant codes.

The extension of QR-codes

The QR-codes over GF(9) will not be extended in the usual way, but in the way

described below.

Let n be a prime of the form n = 12k ± 5, Q the set of all residues mod nand N

the set of all nonresidues mod n. Let DO be the QR-code of length n over GF(9)
r

generated by YO(x) = IT (x - 8 ) and let Dl be the QR-code of length n over GF(9)
rEQ

sgenerated by Yl (x) IT (x - 8 ), where S is a primitive n-th root of unity in an
SEN

extension field of GF(9). It is well-known (cf. [1, Ch.16.§4J) that these QR-codes

can be extended, by adding an overall parity check, in such a way that

(i) (i5 ).1
0

(4.5.7)

(ii) (i5 ).l
0

(5 ).1
1

if n

if n

12k - 5,

12k + 5.

Let h(x) be the polynomial defined by

(4.5.8) h (x) := I
SEN

s
x

and let H be the nxn circulant matrix with toprow h(x). Since -1 is a residue mod

n, if n 12k + 5, and a nonresidue, if n = 12k - 5, the polynomial h(x) satisfies

the following relations:
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T h(x- 1) I rh (x) x if n 12k - 5,
rEQ

(4.5.9) hT (x) -1
12k + 5,hex ) = h (x) if n

h
3

(x) L
r

ifn 12k ± 5.x
rEQ

Using these relations it is easily checked that the rows of the following two

matrices DO and
-.1

G- and ~.1 generate the extended codes DO respectively
DO 0

n a . . . a n a . . . a

Z;; Z;;

(4.5.10)
~ I + aH ~.1 I + a(H3 )T

0 0

Z;; l;

where 3 2 if n 12k - 5,n a Z;; a =

5 2
if 12k 5.n a Z;; a n = +

maps the code DO onto Dl . This implies that the code Dl also

= 1 + a L xr • Hence by Corollary (4.5.4) the ternary image
rEQ

(4.5.11) Remark: Since n = ±5 mod 12, 3 is a nonresidue mod n. Therefore the
3transformation x + x

is generated by gl (x)

of D
l

is a double circulant code. However since DO and D
l

are equivalent just as

their ternary images, we may restrict ourselves to DO.

Now we have proved the following theorem.

(4.5.12) Theorem: Let n be a prime of the form n = 12k ± 5. Let D be the en, ~(n+l)]

QR-code over GF(9) and let C be the ternary image of the extended code D. Then the

generator matrix of the [2(n+1), n+l] ternary code C is given by

E: O. • • 0 2 1 • . . 1

1 2

G I H

1 2

where E: = a if n

with toprow hex)

12k + 5 and E:

L x
s

•
SEN

2 if n 12k - 5. H is the nxn circulant matrix
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Proof: This follows immediately from (4.5.10). o

If n is a prime of the form n = 12k - 5, then the code C has also another

generator matrix which has also an interesting form, as stated in the following

theorem.

(4.5.13) Theorem: Let n be a prime of the form n = 12k - 5 and let C be the

L2(n+1), n+1J double circulant code which is the ternary image of the [n+1, ~(n+1)J

extended QR-code over GF(9). Then C has a generator matrix GO of the following

form

= [ I I s J

where S is an (n+1)x(n+1) matrix which satisfies SST (n+1) I (over JR) •

Proof: A generator matrix of C is given by Theorem(4.5.12). It is easily seen that

the following matrix GO is also a generator matrix of C

-
1 0 . . . 0 1 -1 . . . -1

0 1

GO I H
1

0 1 -
where H

1
H + J, i.e. H

1
is the nxn circulant matrix with toprow

1 +
r

x L
SEN

s
x

Let S be the matrix defined by

1 -1 . . . -1

1

S

1

Then

n+1 O. • • 0

o
T

SS =

o

(n+1)I,
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T
since H

1
H

l
is a circulant matrix with toprow

L xS) (1 L
r

L x!l)x +
SEN rEQ sEN

( L xs )2 2 L r
L

s
+ x x

SEN rEQ SEN

r
xL

rEQ
+(1

T -1
h

l
(x) h

l
(x) = h

l
(x) h

l
(x )

(i)

(ii)
1 - \(12k - 8) L

rEQ

r
x \(12k - 4) L

SEN

s
x

\ (12k - 4) L
rEQ

r
x \ (12k - 8) L

SEN

S
x + 12k - 6

+ ~ (12k - 8) ( L
rEQ

r
x + L

SEN
12k 4 j (x) •

T
Hence H1Hl = (12k - 4)I - J.

At the indexed places we have made use of

(i) -1 is a nonresidue mod n,

(ii) Theorem (4.5.3) o

T
(4.5.14) Definition: An mxm matrix S of +l's and -l's such that SS = mI is called

a Hadamard matrix of order m.

The reader who is interested in Hadamard matrices is referred to [13, Ch.14J.

The properties of Hadamard matrices which we shall use can be found there.

We want to point out the resemblance between the generator matrix GO and the

generator matrix of the symmetry code (cf. (2.3.1». In §4.7 we shall return to

this resemblance.

4.5.4. On the dual and the automorphisms of the ternary images of extended QR-codes over

GF (9)

In this subsection we shall prove some theorems on the dual code of and the

automorphisms of the ternary images of extended QR-codes over GF(9).

Let n be a prime, n = 12k ± 5, and let C the [2(n+l), n+1J double circulant code

which is the ternary image of the [n+l, ~(n+l)J extended QR-code over GF(9).

(4.5.15) ~: The generator matrix of the dual code of C is given by
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G

E: o. . . 0

1

I

1

2

2

2

1 • 1

where E: o if n 12k + 5 and E: 2 if n 12k - 5.

Proof: The generator matrix of C is given in Theorem (4.5.12). It is easy to

verify that

o. o

(4.5.16) Theorem: Let n be a prime of the form n

ternary code C is self-dual.

12k - 5. Then the [2(n+1), n+1J

Proof: The matrix H is an nxn circulant matrix with toprow hex), where hex) =:[
SEN

s
x .

Since n is a prime of the form n

Hence

12k - 5, both -1 and 3 are nonresidues mod n.

h T (x) 3
h (x).

Thus

H.

The theorem now follows from Theorem (4.5.12) and Lemma (4.5.15).

An easy lemma, which we shall use several times, is the following.

o

(4.5.17) Lemma: Let (a , a (x)
--- 00

boo' b(x» be a codeword of the ternary code C. Then

(i) a oo = 2b(1) + a(1), boo 2b(1) + 2a(1)

(ii) aoo = a(t) boo = b(1)

Proof: Analogous to the proof of Lemma (4.4.2)

if n

if n

12k - 5,

12k + 5.

o

Using this lemma we can prove the following theorem on the automorphisms of C.

(4.5.18) Theorem: Let C be the [2(n+1), n+1J ternary image of the [n+1, ~(n+1)J

extended QR-code over GF(9), where n is a prime of the form n = 12k ± 5.

Let (aoo ' a(x) ; boo' b(x» be an element of C . Then
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and (2b, b(x-
1

)
00

-1
a , 2a(x » are also

00

3 3
(ii) (boo' b (x ) ; 2aoo ' 2a (x » is also in C if n

Proof: Analogous to the proof of Theorem (4.4.3).

12k + 5.

[]

By the Theorem of Gleason and Prange (cf. Theorem (2.2.7» we know that the

automorphism group of the extended QR-code of length n + lover GF(9) contains

a subgroup isomorphic to PSL(2,n). Due to our choice of the mapping from the

extended QR-code over GF(9) onto the ternary code C, the following theorem holds

(cf. Theorem (3.4.7».

(4.5.19) Theorem: The automorphism group of the double circulant code C contains

PSL(2,n) applied simultaneously to both sides of the codewords of C, i.e. for all

codewords (L ; R ) in C and any element T E PSL(2,n), ( T(L) ; T(R) ) is in C.

4.5.5. On the minimum weight of the ternary images of extended QR-codes over GF(9) of

length n + 1; n = 12k - 5

In this subsection let n be a prime of the form n = 12k - 5 and C the [2(n+1),n+1]

code which is the ternary image of the [n+1, ~(n+1)] extended QR-code over GF(9).

We shall establish a theorem on the minimum weight of the code C. This theorem is

analogous to Theorem (2.3.5). Let x be a codeword of C then we shall denote by

wi (~), wr(~) respectively, the contribution to the weight of x due to the first

n + 1 coordinates respectively the last n + 1 coordinates.

(4.5.20) Theorem: Let x be a codeword of the [2(n+1), n+1J double circulant code

C Then

(1) w (x) > 0
r -

(ii) if wi (~) 1, then w (x) n+1
r -

(iii) if wi (~) 2, then w (x) ~(n + 1)
r -

(iv) if wi (~) 3, then w (x) \(n + 1)r -

(v) if wi (~) 4, then w (x) ~ ~(n + 1) equality is only possible
r -

if n + 1 - o mod 8.

(vi) if wi (~) 5, then w (x) ;:. ~(n + 1 )
r -

(vii) if wi (~) 7, then w (x) ~ ~(n + 1) .
r -
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Proof: Because of Theorem (4.5.13), C has a generator matrix of the form

Go [I Is] ,

where S is an (n+l)x(n+l) Hadamard matrix.

(i), (ii) and (iii) follow directly from the properties of Hadamard matrices

(cf. [13, Ch.14]).

(iv) Consider three rows r
1

, r
2

and r
3

of the matrix S. Since multiplying a

column of S by -1 does not alter weights, we may assume that these three rows

have the following form

r
1

: + + + + + + + +

r
2

: + + + + -

r
3

: + + - - + + -

a b c d

Here + and- stand for respectively +1· arid ':"1.

Since S is a Hadamard matrix, we find

a = b c = d l:J (n + 1).

From these relations (iv) easily follows.

(v) Let r
4

be

linear combination

any
4
r

i=l

row of S different from r
1

, r
2

and r
3

. Then by (iv) every

a.r. , a; E {-1, 1} has weight ~ l:J(n + 1), with equality
~ ~ ....

iff this linear combination over m has the following form

(4.5.21) 4E:

a

4E: 0

a

o 0

a

o 0

a

o

or one of the other 3 possibilities, which can be obtained b¥ a cyclic shift

over a positions. Here E: can take the values +1 or -1.

As S is a Hadamard matrix, every row of S different from r
1

, ... , r
4

must be

orthogonal, over m, to (4.5.21). This is only possible if a is even, i.e.

n + 1 = mod 8. So we have proved (v).

(vi) and (vii). In order to prove (vi) and (vii) we shall make use of the

method described in the proof of Theorem (2.3.5).
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Let gl' ... , g 1- -=-n+
every codeword x in C can be written as

x
n+l

I
i=l

over GF (3) , A. E {-1, 0, 1}
~

Let x be the same linear combination of the n + 1 rowvectors but now evaluated

over JR, i. e .

x
n+l

I
i=l

over JR.

The vector ~ can be written as x = (1..
1

' ... , A
n

+ 1 ; ~1' •.. , ~n+l)'

We remark that for all 1 ~ i $ n + 1 , I~ I $ wl(_X). For given ~ we define again
i

Since S is a Hadamard matrix it is easily seen that

Hence

o.. (n + 2), over lR, 1 $ i $ n + 1, 1 $ j ~ n + 1.
~J

(4.5.22)
n+i

I
i=l

2
A. (!I. '!I. )
~ ~ ~

n+l
(n + 2) I

i=l
w1 (~) (n + 2).

For the corresponding ~(~) we have

(4.5.23) w (x)
1 -

In order to indicate how many components of ~(~) are equal to ±j, we introduce

again Type(~(~». If a. components of ~(~) are equal to ±j, then we write
J

Type (~(~»

(l, a
(± (n+i» n+l (±n) n

(l, (l,

(±1) 1 (0) 0

Let ~ be a codeword of C, with wi (~) = Pi and wr(~)

obviously all components of ~(~) are odd. Let

P2' Let Pi be odd. Then

Type (~ (~) )

a a
p p -2

(±p1) 1 (± (p1-2)' 1

(l,3

(±3) (±1)

n+l-La.
~
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Then the following relation holds.

(4.5.24) w (x) = p
r - 2'

Furthermore (4.5.23) provides us with

(4.5.25)
2 2

P
1

a + (P1 - 2) a + ... + 903 + (n + 1 - La.) =
P 1 P I -2 1

PI(n+I).

From (4.5.24) it follows that

and from (4.5.25) we obtain

Combination of these two results yields

This inequality is trivially satisfied if PI ~ 9. But

if P 1
3 then P 2

~ ~(n + I) , which agrees with (iv) ,

if P 1
5 then P 2 ~ ~(n + I) ,

if P 1
7 then P 2

~ !:len + 1) •

This proves (vi) and (vii) .

A simple but useful lemma is the following.

o

(4.5.26) ~: Let w
1

and w
2

be integers. Then there is a codeword x in C with

wI(~) wI' wr(~) w
2

iff there is a codeword x.. in Cwith wl(x..) = w2 '

wr (x..) wI'

Proof: This is a consequence of Theorem (4.5.18). o

(4.5.27) Remark: Lemma (4.5.26) holds for all double circulant codes which are the

ternary images of extended cyclic codes over GF (9), because of The.orem (4.4.3).
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4.5.6. Examples and designs

In this subsection we shall discuss as an application of Theorem (4.5.20) the

first three examples of the ternary images of the [n+l, ~(n+l)J QR-codes over

GF(9), where n is a prime of the form n = 12k - 5.

We repeat that these codes are self-dual and have weights divisible by 3 (cf.

Theorem (4.5.16». It will appear that each of these three codes has a minimum

weight that meets the bound on the minimum weight of self-dual codes over GF(3).

This bound is given by the following lemma (cf. [1, Ch.19.Th.17J).

(4.5.28) Lemma (Mallows&Sloane): The minimum distance of a self-dual code over

GF(3) of length n satisfies

d ~ 3Ln/12J + 3.
o

In order to investigate whether these codes contain t-designs we have applied

the Assmus-Mattson Theorem (cf. Theorem (1.3.3».

As usual the parameters of a t-design are denoted by v (= the number of points),

b (= the number of blocks), k (* the blocksize) and A (= the number of blocks
t

containing any fixed t-subset).

(i) n = 7

Let C
7

be the [16,8J ternary image of the [8,4J extended QR-code over GF(9) .

Using Theorem (4.5.20) and Lemma (4.5.26) it is easy to see that the minimum

weight of C
7

is equal to 6. Hence C
7

is a [16,8,6J self-dual code over GF(3).

By Lemma (4.5.28) C
7

has a minimum weight that meets the bound on the minimum

weight of self-dual codes over GF(3).

Application of the Assmus-Mattson Theorem reveals that the supports of codewords

of weight 6 or 9 form 3-designs. In order to calculate the parameters of these

designs we have determined the weight enumerator of C
7

•

Let A. be the number of codewords of weight i. Then the non-zero coefficients
1

of the weight enumerator of C
7

are given by

A
O

1

A
6

224

A
9

2720

A
12

= 3360 ,

A
15

== 256 •
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Since obviously

we find that the supports of codewords of weight respectively 6 or 9 form

a 3-design with parameters

respectively

v 16, b = 224, k 8

v = 16, b = 2720, k = 6, A
3

= 408.

In order to investigate whether these 3-designs are possibly 4-designs, we have

calculated

The result was that in both cases A
4

is not integral, so that these 3-designs

can not be 4-designs.

(ii) n = 19

Let G
19

be the [40,20J ternary image of the [20,10J extended QR-code over GF(9).

By Theorem (4.5.20) and Lemma (4.5.26) the minimum weight of G
19

is equal to 12.

Hence G
i9

is a [40,20,12J self-dual code over GF(3). It is easily verified that

this code also meets the bound of Lemma (4.5.28).

By the Assmus-Mattson Theorem we find that the supports of the codewords of

weight respectively 12, 15, 18 or 21 form 3-designs. In this case we have not

been able to determine the complete weight enumerator of G
19

, but using the

computer and Theorem (4.5.20) we have calculated for 1 ~ j ~ 10 the weights of

all linear combinations consisting of j rows of the generator matrix of G19 .

Because of Lemma (4.5.26) we could calculate with these results A
12

, A
15

, A
18

and A
21

,

A
12

19760

A
15

1138176

A
18

25549680

A
21

236945280
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From these results we find that the supports of the codewords of weight

respectively 12, 15, 18 and 21 form 3-designs with parameters

v 40, b 19760, k 12 and A
3

440,

v 40, b 1138176, k 15 and A
3

52416,

v 40, b 25549680, k 18 and A
3

2109960,

respectivley

v = 40, b = 236945280, k = 21 and A
3

= 31896480.

Also in these four cases A
4

is not integral. Hence these 3-designs can not be

4-designs.

(iii) n = 31

Let C
31

be the [64,32] ternary image of the [32,16] extended QR-code over GF(9).

Let ~ be any codeword of C
31

, ~ ~ ~. Then by Theorem (4.5.20)

if wi (~)

if wi (~)

if wi (~)

if wi (~)

if wi (~)

1 then w (x) 32,
r-

2 then w (x) 16,
r-

3 then w (x) 24,
r -

4 then w (x) 2: 8,
r-

5 then w (x) 2: 16,
r -

then w (x) 2: 8.
r-

Using the computer we have calculated the weights of all linear combinations

consisting of respectively 4,6 and 7 rows of the generator matrix of C
31

.

This resulted in

if wi (~) 4 then w (x) 2: 17,
r-

if wi (~) 6 then w (x) 2: 12,
r-

if wi (~) 7 then w (x) 2: II.
r-

By Lemma (4.5.26) we find that the minimum weight of this code is equal to 18.

Hence C
31

is a [64,32,18J self-dual code over GF(3) which meets the bound of

Lemma (4.5.28).

The Assmus-~attson Theorem reveals that the supports of codewords of weight

respectively 18, 21, 24, 27, 30 and 33 form a 3-design. In this case we have not

been able even to calculate the number of codewords of minimum weight. Therefore
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we can not calculate the parameters of these 3-designs.

(4.5.29) Remark: The codes with parameters [16,8,6J and [40,20,12J were already

known (cf. [1, Ch.19.§5J). The code with parameters [64,32,18J is propably new.

As far as we know this is the largest known (with respect to the wordlength)

self-dual code over GF(3) which meets the bound on the minimum weight of self­

dual codes over GF(3) (cf. Lemma (4.5.28)). Hence also the 3-designs in this

code are in all propability new.

4.6. A square root bound on the minimum weight of the ternary images of extended

QR-codes over GF(9)

In this section we shall establish a square root bound on the minimum weight of

the ternary images of extended QR-codes over GF(9). The proof of the square root

bound is based on the theory of [16J. In this paper a square root bound on the

minimum weight of the [2(n+l), n+lj double circulant codes which are the binary

images of extended quaternary QR-codes of length n + 1, n a prime of the form

n = 8k + 3, has been proved. (cf. Theorem (3.5.1)). The proof of the square root

bound in the ternary case is, except for the beginning, completely analogous to

the proof in [16J.

In this section let nO and n
l

be prime numbers of the form nO = 12k - 5 and

n
1

= 12k + 5. Let C., i = 0, 1, be the [2(n. + 1), n. + lJ ternary imaqe of the
l l l

extended QR-code D. over GF(9) of length n. + 1 and dimension ~(n. + 1). The
l l l

generator matrices of the ternary codes C
1

and C
2

are denoted by GO and

respectively G
1

, i.e. (cf. Theorem (4.5.12))

2 a . .. a 2 1 . .. 1 a a . .. a 2 1 ... 1

1 2 1 2

(4.6.1) Go I H
O

G
l

I H
l

1 2 1 2

is circulant matrix with h. (x) 2:
s

whereHere H. an n. xn. toprow x , N.
l l l l l

SEN.
l

is the set of nonresidues mod n. , i 0, 1.
l

Let (aOoo ' a O (x) ; b ooo ' b
O

(x)) E Co and (a
l

°o' a
1

(x) ; b l °o' b l (x)) E Cl •

The automorphism which changes (aOoo ' aO(x) ; b ooo ' bO(x)) into
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-1 -1
(2b Ooo ' bO(x ) ; a Ooo ' 2a

O
(x » is called '0' (Thus '0 is an automorphism of CO),

The automorphism of C
1

which changes (a
1
°o' a

1
(x) ; b

1
°o' b

1
(x» into

(b 1°o' b
1

(x
3

) ; 2a
1
°o' 2a

1
(x

3
» is denoted by '1' (cL Theorem (4.5.18».

Furthermore we repeat that Aut(C.) contains PSL(2,n.) applied simultaneously to
]. ].

both sides of the codewords of C., i 0, 1. (cf. Theorem (4.5.19)).
1

Let ~ = (~ ; ~) = (a , a
O

' ... , a 1 b, b
O

' ... , b 1) be any vector of length
00 n- 00 n-

2(n + 1) over GF(3). Then we define

d
1
(~) := IU E GF (n) a, ~ 0 }I'].

(4.6.2)

d
2
(~) := I{i E GF(n) b

i
~ 0 }I.

Let d. be the minimum weight of the code C.• Then for i 0, 1, we define sets
1 ].

rl~ and rl. to be
l l

n~ := { v = (~ b) E C. a ~ 0, b ~ 0 and wH (~) d. }
]. l 00 00 1

(4.6.3)

n. := { v = (~ b) E C. a ~ 0, b = 0 and w (v) d. }
l l 00 00 H- ].

We have not been able to prove that rl ~ is non-empty, but we do have
l

and

(4.6.4) Lemma: a) The set n. is non-empty
l

b) If ~ E rl
i

and d2(~) > d
1
(~) then there exists an element ~ E rl i

with d
1
(~) = d

2
(~) - 1 and d

2
(~) = d

1
(~) + 1.

c) If rl~ is empty, then the following holds. If x E n. and
1. - 1.

~ d2(~)' then there exists an element v E n
i

with d2(~) = d 1 (~) + 1

d
2
(~) - 1.

This lemma holds for both i

Proof: Let i E {O, 1} .

o and i 1.

a) Let ~ = (~ b) be a codeword in

a ~ 0 and b = 0, then v E n. and the proof is
00 00 1.

b ~ 0 then '0 (~) c n.. Therefore we may assume
00 ].

a 7- 0 and b ~ O.
00 00

C of minimum weight d .. If
i 1.

finished. Also if a = 0 and
00

that either a b = 0 or
00 00

We can find j E GF(n) such that either a. 7- 0, b. = 0 or a. = 0, b. ~ 0 , unless
J J J J

a and b have the same support, i.e. for all k E GF(n)u{oo} a
k

~ 0 iff b
k

~ O.
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This last can not happen. For since (~

7
Thus also a(~ + a~) and a (~+ a~) are

these two codewords are respectively

codeword of minimum weight we have

; b) E: C. I' we know that a + ab ED ..
- 1 - 1

elements of D.. The ternary images of
1

(~; ~ + 2b) and (~+ b ~). As v is a

2 w «a b) )
H -

(i) wH «~ ; a + 2b»

(ii) w ({a+b; a»
H -

> w «a
H - ~) )

It is easily seen that this is impossible if a and b have the same support.

Therefore let j E GF{n.) such that either a. ~ 0, b = 0 or
1 J j

T E PSL(2,n.) such that T interchanges the indices j and 00,
1

a. = 0, b. ~ O. Let
J J

and let

~' = (T{a) ; T(b». Then VEe. with w (v)
- 1 H-

Hence we have proved a).

> d
1
(~). Then there exists an

T be the automorphism which

b) Let v = (a ; b) E ~. with d
2
(~)

1

element j E GF(n) with b. ~ 0 and a. = O. Let
J J

interchanges the indices j and 00 and defi.ne x- t.o be x: = T. «T (a) ; T (b) ) •
- 1. - -

Then x E ~i with d
1
(~) = d

2
(~) - 1 and d

2
(~) =, d

1
(~) + 1, as required.

c) We assume ~# to be empty.
i

Let ~ = (£ ~)E ~i with d
1
(~) 2 d2(~). Since we have made the assumption that

~~ is empty, it is easily seen that for all j E GF(n)u{oo} d. ~ 0 implies c. O.
1. J J

There are two different cases to consider, namely ~ ~ Q and d Q.

Let d ~ O. Since x E ~., d
1 00

O. Hence there exists an element j E GF(n) such

O. In the same way as in b) the proof can now be finished.that d. ~ 0 and c.
J J

Let d = O. In this case we have to consider the two possiblities i = 0 and i = 1

separately.

Let i O. Since v E Co we have by Lemma (4.5.17)

o d
00

2c(1) + 2d(1) 2c (1) ,

and

d(x) O.

Substituting x 1 yields E: 0, so that

o c(x)(l + j(x» c{x) + c(1)j{x) c (x) •

Hence v = O. This contradicts w (v) = dO.
H-

Let i = 1. Then we find in the same way that c{x) 2c(1)j{x), but in
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this case c(1) is not necessary equal to O. Since wH(~) = d
1

, this forces

d
1

= n + 1. Let rand r be respectively the first and second row of the
00 0

generator matrix G
1

, defined by (4.6.1). Then obviously

w (r + 2r )
H 00 0

so that we may conclude

2 + ~ (n + 1),

n + 1 d
1

:5: 2 + ~ (n + 1), 1. e. n:5: 3.

o

Thus also in this case we are led to a contradiction, since n ~ 5. Hence

d ~ O. So we have proved c).

nonresidues mod n .. Let D~
1 1

by g~(x) = 1 + ah~(x), i =
1 1

We have already shown that

of length n, is also
1

s
x and N, the set of all

1

We remark once again

generated by g. (x) =
1

that the QR-code D, over GF(9)
1

1 + ah,(x), where h.(x) = 1:
1 1 SEN,

1

be the cyclic code over GF(9) of length

0,1.

(cf. Lemma (4.3.3))

n, generated
1

(4.6.5) D. n D"'; < j (x) > , i 0, 1.
1 1

We remark that -1 and 3 are nonresidues mod nO' since nO is a prime of the

form nO 12k - 5, so that

(4.6.6)

Let a(x), b(x) E D.• Then it is easily seen
1

Furthermore from (4.6.6) it follows that, if
-1

a(x)b(x ) c DO n D~.

We define integers t~ and t. by
1 1

t~ .- max {d
1
(~) - d

2
(~) }

1
vErI,

(4.6.7) 1

t, := max {d
2
(~) - d 1 (~) }

1
vdt,

1

3
that a(x)b(x ) E D, n D~.

1 1

a(x), b(x) E Do' then also
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Let t. := max {t., t~} • Then obviously t. ~ O.
lmax 1 1 1max

If r/# . non-empty, then the minimum weight d. of C. satisfies. 1S
l 1 1

(d. - 1)2 - (d. - 1 ) + 1 - s.t. ~ 2n. + 1.
l 1 1 1max 1

This theorem holds for both i

Proof: Let i E {O, 1}.

o and i 1.

Without loss of generality we may assume that t.
1max

t .. Let
1

with

e

(d. - 1) - t
1 i

2

0, b
O

' ... , b 1) E ~.n- 1

(d. - 1) + t.
1 1

2

Since T, ( Aut(C.) there exixts a vector
1 1

v= (1, cO' ... , c n - 1

with

(d, - 2) + S.
1 l

2

(d. - 2) - S
1 i

2

Let n.-1 n.-1 n.-1 n.-1
1

c x
j 1

d x
j

1 3' 1
b.x

3j
.u(x) L + a L y(x) L a.x J + a L' ,

j=O j j=O J j=O J j=O J

Then u(x) ( D. and y(x) ( D":, so that u(x)y(x) c D, n D*:
1 1 1 1

Hence there exist elements k
1

, k
2

E GF(3) such that

n.-1 n.-1
l

x
j 1

x
j

k
1 L + ak

2 L u(x)y(x)
j=O j=O

L c,x
j L

3'
Ld,x

j L b .x
3j

a.x J + +
J J J J

I c.x
j L 3' I

3'
I d x

j Ld,x j I b 3j }+ a{ b.x J + a,x J + 2 .x .
J J J J J J
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Substituting x 1 yields

k
1

- L c. L a. + L d. L b. - (c(1)a(1) + d(1)b(1)) mod 3
J J J J

k
2 - L c. L b. + L a. L d. + 2 L d. L b, -

J J J J J J

- (c(1)b(1) + a(1)d(l) + 2d (1) b (1) ) mod 3.

We now consider the two cases i = a and i

Let i = O. Then by Lemma (4.5.17)

1 separately.

1 a
00

a(l) + 2b(1) and a b
00

2b(1) + 2a(1),

so that b (1)

Furthermore

1 and a (1) 2.

1

This leads to

c
00

c (1) + 2d (1) andd
00

2d (1) + 2c (1) •

if d 1, then d (1) 1 and c (1) 0,
00

if d 2, then d (1) a and c (1) 1.
00

In both cases we find k
1

7 O.

Let i = 1. Then by Lemma (4.5.17)

1 a a (1) , a b b (1) , 1 ... c c (1) and d d (1) •
00 00 00 00

Both d 1 and d = 2 yield k
1

7 O.
00 00

So we may conclude that k
1

7 0, .if both i a and i 1. Hence

3'I a x J
j

+ L d )
j

counting non-zero coefficients gives

n.
1.
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This formula can easily be reduced to the assertion of the theorem.
o

Hence assuming that ~~ is non-empty we have established a square root bound on
1

the minimum weight d. of the code C.. For the rest of this section we assume
1 1

~~ to be empty. Also in this case we shall establish a square root bound on the
1

minimum weight d .. From now on the proof is completely analogous to the proof
1

in [16J. For the sake of completeness we remark that Theorem (4.6.8) is almost

analogous to the corresponding theorem in [16J, but the lemma analogous to

Lemma (4.6.4) is in the binary case easier to prove.

From Lemma (4.6.4c) it follows that t., defined by (4.6.7) is greater than zero.
1

Only for i = 0 we define

r : = min { d
2

(~.> - d
1
(~) }

~E~O

d
2
(~) > d

1
(~)

(4.6.9) Lemma: The minimum weight dO of the code Co satisfies

+
2

(dO - 1) + 1

Proof: By Lemma (4.6.4b) there exists a vector

with

v = (1, a O' ••• , a
n

_ 1

(d - 1) + (r - 2) (d - 1) - (r - 2)
d 1 (~)

0
d2 (~)

0

2 2

Let n -1 n -1
0

a.x
j 0

b.)u(x) I + ex I
j=O J j=O J

Then u(x) E DO and

in GF(3) such that

-1
u(x)u(x ) E DO n D~ . Hence there exist elements k 1 , k2

-1
u(x)u(x ) + +
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I a x- j
j

+

Substituting x 1 yields

2 2
k

1
= a (1) + b (1),

By Lemma (4.5.17) we have

2a (1 ) b ( 1) + 2b
2

(1) •

i. e.

1 a
00

a ( 1) + 2b (1 ) , o b
00

2a ( 1) + 2b (1) ,

a ( 1 ) 2 and b (1) = 1.

Hence k
1

2 and k
2

o. Thus we may conclude that

2 I x
j I aox

j I aox- j
+ I b.x

j I b.x-j
J J J J

Counting non-zero coefficients gives

2
( (dO - 1) : (r - 2») 2

+ (dO - 1) : (r - 2»)
- (d - 1) + 1o n •

o

This formula can easily be reduced to the statement of the theorem.

(4.6.10) Lemma: The minimum weight do of the code C. satisfies
l l

o

(do - 2)2
l

2

2
t.

l

2
+ t. ~

l
n.

l
i 0, 1.

Proof: Let i E {O, 1} .

By Lemma (4.6.4b) there exists a vector

with
(d. - 1) - t

l i

2
and

(d 0 - 1) + to
l l

2
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and by the same lemma there exists a vector

e = (1 , cO' ... , c 0, dO' ... , dn - 1) E rI.
n-l 1

with

(d. - 1 ) + (t, - 2) (d, - 1) - (t. - 2)
d 1 (~)

1 1 and d (e) 1 1

2
2 - 2

Let

I a,x
j I b,x

j I
3' L d 3ju(x) + a and y (x) c,x J + a .x

J ] J J

Then u(x) E Vi' y(x) E V! ' so that u(x)y(x) E Vi n V~ = < j(x) > •

Hence there exists elements k
1

, k
2

E GF (3) such "that

u(x)y(x)
3'I c x J

j
+

, 3'
Lb,xJ I d,X]

J ]
+

+ a{ d
3j

,x
]

+
3' ,I c x ] Lb ,x]

j J
+ 2 L b.x

j I d.x
3j

}.
J ]

Substituting x 1 yields

k 1 a (1 ) c (1) + b ( 1 ) d (1 ) and k 2 = a (1 ) d (1) + c (1) b ( 1) + 2b (1 ) d (1) •

It is easy to see that for i = a as well for i

k
2

= O. Hence we may conclude that

1 this leads to k
1

~ a and

I a )
j

3'I c x J
j

+
3'I d x ]

j

Counting non-zero coefficients gives

(_(d_1_,_-_l_)_-_t_i_j(d i - II + Ct i - 21) + (Cd i - 1) + t9 Cdi - II - Ct i - 21) ,
2 2 2 2

> n .•
1

This reduces to the statement of the lemma. D
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Now we are able to prove the square root bound on the minimum weight of the

codes C. , i = 0, 1.
1

(4.6.11) Theorem: Let C be the l2(n+1), n+1J double circulant code which is the

ternary image of the extended QR-code over GF(9) of length n + 1 and dimension

~(n + 1); n is a prime of the form n = 12k ± 5. Then the minimum weight d of C

satisfies

(i)

d - 0 mod 3

(d - 1) + 1 ~ 2n + 1 if n 12k - 5,

(ii) (d - 1)2 ~ 2n - 1 if n = 12k + 5.

Proof: (i) Let n be a prime of the form n = 12k - 5. If n~ is non-empty, the

statement has already been settled by Theorem (4.6.8). Therefore we may assume

that n~ is empty.

If to ~ ~ + 1, then r ~ .~ + 1, so that Lemma (4.6.9) gives

(d - 1)2
2

(d - 1)

2
~ n

and the statement holds. If t = va-=-r + 0 , 0 > 1, then Lemma (4.6.10) giveso

(d - 1) 2

2
(d - 1)

2
va-=-r (0 - 1) (l. - 1) ~ n

2

o

Since 0 > 1 this inequality can be reduced to

(d - 1) 2 - (d - 1) + 1 ~ 2n + 1.

(ii) Let n be a prime of the form n = 12k + 5. If n: is non-empty, even a

more powerful statement has been proved (cf. Theorem (4.6.8». Therefore we make

the assumption that n~ is empty. Since, in this case, t
1

~ 1, the second part

of the theorem follows directly from Lemma (4.6.10).

(4.6.12) Examples: Using the computer and Theorem (4.5.20) we have calculated the

minimum weight of all [2(n+1), n+1J double circulant codes which are the ternary
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images of [n+l, ~(n+l)J extended QR-codes over GF(9), up to n = 31 (cf. §4.5.6).

Here n is a prime of the form n = 12k ± 5. We shall compare these values with

the lower bounds which we have found by using the square root bound.

n

5

7

17

19

29

31

minimum weight of the a lower bound on the

[2 (n+l) , n+l] code C minimum weight of C

4 4

6 6

10 7

12 9

16 9

18 12

The examples reveal that the square root bound,mentioned in Theorem (4.6.11),

is not very sharp for small values of n; this in contrast with the square root

bound in the binary case (cf. Theorem (3.5.11».

4.7. The relation between extended QR-codes over GF(9) and symmetry codes over GF(3)

In §4.5 we have shown that the [2(n+l), n+1J double circulant codes which are

the ternary images of [n+l, ~(n+1)J extended QR-codes over GF(9), where n is a

prime of the form n = 12k - 5, have a generator matrix of the form G = [ I Is),

where S is a Hadamard matrix of the Paley-type (cf. Theorem (4.5.13». After

we had noticed that, the question arose whether it is also possible to consider

the sYmmetry codes in one way or another as the ternary images of extended

QR-codes over GF(9). In this section the question will be answered in the

affirmative in case n is a prime of the form n = 12k + 5.

Let a be a primitive element of GF(9) which satisfies

2
a + a + 2 0

(cf. §4.2). It is easily seen that every element ~ E GF(9) can be written
2

uniquely as ~ = a + a b, where a , b E GF(3). Therefore any vector c of an

n-dimensional vectorspace over GF(9) can be written as

c ... , 2
a +ab),

n n
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where a., b E GF(3), 1 ~ i ~ n.
1. i

The ternary image of this vector c is defined to be

The mapping which sends vectors of length n over GF(9) into vectors of length 2n

over GF(3), in the above defined way, is called~.

Analogously to Theorem (4.2.7) it is easy to prove

(4.7.1) Theorem: A necessary and sufficient condition for the ternary image of
2

an extended cyclic code over GF(9) of length n + 1, generated by g(x) = 1 + a h(x),

under the mapping ~, to be a [2(n+l), n+1J double circulant code C is that the

polynomial h(x) satisfies

(4.7.2) h
2

(x) + 1 = ±j(x). o

Let n be a prime of the form n = 12k + 5. Let as usual Q be the set of all

residues mod nand N the set of all nonresidues. Then the polynomial h(x), defined

by

(4.7.3) h(x) = 2 + L
SEN

s
x

is a solution of equation (4.7.2), as easily can be verified using Theorem (4.5.3).

Hence the ternary image of the extended cyclic code over GF(9) of length n + 1

generated by g(x) = 1 + a
2

(2 + L x
s

) is a double circulant code of length
SEN

2(n + 1) and dimension n + 1. This code Dover GF(9) generated by

g(x) = 1 + a
2

(2 + L x
s

) is a QR-code. For the code D is also generated by
seN

7
a g (x)

7
a + 2a + a I

SEN

s
x 1 + a L

SEN

s
x

(4.5.6».

the form n = 12k + 5, generated by gO(x) = 1 + a L
SEN

We have already shown that the cyclic code over GF(9) of length n, n a prime of
s

x is a QR-code (cf. Corollary

The generator matrix of the extended code D is given by (4.5.10). Therefore the

matrix GV ' defined by
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5 6 2 2
a a . . a a a . . . . . a

2 3
a a

(4.7.4)
2

Gjj a I + aH
O

I + a (21 + H
O

)

2 3
a a

where H
O

is the circulant matrix with h
O

(x) L:
s

is also a generatortoprow x ,

matrix of the extended code D. SEN

Since
6

2a
2 3 2 C of Da and a = 1 + a , the ternary image the extended code

under the mapping ~, has a generator matrix of the following form

00 ... 021 ... 1

(4.7.5) G

1

1

I

1

1

H

where H is a circulant matrix with toprow hex)

G
l

, defined by

2 + \' X
S

L Obviously the matrix
sEN

00 ... 011 ... 1

(4.7.6) G =
1

1

1

I

o

o

H + J

is also a generator matrix of the double circulant code C. Since H + J is a

circulant matrix with toprow

h (x) + j (x) L
rcQ

r
x L

SEN

s
x

the code C is equivalent with the sYmmetry code (cf. Definition (2.3.1». Hence

we have proved the following theorem.

(4.7.7) Theorem: Let n be a prime of the form n = 12k + 5. Then the [2(n+l), n+l]

sYmmetry code sym
2n

+
2

is equivalent with the ternary image, under the mapping ~,

of the extended [n+l, ~(n+l)J QR-code over GF(9). 0

We have not been able to prove an analogous theorem for sym2n+2' in case n is a

prime of the form n = 12k - 1.



-83-

Appendix A. The minimum weights of all [2(n+l), n+1J double circulant codes

which are the binary images of extended quaternary cyclic codes,

up to n = 45

In this appendix a complete list of all [2(n+l), n+1J double circulant codes

which are the binary images of extended quaternary cyclic codes will be given up

to n = 45. That means that for all feasible values of n $ 45 all polynomials hex)

which satisfy h
2

(x) + hex) + 1 = j(x) and the corresponding codes have been

determined. The theory of these double circulant codes has been treated in

chapter 3.

Using the computer the minimum weights of all these codes have been calculated.

All polynomials hex) have been recorded, except when two polynomials h
1

(x) and
-1

h
2

(x) satisfied one of the following relations: h
1

(x) h
2
(x), h

1
(x) = h

2
(x) +

+ j(x), h
1

(x) = h;(X) or h
1

(x) = x
k

h
2

(X) for any k ~ n - 1. In these cases

only one of the two polynomials has been recorded. For the sake of completeness

we want to emphasize the fact that it is very well possible that we have mentioned

codes which are equivalent.

Up to n = 19 also the weight enumerators of the [2(n+l), n+1J double circulant

codes have been calculated.

Because of Corollary (3.4.9) the polynomial hex) might be chosen such that h(l) 1.
n

In this case hex) is invertible, i.e. gcd(h(x) , x - 1) = 1, so that also the

circulant matrix H, with toprow h(x), is invertible. Moreover in this case H

t ' f' 3 ( f (3 2 19))' 2 -1 d 'l'f thsa ~s ~es H I c. Lemma .. ,~.e. H = H . In or er to s~mp ~ y e

given in
459

x + x + x .

k,2n + 2, the dimension by

calculations we have made use of some of the theory developed in [llJ.
n-l

In this appendix the toprow of H, hex) = h
O

+ h
1

x + •.• + h
n

_
1

x ,is
3

for hex) = x + x +octal as IhOhlh2Ih3h4hSI .•.. E.g. 2704 stands

The wordlength of the code is denoted by N, i.e. N

i.e. k = n + 1, and the minimum distance by d. The codes labelled with the sYmbol

# are self-dual and have weights divisible by 4.
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h(x)dkNn

3 8 4 4 2 (extended Hammingcode)

5 12 6 4 62

9 20 10 4 662

11 24 12 8 2704 (extended binary Golay code)

13 28 14 8 66064

15 32 16 4 23451, 22662

8 27206, 27015

17 36 18 8 670072, 626322

19 40 20 8 2365030

25 52 26 4 634512344, 624716244

27 56 28 4 262662262, 226626226

29 60 30 12 6364221362

33 68 34 4 27055611342

8 63411255706, 66266622262, 62622266626, 63401257706

12 66276620262, 62632264626

37 76 38 12 6627420436464

39 80 40 4 2606730325415

8 2626622226626, 2242374761051

12 2626422236626

41 84 42 14 66236241236232, 62421763742122

43 88 44 16 272142741347210, 270577342005610,

226302455363130, 224737056021530

45 92 46 4 672066720627206 + 19 other possiblities

8 672466360223642 + 43 other possiblities

#

#

#

#

#

Since for n = 45 the corresponding codes have a low minimum weight, we have not

mentioned all 64 polynomials h(x).

The weight enumerators of the [2(n+1), n+1J double circulant codes have been

calculated, up to n = 19, i.e. up to wordlength N = 40. Since the all-one vector
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is a codeword, it is easily seen that the number of codewords of weight i, A"
1

is equal to the number of codewords of weight N - i, Le, A, AN-i'
Therefore

1

We have only recorded the values of A. for i ~ n + 1.
1

n = 3, h (x) 2 n = 5, h(x) 62 n = 9, h (x) 662

A
O

1 A
O

1 A
O

1

A
4

14 A
4

15 A
4

9

A
6

32 A
6

72

A
8

246

A
10

368

n = 11, h (x) 2704 n = 13, h(x) 66064 n = 15' , h (x) 23451

A
O

1 A
O

1 A
O

1

A
8

759 A
8

546 A
4

15

A
12

2576 A
lO

1456 A
8

450

A
12

3549 A
10

2560

A
14

5280 A
12

4193

A
14

17920

A
16

15258

n = 15, h(x) 26226 n = 15, h(x) 27206 n = 15, h (x) 27015

A
O

1 A
O

1 A
O

1

A
4

15 A
8

360 A
8

300

A
6

30 A
10

2080 A
10

2560

A
8

450 A
12

6608 A
12

4928

A
10

1990 A
14

14560 A
14

17920

A
12

6113 A
16

18318 A
16

14118

A
14

14620

A
16

19098

n = 17, h (x) 670072 n = 19, h(x) 2365030

h(x) 626322

A
O

1 A
O

1

A
8 ~70 A

8
285

A
l0

2346 A
12

21280

A
12

8840 A
16

239970

A
14

29240 A
20

525504

A
16

56525

A
18

67900
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APpendix B. The minimum weights of all [2(n+1), n+1J double circulant codes

which are the ternary images of extended cyclic codes over GF(9) ,

up to n = 35

In this appendix a complete list of all [2(n+1), n+1J double circulant codes

which are the ternary images of extended cyclic codes over GF(9) will be given

for n ~ 35. That means that for all values of n ~ 35 all polynomials h(x)

which satisfy h
2

(x) + h(x) + 2 = ±j(x), and their corresponding ternary double

circulant codes have been determined. The theory of these codes has been

discussed in chapter 4.

Using the computer the minimum weights of all these codes have been calculated.

All polynomials h(x) have been recorded, except when two polynomials h
1

(x) and

h
2

(x) satisfied h
1

(x) = ±h~(X), h
1

(x) = ±h
2

(x-
1

) or h
1

(x) = ±h
2

(x) ± j(x).

In these cases only one of the two polynomials has been given, since obviously

the corresponding codes are equivalent.

The toprow of the circulant matrix H, the polynomial h(x), can be written as

follows

h(x) I
iEA

i
x + 2 I

iEB

i
x ,

where A and B are two mutually disjoint subsets of S = {I, 2, ... , n-1}. In the

following table the polynomials h(x) will represented by the sets A and B.

Furthermore when n is a prime, the set of nonresidues mod n will be denoted

by R
i

. The wordlength of the codewords is denoted by N, i.e. N = 2n + 2, the

dimension by k, i.e. k = n + 1 and the minimum weight by d.
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h(x)

5 12 6 4 A = R
1

, B = 0

7 16 8 6 A = R
1

, B = f2J

17 36 18 10 A = R
l

, B = f2J

19 40 20 12 A = R
l

, B = f2J

25 52 26 4 A = {i, 4, 5, 6, 9, 11 , 14, 16, 19, 20, 21, 24}, B = 0

A = {i, 4, 6, 9, 10, 11 , 14, 15, 16, 19, 21, 24}, B = 0

29 60 30 16 A = R
l

, B = f2J

31 64 32 18 A =: R
1

, B = f2J

35 72 36 4 A = D, 5, 6, 7, 10, 12, 13, 17, 19, 20, 24, 26, 27,

28, 31, 33, 34}, B =: f2J

6 A = {2, 3, 5, 7, 8, 10, 12, 13, 17, 18, 20, 22, 23,

27, 28, 32, 33}, B = f2J

8 A = {2, 5, 7, 8, 10, 18, 20, 22, 23, 28, 32},

B = {i, 3, 4, 9, 11 , 12, 13, 16, 17, 27, 29, 33}

12 A = {6, 7, 19, 24, 26, 28, 31, 34},

B = {i, 3, 4, 5, 9, 10, 11 , 12, 13, 15, 16, 17, 20,

25, 27, 29, 30, 33}
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Appendix c. Description of the corrwuter programs

In this appendix we shall briefly discuss the computer programs which we have

made.

The computer program, which we have made in order to determine all polynomials

h(x), which satisfy h
2

(x) + h(x) + 2 = ±j(x), is completely based on the algorithm

described in §4.2.2.Therefore any further treatment of this program is superfluous.

The other programs have been made in order to determine the weight enumerator

or the minimum weight of double circulant codes over GF(2) and GF(3).

In view of the structure of the generator matrix of these codes we needed a

procedure which calculated for given k and n the sums of all linear combinations,

consisting of k rows of an nxn circulant matrix. Of course this procedure had to

be made in such a way that only one single sum of all the shifts of the same

vector was calculated. Furthermore the number of different shifts of each vector

had to be calculated (of course this number is mostly equal to n, but, sometimes,

when n is not a prime this number is equal to a divisor of n).

In order to describe the procedure we have to introduce circular permutations

(cf. [13, §2.1]). If letters a
1

, ... , an are arranged in a circle with a
1

following an' then anyone of the linear sequences a
2

,a
3

, ... , a
n

,a
1

; a 3 , ••• , an'

a
1
,a

2
; ... ; a

n
,a

1
,a

2
, ... , a

n
-

1
may be thought of as determining the same

circular sequence, called a circular permutation. With each circular permutation

of length n we may associate a unique minimum period d such that the circular

sequence consists of n/d repetitions of a sequence of d letters.

The recursive procedure which we have made generates, in a lexicographical way,

for given k and n, all circular permutations consistinq of k l's and n-k O's.

Furthermore this procedure calculates the period of each circular permutation.

Let n be 12 and k equal to 3. Then all circular permutations consisting of 90's

and 31's are, in lexicographical order, given by

111000000000 101010000000

110100000000 101001000000

110010000000 101000100000

110001000000 101000010000

110000100000 101000001000

110000010000 101000000100

110000001000 100100100000

110000000100 100100010000

110000000010 100100001000

100010001000
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All circular permutations, except the last one, have period 12. the period of the

last one is equal to 4.

In our procedure the circular permutations are recursively built up and stored

in an array B[O:n-l] of length n. One moment reflection shows that B[O] has to

be 1 and B[n-l] has to be O.

Let the rows of the nxn matrix H be indexed by 0, 1, ... , n-l. Then of course a

circular permutation for which B[i
l

] = 1, 1 ~ 1 ~ k, corresponds with a linear

combination consisting of the k rows of H indexed by i
1

, ... , i
k

.

We shall now give the procedure for the binary case.

Notation:

n: length of the circular permutation, i.e. the size of the square circulant

matrix H;

k: the number of ones in the circular permutations;

B[O:n-l]: integer array, in which the circular permutations will be stored;

p: the number of ones which have already been stored in the array B;

jO: the highest index for which B[jO] = 1;

per: the period in the sequence B[O], ... , B[j];

sO[O:n-l]: an integer array which contains the linear combination of the rows

of the matrix H which are indexed by the elements j for which

o ~ j ~ jO and B[j] = 1, i.e. sO[O:n-l] contains a linear combination

consisting of p rows of the matrix Hi

pd: the period of the circular permutation B[O], ..• , B[n-l];

ok: boolean variable;

sum(a,b): a procedure which calculates the binary sum of two vectors a and b;

ones (sO) : a procedure which counts the number of ones in the array sO;

Bpos(upindex, length): a boolean procedure which gets the value true iff there

exists j, upindex - length + 1 ~ j ~ upindex, such

that B[j] = 1;

H(j): the j-th row of the matrix H;

NCD[l:n,l:n]: an integer matrix with NCD[i,j] = the number of linear combinations

of weight j, consisting of i rows of the matrix H.
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(A) procedure count(p, jO, sO, per, k);

value p, jO, per, k; integer p, jO, per, k;

integer array sO[*J;

begin integer j; integer array s1[0:n-1];

if p < k

~ for j := jO + 1 step 1 until n - 2

(B) do if B[j mod perJ = 0

then B[j] := 0

else begin

(C)

(D)

(E)

(F)

if if n - (j • per) * per ~ per

then true

else Bpos«n-1) mod per, n - 1 - j)

then begin

B[j J := 1;

s1 := sum(sO, H(j»;

count (p+1, j, s1, per, k);

B[j] := 0

per := j + 1

end

else begin

i := ones (sO) j

if n mod per = 0 and not Bpos«n-1)mod per, n - 1 - jO)

then pd := per

else pd := n;

NCD[k,iJ := NCD[k,i] + pd;

end

end procedure count;

We shall explain this procedure by giving the array B[0:n-1] in the situations

(A), ••• , (F).

Let in situation (A) the array B be given by

1101100 1101100 1101100 11 .. ....
t t

per jO n-1

Then it is forbidden to place a 1 on position jO + 1 , since otherwise we can
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obtain, by a cyclic shift over per positions to the left, a lexicographically

greater circular permutation, i.e. a circular permutation which we have already

constructed. This corresponds with situation (B).

Hence in situation (C) we have

1101100 1101100 1101100 110
t t t

per t j n-l

Here t (j -:- per) * per.

If n - t ~ per then the circular permutation can always be constructed on. However

if n - t < per, then it is only allowed to place a 1 on position j if the array

B contains at least one 1 on the positions (j+l) mod per, ... , (n-l) mod per.

Otherwise we can obtain again by oyclic shifting a lexicographically greater

circular permutation. This corresponds with (D).

When We arrive in situation (E) the 1 on position j has been changed into an O.

That means that the period per becomes equal to j + 1, as illustrated in the

following example

1101100 1101100 1101100 1100
f ,..... I

per

After completing a circular permutation, i.e. when p = k, the variable per is

equal to the period of the circular permutation iff per I n and B[j] = 0 for

(jO+l) mod per ~ j ~ (n-l) mod per. This corresponds with (F).

We have executed our programs on the Burroughs B7700. On this computer each word

consists of 48 bits. A bit, the basic unit of hardware in the computer, can be

considered as a variable with only two possible values: 0 and 1. A word therefore

can be considered as an "array row" consisting of 48 "variables" each "variable"

capable of storing the values 0 or 1. The Burroughs B7700 provides the means

by which to the individual bits of any word may be referenced directly. It is

called partial word notation.

We have made use of this partial word notation. In the binary·case .one needs one

single word to store a vector of length n, n ~ 48. In fact we have replaced in

our programs the arrays B, sa and sl by words. Using partial word operations

we needed only one single word to store the circulant matrix H. The addition

operation. was replaced by logical operations on the words. Due to th~ partial

word operations the execution time could be reduced with at least a factor n.
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In the ternary case we have also been able to use this partial word notation.

In this case we needed two words to store a ternary vector, namely one word to

store the l's and D's and another word to store the -l's and D's. Also in this

case We have replaced the addition operations by logical operations, which were

of course in the ternary case more complicated than in the binary case.

To reduce the computation time still more we have, in the binary case, made use

of some of the theory developed in [llJ.

In order to give an indication of the computation time we shall give four

examples.

The minimum weight of the binary [88,44,16J respectively [92,46,8J double

circulant code could be determined in 108 respectively 0.3 seconds.

The minimum weight of the ternary [64,32,18J respectively [72,36,12J code could

be determined in 1256 respectively 4.5 seconds.
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