

DACTyL

Citation for published version (APA):
Papakostopoulos, A. P., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software
Technology (ST) (2013). DACTyL: towards providing the missing link between clinical and telehealth data.
[EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/3c7c9585-2570-43ec-bde8-ba9757b8291d

DACTyL

Athanasios Papakostopoulos

September 2013

DACTyL
Towards providing the missing link between clinical and telehealth data

Eindhoven University of Technology
Stan Ackermans Institute / Software Technology

Partners

PHILIPS Company Eindhoven University of Technology

Steering Group Rian Wouters

Helen Schonenberg
Ad Aerts

Date September 2013

Contact
Address

Eindhoven University of Technology
Department of Mathematics and Computer Science
MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1240-6

Abstract This document conveys the findings of the Data Analytics, Clinical, Telehealth, Link

(DACTyL) project. This nine-month project started at January 2013 and was conducted at
Philips Research in the Care Management Solution group and as part of the Data Analysis
for Home Healthcare (DA4HH) project.
The DA4HH charter is to perform and support retrospective analyses of data from Home
Healthcare products, such as Motiva telehealth. These studies will provide valid insights in
actual clinical aspects, usage and behavior of installed products and services. The insights
will help to improve service offerings, create clinical algorithms for better outcome, and
validate and substantiate claims on efficacy and cost-effectiveness.
The current DACTyL project aims at developing and implementing an architecture and
infrastructure to meet the most demanding need from Motiva telehealth customers on return
on investment (ROI). These customers are hospitals that offer Motiva telehealth to their
patients. In order to provide the Motiva service cost-effectively, they need to have insight
into the actual cost, benefit and resource utilization when it comes to Motiva deployment
compared to their usual routine care. Additional stakeholders for these ROI-related data are
Motiva customer consultants and research scientists from Philips for strengthening their
messaging and service deliveries to arrive at better patient care.
The challenge of the current project is that the Motiva data and the hospital data need to be
coupled, though they reside in different data silos. In theory a hospital has all the available
data at its disposal to answer the return on investment question but in practice it lacks the
infrastructure to combine different data sets and the analytical skills to transform the data
into meaningful insights. Additionally, every hospital stores data in a different way deter-
mined by the available IT infrastructure. The design of a generic system that is able to cou-
ple hospital and Motiva data has to deal with the heterogeneity and variety in systems and
standards in this domain.
During the domain analysis we identified that a hospital interface engine is the sys-tem
responsible for data transfer within a hospital. We found out that hospitals use different
clinical vocabularies to categorize hospitalization events. The ICD-10 and SNOMED vo-
cabularies are most often used. The HL7 CDA document is the state of the art standard for
clinical data exchange. This standard is not widely supported in the Netherlands and coun-
tries that use it create country-specific adaptations. The IHE standardization body creates
documents that specify how data should be exchanged in a clinical environment.
We identified five different roles interacting with the system the data contributor, the data
integrator, the data presenter, the data analyst and the data researcher. Following that, we
grouped the requirements in three different areas of interest connecting, linking and present-
ing. We implemented three layers to meet the requirements from each area.
The connection layer supports a push communication strategy that decouples the DACTyL
from the hospitals infrastructure and leaves the initiative for data contributions to the hospi-
tal. The linking layer offers storage areas, databases and data ware-houses, and the mecha-
nism to transfer data between these areas. The presentation layer gives access to the stored
data. The access is realized through business intelligence reports.
We used a hospital interface engine to send our test data set to DACTyL. The system suc-
cessfully accepted the data and made the necessary connections between the Motiva and the
hospital data sets. For the first time the end user was able to re-construct a complete time-
line containing telehealth and hospitalization events and thus see the “big picture” about the
patient. As future work we plan to test DACTyL in a hospital environment. This infrastruc-

ture is a stepping stone towards a system that can integrate different sources of data with
data coming from Philips telehealth products.

Keywords

telehealth, hospital information systems, Motiva, data warehouse, HL7

Preferred
reference

A. Papakostopoulos, DACTyL: Towards providing the missing link between clinical and
telehealth data. Eindhoven University of Technology, SAI Technical Report, September,
2013, ISBN 978-90-444-1240-6

Partnership This project was supported by Eindhoven University of Technology and Philips.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the Eindhoven University of Technology or Philips.
The views and opinions of authors expressed herein do not necessarily state or reflect those
of the Eindhoven University of Technology or Philips, and shall not be used for advertising
or product endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information contained within this report is
accurate and up to date, Eindhoven University of Technology makes no warranty, represen-
tation or undertaking whether expressed or implied, nor does it assume any legal liability,
whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of
any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the
intent to infringe the copyright of the respective owners.

Copyright Copyright © 2013. Eindhoven University of Technology. All rights reserved.
 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-
ing, recording, or by any information storage or retrieval system, without the prior written
permission of the Eindhoven University of Technology and Philips.

Foreword
Within the DA4HH project led by Steffen Pauws (OOTI alumnus) we created our
Data Analytics Framework (DAF). It demonstrates the possibilities of a Business
Intelligence solution that allows users (including Philips Motiva Telehealth custom-
ers) to create dashboards and reports of Telehealth data, in this case, Motiva data
from different locations in a fast, easy and dynamic way. However, one of the major
open issues was how to get answers to analysis studies that require hospital data,
such as Return on Investment reports, and how to link Motiva telehealth data with
clinical outcomes for patient monitoring and research purposes. Since we did not
have all the knowledge required, Rian Wouters (OOTI alumnus), came up with the
idea to write an OOTI proposal with the goal to investigate this problem and the
technologies that can be applied to solve it, and to extent the proof of concept imple-
mentation.

We had a few interviews with the OOTI candidates, and we decided that Athanasios
Papakostopoulos would be our man (luckily we soon discovered we can call him
Thanos). Thanos demonstrated his eagerness by asking for preparatory documents
and information far before the formal start of the project. And he would need this
eagerness, because it was not an easy assignment, especially in the beginning, where
he still needed to do a lot of scoping to get the project plan set.

In the early stage of the assignment he discovered that there is no such thing as a
straightforward HL7 interface. There is a whole world of 3-letter abbreviations, dif-
ferent standard versions, file types, architectures, government institutions, healthcare
institutions, medical companies, and standardization bodies that together shape the
domain of exchanging data between healthcare IT systems based on HL7 standards.
In the meantime the proof of concept requirements needed to be defined. It appeared
to be quite a challenge to define the requirements within this huge domain of tele-
monitoring, hospital systems, data warehousing, dimensional modeling, etc. The
decisions about how the architecture should look like did not make it any easier, but
he found his way through the jungle of standards, frameworks and technologies while
being goal-driven and pragmatic when necessary. As if the project was not challeng-
ing enough already, it required the use of commercial complex specialist tools that
were new to us and he had to learn by self-education and self-dedication.

The work of Thanos resulted in the report that is now in front of you, a working sys-
tem, and a better understanding of the domain not only for him, but certainly also for
us and definitely for others as well. The system is ready for release locally at a
Philips customer site or globally at Philips telehealth data centers. In particular, after
demonstration to a Philips customer, the customer enthusiasm directly resulted in a
follow-up to install, configure and use the system at the customer site. That is the
very next thing that we will do. In other words, Thanos’ work will lead to direct
business impact and improved customer value! In addition, the system and its archi-
tectural design were presented to the Principal Architect of the Philips Hospital to
Home Innovation Business; Thanos gave him food for thought regarding the business
strategy on data management and platforms.

Thanos was a bit worried that the assignment would not provide him enough pro-
gramming and design tasks for a final OOTI project. By his pragmatism and perse-
verance, he proved himself wrong.

A few months prior to the end of his assignment, Thanos was offered a job at Philips
Healthcare that he accepted. We thank him for the pleasant cooperation of the last 9
months and wish him all the best with the beginning of this new episode of his life in
the Netherlands.

Helen Schonenberg & Rian Wouters
September 2013

Preface
This document forms the technical report of Data Analytics, Clinical, Telehealth,
Link (DACTyL). This project describes the architecture, design and implementa-
tion of a proof of concept analytical system capable of combining external clini-
cal data from hospitals and telehealth data from Philips products in order to pro-
vide insights on the data to the end users.

Non-technical readers can read Chapters 1 and 2 to understand the problem and
Chapter 4 to find information about the domain. Technical readers should read
Chapters 7-9 to understand how the system is designed. The conclusions are
summarized in Chapter 12.

The project was carried out by Athanasios Papakostopoulos from the Stan
Ackermans Institute Software Technology program of Eindhoven University of
Technology. This nine-month project is the author’s final project and concludes
the two-year Professional Doctorate in Engineering (PDEng) program, known
also by its Dutch name Ontwerpers Opleiding Technische Informatica (OOTI).
The project was carried out at Philips Research, which is the industrial partner for
this study, in Eindhoven.

Athanasios Papakostopoulos
September 2013

iii

Acknowledgements
A number of people contributed through the duration of this project. First and
foremost I would like to thank Helen Schonenberg and Rian Wouters my supervi-
sors from Philips Research. On our weekly update meeting they provided guid-
ance and support in the development effort of this project. Helen’s feedback and
comments had a huge impact in the creation of this document. She had the cour-
age and patience to perform multiple iterations over the chapters and give detailed
recommendations.

I would also like to thank Ad Aerts my TU/e supervisor and General Director of
Software Technology program for his valuable contribution and support during
this project. He provided valuable feedback for the creation of this report and
useful advises for project and expectation management. Additionally he gave me
the opportunity to present my work in the TU/e Alumni Day 2013.

All the OOTI coaches should be thanked for improving my technical and profes-
sional skills in this two year program. Special thanks should go to Maggy De
Wert, the OOTI secretary, for being always there for the OOTIs.

I also want to thank the remaining members of the team Steffen Pauws, Jorn op
den Buijs and Hossein Nassabi for providing a friendly working environment and
relaxing talks during coffee breaks.

A number of “unknown” people contributed to my project by answering my ques-
tions in technical forums. I should therefore thank the community of the Oracle
Technical Network and the community of the Stack Overflow forum.

Last but not least I would like to thank family and loved ones for their support.

September 2013

v

Executive Summary

This document conveys the findings of the Data Analytics, Clinical, Telehealth,
Link (DACTyL) project. This nine-month project started at January 2013 and was
conducted at Philips Research in the Care Management Solution group as part of
the Data Analysis for Home Healthcare (DA4HH) project.

The current DACTyL project aims at developing and implementing an architec-
ture and infrastructure to meet the most demanding need from Motiva telehealth
customers on return on investment (ROI). These customers are hospitals that offer
Motiva telehealth to their patients. To provide the Motiva service cost-effectively,
they need to have insight into the actual cost, benefit and resource utilization for
Motiva deployment compared to their usual care. Additional stakeholders for
these ROI-related data are Motiva customer consultants and research scientists
from Philips for strengthening their messaging and service deliveries to arrive at
better patient care.

The findings of this project can be grouped in two categories: the domain analysis
and the implementation findings. Coupling telehealth data with clinical outcomes
is an innovative use case. Analytical systems are already in use in the healthcare
domain but according to our literature research there is no system that relates
telehealth and clinical data in a large scale.

Hospitals use different IT systems to store data that are potentially interesting for
our use case. It is therefore not feasible to predict where data is located at a par-
ticular hospital, and how it can be accessed. The greatest common factor between
hospital-IT layouts is the interface engine. This system facilitates the data transfer
within a hospital and can support communication with external systems. We pro-
pose that the communication between DACTyL and the hospital is realized
through the interface engine.

Standardization bodies such as the HL7 and the IHE provide standards for in-
teroperability and data transfer across different systems. The adoption level of the
standards varies per country. We propose further research to identify if the adop-
tion of an existing standard or a specification of a new standard will benefit
DACTyL.

For the envisioned system, we propose a three-layered architecture based on a
push communication strategy. The layers we identified are the connection, linking
and presenting layer. The connection layer receives, transforms and saves data
contributed by hospitals. The linking layer offers storage areas and a mechanism
to link Motiva and hospital data. The presentation layer offers access to the data
to the potential end users.

To validate our design, we implemented a proof of concept version of DACTyL.
This version successfully integrated a data set containing hospitalization data
contributed by a hospital interface engine with Motiva data. The system was able
to produce reports that compare hospitalizations between Motiva and usual care
patients. The end user can evaluate the ROI from the difference in hospitaliza-
tions between Motiva and usual care patients. The demo of the system was well
received by a customer (hospital) and led to the definition of new case study that
will be implemented in the hospital for further evaluation.

We believe that a system capable to couple hospital and telehealth data will not
only meet the client requirements on ROI but it will also provide Philips with
unique insights and opportunities to further develop prediction models that will
lead to better patient care.

vii

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context ... 1

1.2 Project Scope and Goals .. 2

1.3 Outline .. 3

2. Problem Analysis ... 5

2.1 Context ... 5

2.2 Roadmaps ... 6

3. Stakeholder Analysis ... 7

3.1 Introduction .. 7

4. Domain Analysis .. 11

4.1 Introduction .. 11

4.2 Hospital Information Systems .. 11

4.3 Healthcare Standards ... 12
4.3.1. Health Level 7 (HL7) .. 12
4.3.2. Integrating Healthcare Enterprise (IHE).................................. 14

4.4 Clinical Vocabularies ... 14

4.5 Business Intelligence .. 15

4.6 Analytical Systems .. 16
4.6.1. Data warehouse and Dimensional modeling 16
4.6.2. Extract Transform Load .. 18
4.6.3. OLAP cubes .. 19

5. Feasibility Analysis .. 21

5.1 Introduction .. 21

5.2 Experiment: Communication between DACTyL and Interface
Engine ... 21

ix

5.3 Risks ... 22

5.4 Issues .. 23

6. System Requirements .. 25

6.1 Introduction .. 25

6.2 Roles interacting with DACTyL ... 25

6.3 Project use case scenario ... 26

6.4 Functional Requirements ... 27
6.4.1. Connecting Requirements .. 28
6.4.2. Linking Requirements ... 28
6.4.3. Presenting Requirements ... 28
6.4.4. Return on investment report .. 29
6.4.5. Patient report.. 29

6.5 Constraints ... 30

6.6 Nonfunctional requirements ... 30

7. System Architecture .. 32

7.1 Introduction .. 32

7.2 Data Aggregation Architectures... 32
7.2.1. Third Generation Integration ... 32
7.2.2. Second Generation Integration .. 33
7.2.3. Conclusions ... 34

7.3 Refined Decisions ... 34
7.3.1. Data Extraction .. 34
7.3.2. Transport .. 34
7.3.3. Input interpretation .. 35
7.3.4. Transformation-Normalization .. 35
7.3.5. Summary of Refined Decisions ... 36

7.4 Overview of the system ... 37

8. System Design .. 38

8.1 Introduction .. 38

8.2 Component Diagram .. 38
8.2.1. Connection Layer .. 38
8.2.2. Linking Layer .. 39
8.2.3. Presentation Layer ... 40

9. Implementation .. 41

9.1 Introduction .. 41
9.1.1. Introduction to Eclipse Modeling Framework 41
9.1.2. Introduction to Teneo .. 41
9.1.3. Introduction to Oracle Data Integrator 41
9.1.4. Introduction to Oracle Business Intelligence Enterprise Edition
 ... 42
9.1.5. Tooling layout.. 43

9.2 Implementation of the input model ... 44

9.3 Implementation of the connection layer 47

x

9.4 Implementation of the linking layer ... 51
9.4.1. Implementation of the landing area ... 51
9.4.2. Implementation of the Data Warehouse bus 51
9.4.3. Implementation of the Hospitalization data mart 52
9.4.4. Implementation of the ETL process .. 54
9.4.5. The “load_dim_patient” interface ... 54
9.4.6. The “load_dim_diagnosis_group” ... 55
9.4.7. The “load_diagnosis_group_bridge” 55
9.4.8. The “load_fact_final_hospitalization” interface 55

9.5 Implementation of the presentation layer 55
9.5.1. Implementation of the OLAP cube .. 55
9.5.2. Implementation of the data analyst reports 57

10. Verification & Validation .. 59

10.1 Introduction .. 59

10.2 Verification ... 59
10.2.1. Connection layer .. 59
10.2.2. Linking layer ... 59
10.2.3. Presentation layer .. 59

10.3 Validation ... 60

11. Deployment ... 63

11.1 Introduction .. 63
11.1.1. Implementation deployment .. 63
11.1.2. Proposed system deployment .. 64

12. Conclusions ... 65

12.1 Results... 65
12.1.1. Domain analysis .. 65
12.1.2. Implementation .. 65

12.2 Limitations .. 66

12.3 Lessons Learned ... 67

12.4 Future Work .. 67

13. Project Management .. 69

13.1 Introduction .. 69

13.2 Process ... 69
13.2.1. Planning and Scheduling ... 69
13.2.2. Communicating with supervisors .. 69
13.2.3. Acceptance Control ... 70
13.2.4. Configuration Management ... 70

13.3 Work breakdown structure ... 70

13.4 Project Retrospective .. 71
13.4.1. Strong Points ... 71
13.4.2. Improvement Points... 71

Glossary ... 73

Bibliography .. 75

xi

About the Authors .. 77

xii

List of Figures

Figure 1 – Philips Research inovation history [1] ... 1
Figure 2 – Project and Product stakeholders.. 8
Figure 3 – Communication with Interface Engine [9] ..12
Figure 4 – HL7 RIM Model..13
Figure 5 – Doctor visit modeled in RIM ...13
Figure 6 – A particular version of the HL7 CDA document.................................14
Figure 7 – Business Intelligence levels ...15
Figure 8 – Star schema ...17
Figure 9 – A visual represetnation of the data warehouse bus with conformed

dimensions ...18
Figure 10 – The main steps of ETL [11] ..19
Figure 11 – OLAP cube with 3 dimensions ..20
Figure 12 – Channels in Mirth Connect..21
Figure 13 – The status of the risks before and after the experiment23
Figure 14 – Areas of interest for DACTyL in red and the data sources in blue....25
Figure 15 – Identified roles. The data contributor provides data. The data

researcher and analyst receive information and limited data access. The data
integrator and presenter configure DACTyL. ..26

Figure 16 – Use cases for this version of DACTyL ..27
Figure 17 – Transforming different input instances to an instance of the

harmonization model prior to saving ...36
Figure 18 – Overview of DACTyL...37
Figure 19 – Component Diagram ...38
Figure 20 – Presentation (left), business (middle) and physical (right) models...43
Figure 21 – Creating a new report for the data analyst ...43
Figure 22 – Tooling layout in DACTyL ...44
Figure 23 – Design of the input model ...46
Figure 24 – Serialized instance of the input model ...46
Figure 25 – Package diagram from components to classes...................................47
Figure 26 – Class diagram showing the factory and the participating interfaces..48
Figure 27 – The parser and the saver handler ...48
Figure 28 – Class diagram with Pipe, Request and Handler49
Figure 29 –Source code to save an instance of the persistance model49
Figure 30 – A Request handled by the Handlers ..50
Figure 31 – Saving the data ..50
Figure 32 – Conformed dimensions in the data warehouse bus............................52
Figure 33 – The data warehouse bus and the data marts52
Figure 34 – Hospitalization data mart foreign keys ..53
Figure 35 – The hospitalization data mart ..54
Figure 36 – Hierarchy for the diagnosis dimension in the business model56
Figure 37 – Hospitalization fact table in the business model56
Figure 38 – Return on investment report ..57
Figure 39 – Patient report ...57
Figure 40 – Deployment diagram ...63
Figure 41 – Project timeline ...70

xiii

List of Tables

Table 1 – Stakeholder Overview ... 7
Table 2 – Information Providers .. 8
Table 3 – Example of ICD-10 Hierarchy ..15
Table 4 – Analytical vs Operational system [9] ..16
Table 5 – Simplified example of ICD-10 as a Dimension table17
Table 6 – Simplified report on hostitalizations ...20
Table 7 – Risks identified in the beginning [9]...22
Table 7 – Connecting Requirements ...28
Table 8 – Linking Requirements ..28
Table 9 – Presenting Requirements ..28
Table 10 – Return on investment report ...29
Table 11 – Patient report ..29
Table 12 – Constraints ..30
Table 13 – Nonfunctional Requirements ..30
Table 15 – Hospitalization events data set ..44
Table 16 – Hospitalization events data set ..45
Table 18 – Summary of the hospitalization data mart ..52
Table 18 – Connecting Requirements ...60
Table 19 – Connecting Requirements ...60
Table 20 – Connecting Requirements ...60
Table 21 – Linking Requirements ..60
Table 22 – Linking Requirements ..60
Table 23 – Linking Requirements ..61
Table 24 – Presenting Requirements ..61
Table 25 – Presenting Requirements ..61
Table 26 – Presenting Requirements ..61

xv

1.Introduction
1.1 Context
Philips Research is part of the Philips Corporation. As mentioned in the mission
statement, the company aims to “introduce meaningful innovations that improve
people’s lives [1].” They provide technology options for innovations in the area of
health and well-being, targeted at both developed and emerging markets. Philips
Research division works on everything from spotting trends and ideation to proof of
concept and – where needed – first-of-a-kind product development. The history of
Philips Research covers a period of more than 120 years as can be seen in Figure 1.

Figure 1 – Philips Research inovation history [1]

The ever increasing cost of healthcare is a modern challenge that affects govern-
ments, insurance companies and care providers. Hence, a major challenge in
healthcare is to more efficiently provide high-quality care for an increasing number
of patients using limited financial and human resources.

One of the actions towards the direction of cost reduction is the increased use of
telehealth. Philips Research is actively involved in innovations in the telehealth do-
main. This domain covers a family of products and services that address health relat-
ed needs of people in a decentralized way. In Telehealth Systems (TS) the caregiver
is geographically separated from the care consumer and the treatment is being indi-
vidually tailored to the patient’s needs. This patient-centered concept of bringing the
care from the hospital to the patient at home is expected to result in cost-reduction as
it aims to reduce the number of hospitalizations.

In the area of remote patient monitoring, one section of TS, Philips offers the Motiva
telehealth system. Using innovative measurement devices, such as weighing scales,
blood pressure monitors and glucose meters enhanced with the Bluetooth technology,
the vital signs of a patient could be transmitted to a set-top box. That device acts as a
medical gateway, as it maintains a connection with a back-end subsystem that col-
lects the health status information of the patient. The operator of the back-end, the so-
called “Motiva nurse,” has a good overview of the patient’s health. The nurse can
intervene with the aim to stabilize the patient within a safe zone and prevent the hos-
pitalization of the patient. To improve the efficiency of the system, the developers of
the Motiva system introduced the Care Plan, an integral set of messages, reminders,
surveys and videos that are used to stimulate the patient into maintaining a healthier

1

life-style. The Motiva system is managed by the Hospital to Home (H2H) business of
Philips Healthcare.

One of the challenges the Motiva team is facing is to meet the customer requirements
for more elaborate reporting and data access and interaction. Currently reporting for
Motiva is done in an ad-hoc way. Motiva engineers manually create queries per cus-
tomer and execute queries against a replica of the Motiva database. Then, they ag-
gregate the results in reports which are sent by email to the clients. This approach
will become infeasible when scaling up the business.

In this spirit, the Care Management Solution group within Philips Research initiated
the Data Analysis for Home Healthcare (DA4HH) as a research project to perform
data analysis on data coming from home healthcare products with the aim to improve
service delivery. At the same time, the project also works on an infrastructure, the
data analytics framework (DAF), to offer this type of analysis on an ongoing base.
DAF introduced a scalable solution that is able to meet customer reporting require-
ments, based on Data Warehousing and Business Intelligence (BI) (see Section 4.5).
This approach should not only satisfy the customer’s requirements, but also allow the
data to be used by Philips internally to improve service delivery. Last year the group
released a first version of DAF. This analytical system was able to produce dynamic
reports from Motiva data.

Currently, telehealth data and clinical outcomes are not linked. The missing link is an
infrastructure that is able to combine and store Motiva data and clinical data for re-
porting and analysis. Even though hospitals have all the necessary data at their dis-
posal to perform the reporting and analysis on their own, they still lack the infrastruc-
ture to do so. This link is necessary to meet one of the most urgent customer report-
ing requirements: a report on the return on invest (ROI) for Motiva. In other words,
does Motiva bring a reduction in healthcare cost?

1.2 Project Scope and Goals
The goal of this project was to investigate possible designs for an analytical system
that enables external data sources to submit data, combines them with Motiva data
and generates specific reports for different stakeholders. The data sources that are
relevant for this project are hospital information systems. As an exploratory project it
aimed to identify the components that play an important role and document the rele-
vant challenges and limitations.

The Data Analytics, Telehealth, Clinical, Link (DACTyL) system is implemented as
a proof of concept to validate the design. This system further extends the features of
DAF.

Recapitulating, the goals of the project were:

• Investigate the systems that hospitals use to store patient data and produce
taxonomy of these systems.

• Investigate standards used for data transfer.
• Investigate which technology solution can be used to gather data from a

hospital information system.
• Design and implement the components that will realize the communication

with the hospital information system.
• Design and implement a storage area that will store the incoming data.
• Integrate hospital and Motiva data.
• Create reports that quantify the Return on Investment (ROI) from the tele-

health service.

As the time budget for this project is fixed and the scope of such a system is vast, the
following issues were kept out of scope since the beginning in order to increase the
feasibility of this project.

2

The out-of-scope technical issues are:
• Anonymity and pseudonymity of incoming data1.
• Secure communication with the hospitals.
• Secure storage of incoming data.
• Financial soundness of the produced ROI report.
• Legal and ethical aspects of the project

1.3 Outline
Chapter 2 gives an example for our problem and analyses the difficulties. The design
criteria that apply are mentioned here.

Chapter 3 introduces the stakeholders and their relationships.

Chapter 4 explains concepts and technologies that are relevant for this project. It
begins with an explanation of the fundamental systems in the healthcare domain.
Following that, an explanation of health care standards and clinical vocabularies is
given. Next the technology and usage of data warehousing are explained.

Chapter 5 documents experiments that took place in the early stages of the project.
These experiments contributed to risk identification and assessment. A list of the
identified risks can be found in this chapter.

Chapter 6 documents the functional and non-functional requirements of this project.
The functional requirements are grouped in three different areas of focus. Additional-
ly the end user reports that the system must produce are documented here.

Chapter 7 documents the system architecture. The chapter starts by enumerating and
explaining alternative data aggregation architectures and validating them against the
non-functional requirements of Chapter 6. The strategic decisions are documented
here.

Chapter 8 describes layers and the components of the system.

Chapter 9 documents the realization of the design. Implementation issues are de-
scribed here. Also simplifications used to produce the proof of concept deliverable
are mentioned in this chapter. The reader can find here class and sequence diagrams
and data model diagrams.

Chapter 10 documents how the system is tested and offers a map between the imple-
mentation and the requirements.

Chapter 11 presents the current deployment diagram of the system and describes our
proposal for the real life deployment.

Chapter 12 documents the conclusions and the future work.

Chapter 13 documents the project management activities. The timeline of the project
can be found here.
■

1 Section 9.2 describes in details the data set used as input. This data set can lead to
patient identification.

3

2.Problem Analysis
2.1 Context
To describe the problem we are going to use a simple example. Mr. Orestis is a heart
failure patient who uses the Motiva system at home daily. On Monday and Tuesday
he interacts with the systems and submits data. On Wednesday he is transported to
the hospital due to an emergency situation. He stays hospitalized for two days and
returns back home. The data from Monday and Tuesday are gathered by the Motiva
system and the data during the hospitalization are gathered by the hospital infor-
mation system. No system can reproduce the complete timeline of the patient data by
combining the Motiva and the hospital data because the data reside in different sys-
tems that do not share information. This project describes how the gap between these
datasets can be bridged. Bridging the gap means that there is an infrastructure capa-
ble to aggregate the data and combine the appropriately. This infrastructure can then
give answers to questions such as the return on investment.

To enable communication with the new data sources the existing data analytics
framework (DAF) needed a new extension. DAF linked so far only Motiva data
sources. There is a substantial difference between the DAF use case and the DAC-
TyL use case. In the DAF use case the database schema of Motiva is the same across
installations and proprietary to Philips. This is the ideal case for an analytical system:
identical and stable database schemas with fully know data semantics. The landscape
is completely different for hospital information systems. It is unknown what data are
available in a particular hospital. This depends on the IT infrastructure present in the
hospital and can be different per case. Since hospital information systems have been
and are being developed by competitors of Philips, it is highly unlikely that the de-
tails about the systems and their data models will ever be shared.

This heterogeneity of hospital systems was the source of complexity for this project.
Every hospital is a different use case with particular systems that have certain fea-
tures. The different data models introduce interoperability issues (see Section 4.3)
that need to be dealt with before systems can share their data. It is nevertheless no-
ticeable that Care Delivery Organizations (CDO’s) such as hospitals and clinics are
starting to make steps towards systems that exchange information [1] [2] [3].

We identify the following design criteria to be relevant to DACTyL

1. Complexity: The DACTyL requires design techniques and technologies that
come from the software engineering domain and the data warehousing do-
main. Apart from the technologies and the tools that come along, it requires
knowledge on the domain of IT and information exchange in healthcare.
The DACTyL in a real life scenario would require a software engineer, a da-
ta warehousing-ETL (see Section 4.6) specialist and a BI specialist. Last but
no least it requires consultation from a healthcare IT domain expert. Thus
the complexity is not related with algorithmic complexity but with the inte-
gration of different technologies.

2. Impact: The system can be used to quantify the impact of Motiva with re-
spect to hospitalizations. This can be then used as a strong selling point for
the Motiva system which can lead to increased sales to hospitals. Addition-
ally the system makes available for usage a combined data set of hospital
and telehealth data. This creates new opportunities for Philips Research to
develop advanced prediction models.

3. Elegance: The design for DACTyL (see Chapter 8) decomposes the system
in layers which have clear interfaces between them and can be individually
developed. We believe that the design is adaptable to the heterogeneous en-
vironment of healthcare IT and we consider this as a proof or elegance.

We identify the following design criteria to be not so relevant for DACTyL

5

1. Realization: The aspects of total cost of ownership were kept out of scope
for this project. The tooling that is used for the solution was prescribed as a
constraint (see Section 6.5) and no alternatives where investigated.

2. Genericity: This project is focused on a specific use case concerning the re-
turn on investment. The same principles can be applied for other data but
this does not mean that the system is able to support any data set out of the
box.

The inventiveness design criteria may or may not apply depending on the view of the
reader. On one hand analytical systems have existed already for years. The technolo-
gy these systems use such as data warehouses, ETL tools and OLAP cubes (see
Chapter 4), is now mature and well established. Big vendors like Oracle and Mi-
crosoft offer powerful toolsets to create these systems. Also in the domain of
healthcare analytical systems already exist. In most cases these systems are purpose
built for only one hospital. On the other hand we were unable to locate examples of
systems that integrate telehealth and hospital data. This can be justified by the fact
that telehealth is still not used in a large scale. The use case is therefore quite innova-
tive. The communication components developed in this project make use of web
services which is also a mature and well establish technology. We also made use of
model driven development techniques to specify data models that play a role in our
system.

The work on DACTyL provided answers to the following questions:

1. What kind of data are we interested in adding to the system?
2. Where do these data reside?
3. How can these data reach our analytical system?
4. How can we interpret the foreign data?
5. How can we store them?
6. How can we combine the new data with the Motiva data?
7. How can we present all available data and enable combined reports?

2.2 Roadmaps
Philips aims to deploy telehealth on a large scale across Europe. The Motiva system
plays an important role in this effort. To do this, it is essential that customer require-
ment with respect to reporting and data access are met. Furthermore, to be competi-
tive in the market, it is vital to perform continuous product and service improvement
and stay ahead of the competition. A solid framework for data analytics is needed to
do this. This does not hold only for Motiva, but also for other home healthcare prod-
ucts.
■

6

3.Stakeholder Analysis
3.1 Introduction
This chapter introduces the stakeholders for this project. They are distinguished ac-
cording to their interest and Table 1 presents an overview. The product stakeholders
are interested in the features of DACTyL and some may also be interested in docu-
mentation artifacts and design decisions. The project stakeholders are additionally
interested in the process that produced DACTyL, methodologies applied and time
management.

Table 1 – Stakeholder Overview

Name Interest Description
Helen Schonenberg Project, Product Philips Research R&D

Scientist, project member
DA4HH

Rian Wouters Project, Product Philips Research Software
Architect, (former) project
member DA4HH

Ad Aerts Project General Director of Software
Technology program

Steffen Pauws Product Philips Research Senior
Scientist, project leader
DA4HH

Christoph Westerteicher Product Philips Healthcare Business
Director H2H/Telehealth
International

Richard Stubbs Product WSD Program Manager,
WSD Legacy Manager

David Barrett Product Nurse Lecturer in Telehealth
University of Hull

NHS Product Payer, potential end user of
ROI analysis

Insurance Companies Product Payer, potential end user of
ROI analysis

Hospitals Product Data provider and potential
end user

Philips Healthcare Product Business that develops,
maintains and provides
Motiva

The stakeholders can be also grouped according to their influence on the require-
ments of the project (see Figure 2). The immediate stakeholders are involved directly
and they have the biggest influence on requirements and end goals. The intermediate
stakeholders are not directly involved in the requirements of this project. Neverthe-
less their requirements are communicated through Helen Schonenberg and Rian
Wouters who are immediate stakeholders. They have an interest in the features of the
resulting system. The last group contains potential future stakeholders who may in-
fluence the system in future releases.

Helen Schonenberg and Rian Wouters interviewed a number of stakeholders the
previous year and produced a requirements document for an analytical system de-
signed to meet the reporting requirements of Motiva. Following that they developed a
system that provides reporting for Motiva as mentioned in the introduction chapter.

7

The following list provides additional details on the immediate stakeholders:

• Helen Schonenberg
o Interest: domain analysis, system design, system implementation,

data analysis, future work
o Input on: use cases, requirements, planning, system architecture,

data warehouse design, creation of end user reports
o Acceptance criteria: System features, technical report

• Rian Wouters
o Interest: domain analysis, system design, system implementation
o Input on: use cases, requirements, system architecture, system im-

plementation
o Acceptance criteria: System features, technical report

• Ad Aerts
o Interest: proof of candidates’ design skills
o Input on: planning, requirements prioritization
o Acceptance criteria: System design, project management, technical

report

Figure 2 – Project and Product stakeholders

Apart from the stakeholders the project is influenced by other people who with their
expertise played the role of external consultants. Table 2 documents the information
providers.

Table 2 – Information Providers

Name Position Expertise
Charalampos
Xanthopoulakis

Philips Research HL7, NHS

Mohammed Asim Philips Research HL7
Nicolaas Arvid Philips Research Hospital information

systems, interface engines

8

Nick Ebbers Philips Technical specialist Motiva
Johan Gustav Belika University of Valencia Disease surveillance systems
Zorg & ICT 2013 Epic, Siemens, Mc Kes-

son, e-Novation, Chip-
soft, CSC

Hospital Information
systems vendors

■

9

4.Domain Analysis
4.1 Introduction
As described in Chapter 2, collecting and analyzing data from healthcare systems is a
known challenge. In this chapter we briefly introduce components and domain con-
cepts that have a direct relationship with the project. We touch upon hospital infor-
mation systems (Section 4.2), healthcare standards (Section 4.3), clinical vocabular-
ies (Section 4.4) and analytical systems (Section 4.5).

4.2 Hospital Information Systems
Traditionally data in the healthcare domain were kept in paper-based records. The
introduction of information systems changed the way data are stored. The term Elec-
tronic Medical Record (EMR) was introduced to mark the change from paper to
computer-based data records. An EMR is a computerized medical record created in a
CDO, such as a hospital or physician's office. The data in the EMR is the legal record
of what happened to the patient at the CDO. EMRs tend to be a part of a local stand-
alone health information system that allows storage, retrieval and modification of
records.

Even though the term refers to the data record, in practice, it is often used to identify
the system that contains the record. The EMR systems are used by care delivery
organizations to perform various tasks and assist in different ways in the care deliv-
ery process. The EMR system is an application environment composed of multiple
components. The core of the system is the clinical data repository. This area perma-
nently stores all available data. The data model used for storage is designed by the
system vendor. These systems are designed as stand-alone systems and their main
goal is to substitute paper-based data keeping. The EMR system plays an important
role for this project because it is the source location of the clinical data we aim to use
[4].

Another important domain term is Electronic Health Record (EHR). The term de-
scribes a record in digital format that is theoretically capable of being shared across
different CDO’s. Once again the term is often used to describe the system that con-
tains the record. An EHR system may include data such as demographics, medical
history, medication and allergies, immunization status, laboratory test results, radiol-
ogy images, vital signs, personal statistics such as age and weight, and billing infor-
mation. The sharing of information supported by the system can occur by way of
network-connected enterprise-wide information systems and other information net-
works or exchanges [5].

The terms EMR and EHR are often used interchangeably. Technically, there is a
distinction, but it is one that is been blurred by common usage. At a minimum, EMR
systems replicate all aspects of paper charting. They are designed to facilitate all the
documentation, lab results, visit notes, diagnostic test results, insurance information,
demographics, health histories, medication information, and more. EHR systems, on
the other hand, are essentially advanced EMR systems with the functionality for
greater electronic exchange; that is, they may be able to follow patients from practice
to practice and allow for things like data exchange and messaging between physi-
cians [6].

A common scenario for CDOs is that over a period of time different information
systems have been purchased or developed in house to address the ever evolving
needs of healthcare. This results to a fragmented landscape of department-specific
stand-alone systems. The communication gap between these systems is bridged by

11

another utility system usually called communication broker or interface engine.
An interface engine is a CDO’s “telephone exchange” for clinical data, ensuring that
information passes smoothly and quickly from one hospital system to another. It is
designed to simplify the creation and management of interfaces between separate
applications and systems within an organization. Interface engines undertake messag-
ing between systems, and normally manage any mapping, translation and data modi-
fication necessary to ensure the effective exchange of data around the organization.
Rather than connecting all systems to each other individually, a highly complex, time
consuming and unreliable process, an interface engine acts as the intermediary for all
messaging between hospital systems, as illustrated in Figure 3. The interface engine
is an important system for this project because it is able to create a communication
path between two systems that want to exchange data.

Figure 3 – Communication with Interface Engine [9]

4.3 Healthcare Standards
As soon as two systems need to exchange data the concepts of syntactic and semantic
interoperability become important. When two systems successfully exchange data
they are exhibiting syntactic interoperability. The receiving system is able to accept
the incoming data because they arrive in the appropriate form according to a set of
predefined rules. Semantic interoperability extends the syntactic one. The receiving
system is able to automatically interpret the incoming message and use the infor-
mation contained in an appropriate way. The difference is demonstrated in the fol-
lowing example: Willem from the Netherlands asks, in Dutch, Orestis from Greece,
what is the time. The two “systems” exhibit syntactic interoperability since Orestis
ear successfully accepts the information packaged in the air waves. Unfortunately
Orestis cannot interpret the message. When Willem asks again in English Orestis
responds. At this point the two “systems” achieve semantic interoperability since
they used the English language as a standard.

4.3.1. Health Level 7 (HL7)
The task of standardization in healthcare is done by various organizations. The lead-
ing position belongs to Health Level 7 (HL7) [10]. HL7 is an U.S.-based, ANSI-
accredited health information standards development organization. Its specifications
are mostly for application-level messaging among hospital information systems
(HIS). Other recent areas of interest include the structure and content of clinical doc-
uments and decision support. There are two major working versions of HL7 stand-
ards, version 2 and version 3 in addition to some minor ones. The 2.4 version is by
far the most widely implemented standard in health informatics worldwide. The main

12

goal of HL7 v2 was to standardize messaging between HIS and achieve syntactic
interoperability. Thus there is no guarantee for semantic interoperability when using
HL7 v2.4 because there is no well-defined underlying information model.

The third version of HL7 is still aimed primarily at defining application messages,
but now using a well-defined information model, the Reference Information Model
(RIM) shown in Figure 4. The core classes of RIM are shown in blue and the first
level of subclasses is shown in white. While assembling messages, the content sche-
mas are derived by a restriction process starting from the RIM, further constrained by
domain information models (DIM), restricted message information models
(RMIM) and common message element types (CMET). The process ends with
forming hierarchical message definitions (HMD) and the generated message sche-
mas are represented as XML documents.

Figure 4 – HL7 RIM Model

To demonstrate how the RIM models a real life event, consider the scenario of a
patient visit to a doctor where the patient’s pulse rate is measured. Patient Willem is
an instance of the class Person and plays the role of a diabetes patient. The doctor
visit is an instance of class Act and the pulse measurement is an instance of class
Observation. The patient is linked to the visit by an instance of the class Participation
and the pulse measurement is linked to the visit though an instance of class Act Rela-
tionship. The object diagram in Figure 5 shows the relationships.

Figure 5 – Doctor visit modeled in RIM

One of the standards that HL7 has produced is the Clinical Document Architecture
(CDA). CDA is an XML-based markup standard intended to specify the encoding,

13

structure and semantics of clinical documents for exchange. An example is shown in
Figure 6. Its semantics is derived from the HL7 RIM and uses the HL7 Version 3
Data Types, which are also part of the RIM. CDA document content is intended to be
human-readable and supporting narrative text, yet still having some structure and
allow for medical coding to represent concepts in a computable manner. CDA is
HL7’s proposed way to achieve semantic interoperability. From a software point of
view the RIM and the CDA document are abstract domain models. They are
published in the form of UML diagrams by HL7. The CDA specification is
intentionally abstract so that the implementors can define their own flavor of the
CDA doucment which serves their domain specific needs. Different organizations
use different implementations of the CDA specification such as the Continuity of
Care Document (CCD). These implementations are restrictions of the original
abstract model. CDA is important for this project as because because it is the state of
the art standard design to provide semantic interoperability [10].

Figure 6 – A particular version of the HL7 CDA document

4.3.2. Integrating Healthcare Enterprise (IHE)
Another important standardization organization is Integrating the Healthcare En-
terprise (IHE) [11]. IHE is an initiative by healthcare professionals and industry to
improve the way computer systems in healthcare share information. IHE promotes
the coordinated use of established standards such as HL7 to address specific clinical
needs in support of optimal patient care. Systems developed in accordance with IHE
have better communication, are easier to implement, and enable care providers to use
information more effectively. IHE Profiles organize and leverage the integration
capabilities that can be achieved by coordinated implementation of communication
standards, such as HL7, W3C and security standards. They provide precise defini-
tions of how standards can be implemented to meet specific clinical needs. The IHE
profiles are relevant for this project as they are specifications for data exchange [8].

4.4 Clinical Vocabularies
Medicine is one of the few domains where extensive domain knowledge is defined
through controlled vocabulary. Clinical vocabularies are in fact another type of
healthcare standard. They are published and maintained by organizations and usually
have a specific area of focus.

14

The vocabulary used in this project is the 10th revision of International Classifica-
tion of Diseases (ICD-10). ICD was originally published by World Health Organiza-
tion for classifying and coding of mortality cases [12]. Other uses include establish-
ing a common naming and description of diseases and collection of comparable data
for epidemiologic and healthcare management studies. The vocabulary is organized
in three hierarchical levels: Chapters, blocks and codes. An example can be seen in
Table 3. ICD-10 is relevant for this project as it is used to relate a hospitalization
event with a particular disease. This clinical vocabulary is also visible in the report
that the system produces.

Table 3 – Example of ICD-10 Hierarchy

Chapter Block Code
Diseases of the
circulatory system Chronic rheumatic heart

diseases

I05.0
Mitral stenosis

I05.2
Mitral stenosis with

insufficiency

Hypertensive diseases

I11.0
Hypertensive heart disease

with (congestive) heart
failure
I12.0

Hypertensive renal disease
with renal failure

4.5 Business Intelligence
Business Intelligence (BI) is the process of transforming data to useful information
for decision makers. There are different levels in business intelligence as shown in
Figure 7. The higher levels of BI require additional tooling support such as statistical
tools. BI makes use of analytical systems to transform the data to insights.

Figure 7 – Business Intelligence levels

15

4.6 Analytical Systems
This section provides an introduction to analytical systems and the technologies used
to realize them. The main terms explained here are used later in this document.

Analytical Systems enable the evaluation of business processes such as hospitaliza-
tions. The differences between an analytical system and an operational system are
summarized in Table 4. The users of such a system are decision makers. They inter-
act with the system to gain insights about business processes. Based on the infor-
mation gathered from the system they can take actions to improve the business pro-
cess. Since this project is developed in a healthcare related environment, we will
attempt to make an analogy between the human body and an analytical system.

Table 4 – Analytical vs Operational system [9]

 Operational Analytical
Purpose Execution of business

process
Measurements of a business
process

Primary interaction
Style

Insert, Update, Query,
Delete

Query

Scope of Interaction Individual transaction Aggregated transactions
Query Patterns Predictable and stable Unpredictable and changing
Temporal Focus Current Current and historic
Design Optimization Update concurrency High-performance query
Design Principle Entity-relationship (ER)

design in third normal
form (3NF)

Dimensional design
(Star schema or Cube)

Also known as Transaction System

On Line Transaction
Processing (OLTP) Sys-
tem

Source System

Data Warehouse System

On Line Analytical
Processing System (OLAP)

Data Mart

4.6.1. Data warehouse and Dimensional modeling
The data that the analytical system uses are stored in Data Warehouses (DW). A
DW is a collection of tables in a database system. The DW is the body of the analyti-
cal system. According to [10] a DW is designed using a dimensional design also
termed as star schema. A dimensional data model is a particular way to structure
data in a database, optimized for querying. The database tables in a dimensional
model can be grouped in two categories: fact and dimension tables. Dimensional
models are also called cubes or star schemes due to their appearance (see Figure 8).

Fact tables are the core of the star schema as shown in Figure 8. They capture facts
about an event for a particular business process such as a hospitalization event. They
contain measurements and foreign keys to dimensions. The foreign keys to dimen-
sion tables add context to the particular event.

16

Figure 8 – Star schema

Dimension tables define a context space. Every row in a dimension table defines a
point in that context space. For example we can model the ICD-10 vocabulary as a
dimension. This vocabulary defines the space of diseases. The points of this context
space are the ICD-10 codes. Every disease is represented by a row in the dimension
table. As we discussed earlier, this vocabulary is organized in three hierarchical lev-
els. This hierarchy is also physically present in the dimension table. It is achieved by
duplicating dimension attributes as shown in Table 5. This table shows that dimen-
sions are de-normalized tables.

Table 5 – Simplified example of ICD-10 as a Dimension table

Chapter Block Code
Diseases of the
circulatory system

Chronic rheumatic heart
diseases

I05.0
Mitral stenosis

Diseases of the
circulatory system Chronic rheumatic heart

diseases

I05.2
Mitral stenosis with

insufficiency
Diseases of the
circulatory system Hypertensive diseases

I11.0
Hypertensive heart disease

with (congestive) heart
failure

Diseases of the
circulatory system Hypertensive diseases

I12.0
Hypertensive renal disease

with renal failure

A collection of fact and dimension tables that focuses on a particular business event
is often termed as a data mart. For example, for DACTyL we developed a new data
mart (see Section 9.4.3) that captures hospitalization events. Analytical systems can
combine data coming from different data marts and thus provide unique insights into
relations between these events. One approach to combine the data marts is applying
the bus architecture described in [10]. The bus architecture relies on the concept of
conformed dimensions. These dimension tables are shared across multiple data marts.
Figure 9 shows a data warehouse bus. This “data bus” contains amongst others, three
conformed dimensions the “Patient”, “Calendar” and “Location”. These conformed
dimensions are referenced by foreign key relationships from fact tables contained in
two different data marts “Hospitalizations” and “Motiva Tasks”. According to [10]
this situation looks like a data bus and the data marts are attached to the bus due to
the foreign key relationships with the conformed dimensions.

17

Figure 9 – A visual represetnation of the data warehouse bus with conformed
dimensions

The reporting requirements for particular business events are the main driving force
for the dimensional design. The structuring of data in dimensions and facts simplifies
and improves the performance of the SQL queries needed to produce reports.

4.6.2. Extract Transform Load
What makes analytical systems powerful is their ability to aggregate and combine
data from different sources. These sources can be operational systems, files and other
streams of data. All data are stored in the DW. The process of data collection and
storage is termed Extract Transform Load (ETL)2. Depending on the case, the ETL
can be a collection of SQL scripts, bash scripts or any combination of techniques that
extracts data from one location and delivers them to a different location. Software
vendors provide dedicated tooling that facilitates the creation and maintenance of
ETL processes. The ETL process should be considered as the heart and the circulato-
ry system of an analytical system because it pumps new data into the data warehouse
and guides the data flow. Figure 10 visualizes the different steps involved in ETL.
Additionally it shows what comes after the ETL which is discussed in the next sec-
tion.

2 Oracle also uses the term ELT for one of their tooling solutions.

18

Figure 10 – The main steps of ETL [11]

4.6.3. OLAP cubes
Since we identified the body and the heart we are still missing the brain. The brain of
an analytical system is the Online Analytical Processing (OLAP) cube. This cube is
a data structure that indexes the available data from the fact tables of the DW. Figure
11 shows an example of a cube with three dimensions; calendar, patient and diagno-
sis. The OLAP cube is an n-dimensional cube in the general case but it is easier to
visualize an example with three dimensions.

Every intersection of three dimension points is a fact, represented by a row in a fact
table. Figure 11 could contain facts about patient hospitalizations. If we request from
the cube data for patient “Orestis” with diagnosis code “I12.0” at calendar date “11-
02-2012” the cube will return a single fact row with the hospitalization event if such
a row exists. With this in mind the cube can be seen as an alternative representation
of a fact table. What makes the cube more complicated is that it stores all data from
every available fact table.

Things become more interesting when the cube receives a request with fewer dimen-
sion points. As an example consider the top left cube in Figure 11. The cube returns
all data that have ‘Orestis’ as a dimension point. It treats the missing dimension
points for calendar and diagnosis as wildcards. This is termed “slicing”.

The bottom case shows a more advanced operation that is related with the dimension
levels in a hierarchy. The dimension is a physical database table with a number of
columns. Any dimension column attribute can play the role of a dimension point. For
instance, the columns in the row for date “11-02-2012” may also capture the year,
month and day in different representations, as well as day number, week number, day
of the week, and so on. In the example, the cube receives a query with dimension
points “gender=M,” “chapter=Diseases of the circulatory system” and “month=April
2008.” The “month=April 2008” attribute certainly exists in a number of dimension
rows in the calendar dimension. The same holds for the other attributes also. The
result, as can be seen in Figure 11, is a smaller cube and this is termed “dicing.”

If the user edited the request and instead of “month=April 2008” specified a dimen-
sion point “year=2008,” he would receive a more general result as an answer and this
is termed “drilling up.” If he specified “calendar week=15” he would get a more
detailed result and this is termed “drilling down.”

19

Figure 11 – OLAP cube with 3 dimensions

Table 6 shows what an end user report could look like. In this example hospitaliza-
tion events are measured. The column “Hospitalizations” contains the aggregated
result. In Table 6 the measurement “hospitalizations” is summarized. For other use
cases the average, minimum, maximum, of a measurement can be used.

Table 6 – Simplified report on hostitalizations

Time Diagnosis Patient Hospitalizations
August 2008 Diseases of the

circulatory system
M 120

September 2008 Diseases of the
circulatory system

M 100

Software vendors provide tools that simplify the creation of OLAP cubes out of DW.
The cube acts as an interface between the reports used by the user and the actual DW.
This is how software vendors sell dash boarding tools that can work on top of any
physical DW. The OLAP cube requires upfront configuration and then it is intelligent
enough to translate the user actions to DW specific queries.
■

20

5.Feasibility Analysis

5.1 Introduction
In this chapter we explain the experiment that validated our findings from the domain
analysis. This experiment is a composition of different smaller experiments but we
choose to present it as one complete experiment. Next, we explain the risks identified
in the beginning of the project and show what the impact of the experiment on the
risks was.

5.2 Experiment: Communication between DACTyL
and Interface Engine
To validate the findings of domain analysis the following scenario was tested: A
hospital and DACTyL need to communicate. The hospital was simulated by a file
containing the hospital data and an interface engine. The file and the interface engine
represent the hospital IT infrastructure. The interface engine will read the file and
send the data to DACTyL via http. DACTyL will be simulated by a web server ex-
posing a public interface. We choose to use a hospital interface engine as it was the
greatest common factor between different hospital-IT layouts.

We used the Mirth Connect (MC) interface engine [12]. MC is an open source inter-
face engine. It enables users to create channels between endpoints. The endpoints can
be files, databases and web services. Additionally, it is also possible to define trans-
formations within a channel. The transformations enable hospitals to extract data
from one system adapt them and deliver them to another system in the appropriate
format. The architecture of a channel in MC is shown is Figure 12.

For this experiment the source endpoint is the file that contains the hospital data. The
target endpoint is a web service published by DACTyL. We need to create and con-
figure a channel between the two endpoints and specify the transformations. The web
service expects an xml document as an input with a particular structure. The channel
must therefore transform the data from the file to a proper xml document and send it.

Figure 12 – Channels in Mirth Connect

After the channel creation and setup we were able to achieve the desired behavior.
The data that were located in a file reached the web server in the form of an xml
document.

21

Conclusions
1. The interface engine can connect the hospital information system with an

external system through a web service.
2. The interface engine is capable of restructuring the hospital data according

to an input format.
3. The interface engine requires a onetime configuration to periodically send

data to the external system.

This experiment is important for a number of reasons. First it provided hands on
experience with the features of a mainstream interface engine. Based on the experi-
ments with MC we were able to understand how data flow is managed in a hospital
environment. Second we proved that a hospital can adapt the data to a particular
format by configuring his interface engine. This is important because it leads to the
conclusion that the choice of the input model for DACTyL is not bound by the ex-
porting features of the hospital information system. The interface engine has the
necessary features to extend the exporting capabilities of a hospital information sys-
tem.

5.3 Risks
The initial risks identified for DACTyL are shown in Table 7 sorted on impact.

Table 7 – Risks identified in the beginning [9]

ID Risk Name
Potential impact on

Project success
Low/High

Potential likeli-
hood of Occur-

rence
Low/High

Mitigation
plan

R2 Changing project
scope H H

Prioritize
requirements,

agree on
realistic goals

R4 Lack of ODI experi-
ence H H

Create small
experiments,
build simple
ETL scenari-

os

R5
Impact of hospitali-

zation
updates

H H
Create small
experiments

early

R6
Complexity of inte-
gration with Motiva

DW
H H

Migrate to
production

system early

R8
Lack of data ware-

house
experience

H H

Create simple
data marts

early, stick to
documented
approaches

R9 Lack of time H H Drop re-
quirements

R1
No access to real

hospital information
system

L H

Simulate
system using
open source
alternatives

R3 Lack of real clinical
data L H

Use legacy
data from

Philips and/or
fabricate
more data
using data

22

generators
keep track of
assumptions

R7 Lack of experience
with BI tools L H

Create small
experiments
and simple

reports

The feasibility experiment enabled the validation of a number of assumptions and
helped in developing some experience with the related tools. Figure 13 shows the
effect of the experiments on the risks.

Figure 13 – The status of the risks before and after the experiment

5.4 Issues
As mentioned in the introduction chapter a number of issues were kept intentionally
out of scope for this project. These issues can be grouped in two categories:

1. Security issues: The security issues cover requirements that have to do with
secure transfer and storage of data. Additionally because we are dealing
with sensitive patient data requirements for anonymity and pseudonymity
may arise in the future.

2. Financial soundness of the reports: Calculating a sound return on investment
report from a Motiva service requires combination of many different data
sets. In this project we are only looking on hospitalization events and from
these events we try to deduct the effect of the Motiva service.

■

23

6.System Requirements
6.1 Introduction
This chapter describes the requirements for DACTyL. The main sources of require-
ments are the immediate stakeholders from Philips. Additionally Philips already has a
requirements document that specifies the reporting needs for the Motiva product.
Requirements from this document combined with the feedback from the immediate
stakeholders led to the specification of the functional and non-functional require-
ments. The functional requirements are grouped in three different areas of interest:
connecting, linking and presenting. The connecting area covers requirements related
to data transportation from external systems to DACTyL. The linking area covers
requirements that assure the linking of different information sets. The presenting area
covers requirements related to presentation of the available information. Figure 14
shows the three different areas of interest depicted in red and the data sources in blue.

Figure 14 – Areas of interest for DACTyL in red and the data sources in blue

6.2 Roles interacting with DACTyL
During the early stages of the project five different roles were identified to interact
with the envisioned system. These roles can be performed by people or systems de-
pending on the case. The following section explains the roles and provides one gen-
eral user story as an example.

• Data Analyst: The Data Analyst wants to analyze the available data period-
ically using a set of reports. He uses always the same methods to perform
his analysis. A real life example can be a finance manager from a hospital
who has to calculate the ROI from the Motiva telehealth service every quar-
ter.

o “I as a Data Analyst want to use a dynamic report to find the data I
am looking for.”

• Data Researcher: The Data Researcher also wants to analyze the data but

he does this an ad hoc basis using different methods. A real life example can
be a researcher in Philips who wants to test his new prediction model with
the available data in the DACTyL.

o “I as a Data Researcher want to use the available data to validate
my prediction models.”

• Data Contributor: A hospital who wants to contribute data periodically.

The hospital has knowledge of the local data models and access to the data.
The role can be played by a person or a system at a hospital.

o “I as a Data Contributor want to submit part of my data to DAC-
TyL to make them available for analysis.”

25

The complexity and configuration needs of such a system lead to the need to keep
two configuration roles under scope. These roles understand parts of the DACTyL
and they can modify its behavior to fulfill new needs of the end users.

• Data Integrator: Maintains and upgrades DACTyL. Implements the pro-
cess that loads data to the data warehouse. He wants to create new data
marts to meet upcoming reporting requirements.

o “I as a Data Integrator want to create and load data marts with the
available hospital data to enable new reporting capabilities.”

• Data Presenter: Configures the reporting tools that provide access to the

data warehouse. Creates reports for the Data Analyst.
o “I as a Data Presenter want to create dynamic reports to fulfill the

requirements of the Data Analyst.”

The data presenter can also be a data analyst. The end user can be provided with
already configured reports but additionally can be granted rights to interact with
DACTyL and create his own reports. An overview of the identified roles is presented
in Figure 15.

Figure 15 – Identified roles. The data contributor provides data. The data
researcher and analyst receive information and limited data access. The data
integrator and presenter configure DACTyL.

Every role can be treated as a requirements pool. This means that every user story
generates a number of requirements that need to be met. Meeting these requirements
realizes the user story. The main roles that we focused in this version of DACTyL are
the data contributor and the data analyst.

6.3 Project use case scenario
This section describes the use case that was used for this version of DACTyL.

A hospital that provides the Motiva telehealth system to the patients wants to identify
what is the return on investment from the telehealth service. As a first approach the
hospital decides to monitor the number of hospitalizations for Motiva patients. The
aim is to identify if the telehealth service has a measurable impact on the patient
population.

The hospital executives know the expected number of hospitalizations for a patient
population with a particular disease from literature. They would like to compare the
expected number against the real one and deduct how many hospitalizations are
avoided due to the healthcare service. Currently they are unable to do so because a
patient record in the hospital system is not related to a patient record in the telehealth
system.

26

The hospital agrees to contribute a set of patient data from the information system
periodically. In return the hospital expects a system that is capable of processing the
contributed data, merging them with Motiva data and producing interactive reports.
The hospital is interested in two types of reports: the return on investment report and
the patient report (see Sections 6.4.4 and 6.4.5).

In this use case a hospital IT system plays the role of data contributor. The role of the
data analyst can be played by a finance manager who interacts with the reports pro-
duced by the system.

Figure 16 decomposes the project use case into smaller use cases.

Figure 16 – Use cases for this version of DACTyL

6.4 Functional Requirements
The MoSCoW [13] system is used to prioritize the requirements.

• M - MUST: Describes a requirement that must be satisfied in the final solu-
tion for the solution to be considered a success.

• S - SHOULD: Represents a high-priority item that should be included in the
solution if it is possible. This is often a critical requirement but one which
can be satisfied in other ways if strictly necessary.

• C - COULD: Describes a requirement that is considered desirable but not
necessary. This will be included if time and resources permit.

• W - WON'T: Represents a requirement that stakeholders have agreed will
not be implemented in a given release, but may be considered for the future.

To identify the requirements we arranged meetings with the immediate stakeholders
from Philips. During these meeting the stakeholders described the existing system
and introduced the use case in the previous section. Additionally they provided a data
set from the Hull hospital in UK which would simulate the hospital data. This data
set contains hospitalization events about Motiva patients.

27

6.4.1. Connecting Requirements
The connecting requirements describe the need to receive data from external systems.
They are related to the contribute data use case and the data contributor.

Table 8 – Connecting Requirements

Id Name Priority Description
C1 Input Data M The input for the DACTyL system shall be

• Patient demographics
• Admission date
• Discharge date
• Admission reason
• Diagnosis
• Mortality date
• Patient unique identifier on the source

system
C2 HL7 CCD

Compatibility
S The input for the DACTyL system shall be a

valid HL7 v3 CCD document.
C3 Operational

Source
Location

M The DACTyL system shall accept input data
from operational sources that are physically
situated in a different network.

C4 Updates M The DACTyL system shall accept input data
from operational sources periodically.

6.4.2. Linking Requirements
The linking requirements describe the need to store the incoming data in such a way
that information about the same patient is connected. They are related with the link
data use case.

Table 9 – Linking Requirements

Id Name Priority Description
L1 Unique

DACTyL
specific patient
identifier

M The DACTyL system shall assign a unique
DACTyL specific identifier to every patient it
contains.

L2 Data Linking M The DACTyL system shall link all available data
about a specific patient.

L3 Data Linking
Update

M The DACTyL system shall link additional data
about a specific patient when they become
available.

• L1: The system must keep one unique code for every patient known to the

system so that it can relate data from different sources to the same person.
Additionally this DACTyL specific code hides any personal identification
code.

• L2: The linked data are necessary to enable the combined reporting features.

6.4.3. Presenting Requirements
The presenting requirements describe the need to make the data available to the end
users through reports. They are related with the use patient report and use return on
investment report use case.

Table 10 – Presenting Requirements

Id Name Priority Description

28

P1 Combined
reporting

M The DACTyL system shall produce a report that
contains data from Motiva and from a clinical
system for a specific patient.

P2 Return on in-
vest report

M This report compares real versus expected
hospitalizations. See 6.4.4

P3 Patient report M This report combines hospitalizations and motiva
tasks for See 6.4.5

P4 Access Re-
strictions

C The DACTyL system shall provide a custom
level of detail according to the data analyst
access rights.

• P4: The roles of the data analyst can be played by different entities such as

doctors, nurses or hospital executives. The access to the data and the level of
available detail should be tailored to protect the privacy of the data. This is
an important requirement for later more mature versions of the system.

6.4.4. Return on investment report
The return on investment report is composed of dimensions and facts. The dimen-
sions that the report must provide are documented in Table 10.

Table 11 – Return on investment report

Column Name Description
Time  All History

 Year
 Quarter

• Month
Diagnosis  All Diagnosis

 ICD-10 Chapter
 ICD-10 Block

• ICD-10 Code

Age Group  All Age Groups
 Age Group

Service  All Services
 Service

Gender  All Genders
 Gender

Admission Type  All Admission Types
 Admission Type

Number of
Hospitalizations

Sum

Total Length of Stay Sum
Expected
Hospitalizations

Constant

6.4.5. Patient report
The patient report is composed of dimensions and facts. The dimensions that the
report must provide are documented in Table 11.

Table 12 – Patient report

Column Name Description
Time  All History

 Year
 Quarter

29

• Month
Patient  All Patients

 Patient
Number of Hospital-
izations

Sum

Motiva Tasks Sum

6.5 Constraints
Constraints describe the technology that must be re-used for the data warehousing
part. As a reminder, DACTyL extends an existing prototype thus the same technolo-
gy stack must be used. The constraints come from the immediate stakeholders.

Table 13 – Constraints

Id Name Priority Description
CON1 Reuse of the

Motiva data
mart

M The DACTyL system shall reuse the Motiva
data mart which is already implemented

CON2 Reuse of
Oracle data
integrator

M The DACTyL system shall reuse the Oracle
data integrator tool to manage the ETL
process

CON3 Reuse of
Oracle
Business
Intelligence

M The DACTyL system shall reuse Oracle
Business Intelligence tool to create the end
user reports

CON4 Patient Data
Transfer

W Conform with HIPAA regulation

CON5 Patient Data
Storage

W Conform with HIPAA regulation

6.6 Nonfunctional requirements
The nonfunctional requirements describe the qualities of the system. Philips is inter-
ested in a system that could receive data from an increasing amount of data contribu-
tors. Based on this vision we decided that maintainability is important for the system.
A maintainable system in our case and according to our view does not require addi-
tional development effort for every new data contributor. When the system needs to
adapt to a new incoming data set the architecture should include mechanisms that
reduce the necessary changes. We believe that these adaptations are unavoidable due
to heterogeneity of the healthcare environment.

Table 14 – Nonfunctional Requirements

Id Name Priority Description
NF1 Maintainability:

New data
contributor, same
data set.

M The DACTyL system shall require 0 new
lines of code and 0 new ETL scripts to
accept a new data contributor who
contributes data using an already known
data set.

NF2 Maintainability:
New data
contributor new
data set.

M The DACTyL system shall require 0 new
ETL scripts to accept a new data contributor
who contributes data using a new data set.

NF3 Maintainability:
New data
contributor

M The DACTyL system shall require 0
changes in the presentation reports to accept
a new data contributor.

NF4 Robustness in M The DACTyL system shall present correct

30

Presentation data to the data analyst.
NF5 No prior

knowledge
M The DACTyL system shall not require

knowledge of the data contributor database
schema.

NF6 Portability M The DACTyL system shall not be bound to a
specific database. This does not imply plug
n play behavior for different databases.

NF7 Internationalization C The DACTyL system shall be usable in
more than 1 country.

NF8 Load on
operational source

M The DACTyL system shall not add
processing load to the operational source
when a data analyst interacts with a report

■

31

7.System Architecture
7.1 Introduction
This chapter documents the proposed architecture to meet the requirements described
in Chapter 6. The chapter begins by enumerating architecture alternatives that were
investigated and concludes with the overall architecture of the analytical system.

7.2 Data Aggregation Architectures
During the first month of the project the design space for data aggregation architec-
tures in healthcare was explored. The problem that these architectures try to solve is
common. Different data sets contain valuable information and the end user of the
system is interested in the combined data. For DACTyL the end user expects a com-
bined view of the hospital and Motiva data. This section summarizes the findings
from online resources and articles.

The first analytical systems collected data only from one operational source. The
necessary data were transferred from the operational source to the analytical system.
This is termed first generation data integration and it is obviously not relevant for
DACTyL. Soon the end users required data from different operational sources. To
meet these requirements the analytical systems used ETL and DW as described in
Chapter 4. This is termed as second generation data integration. In the healthcare
domain the privacy and regulation issues make the use of second generation system
difficult because these systems require the transfer of sensitive data to a centralized
DW. To overcome this barrier the third generation systems were used. These sys-
tems do not need a central DW to operate. The following paragraphs further analyze
the second and third generation systems and compare them against the nonfunctional
requirements of DACTyL. We begin with a description of the state of the art third
generation systems, then we describe why this approach is not feasible for us, and
then we describe the second generation which is our final choice.

7.2.1. Third Generation Integration
To overcome privacy, regulations and security concerns the third generation systems
operate without the need of a centralized DW. These systems are further categorized
as federated databases, mediated query systems and peer to peer data sharing systems
[12]. Since there is no centralized DW, the systems use, in one way or another, medi-
ator components that translate the user data requests to source-location-specific que-
ries and distribute them. For this analysis we consider operational sources to be data-
bases. Three distinct groups of third generation systems are distinguished.

A federated database system interacts with a number of databases with different
schemas. The mediation happens at the application level. Every application that
wants to extract data from the federation has knowledge of all local schemas. When
the user issues a query the application uses the knowledge of the local schemas and
translation rules to translate the query accordingly. When a new database joins the
federation all applications must be updated with the new schema and new translation
rules have to be implemented.

A mediated query system relies on mediator components to translate application
queries to local queries. This mediator layer provides an interface between the appli-
cations and the local schemas and thus enables easier application development [13].
The mediators contain the knowledge of the local schemas.

Peer to peer data sharing systems are based on communication between data shar-
ing agents. The agents require custom made programming for every source database.
The agent based systems can be reconfigured in a decentralized way. A central com-

32

mand station can change the programming of all agents so the overall system can
change behavior completely and start aggregating different data by altering only one
configuration.

Some systems overcome the need of custom made programming by using a third
party mediator component [15]. The mediator component is provided by a company
who has agreements with certain EMR vendors. All agents share the same program-
ming and rely on the mediator component to translate the queries. Unfortunately this
abstraction layer does not exist for the general case. Another well-known example is
the Dutch National Switching Point (Landelijk Schakelpunt LSP) system, previously
known as AORTA. This implementation can be categorized as the brain of a third
generation system.

Even though the above systems are considered state of the art approaches in data
integration, a validation against the requirements of this project is necessary to decide
on the systems’ suitability. We identify three major drawbacks of third generation
systems for this project.

• The first drawback of these systems is the need for knowledge of the source
database schemas. In cases where this is not necessary these systems rely on
components by third parties that encapsulate this knowledge. According to
the research done for this project these third party components do not exist
for hospital information systems due to the variety of systems and vendors.

• The second drawback is the need for additional programming to accept a
new source database. There is a difference between configuring a system to
accept a new source and programming the system for the new source. In the
first case the necessary effort to add a new source is always the same. When
new programming is required, for example, to update the translation rules,
the effort depends on the new source.

• The third drawback is the performance aspects of such a system. Since the
queries run on the local transactional systems, in our case Motiva and the
hospital systems, when the end user interacts with the application he adds
processing load to the source database. This may cause performance issues.
Additionally the results of the queries have to travel back to the end user.

The non-functional requirements NF1, NF5 and NF8 (see Chapter 6) are the reasons
that make a third generation approach inappropriate for this project.

7.2.2. Second Generation Integration
Opposed to third generation systems where data remains in the source, second gener-
ation systems move data from the data source to a central location, a data warehouse.
The organization of data (data models) in the data warehouse is optimized for analyt-
ical querying. In addition to the data warehouse, applications provide access to the
data. The applications query the data warehouse and not the data sources. An exam-
ple of a second generation system is the SPINE system used by the U.K. National
Health Service (NHS), which keeps a central record of patient demographics and care
summary.

For a second generation system the pull or push data collection strategy is an im-
portant decision. When the operational source initiates the communication, this is
categorized as push and when the central system initiates the communication, this is
categorized as pull. The push strategy gives total control over the communication to
the hospital. This is also the recommended way of communication according to one
of the IHE profiles named XDS [8]. A pull strategy may appear “too aggressive” to
hospital IT managers and includes the danger of adding workload to the operational
source at an inappropriate time.

33

7.2.3. Conclusions
A second generation push system fulfills NF1, NF5 and NF8 (see Chapter 6):

• NF1: The system expects a particular input from a data source. When a new
data source is added who contributes an already known data set, the system
requires no additional programming.

• NF5: The system contains no knowledge about the potential data sources
and their database schemas.

• NF8: The interaction with the end user reports affects only the DW and not
the data sources. The load related to data submission is managed by the data
contributors. They can decide on the appropriate time to submit the data.

This approach forces data to travel from their original location to the analytical sys-
tem. In the healthcare domain this approach has to overcome privacy related issues.
These issues are out of scope for this project but they should be taken seriously in a
real life system.

7.3 Refined Decisions
This section groups the design decisions in four different areas. The decisions are on
the system level. Nevertheless after reading this section the reader should understand
the boundaries of the system and the main building blocks. We connect the analysis
with the requirements of Chapter 6.

Every analytical system makes certain design decisions in the following areas [13]:

• Data Extraction: Data extraction is the process of extracting the necessary
data from the operational source.

• Transport: Transport is related with networking protocols, technologies and
security considerations.

• Transformation and Normalizations: Transformation and Normalization
refers to the process of harmonizing different data formats and coding sys-
tems.

• Analysis Set Creation-Delivery: Analysis Set Creation-Delivery is related
to the processing of the integrated data and how they are presented to final
users.

7.3.1. Data Extraction
As a push system DACTyL is by default passive. This means that the actual data
extraction is external to DACTyL. The extraction is managed by the interface engine
of the hospital as described in Chapter 5. The hospital has to configure the interface
engine and initiate the communication with DACTyL. In a realistic scenario this
configuration will be executed by a Philips service engineer in cooperation with the
hospital IT department.

By keeping the data extraction external to DACTyL we do not require knowledge
about the database schemas of the actual hospital information system. As mentioned
earlier this knowledge belongs to Philips’ competitors. Additionally we leave the
initiative for connection to the hospital which is easier than requesting for permission
to connect an external system directly to the hospital’s systems.

7.3.2. Transport
DACTyL exposes a web service that is ready to receive incoming data from the hos-
pital’s interface engine. We choose web services since this is a widely used and well
established technology. The protocol used to transfer the data is http and the data are

34

xml documents packaged in soap messages. We used http3 for prototyping since the
security issues are not under the scope of this project.

7.3.3. Input interpretation
Apart from the network protocol and the technology used in the transport the input,
the input needs to be interpreted. This means that DACTyL must be able to parse the
xml document in this case and understand the semantics of the contents. This “intel-
ligence” is the specification of the input model. When DACTyL receives the xml
document it will try to interpret it according to the specification of the input model.
The xml documents that DACTyL receives are valid serialized instances of the input
model4.

In an ideal case all data contributors would provide their data using the same xml
document which can be interpreted by the same input model. In this case DACTyL
would require only one input model. We consider this case unrealistic therefore we
design DACTyL in a way that it can use different input models to interpret the in-
coming xml documents.

Other candidates for input models are

• An existing version of HL7 CDA document such as the CCD.
• A new version of HL7 CDA document

A decision for a version of HL7 CDA model requires the hospital to export his data
as an xml document which is a valid instance of the HL7 CDA model. Even though
the standard for HL7 CDA export can be supported in existing solutions according to
system vendors, in practice it is not widely used5. This is due to the fact that hospitals
do not exchange data thus they do not need exporting features that provide semantic
interoperability.

Additionally it should not be neglected that countries that use the HL7 CDA model as
a standard for interoperability, define their own country-specific versions, which is
relevant due to the internationalization requirement NF7.

The decision for support of a particular input model should be taken in close coopera-
tion with the hospitals that will contribute data. For this version of DACTyL we
defined a custom input model that fulfills the C1 requirement.

7.3.4. Transformation-Normalization
Equipped with the specification of the input models, the system is able to interpret
data from different input models. This enables Philips to accept data in different input
models and minimizes the need for additional development. For example Philips can
agree to accept data using HL7 CDA version A with data contributors in the Nether-
lands and version B with data contributors in the U.K.

Regardless of the input model the incoming data need to be normalized. The normal-
ization can differ per use case. One form of normalization is translating different
units, for example kilos to pounds, or changing date formats. More complicated use
cases may include mappings between different clinical vocabularies, for example
from SNOMED codes to ICD-10 codes. Such mappings require interaction with
additional systems usually called clinical vocabulary servers and are left out of scope
in this project. Nevertheless the transformation-normalization is designed in a way
that allows further extension.

3 In case of https there is no noticeable difference in the overall system.
4 The reader can see an input model and a serialized input model instance in Section
9.2 Figures 22 and 23.
5 We visited the Zorg & ICT 2013 and interviewed the major hospital IT system
vendors. They commented that the standard is not widely used.

35

Transformation in the context of this project is the process of transforming the in-
stance of the input model to an instance of another model. We introduce the concept
of the harmonization model. This model is a Philips-specific model and acts as
interface between the data received and the saved data. The instance of the input
model is translated in a step by step process to an instance of the harmonization mod-
el. This process includes normalization steps and additional business logic steps. For
example, apart from the above mentioned normalization steps, we could mark the
incoming data with a timestamp that records when DACTyL received the data.

The instance of the harmonization model is finally stored in a database. The harmo-
nization model hides the details of the different input models from the rest of the
system. Figure 17 shows this transformation prior to data saving. Continuing the
example with the data contributors from different countries, we see that the system
requires the addition of a new transformation to accept instances of a new input mod-
el and it can then reuse the rest of the components.

Figure 17 – Transforming different input instances to an instance of the
harmonization model prior to saving

Analysis Set Creation-Delivery
The constraints of Chapter 6, CON1-3, provide the elements for the data warehous-
ing part of the system. We decided to design a new data mart for the incoming data.
This choice is justified because the incoming data are related to a new business pro-
cess, in this case hospitalization. Since the Motiva data mart is already designed as a
dimensional model we follow the data warehouse bus architecture according to [10]
in order to combine the two data marts. The tooling used for the ETL process and the
creation of the reports is defined by the constraints.

These design decisions are also related to the linking and presenting requirements of
Chapter 6.

7.3.5. Summary of Refined Decisions
The following list summarizes the design decisions:

• Data Extraction: External to DACTyL. Implemented by the interface engine
in the hospital.

• Transport: A web service receives xml documents packaged in soap mes-
sages over http. A custom made input format is used and special care is giv-
en for support of additional input formats.

• Transformation and Normalizations: A harmonization model is used to hide
the details on the incoming models from the rest of the system. DACTyL
stores instances of the harmonization model.

• Analysis Set Creation-Delivery: A new data mart for the hospitalization data
is designed. The data warehouse bus architecture is used to combine the

36

hospitalization and Motiva data marts. The ETL tooling specified by the
constraints is used to load the hospitalization data mart from the stored data.
The BI tooling specified by the constraints is used to create the end user re-
ports.

7.4 Overview of the system
Figure 18 shows the overview of the system and the environment where it operates.
Starting from the bottom of the figure we see the hospital information systems and
the hospital interface engine. The interface engine communicates with DACTyL
through the web service. It transmits data packaged in an xml document.

The web service delivers the incoming data to the processing layer. There the input
model is going to be transformed to the harmonized model. The last action of the
processing layer is to store the data in the landing area.

A number of ETL processes periodically load the data marts contained in the data
warehouse with new data coming from the landing area.

The system provides dashboards and reports that present the available data. These
dashboards are accessed by the end users of the system. Additionally the data are
available to other applications, which can query the system directly. The figure
shows a number of possible end users, who can be seen as data analysts or data re-
searchers.

Figure 18 – Overview of DACTyL

■

37

8.System Design
8.1 Introduction
This chapter describes the layers and the components of DACTyL. Other design
elements such as the design of the data marts and the design of the input model are
described in the implementation chapter (Chapter 8) to keep it more cohesive for the
reader.

8.2 Component Diagram
This section presents the component diagram in UML2 of DACTyL in Figure 19 and
explains the purpose of each layer. The description is intentionally high level.

Figure 19 – Component Diagram

8.2.1. Connection Layer
The connection layer is responsible for receiving the incoming data, transforming
them to the harmonization model and storing them to the landing area. This layer
uses java classes and is physically hosted in a web container such as Apache Tomcat.
The connection layer offers a URL, which can be used by the data contributor to
submit data. This layer requires a connection with a database system. This database
system is the landing area.

Web Service component
This component exposes a public URL to the operational sources. Every web service
serves a particular input model. Additional input models can be supported by expos-
ing new web services. The connection between the web service and the outside world
is handled by the web container.

Processing Pipe component
The Processing Pipe component offers transformation handlers, which transform the
instance of the input model to an instance of a harmonized model. Additionally it
offers handlers that store the instance of the harmonized model.

Data Store component
The Data Store component offers interfaces are used by the handlers to implement
the storage of the harmonized model instances.

38

8.2.2. Linking Layer
The linking layer offers two storage areas to the adjacent layers. The storage areas
are the landing area and the data warehouse. The landing area is used by the connect-
ing layer and the data warehouse by the presenting layer. Internally it handles the
loading of the data warehouse with new data.

Landing Area

The landing area is a relational database that stores the incoming data in the schema
specified by the harmonization model. It plays the role of the data archive. The exist-
ence of this database provides flexibility to create different data marts out of the same
collected data.

As mentioned earlier the data marts are de-normalized databases specifically de-
signed to answer a particular business question. Since the stakeholders will come up
with new questions on a regular basis, it is highly probable that the existing data
marts in the data warehouse will not be able to fulfill them. Thus the system must be
able to create new data marts. The reader could argue that the new data marts could
come from the existing ones and the landing area is not necessary as the data can be
stored directly to a data mart. This is technically possible, under certain restrictions,
but not advisable. The data warehousing best practices [9] suggest that the data marts
should be created out of the operational data source.

Designing the landing area as a database is a design decision. Other feasible alterna-
tives are text files and directories. First we believe that a database is easier to manage
and scale. Second the ETL tool can take advantage of out-of-the-box features such as
table journalization6. In combination with the frameworks used in the communicating
area, the need for hand written persistence code is minimized effectively removing
one of the database approach considerations.

The system keeps a separate database schema for every contributor. The communica-
tion components are responsible for routing the incoming data to the appropriate
database. By keeping one isolated database per data contributor we avoid the single
point of failure problem and make traceability or errors easier. Additionally the ETL
tooling that we used (see Section 9.1.3) makes it very easy to execute the ETL pro-
cess on identical physical schemas.

The landing area schema affects the complexity of the ETL design. A complicated
harmonization model can generate a complicated landing area schema. This will
result in even more complicated ETL procedures. The main design principle followed
here is simplicity. The landing area schema has to be understood and used by the data
integrator to create the ETL scripts.

ETL component

The ETL component orchestrates the data transfer between the landing area and the
data warehouse. This component is realized by an ETL tool. The tool is able to trans-
late the ETL design to SQL scripts. The SQL scripts are executed by the database
engines involved in the ETL design. To connect to the database engines the tool uses
the appropriate driver.

Data Warehouse component

The Data Warehouse stores the data marts. The data marts are dimensionally de-
signed as explained in Section 4.5. The data marts are the data sources for the data
analyst’s reports. The ETL component periodically loads new data in the data marts.

6 This feature can mark rows in the landing area as “already integrated”. These rows
still exist in the physical table but they will not be considered in the next ETL execu-
tion.

39

8.2.3. Presentation Layer
The presentation layer offers access to the data stored in the data warehouse. This
access mechanism is used by the data analyst and the data researcher. The access can
be realized through dashboards and reports or through direct queries against the
OLAP cube. The presentation layer requires a connection with the data warehouse.

BI Services and Weblogic Reports components

These components are realized by tools and are responsible for creating the user
reports and translating the user actions into SQL queries towards the data warehouse.
These tools require configuration that specifies the location of the data warehouse,
the data model and which tables are available for usage in the end user reports.
■

40

9.Implementation
9.1 Introduction
This chapter documents the implementation of the proof of concept system. Before
the actual implementation section a small introduction is given to the frameworks and
tools used for this version of the system.

9.1.1. Introduction to Eclipse Modeling Framework
Eclipse is a well-known platform used by numerous developers. One of the frame-
works that it provides is the Eclipse Modeling Framework (EMF) [21]. EMF is a
model driven development framework where the developer can design models and
the framework can produce java source code that implements the model.

The models designed in EMF are based on the Ecore meta-model, which can be
roughly described as a simplified version of the UML2 meta-model. The developer
can create a model using classes, associations and attributes to describe a domain of
interest. The code generator can read the model and generate the java code.

The framework also provides serialization and de-serialization utilities. This means
that an instance of an EMF model, which is a number of java classes in the RAM
memory, can be serialized in an xml file. This xml file can be then parsed to recreate
the instance of the model in the memory of the computer.

In this project we design the input and harmonization models at configuration time
using this framework. At runtime we use this framework to parse the input model and
create a new instance of the harmonization model.

9.1.2. Introduction to Teneo
When we want to save a java object to a database there are a number of ways to
achieve this. The traditional way is to write SQL and save the state of the object to
the database. A more modern approach makes use of object relational mapping tech-
niques such as JPA and Hibernate. With these frameworks there is no need to write
SQL code in order to save an object to a database. Instead the developer must anno-
tate the java source code with labels in the case of JPA or write a mapping file in the
case of Hibernate.

Teneo [22] uses Hibernate [23] and is an object persistence framework that can au-
tomatically generate the Hibernate mapping file for an EMF model. This means that
there is no need to create the database schema, to write the SQL code that saves the
object or to write the Hibernate mapping file. Object relation mapping has a number
of limitations as there is no one to one mapping from java to the relational database
schema. For example, relational databases cannot model inheritance. How Teneo
deals with such cases is specified in a configuration file.

We used Teneo to generate the landing area database schema out of the harmoniza-
tion model at configuration time. At runtime we used Teneo to save the instance of
the harmonization model to the landing area.

9.1.3. Introduction to Oracle Data Integrator
The Oracle Data Integrator (ODI) [24] is an ETL integration interface between data
sources and targets. The process designed in ODI implements the ETL component.
The following section will describe briefly some key concepts of the tool that are
used in the project.

41

A physical schema in ODI describes the physical characteristics of both the data
sources as the targets. It describes the type of database server (Oracle, DB2, SQL
Server, Informix and Sybase), where the database server is located and the name of
the database server. For a file as a data source or target, things such as the filename,
the file type (XML, flat file) are described.

One physical schema or a group of structurally identical physical schemas that are in
different physical locations can be identified as a single logical schema. The logical
schema is resolved into one of the physical schemas at runtime for a given context
(see next paragraph). In ODI all interfaces7 that are developed are designed on top of
the logical schema. The logical schema acts like a pointer to a physical schema.

Contexts are runtime configurations that map logical schemas with physical schemas.
For example, in our use case we can execute the ETL process for context A which
uses the landing area-physical schema A, and then run the same ETL process for
context B which uses the landing area-physical schema B. In general, structurally
equal physical data sources and data targets but with different content can be ad-
dressed in different contexts.

9.1.4. Introduction to Oracle Business Intelligence Enterprise Edi-
tion
Presentation components are realized by Oracle Business Intelligence Enterprise
Edition [25] tool. This toolset is Oracle’s state of the art response to BI requirements.
According to the role analysis, the data presenter interacts with this toolset to design
the reports for the data analyst.

The data presenter creates three different models using the Oracle BI Administrator
tool, namely physical, logical and presentation models8. The physical model contains
the physical database that is used to provide data to the reports. For this deliverable
the physical model contains the Motiva and hospitalization data mart. The business
model is the OLAP cube. This model binds the physical tables of the DW with the
cube. In this model the levels of the dimensions and the measures of the fact tables
are specified. The presentation model defines which fact tables and dimensions are
available for the report and dashboard creation. Here the data presenter can change
the names of tables and columns that will appear in the end user reports. Using these
three models the OLAP cube has sufficient knowledge to translate the user interac-
tion with the reports to SQL queries specific for the two data marts used in this pro-
ject. Figure 20 shows the user interface for the OLAP cube configuration. On the
right side we see the physical model, next to that is the business model and at the left
side is the presentation model.

7 Interface in ODI terminology stands for a data mapping between a source and a
target database table.
8 These models are completely unrelated with the input and harmonization models
mentioned earlier. We simply follow the terminology of the tool.

42

Figure 20 – Presentation (left), business (middle) and physical (right) models

The final step in this area of focus is the actual design of the end user report. The data
presenter has every object in the presentation model at his disposal to compose the
dynamic reports. Figure 21 shows this UI. The reports can have the form of spread-
sheets with clickable elements that allow the drilling up and drilling down features.
Additionally other user interface elements can be created such as graphs or dropdown
menus. The elements of the presentation model in the left side of Figure 20 are the
elements that can be used to create the end user reports and can be seen in Figure 21.

Figure 21 – Creating a new report for the data analyst

In a real product deployment, users, roles and access rights are configured in the
OBIEE tool to manage the access to the available data and the level of details visible.
This means that the patient details are only available to their care providers. Other
users for example hospital management or researchers have access to a subset of de-
identified data. This configuration was out of the scope of this project.

9.1.5. Tooling layout
This section shows where each tool or technology is used in this project. Figure 22
shows the layers of the system “annotated” with the tools used to realize them.

43

Figure 22 – Tooling layout in DACTyL

9.2 Implementation of the input model
Since we currently have no must requirement to support a particular input model the
input model and the harmonization model are the same for this proof of concept sys-
tem. This means that the transformation process of the input model does not result in
a different model but in a model with additional values.

This section describes how the input model is implemented. To implement the input
model we analyzed the data that the team had at their disposal for this version of the
system. Since we built a proof of concept system we chose to create a purpose built
input model capable of accommodating our available data. Table 15 shows the avail-
able data set and briefly explains every column.

Table 15 – Hospitalization events data set

Column name Description Used in the

Input Model Data example

Motiva Patient ID The code of the
patient in the Motiva
system.

Yes 147

Link ID Hospital internal
code. Not relevant.

No 152

Before/After Marks if the
hospitalization
occurred before or
after the patient
enrollment to
Motiva.

Yes Pre

Hospitalization ID Unique identifier of
the hospitalization
event per hospital.

Yes 456

Date of Death Self-explanatory Yes 25-03-2011
Admission Date Self-explanatory Yes 20-03-2011
Discharge Date Self-explanatory Yes 22-03-2011
Admission Month Self-explanatory No 03
Admission Year Self-explanatory No 2011
Admission Method Hospital specific Yes AE

44

code that describes
an admission
method.

Treatment Specifi-
cation

Hospital specific
code that describes
the treatment.

Yes GEMN

Consultant Code Identifier of the
doctor. Not relevant.

No WALC

Diagnosis 1 to 8 ICD code for the
diagnosis. A hospi-
talization event may
be related with a
number of
diagnoses.

Yes R07.4

From the available data set we chose not to use the Motiva ID code even though it is
an appropriate key to match the patients across the data marts. The Motiva ID is a
Philips ID not known to the hospitals in the general case. This means that we expect
that the hospitals will not be able to provide this number.

To create the input model we decided to include additional columns shown in Table
16. The patient name is added for presentation purposes. The unique patient ID in
combination with the patient birth date is part of the key used to match the patients in
the different data marts. The patient birth date is used to classify the hospitalization
events in different age groups. The patient gender is used for the same reason. We
expect that the data sent by the hospital contains at minimum the data to populate an
instance of the input model.

Table 16 – Hospitalization events data set

Column name Description Used in the

Input Model Data example

Patient name Self-explanatory Yes Orestis
Unique patient id A number that

uniquely identifies
the person. For
example, the BSN
number.

Yes 1234365

Patient birth date Self-explanatory Yes 11-02-1986
Patient other id Identifier of the

patient. For future
use cases.

Yes ERT3455

Patient gender Self-explanatory Yes M

Using the EMF framework and the model editor we created the model shown in Fig-
ure 23. In this figure we see the Event_Data class. This class represents the hospitali-
zation event and contains all the previously mentioned columns as attributes. The
Hospital_Data class contains one or more hospitalization events and two additional
attributes. The contributor attribute specifies the sender of the message and the
timestamp attribute is added by the server when it receives the message in order to
mark the time of message arrival in DACTyL. It is important here to point out that a
number of attributes have a multiplicity 1 or 1..*. This means that these attributes are
considered mandatory for a “savable” hospitalization event. The columns that will
store these attributes in the landing area cannot be null.

45

Figure 23 – Design of the input model

A serialized instance of the model is an xml document. This document is the payload
of the soap message that the web service receives. An example is given in Figure 24.

Figure 24 – Serialized instance of the input model

The only difference between the input model instance and the harmonization instance
is the timestamp attribute. The instance of the input model does not contain the
timestamp attribute. This is added by DACTyL in a transformation step.

The next list summarizes the minimum necessary assumptions about the input data

1. Every hospitalization event is marked with a “hospital event id” which is
unique for the data contributor. This ID enables the system to understand if
the data refer to a new hospitalization or it is an update that contains addi-
tional data about a past hospitalization.

2. An update for a hospitalization event will be marked with the same “hospital
event id” as the original one.

3. An update contains at least the previously submitted data and additional data
about a hospitalization event.

4. Every hospitalization event contains a unique identifier for the patient.
5. Every hospitalization event contains the birth date of the patient.
6. The combination of the patient unique identifier and the birth date identifies

a patient across data contributors.

46

9.3 Implementation of the connection layer
This section describes the implementation of the connection layer. This layer is re-
sponsible for parsing the incoming data and storing them in a changed form to the
landing area. The class diagrams and the sequence diagrams in UML2 for the soft-
ware components are presented here.

The classes that implement the connecting components receive the input from the
data contributors and deliver an output to the landing area. Figure 25 shows the com-
ponents and the classes that implement them. The communication between the com-
ponents is based on java interfaces. The classes that implement the interfaces make
extensive use of external frameworks. The interfaces, in contrast, carry no dependen-
cies to external frameworks. In this way the implementation classes can be easily
changed. The packaging of the classes separates the interfaces from the implementa-
tion.

Figure 25 – Package diagram from components to classes

A web service is a normal class that provides a public function. When the web ser-
vice is deployed in a web container such as Apache Tomcat a separate configuration
file informs the web container that a new public function should be published. The
web container takes care of the publishing actions for the new function. The contain-
er creates a new unique URL for this function which can be reached by an http re-
quest. When a data contributor sends a request to this URL, the web server finds the
appropriate configuration file and loads the web service class in a new thread. Finally
he calls the public function with the incoming data as an argument. Since every web
service call runs in a different thread, the web server is able to service multiple con-
current calls to the same web service.

The web service in our case, knows what the expected input and harmonization mod-
el is. It performs a rather simple job. It assembles a processing pipe and puts the
incoming data in the pipe. To create the necessary objects the web service uses a
factory injected with the input and harmonization models. The web service uses the
public interfaces of the processing pipe. This decouples the web service from the
processing pipe implementation.

Figure 25 shows the concrete factory and the interfaces9 of the classes that will im-
plement the behavior. As expected, the pipe processing factory will create the ob-
jects. The “create” dependency lines from the factory towards the concrete classes
and the concrete classes themselves are omitted in Figure 21 due to lack of space.
The output model in Figure 26 is what we termed as harmonization model.

The injection of the factory with the input and the harmonization model is necessary
because some transformation handlers are generic. By generic we mean that exactly
the same handler implementation class can be used for different models.

9 The differences in the font size of the interface operations are due to a bug in Enter-
prise Architect and carry no special meaning. All operations are equally important.

47

Figure 26 – Class diagram showing the factory and the participating interfaces

The transformation of the input model to the harmonization model is achieved in a
number of steps. Figure 27 shows the Pipe, the Handler and the Request class. The
Request class is a wrapper that contains data. The structure of the Handlers is in-
spired by the Chain of Responsibility pattern with one twist: every handler in the
chain is responsible for the request and acts upon the request.

Figure 27 – The parser and the saver handler

Two types of handlers are always present in a Pipe: a parser and a saver handler. The
parser handler parses the incoming data. This means that the parser will read an xml
string and check if the string is valid according to the rules of the input model. At this
point we want to stress the fact that this parser is generic and injected with the input
model. The parser can parse any serialized EMF input model.

48

A saver stores the instance of the harmonized model to the landing area. When the
request object reaches the saver the input model is considered to be transformed to
the harmonization model. The saver makes use of the classes that implement the data
store component. Figure 28 shows the handlers that are always present in the begin-
ning and at the end of a processing pipe. We can also see that the saver creates the
objects of the data store component through a factory and uses the public interfaces
to invoke the behavior. This decouples the saver from the implementation of the data
store and the Teneo framework which is used in this project.

Figure 28 – Class diagram with Pipe, Request and Handler

Figure 29 shows all the code that is needed to save a harmonization instance to the
landing area. Hibernate will take care the creation of the SQL code using the map-
ping specification that Teneo generated out of the EMF model.

Figure 29 –Source code to save an instance of the persistance model

The handlers between the parser and the saver implement the business logic that
transforms the input model to the harmonization model. This design enables the ex-
tension of the communication components so that DACTyL can interact and benefit
from additional systems. It also enables every possible combination between input
and harmonization models.

Possible additional systems are an Enterprise Master Person Index (EMPI) and/or a
clinical vocabulary server (see 12.4). These additional systems are not part of this
deliverable for two reasons: First the time budget for this project is limited and sec-
ond the project is not mature enough to benefit from these systems. Nevertheless
these future expansions were kept in mind during the design and implementation of
the software components. The integration with such systems requires

1. The implementation of a new handler.

49

2. An update of the pipe processing factory so that the new handler becomes
available to web services.

Figure 30 shows how new data coming from the data contributor are handled. The
setup of the objects is omitted to gain space. In this figure we consider the pipe al-
ready properly set up. The incoming data are stored in a request object and the re-
quest is put in the pipe. The parser handler will parse the data contained in the re-
quest. If the parsing is successful the parser outputs an object which is the de serial-
ized xml string thus a new java instance of the input model. Following that the in-
stance is stored in the request and the request gets forwarded to the next handler in
the pipe. In this case the next handler is a timestamp adder. This handler will act on
the instance object contained in the request and add a timestamp.

Figure 30 – A Request handled by the Handlers

The next handler is the saver. Figure 31 continues from where Figure 30 ended and
shows how the saver handles the request. It will use the data store factory to create an
instance of the data store and then ask from it to save the java instance of the model
contained in the request. Again the object creation is omitted from the diagram.

Figure 31 – Saving the data

The software components communicate through interfaces. The implementation of
the interfaces uses the external frameworks. The following list summarizes the bene-
fits and the drawbacks related to the selection of external frameworks according to
our judgment:

• Benefits
o EMF

1. The usage of EMF to design the input and harmonization
model creates a single point of reference for these models.

50

2. There is no need for a hand written parser of the input.
3. Open source models for healthcare standards can be easily

reused.
o Teneo

1. No need for SQL code to create a database schema for the
harmonization model.

2. No need for SQL code to save an object to the landing ar-
ea.

• Drawbacks
o The external frameworks add dependencies to the project that need

to be managed.
o Since the landing area schema is generated out of the harmoniza-

tion model the designer of this model should understand how the
object relational mapping works.

9.4 Implementation of the linking layer
This section describes the tasks related to implementation of the linking layer. This
layer is responsible for loading the data marts with data. Here we describe the data
mart design, the landing area design and the ETL process.

9.4.1. Implementation of the landing area
The landing area is the database that stores instances of the harmonized model. In
this version we used the Oracle 11g database for the landing area. The connection
layer can store data in every database supported by Hibernate but since the Oracle
database was already installed for the data warehousing part it made sense to reuse it
for the landing area. The design of the database schema is generated by the harmoni-
zation model. Using the harmonization model we instruct Teneo to create a database
schema capable of saving an instance of the harmonized model. Teneo reads the
harmonization model and produces a Hibernate mapping file. Then it issues the ap-
propriate SQL commands to create the table and establish the foreign key relation-
ships.

We create one database user10 per hospital. The connection layer uses the “contribu-
tor” attribute to realize where the data should be delivered. This means that if we
receive data from hospital A and hospital B, the landing area contains two structural-
ly identical databases, one for user A and one for user B. The databases are structur-
ally identical because they are both generated from the harmonization model. As long
as the data contributed by the hospitals can be accommodated by the harmonization
model no change is necessary. This is why the design of the harmonization model
plays an important role in a real case scenario. This model must be generic enough to
cover Philips’ data needs from the hospitals. In other words the harmonization model
must be considered more stable than the input model.

9.4.2. Implementation of the Data Warehouse bus
The data warehouse bus is a collection of dimension tables that are referenced by fact
tables belonging to different data marts. These are the conformed dimensions of the
data warehouse that enable the drill across operations.

In order to better manage the conformed dimensions we create a dedicated database
user. This user owns three tables, which are the three conformed dimensions in our
system

1. DIM_CALENDAR: The time dimension.

10 A database user in Oracle terms should be translated by the reader to a database
schema. An Oracle database user can own tables and other database objects such as
views, procedures and sequences.

51

2. DIM_LOCATION: A dimension that holds all locations that are contrib-
uting data.

3. DIM_PATIENT: A dimensions that holds all the patients in the system.

The DIM_LOCATION and DIM_CALENDAR dimensions originate from the Moti-
va data mart. The table structure and data are copied in the data warehouse bus user.
There is only one addition in the DIM_CALENDAR dimension and this is the “null”
row. This row represents the unknown date. It is necessary because many hospitaliza-
tion events will not contain a discharge or a mortality date. These dimensions are set
up at configuration time.

They do not change and they do not get updates from the incoming data, however
new location can be added as the customer base grows. The patient dimension on the
other hand, can receive new data from the hospitalization data mart and the Motiva
data mart. To assign a unique system-wide identifier we use a sequence that produces
number for the DIM_PATIENT.NID column. If an ETL process needs to add a new
row to the patient dimension, it has to use this sequence to produce the primary key.
Figure 32 shows the details of the conformed dimensions in the data warehouse bus.

Figure 32 – Conformed dimensions in the data warehouse bus

The Motiva data mart, which was developed last year, and the hospitalization data
mart developed in this project contain fact tables with foreign key relationships to
these conformed dimensions. Figure 33 shows the relationship.

Figure 33 – The data warehouse bus and the data marts

9.4.3. Implementation of the Hospitalization data mart
The hospitalization data mart is a database that structures the hospital data in a par-
ticular way. The hospitalization fact table captures a business event, which in this
case is the occurrence of a hospitalization. The measurement for this table is the
Length of Stay (LOS) in days. The dimensions add context to the event and can pro-
vide answers to questions such as “where this event took place,” “who is the patient”
and “what was the diagnosis.” The fact table is designed as an accumulating snapshot
table according to [10]. The summary of the data mart is shown in Table 18.

Table 17 – Summary of the hospitalization data mart

Fact Table Type Accumulating Snapshot

52

Measurements Length of Stay in days
When Dimensions DIM_CALENDAR
Who Dimensions DIM_PATIENT

DIM_AGE
DIM_GENDER
DIM_SERVICE

Where Dimensions DIM_LOCATION
Why & How Dimensions DIM_DIAGNOSIS

DIM_DIAGNOSIS_GROUP
DIM_ADMISSION_TYPE
DIM_TREATMENT

Figure 34 shows the foreign key relationships of the fact table. The fact table has
foreign key relationships with data mart specific dimensions and with the conformed
dimensions in the data warehouse bus.

Figure 34 – Hospitalization data mart foreign keys

The fact table has a multirole relationship with the calendar dimension11. This practi-
cally means that the fact table has three columns; admission, discharge and mortality
date that are foreign keys from the calendar dimension. This multirole relationship
enables the fact table to mark the important timestamps for the lifespan of the event.

As an example consider the following scenario: At time t DACTyL receives data that
contain an admission for a particular patient. A new row will be added in the fact
table and the length of stay column will be null because there is no discharge date
yet. At time t+i DACTyL receives data that contain a discharge date for the same
event. The fact table row will be now updated with the new value and the length of
stay will contain the length of the hospitalization. This revisit and update pattern
classifies the table as an accumulating snapshot table. Figure 35 shows the details of
the tables in the hospitalization data mart. We see the usage of the conformed dimen-
sions and the multirole relationship with the calendar dimension.

A hospitalization event can be related with more than one diagnosis. This is why the
fact table contains one foreign key to the diagnosis dimension for the primary diag-
nosis and one additional foreign key to the diagnosis group dimension. This table is
used together with the diagnosis group bridge table to relate one hospitalization event
with multiple diagnoses.

11 The calendar dimension is said to be a role playing dimension.

53

Figure 35 – The hospitalization data mart

Apart from the DIM_DIAGNOSIS_GROUP all the other dimensions of the hospital-
ization data mart are set up during the configuration time and they do not receive new
updates from the incoming data. One dimension with particular interest is the
DIM_DIAGNOSIS. To create this dimension the ICD-10 vocabulary is used. To
populate the table we designed an ETL process to import the data published by world
health organization.

The DIM_TREATMENT and DIM_ADMISSION_TYPE are case specific vocabu-
laries. The codes found in these vocabularies are used in the data set that we used as
input but, according to our research, they do not map to any standardized clinical
vocabulary.

9.4.4. Implementation of the ETL process
In this section, we describe the ODI interfaces12. These interfaces perform the load-
ing of the hospitalization data mart with data coming from the landing area. The
designed interfaces are

1. load_dim_patient
2. load_dim_diagnosis_group
3. load_dim_diagnosis_group_bridge
4. load_fact_final_hospitalization

The following sections provide descriptions for the interfaces. The implementation
details can be found in the Appendix A section 15.1.

9.4.5. The “load_dim_patient” interface
The “load_dim_patient” interface has to check if the data in the landing area contain
new patients. The source table is the EVENT_DATA table in the landing area. The
target table is the DIM_PATIENT table in the data warehouse bus. The implementa-
tion of the interface defines which columns play the role of the update key in the
target table. The update key is used to define if the data on the source table already
exist on the target table. If the update key already exists then the source data row will
be treated as an update. Otherwise the source data row will be considered as data for
a new patient and a new row will be added in the DIM_PATIENT row. The surrogate
key for the new patient row will be generated by a sequence and will identify the
patient across the system.

For this interface the update key of the target table is composed from three columns:

12 Again at this point the words interface stands for a mapping between a source and
a target database table

54

1. PATIENT_LOCATION: This column is populated using ODI specific code
that returns the value of the current context at runtime.

2. YOB: This column is populated form the PATIENT_BIRTHDATE column
in the source data.

3. PERSONAL_ID: This column is populated using the PA-
TIENT_UNIQUE_ID column in the source data.

9.4.6. The “load_dim_diagnosis_group”
The “load_dim_diagnosis_group” interface is responsible for creating one new row
for every new hospitalization. The source table is the EVENT_DATA table in the
landing area. The target table is the DIM_DIAGNOSIS_GROUP table in the hospi-
talization data mart. This is a quite simple interface that creates a new table row per
hospitalization event. There are only insert and no updates for this interface.

9.4.7. The “load_diagnosis_group_bridge”
The “load_diagnosis_group_bridge” interface connects primary keys from
DIM_DIAGNOSIS and DIM_DIAGNOSIS_GROUP tables. The source table is the
EVENT_DATA table in the landing area. The target table is the DIAGNO-
SIS_GROUP_BRIDGE table in the hospitalization data mart.

9.4.8. The “load_fact_final_hospitalization” interface
The “load_fact_final_hospitalization” interface is responsible for loading the fact
table with new data. The source table is a joined table between the EVENT_DATA,
EVENT_DATA_DIAGNOSIS and DIM_PATIENT tables. The target table is the
FACT_FINAL_HOSPITALIZATION table. Additionally one lookup operation on a
dimension table is required per foreign key contained in the fact table.

The join between the EVENT_DATA and the EVENT_DATA_DIAGNOSIS tables
is necessary for the lookups that load the foreign key to the primary diagnosis and the
foreign key to the diagnosis group. The join between the EVENT_DATA and the
DIM_PATIENT is necessary for the lookups that load the foreign key to the gender
and the foreign key to the age dimension.

Since this fact table is an accumulating snapshot fact table every row will be possibly
revisited and updated. The update key for this table is composed from two columns:

1. LOCATION_NID: This column is populated using ODI specific code that
returns the value of the current context at runtime.

2. EVENT_ID: This column is populated from the HOSPITAL_EVENT_ID
column in the source data.

Every time this interface runs it checks if the combination of LOCATION_NID,
EVENT_ID exists already in the fact table. If this is true the row of the fact table gets
updated and in the opposite case a new row is inserted in the fact table.

9.5 Implementation of the presentation layer
The presentation layer provides access to the data. The data analyst interacts with this
layer to gain insights from the data. This access is realized through predefined reports
such as the return on investment and patient report. Additionally applications can
query the OLAP cube directly.

9.5.1. Implementation of the OLAP cube
To implement the OLAP cube we used the Oracle BI Administrator tool. The physi-
cal layer contains the data warehouse bus, the hospitalization data mart and the Moti-
va data mart tables.

55

The business model contains all the dimension and fact tables. Additionally in the
business model we specify the dimension hierarchies for every dimension. The di-
mension hierarchies are necessary to meet the reporting requirements. As an example
Figure 36 shows the hierarchy definition for the diagnosis dimension. We see a top
“Total” level and then the three levels of the ICD-10 hierarchy “Chapter”, “Block”,
“Detail”. The “Detail” level corresponds to the actual ICD-10 code.

Figure 36 – Hierarchy for the diagnosis dimension in the business model

In the hospitalization fact table, we add one logical column that counts the number of
table rows. This column does not affect the actual physical table. It exists only in the
business model. This means that the OLAP cube treats this column as if it was a real
physical column. With this addition the hospitalization fact table has two measures,
the length of stay and the number of hospitalizations. The two measures are shown in
yellow color in Figure 37.

Figure 37 – Hospitalization fact table in the business model

We reuse this approach to add logical columns wherever is necessary. For example
we add a logical column on the fact table of the Motiva data mart to count the num-
ber of Motiva tasks. Since the need to count rows is a common thing in data ware-
houses some authors propose to add an additional physical column on the fact table
which always contains the number one. We found the approach of logical columns
more elegant for our case. Of course by choosing this approach we depend on a fea-
ture of the Oracle BI Administrator tool.

56

One additional task performed with this tool is column renaming. We change the
physical names of the columns to user friendly text. This activity takes place on the
presentation model or business model.

With the physical, business and presentation model specified the configuration of the
OLAP cube is complete. The configuration is stored on a file which is used by the
Weblogic server (see Chapter 11). Every element of the presentation model becomes
available for usage by the data presenter.

9.5.2. Implementation of the data analyst reports
The last implementation activity for this project was the creation of the end user
reports. This is the activity done by the data presenter. Oracle uses the term dash-
boards to describe them. The dashboards are compositions of different elements such
as interactive tables, user prompts and graphs.

To create the dashboards according to the presentation requirements we use the
available elements from the presentation model. Figures 38 and 39 show the end user
reports. Figure 38 shows only a few columns due to lack of space. The expected
hospitalization value is a constant value based on the user input.

Figure 38 – Return on investment report

Figure 39 – Patient report

A presentation requirement is met not only by the end user report. The report is only
the tip of the iceberg. A simple example will clarify how a presentation requirement
is met.

The return on investment report must contain a time column which can be used for
drill down operations according to the requirements. To meet this simple requirement
several implementation actions in different layers are required:

1. The input model accommodates the admission date for a hospitalization
event.

2. The persistence model and the landing area design enable the storage of this
date.

3. The design of hospitalization data mart contains a time dimension table
properly loaded with data.

4. The design of the hospitalization data mart specifies that the hospitalizations
fact table has a foreign key to the time dimension to mark the admission
date.

57

5. The ETL interface that loads the hospitalization fact table uses the admis-
sion date stored in the landing area. It performs a lookup operation on the
time dimension table to find the dimension key that corresponds to this date.
This dimension key is stored in the hospitalization fact table.

6. The configuration of the OLAP cube specifies that the physical time dimen-
sion table is a logical dimension with a specified hierarchy. The specifica-
tion of the hierarchy enables the drill down features. The logical time di-
mension table is made available to the data presenter by being part of the
presentation model.

7. Finally the dashboard uses this time dimension in a report. This column of-
fers drill down features and connects hospitalization events with admission
dates.

■

58

10. Verification & Validation
10.1 Introduction
This chapter describes the verification and validation [26] for the DACTyL project.
To clarify the terms we distinguish them as follows

• Verification: Are we building the product right?
• Validation: Are we building the right product?

10.2 Verification
This section describes how each layer was tested. Due to the different technologies
involved we adjusted our approach per layer.

10.2.1. Connection layer
The connecting layer is composed of java classes. To test these classes we used the
JUnit [27] framework. Whenever a connection with a database was necessary we
used the Hyper SQL [27] database to keep the Oracle database clean from testing
data. We followed a white box approach for the unit testing and a black box approach
for the subsystem test.

• Unit test: Individual classes where tested in isolation.
• Subsystem test: To test the layer as a subsystem we submitted a set of data

and successfully retrieved them from the landing area.

10.2.2. Linking layer
The ETL interfaces where tested using a black box approach due to the nature of the
ODI tool. ODI provides an execution report when an interface executes successfully.
The execution report contains the number of rows inserted, updated and deleted. We
tested the ETL interfaces in two different levels

• Unit test: Every interface was executed in isolation. The expected number of
inserts, updates and deletes was compared to the actual one reported by
ODI. This testing method does not reveal unsuccessful lookup operations.
We used SQL scripts to count the number of null values in the target table
columns.

• Subsystem test: To test the complete ETL process we used the same method
but instead of executing every ETL interface in isolation we executed an
ETL scenario which is a sequence of ETL interfaces.

During testing with the Hull data set we found out that there is number of disease
codes which could not be matched. Further investigation proved that these codes
come from an addition to the ICD-10 vocabulary which is not included in the official
version published by WHO. In the future work section we advise the inclusion of
these additions as well.

10.2.3. Presentation layer
The BI Administrator tool which configures the OLAP cube offers a consistency
check mechanism. Once the configuration is specified the tool can check if the con-
figuration is consistent. This consistency checking mechanism does not ensure cor-
rectness of the OLAP configuration.

• System testing: The end user reports are in fact a black box testing tool for
the complete system. Interacting with the reports reveals the errors in the
OLAP cube configuration.

59

10.3 Validation
This section summarizes how the must requirements for this project are met.

Table 18 – Connecting Requirements

Id Name Priority Description
C1 Input Data M The system input shall be:

• Patient demographics
• Admission date
• Discharge date
• Admission reason
• Diagnosis
• Mortality date
• Patient unique identifier on the

source system
Met
By

The input data are accommodated by the input model and parsed by the
parser handler. Sections 9.2 and 9.3 describe the details.

Table 19 – Connecting Requirements

Id Name Priority Description
C3 Operational

Source
Location

M The system shall accept an input data from
operational sources that are physically
situated in a different network.

Met
By

The requirement is met by the web service and the web container. The
data contributor can send data from a different network. Section 9.3
describes the details.

Table 20 – Connecting Requirements

Id Name Priority Description
C4 Updates M The system shall accept input data from

operational sources periodically.
Met
By

The requirement is met by the web service and the web container. The
data contributor can send data from a different network. Section 9.3
describes the details.

Table 21 – Linking Requirements

Id Name Priority Description
L1 Unique DAC-

TyL specific
patient
identifier

M The system shall assign a unique DACTyL
specific identifier to every patient it
contains.

Met
By

The requirement is met by database sequence that generates surrogate
keys for the DIM_PATIENT table and the ETL interface that loads the
DIM_PATIENT dimension. Sections 9.4.2 and 9.4.5 describe the details.

Table 22 – Linking Requirements

Id Name Priority Description
L2 Data Linking M The system shall link all available data

about a specific patient.
Met
By

The requirement is met by the foreign key relationship between the fact
tables that contain the data and the DIM_PATIENT table that uniquely
identifies every patient. Sections 9.4.2 and 9.4.8 describe the details.

60

Table 23 – Linking Requirements

Id Name Priority Description
L3 Data Linking

Update
M The system shall link additional data about a

specific patient when they become
available.

Met
By

The requirement is met by the design of the fact table as an accumulating
snapshot and the foreign key relationship between the fact table that con-
tains the data and the DIM_PATIENT table that uniquely identifies every
patient. Sections 9.4.2, 9.4.3 and 9.4.8.

Table 24 – Presenting Requirements

Id Name Priority Description
P1 Combined

reporting
M The system shall produce a report that con-

tains data from Motiva and from a clinical
system for a specific patient.

Met
By

The requirement is met by the conformed dimensions between the Motiva
and the hospitalization data mart. Section 9.4.2 describes the details.

Table 25 – Presenting Requirements

Id Name Priority Description
P2 Return on

investment
report

M See 6.2.4

Met
By

The requirement is met by the return on investment report. Section 9.5.2
describes the details.

Table 26 – Presenting Requirements

Id Name Priority Description
P3 Patient report M See 6.2.5
Met
By

The requirement is met by the patient report. Section 9.5.2 describes the
details.

■

61

11. Deployment
11.1 Introduction
This chapter describes the deployment of the implementation and the proposed de-
ployment for future versions of the system.

11.1.1. Implementation deployment
Figure 40 shows how the proof of concept system is deployed. Everything is current-
ly hosted on a pc running 64-bit windows 7. The connection layer uses the Apache
Tomcat and the axis2 execution environments. Within axis2 is the web service
XDR.aar that implements the layer described in Section 9.3. The service.xml is a
deployment specification that connects the web service with the web container. The
web service is deployed on the appropriate directory and executed every time the
container receives data.

 This device also hosts an instance of an Oracle 11g database. This database contains
the landing area and the data warehouse with the data marts as described in sub-
sections 9.4.1-9.4.3.

The ODI tool executes the loading scenario and loads the data warehouse with new
data. The loading scenario is designed at configuration time and executed periodical-
ly by execution agents. The loading scenario executes the interfaces describe in sub-
sections 9.4.5-9.4.8.

 The BI administrator tool produces an OLAP cube configuration which is designed
at configuration time and deployed on the web logic server as described in sub-
section 9.5.1. The reports and the dashboards that the end user uses are designed at
configuration time and deployed on the web logic server as described in sub-section
9.5.2.

Figure 40 – Deployment diagram

63

11.1.2. Proposed system deployment
The current deployment of the system in one laptop makes it easily presentable to
management and potential clinical partners. If the intension is to continue exploratory
development we propose to transform the physical system to a virtual one. The snap-
shotting features of the virtual machine make versioning the entire system easier.

For a realistic deployment we propose the following changes:

1. The connection layer which contains the Apache Tomcat and the web ser-
vice should be deployed in a separate server. This server will receive the in-
coming data from the data contributors. Since it publishes a web service it
requires special security configuration.

2. The server that contains the connection layer should also host the landing
area. This means that the server should host an instance of Oracle or anoth-
er general purpose DBMS system. The reason for this is that the web ser-
vice responds after the data are successfully saved in the landing area. The
web service will respond faster, if the landing area is also hosted in the
same server.

3. A dedicated server should host the data warehouse. This will enable easier
maintenance and faster responses from the data warehouse.

4. The ODI tool can connect to any remote database system. This means that
the ODI tool can be simply hosted on the system of the data integrator. We
propose that the master and work repositories for the ODI tool are hosted in
the same database instance as the data warehouse. We also propose that the
staging area used by the tool should be in the server that hosts the data
warehouse. These recommendations are in line with the Oracle’s suggested
layout and increase the performance of the ETL scripts.

5. The same holds for the BI Administrator tool. It can be hosted on the sys-
tem of the data integrator and connect to the remote databases.

6. The OBIEE environment which contains the web logic server and the end
user dashboards should be deployed in a separate server. This server expos-
es the end user reports and special security configurations should apply here
too.

■

64

12. Conclusions

This chapter summarizes the main results of the DACTyL project and discusses les-
sons learned and future work. The goal of this project was to investigate possible
designs for an analytical system that enables external data sources to submit data,
combines them with Motiva data and generates specific reports for different stake-
holders.

12.1 Results

We group the results of this project in two main categories, the results from the do-
main analysis and the result from the design and implementation tasks.

12.1.1. Domain analysis

Hospitals use different systems to store patient data. These systems use proprietary
data models. We cannot predict what data will be available at a particular hospital
and in which format.

The greatest common factor between hospital-IT layouts is the interface engine. This
system handles communication between different systems and has features that facili-
tate the data exchange. Hospitals use different interface engines but the list of sup-
ported features does not vary dramatically. The most interesting feature for our pro-
ject is the connection to a remote web service. We propose that the communication
between DACTyL and the hospital is realized through the interface engine.

Hospitals use managed vocabularies. These vocabularies offer a coding system. This
project used the ICD-10 vocabulary to categorize hospitalization events because it
was the coding system of the input data set. There are multiple coding systems used
in practice. It is important that the coding system is interpreted by the receiving part
in a data exchange scenario.

The HL7 CDA document is the state of the art standard that offers semantic interop-
erability. It is an abstract data model which does not specify concrete messages. Ac-
cording to hospital IT vendors the standard in still not widely supported. This is due
to fact that hospitals do not share information across their organizations boarders. In
countries where this data model is used, a country specific version is published and
enforced to the communicating parties by an external, usually government related,
organization. Further research is necessary to identify if the usage of particular ver-
sion of the HL7 CDA such as the CCD or the specification of a new version would
benefit the DACTyL project. This research should explore if the systems of the con-
tributors can export data in these formats and if not what would be the cost of adapt-
ing their systems.

The IHE provides specification for the process of data exchange. If hospitals decide
to create data sharing clusters it is probable that they will follow the specifications of
IHE. Our envisioned system could play a role in such a cluster.

12.1.2. Implementation

To implement the system we defined our use case the roles that interact with the
system and decomposed the requirements in three different areas. Apart from the
obvious roles of the data contributor, who shares his data, and the data analyst, who
uses the system to gain insights, we identified roles related to the configuration of the

65

system. We conclude that due to the heterogeneity of the domain the system would
require additional configurations and adaptations as more contributors want to share
data and new reporting requirements come from the stakeholders. These roles change
the behavior of the system and adapt it to new requirements. It is therefore important
to keep them under scope.

DACTyL is composed of three different layers. We conclude that this decomposition
is necessary to have clear separation of concerns within the system. Additionally this
approach enables the parallel development of the different layers.

The design of the connection layer carried the weight of dealing with the heteroge-
neity. We conclude that this layer must provide connectivity to the data contributors,
accept different input models and perform transformations on the received data. The
software developed in this project for the connectivity layer establishes a solid start-
ing point for further development. An alternative approach can be the usage and
configuration of a commercial interface engine if alignment with Philips preferred
technology stack is necessary.

The linking layer contains the data marts which store the user accessible data. We
conclude that the data warehouse bus architecture is suitable for this use case. As the
system grows new data marts will be necessary to meet stakeholders’ requirements.
The bus architecture is the proper mechanism to connect the new with the old data
marts.

The presentation layer contains the OLAP cube and the end user reports. We con-
clude that this is the suitable approach to make the data warehouse available to end
users. The end user reports can cover the requirements of the data analysts and the
data researchers can create their own applications that directly query the OLAP cube.

We managed to meet our requirements and produce the required reports by imple-
menting and testing the DACTyL system. The produced reports compare real versus
expected hospitalizations. The difference can be used to deduct the return on invest-
ment.

We conclude that the tree-layered analytical system described in this document is a
feasible approach, with respect to the functional and nonfunctional requirements, to
realize the communication with hospital information systems and meet the reporting
requirements of the stakeholders.

12.2 Limitations
A number of diagnosis codes were not matched because they follow the ICECI adap-
tation of the ICD-10 vocabulary. This adaptation adds additional codes to the official
vocabulary. It is managed by a different standardization body, thus it is not part of
the official vocabulary published by the WHO. To overcome this limitation we pro-
pose the inclusion of the ICECI adaptation.

One element that is currently missing from the Motiva data mart, that we reused, is
the status of a Motiva patient. Once a patient is stored as a Motiva patient he always
stays a Motiva patient. There is no information about patients who drop out. To over-
come this limitation we propose further communication with the Motiva team to
identify where can we find the patient status.

With the available input data set the system can measure and categorize the hospitali-
zation events. To calculate the expected hospitalizations we need additional data. The
missing data are the total population of patients and the expected re-admission per-
centage for a particular diagnosis. In this version of DACTyL these numbers can be
provided as input from the data analyst through user prompts. According to our view
such constant values are expert knowledge and should be always provided through

66

input prompt. We would not include them in the input model since they are not relat-
ed with an event.

12.3 Lessons Learned
Combining telehealth with clinical data is an innovative use case. Deploying a gener-
ic solution in a big scale to perform this analysis, on an ongoing manner, across dif-
ferent hospitals has not been endeavored before according to our domain research.
This solution can bring unique insights and competitive advantage to Philips.

Information exchange in the healthcare domain is still in a developing state due to the
heterogeneity of the domain. There are proposals on how it should be done but this
does not necessarily mean that hospitals are ready to share information. There is no
one-size-fits-all solution when it comes to communication with hospitals. A success-
ful design must be able to adapt and reduce the propagation of change within the
system.

The ETL tools work great on stable environments, where nothing changes. This is
mainly due to the fact that the ETL process has dependencies on table and column
names. The lesson to keep from this is that once the ETL is written any structural
change on the database systems involved, brings the additional cost of updating the
ETL.

12.4 Future Work
There are multiple future use cases and possible extensions. In this section we focus
only on those which are closer to our project.

We have already mentioned that further research is necessary to investigate which
standard will benefit DACTyL.

As mentioned earlier the ICD-10 vocabulary used in this project is one of the clinical
vocabularies used in practice. Systems usually termed as clinical vocabulary servers
or terminology servers handle the mappings between different vocabularies. This
does not guarantee that there is always a one-to-one mapping between the terms
described in the vocabularies. DACTyL could benefit from such a system if data
contributors send data using different terminologies. To connect with such a system
the connection layer should be extended with an additional handler.

One of the conformed dimensions used in DACTyL is the patient dimension. This
physical table contains exactly one row for every patient known to the system. Such a
table is also termed as a master parson index (MPI). In DACTyL this table is popu-
lated by an ETL process. The specification of the process makes sure that a unique
identifier is generated for every new patient. Healthcare IT vendors offer dedicated
systems for patient management which are termed as enterprise master person
indexes (EMPI). These systems offer also a unique identifier for every patient and
they can link together different MPIs and automatically identify duplicates. They
offer advanced searching features which can use fuzzy logic to match patients.
DACTyL could benefit from such a system in future cases when advanced patient
management is needed.

As these lines are written, Philips arranged a use case study with a hospital in order
to further test and evolve DACTyL. We believe that this is the best approach to fur-
ther continue this project.
■

67

13. Project Management
13.1 Introduction
Project management proved to be a challenging task for the DACTyL project. Since
this was an exploratory project the requirements were unstable and we had to adapt
them as we learned more about the domain and the technologies around it. Most of
the domain concepts that we encountered during this project are new for the team.
This chapter documents the process and the methodologies followed.

13.2 Process
DACTyL is a system that combines pure software components, data warehouse de-
sign and implementation, ETL process design and BI report creation in a healthcare
environment. Since most of the concepts were new to us in combination with the lack
of concrete requirements and domain experts the use of a waterfall approach was
impossible. We worked iteratively throughout the duration of the project setting real-
istic goals.

In the early stages of the project we combined domain analysis and experimentation.
We designed small experiments to try out different approaches, evaluate risks and
gain experience with the provided tools and systems (see Chapter 5). The experiment
documented in Chapter 5 is itself a composition of a number of smaller experiments.
During this period we combined the activities of reading documentation, online
sources and articles, trying out open source healthcare systems and completing tuto-
rials for the tools mentioned in the constraints (see Chapter 6).

The knowledge and experience gathered from these activities contributed in the spec-
ification and decomposition of the requirements (see Chapter 6) in the three areas
namely connecting, linking and presenting. Following the requirements specification
we designed the layers that meet every requirements set (see Chapters 7 and 8). We
worked iteratively on every layer to improve the provided features and meet the de-
liverables of each month.

13.2.1. Planning and Scheduling
The deliverables for this project were planned in monthly bases. Every month con-
tained a number of deliverables. The types of deliverables are: documentation chap-
ters, completed experiments and system versions. The detailed planning is document-
ed in the work breakdown structure section. At the end of every month the plan for
the coming deliverables was revised and updated.

13.2.2. Communicating with supervisors
For the first two months of the project twice per week we had a progress update
meeting with the two company supervisors. After February this was replaced with a
weekly meeting every Tuesday. During the progress update meeting the following
tasks was performed:

• Report on the progress of the deliverables for the current month.
• Presentation of intermediate results-findings.
• Decide if a drop or an addition in the deliverables is necessary.

Once per month during the project steering group meeting (PSGM) all the delivera-
bles for the past month were presented. During a PSGM meeting the following tasks
were performed:

• Quick revision of the previous PSGM meeting.
• Presentation of the current position in the project timeline.
• Presentation of the deliverables of the past month.

69

• Presentation of the tasks for the coming month.
• Discussion over the must tasks of the coming month.

13.2.3. Acceptance Control
For the different system versions after the presentation of the system demo the super-
visors provided feedback on improvements and future features. This review meeting
took place at least once per month during the PSGM but also during the presentation
of the intermediate results in a progress update meeting.

The documentation chapters of the final report were forwarded to the supervisors for
feedback and comments.

13.2.4. Configuration Management
The software components are version controlled using the SVN infrastructure of
Philips Research. Before the migration to the “production” computer we developed
the system in a virtual machine using Virtual Box [16]. This choice proved beneficial
during the experimentation phase because we could easily try out different things and
revert to a prior stable state.

13.3 Work breakdown structure
Figure 41 shows the time line of the project with the major milestones. The timeline
shows only the first version of the requirements and architecture documents to pin-
point a beginning. These two chapters were updated after every new version of the
system as we accumulated additional knowledge on the domain.

Figure 41 – Project timeline

The activities per month are described in the following lists. The percentages are
approximations of the time spend on each activity. The day to day activities where
managed using an online to do list.
 January

 Analytical systems in healthcare 25%
 Taxonomy of hospital information systems 50%
 Healthcare standards 25%

 February
 Tutorials on data warehouse implementation 20%
 Experiments with interface engines 20%
 Experiments with web services 10%
 Specifying requirements 50%

 March
 Specifying architecture 50%

70

 Experiments with EMF models 25%
 Experiments with Teneo 25%

 April
 Implementing System version 1 100%

 May
 Implementing System version 2 100%

 June
 Implementing System version 3 60%
 Report writing 40%

 July
 Report writing 50%
 Vacations 50%

 August
 Report writing 50%
 Testing and Finalizing system 50%

13.4 Project Retrospective
The past nine months can be described as an intense experience. This section con-
tains the reflection of the author on the course of the DACTyL project. We enumer-
ate a number of strong and improvement points.

13.4.1. Strong Points
• Exploring a huge domain. We believe that we singled out concepts of the

domain that are relevant for this project and for the future versions.
• Documenting decisions. This report contains a detailed explanation of our

design decisions. We explained our rational and also document alternatives
wherever possible.

• Adopting technology. In this project we worked with different tools and had
to learn and adapt fast.

• Working incrementally. We created a basic version and then build the proto-
type incrementally focusing on a different layer per iteration.

• Managing meetings. We managed to keep the meetings organized and with-
in the estimated duration.

13.4.2. Improvement Points
• Locating domain experts. During this project we were unable to locate peo-

ple that could give concrete black or white answers to our domain related
questions. Usually the people we interviewed had either a too abstract
knowledge of the domain or a too detailed which was unrelated to our goals.
We could have allocated more time in searching for the right people than
searching for online resources.

• Estimating documentation effort. We underestimated the documentation ef-
fort. We could have avoided this pitfall if the documentation effort had
started earlier.

■

71

Glossary

Term Description
BI Business Intelligence
CCD Continuity of Care Document
CDA Clinical Document Architecture
CDO Care Delivery Organization
DA4HH Data Analytics for Home Healthcare
DACTyL The name of the project. It is also used as the name of the de-

veloped system.
DAF Data analysis framework
Data warehouse A collection of systems and processes that enable reporting and

data analysis.
Dimension In a data warehousing context, Dimensions provide structured

labeling information to otherwise unordered numeric measures.
The dimension is a data set composed of individual, non-
overlapping data elements. The primary functions of dimensions
are threefold: to provide filtering, grouping and labeling.

Drill up/down Drilling down stands for browsing information in a more de-
tailed level. Drilling up is the opposite.

EHR Electronic Health Record
EMR Electronic Medical Record
Fact In a data warehousing context, a fact is a value or measurement,

which represents a fact about the managed entity or system.
Fact table A database table that contains facts and references to dimen-

sions.
H2H Hospital 2 Home
HIS Hospital Information Systems
HL7 Health Level Seven International
HL7 v3 The HL7 version3 standard
ICD-10 International classification of diseases version ten
IHE Integrating Healthcare Enterprise
Level In a data warehousing context, Dimension rows can be grouped

in different levels of detail. For example a dimension for time
could have the following levels: Year > Quarter > Month >
Week > Day.

Motiva Motiva is a secure, personalized healthcare platform that lever-
ages consumer electronics and broadband to connect patients
and their care providers, thereby enabling care models for pa-
tients in their homes.

Operational
source

An external system such as a hospital information system.

RIM Reference Information Model
TS Telehealth systems
WHO World Health Organization

73

Bibliography

[1] Philips, [Online]. Available: www.philips.com.
[2] D. F. Sittig, "A Survey of Informatics Platforms That Enable Distributed

Comparative Effectiveness Research Using Multi-institutional Heterogeneous
Clinical Data," Medical Care, vol. 50, 2012.

[3] C. Weng, "Using EHR's to integrate research with patient care: promises and
challenges," [Online]. Available: http://www.jamia.bmj.com. [Accessed 2013].

[4] P. Groves, "The 'big data' revolution in healthcare," McKinsey & Company.
[5] T. G. T.D, "The Emergence of National Electronic Health Record. Architectures

in the United States and Australia:Models, Costs and Questions," 2005.
[6] D. Garets, "Electronic Patient Records," [Online]. Available:

http://www.providersedge.com/ehdocs/ehr_articles/Electronic_Patient_Records-
EMRs_and_EHRs.pdf. [Accessed 2013].

[7] "Americam Medical Assosiation," [Online]. Available: www.ama-assn.org.
[Accessed 2013].

[8] mcleodcg, [Online]. Available: www.mcleodcg.com.
[9] "Health Level Seven International," [Online]. Available: www.hl7.org.

[Accessed 2013].
[10] "Integrating Healthcare Enterprise," [Online]. Available: http://www.ihe.net.

[Accessed 2013].
[11] World Health Organization, "International Classification of Diseases (ICD),"

[Online]. Available: http://www.who.int/classifications/icd/en/.
[12] C. Adamson, Star Schema The Complete Reference, McGraw Hill Professional.
[13] M. R. Ralph Kimball, The Data Warehouse Toolkit, Wiley.
[14] D. H. Chen, "OLAP Cubes in the SCSM Data Warehouse: OLAP Cube

Processing," 3 February 2012. [Online]. Available:
http://blogs.technet.com/b/servicemanager/archive/2012/02/03/olap-cubes-in-
the-scsm-data-warehouse-olap-cube-processing.aspx. [Accessed 2013].

[15] "Mirth Connect," [Online]. Available:
http://www.mirthcorp.com/products/mirth-connect. [Accessed 2013].

[16] International Institute of Business Analysis, A Guide to the Business Analysis
Body of Knowledge, 2009.

[17] W. B. Lober, "Information System Architectures for Syndromic Surveillance".
[18] R. Domenig, "An Overview and Classification of Mediated Query Systems".
[19] J. G. Bellika, "Properties of a federated epidemiology query system,"

International journal of medical informatics, no. 76.
[20] Eclipse, "Eclipse Modeling Framework (EMF)," [Online]. Available:

http://www.eclipse.org/modeling/emf/.
[21] "Teneo," [Online]. Available: http://wiki.eclipse.org/Teneo.
[22] Hibernate, "Hibernate," [Online]. Available: http://www.hibernate.org/.
[23] Oracle, "Oracle Data Integrator," [Online]. Available:

http://www.oracle.com/technetwork/middleware/data-
integrator/overview/index.html.

[24] Oracle, "Oracle Business Intelligence Enterprize Edition 11g," [Online].
Available: http://www.oracle.com/us/solutions/business-analytics/business-
intelligence/enterprise-edition/overview/index.html.

[25] B. B.W., Software Risk Management, IEEE Computer Society Press, 1989.
[26] Oracle, "VirtualBox.org," Oracle, [Online]. Available:

https://www.virtualbox.org/.

75

76

About the Authors

Athanasios Papakostopoulos received his Diploma in
Computer Engineering and Informatics from the
University of Patras, Greece in 2010. During his
studies he focused on Software Technology and
Computer Science. His main interests include parallel
programming and algorithm analysis. His diploma
thesis demonstrates how the concept of service ori-
ented programming can be used to implement robotic
algorithms which are agnostic to the underlying
hardware.
In September 2011 he started working for Eindho-
ven University of Technology as a PDEng candidate
for the Stan Ackermans Institute Software Technolo-
gy Program. From January 2013 until September
2013 he worked at Philips Research on the project
described in this report.

77

	Cover Papakostopoulos
	FR Papakostopoulos A
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 Project Scope and Goals
	1.3 Outline

	2. Problem Analysis
	2.1 Context
	2.2 Roadmaps

	3. Stakeholder Analysis
	3.1 Introduction

	4. Domain Analysis
	4.1 Introduction
	4.2 Hospital Information Systems
	4.3 Healthcare Standards
	4.3.1. Health Level 7 (HL7)
	4.3.2. Integrating Healthcare Enterprise (IHE)

	4.4 Clinical Vocabularies
	4.5 Business Intelligence
	4.6 Analytical Systems
	4.6.1. Data warehouse and Dimensional modeling
	4.6.2. Extract Transform Load
	4.6.3. OLAP cubes

	5. Feasibility Analysis
	5.1 Introduction
	5.2 Experiment: Communication between DACTyL and Interface Engine
	5.3 Risks
	5.4 Issues

	6. System Requirements
	6.1 Introduction
	6.2 Roles interacting with DACTyL
	6.3 Project use case scenario
	6.4 Functional Requirements
	6.4.1. Connecting Requirements
	6.4.2. Linking Requirements
	6.4.3. Presenting Requirements
	6.4.4. Return on investment report
	6.4.5. Patient report

	6.5 Constraints
	6.6 Nonfunctional requirements

	7. System Architecture
	7.1 Introduction
	7.2 Data Aggregation Architectures
	7.2.1. Third Generation Integration
	7.2.2. Second Generation Integration
	7.2.3. Conclusions

	7.3 Refined Decisions
	7.3.1. Data Extraction
	7.3.2. Transport
	7.3.3. Input interpretation
	7.3.4. Transformation-Normalization
	7.3.5. Summary of Refined Decisions

	7.4 Overview of the system

	8. System Design
	8.1 Introduction
	8.2 Component Diagram
	8.2.1. Connection Layer
	8.2.2. Linking Layer
	8.2.3. Presentation Layer

	9. Implementation
	9.1 Introduction
	9.1.1. Introduction to Eclipse Modeling Framework
	9.1.2. Introduction to Teneo
	9.1.3. Introduction to Oracle Data Integrator
	9.1.4. Introduction to Oracle Business Intelligence Enterprise Edition
	9.1.5. Tooling layout

	9.2 Implementation of the input model
	9.3 Implementation of the connection layer
	9.4 Implementation of the linking layer
	9.4.1. Implementation of the landing area
	9.4.2. Implementation of the Data Warehouse bus
	9.4.3. Implementation of the Hospitalization data mart
	9.4.4. Implementation of the ETL process
	9.4.5. The “load_dim_patient” interface
	9.4.6. The “load_dim_diagnosis_group”
	9.4.7. The “load_diagnosis_group_bridge”
	9.4.8. The “load_fact_final_hospitalization” interface

	9.5 Implementation of the presentation layer
	9.5.1. Implementation of the OLAP cube
	9.5.2. Implementation of the data analyst reports

	10. Verification & Validation
	10.1 Introduction
	10.2 Verification
	10.2.1. Connection layer
	10.2.2. Linking layer
	10.2.3. Presentation layer

	10.3 Validation

	11. Deployment
	11.1 Introduction
	11.1.1. Implementation deployment
	11.1.2. Proposed system deployment

	12. Conclusions
	12.1 Results
	12.1.1. Domain analysis
	12.1.2. Implementation

	12.2 Limitations
	12.3 Lessons Learned
	12.4 Future Work

	13. Project Management
	13.1 Introduction
	13.2 Process
	13.2.1. Planning and Scheduling
	13.2.2. Communicating with supervisors
	13.2.3. Acceptance Control
	13.2.4. Configuration Management

	13.3 Work breakdown structure
	13.4 Project Retrospective
	13.4.1. Strong Points
	13.4.2. Improvement Points

	Glossary
	Bibliography
	About the Authors

	Back cover SAI reports

