
 

Literature study on mathematical tools for analyzing limit
cycling phenomena
Citation for published version (APA):
Putra, D. (2000). Literature study on mathematical tools for analyzing limit cycling phenomena. (DCT rapporten;
Vol. 2000.042). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/90b4ae9b-11ab-4d6b-a95e-220fe404fd58


Literature Study on 
Mathematical Tools for Analyzing 

Limit Cycling Phenomena 

Devi Putra 
Report No. WFW 2000.042 

Professor : Prof.dr. H. Nijmeijer 
Coach : Dr.ir. H.A.vanEssen 

Eindhoven, December 2000 

Eindhoven University of Technology 
Department of Mechanical Engineering 
Section Dynamics and Control 



Literature Study on Mathematical Tools For Analyzing 
Limit Cycling Phenomena 

Devi Putra, M.Sc. 

December 2000 



1 Introduction 2 

2 Existence of Periodic Orbits 3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Bendixson's Criterion 3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.2 Dulac's Criterion 4 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3 Poincark-Bendixson Theorem 4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.4 Levinson-Smith Theorem 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5 Villari's Theorem 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.6 Dragilev's Theorem 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.7 Yan-Qian Theorem 6 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.8 Filippov-Yan-Qian Theorem 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.9 Ponso-Wax Theorem 7 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.10 Smith's Theorem 7 

3 Stability of Periodic Orbits 9 

4 Computational Method for Bifurcations of Limit Cycles 12  
. . . . . . . . . . . . . . . . . . . . . .  4.1 Tracing a Branch of Periodic Solutions 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.2 Computational Bifurcation 14 

5 Examples 16 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 A Planar System 16 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.2 Higher Dimensional System 17 



Chapter 1 

Introduction 

Since the discovery of the limit cycle by Henri Poincar6 [lo] in his four-part paper Integral 
curves defined by differential equations (1881-1886), there have been many results produced 
by mathematicians and engineers to explain the limit cycling phenomena. In mathematical 
theory, they studied mainly the existence, uniqueness and stability of limit cycles, and the 
prob!ems how the limit cycles were generated and disappeared. 

The driving force behind the study of theory of limit cycles was furnished more by prac- 
tical problems than by great mathematicians. This is the situation: during the twentieth 
century, applied electronics had made rapid advancement; physicists invented the triode vac- 
uum tube which was able to produce stable self-excited oscillations of constant amplitude, 
thus making it possible to propagate sound and pictures through electronics. However, it 
was not possible to describe this oscillation phenomenon by linear differential equations. In 
1926, van der Pol first obtained a differential equation, which was later named after him, to 
describe oscillations of constant amplitude of a triode vacuum tube: 

After transforming this equation into an equivalent differential system in the phase plane, he 
used graphical methods to  prove the existence of an isolated closed trajectory. Three years 
later, a Russian theoretical physicist A.A. Andronov in a short paper [I] clarified that the 
isolated closed trajectory of the van der Pol equation was the limit cycle studied earlier by 
Poincark. Thus, he has established a close relationship between pure mathematical theory 
and electronic technology. F'rom that time onward, a tremendous amount of researches has 
been carried out on the theory of limit cycles and electronics technology. 

On a way to study the limit cycling phenomena in controlled mechanical systems, it 
is inevitable to look at those theoretical results in order to  make a link between those 
results and applications in controlled mechanical systems. This literature study report 
tries to collect important results on the theory of limit cycles. Beside this introduction, this 
report is organized as follow: The second chapter Existence of Periodic Orbits will introduce 
some mathematical theorems about (non)existence of limit cycle or periodic orbit in planar 
systems, Lienard system, and general autonomous nonlinear differential systems. In the 
third chapter Stability of L imi t  Cycles, the Floquet theory about stability conditions of 
limit cycles or periodic solutions will be explained. The chapter four will present numerical 
methods to compute the bifurcations of periodic orbits. Then, in the fifth chapter we 
will exploit an example to show how the numerical methods work and how they meet the 
theoretical results. 



Chapter 2 

Existence of Periodic Orbits 

This chapter will introduce some theoretical results that provide conditions for the (non)existence 
of periodic orbits in an autonomous differential system. Those theorems are arranged ac- 
cording to the type of system where they are applicable. The first part of the theorems are 
applicable to planar autonomous systems. Then followed by theorems that are applicable 
only to a special class of planar systems, and the last part of the theorems are applicable to 
more general autonomous systems. 

2.1 Bendixson's Criterion 

The Bendixson's criterion is a criterion for non-existence of periodic orbits in two-dimensional 
or planar autonomous systems of the form 

where fl and f2 are C1 functions. The criterion is as follows: Let D be an open subset 
of R2 which is simply connected (does not contain any holes or disjoint regions). If the 
divergence 

is of constant sign and not identically zero in D, then the system 2.1 has no periodic orbit 
lying entirely in the region D. 

This criterion is a necessary condition but not sufficient to exclude the existence of a 
periodic orbit in a planar system 2.1. For example consider the following system 

whose divergence, div f = 3x1 -22, which changes sign whenever the system's trajectories 
cross the line 22 = 3x1 in the 22 - x1 plane. However, as shown in Figure 1 the system 
2.3 has no periodic orbit. Dulac generalized the Bendixson's criterion such that it gives a 
sufficient condition to exclude the periodic orbit in the planar system 2.1.{Figure in Nayfeh 
155) 



2.2 Dulac's Criterion 

Let D be a simply connected open subset of R2 and B(xl, x2) be a real-valued C function. 
If the function 

is of constaiit sign and not idefitically zero in D, then the system 2.1 has no periodic orbit 
lying entirely in the region D. 

The function B(xl ,  x2) is called a Dulac function. This criterion reverts to Bendixson's 
in the special case when B ( X ~ , X ~ )  -- 1. Unfortunately, there is no general method for 
determining an appropriate Dulac function for a given planar system. We can use Dulac's 
criterion to exclude the existence of limit cycle in the system 2.3. Take a Dulac function 

the we have 

Again, this expression is not of one sign, but do not despair. Notice, that the line x2 = -1 is 
invariant under the flow, and the vector field crosses xl = -1 in the same direction. Thus if 
there is a periodic orbit it must lie entirely in one of the four regions separated by these two 
lines. However, the function 2.7 keeps one sign in one of these four regions. Consequently, 
from Dulac's criterion the planar system 2.3 has no periodic orbit. 

2.3 Poincarb-Bendixson Theorem 

In order to state this PoincarBBendixson theorem, we need the definitions of an w-limit set 
of autonomous planar systems [4]. 

Definition 1 A pointy  is  a n  w-limit of the orbit y(xO) if there is a sequence t j  with t j  + ,&o 

as j + cm such that cp(tj,x0) -+ y as j -+ cm. That is, y is a n  w-limit point of the orbit 
y(xO) if, for any E > 0, there is  a t ( ~ )  such that I l y  - cp(t(~), xO) 1 1  < E. The  set  of all w-limit 
points of the orbit y(xO) is  called the w-limit set of y(xO) and is  denoted by w(xO). Where 
y(xO) denotes a periodic orbit of planar systems that goes through the point xO in the phase 
plane, and p ( t ,  xO) denotes a solution of planar systems with initial condition x(to) = x0 

Poincar&Bendixson theorem: if w(xO) of a planar system is a bounded set which 
contains no equilibrium point, then w(xO) is a periodic orbit. 

In order to use the PoincarBBendixson theorem to show the existence of a nontrivial 
periodic orbit, one could attempt to construct an open bounded set D in R2 which contains 
no equilibrium point and such that any solution that begins in D remains in D for all t 2 0, 
that is, D is an open and bounded positively invariant set. Next, for any xO in D, one 
also shows that w(xO) contains no point in the boundary of D. Then, since D contains 
no equilibrium point, w(xO) must be a periodic orbit. Let us illustrate this remark on an 
example. Consider the following planar system 

Observe that the origin is the only equilibrium point of 2.8. We will attempt to construct an 
annular region D with the desired properties mentioned above. Take a function V(xl, xz) = 
(x: + x;)/2, and compute its derivative along the solutions of 2.8: 



Since ~ ( x ~ , x z )  > 0 for $2: + x; 5 $, then for x: + 2; < i, ~ ( x ~ , x ~ )  2 0 also hold. 
~ ( x 1 ,  22) 5 0 for x: + 22; 2 1, consequently ~ ( q ,  x2) 5 0 for x: + xi  > 1. Thus, any 

x < 1 remains in this annulus for all solution which starts in the annulus D i < xf + ; 
t > 0. Since the origin is not in the closure of this annulus, following the Poincark-Bendixson 
theorem, there exists at least one periodic orbit of system 2.8 in the annulus D. The periodic 
solution of 2.8 in the region D can be seen in Figure . 

2.4 Levinson-Smith Theorem 

This theorem [2] is applied for a special class of planar systems, i.e. Lienard's systems: 

where f E C", g E Clare real-value functions. The system 2.9 is equivalent to 

where F(x)  := St f (s)ds. 
This theorem said: Let G(x)  := S," g(s)ds. If f is even, there exists an xo > 0 such 

that F(x) < 0 for 0 < x < xo, and F(x) > 0 for x > xo, g is odd xg(x) > 0 for x # 0, F 
is monotone increasing in (xo, oo), and F(x) + co, G(x) -+ oo as x -+ co then 2.9 has a 
unique non-constant periodic solution. 

A famous example that satisfies this theorem is the Van der Pol's equation, 1.1. Hence, 
by following this theorem the Van der Pol's equation has a unique limit cycle. 

2.5 Villari's Theorem 

This theorem [2], as the previous theorem, is also applied only for the Lienard's system 2.9. 
Assume that 

(i) f E (?, g E Clare real-value functions; 



(ii) f (0) < 0, and there exists an xo > 0 such that f (x) > 0 for 1x1 > xo; 
(iii) xg(x) > 0, for x # 0; 
(iv) min(lim supx+,(g(x)/f (z))), min(lim supX+-,(-g(x)lf (XI)) < co; 
(v) there exists positive constants Z > xo and b > 0 such that f (x) + lg(x)I > b > 0 

for 1x1 > 3. 
then 2.9 has at least one non-constant periodic solution. 
Compare to the Levinson-Smith theorem, this theorem has an advantage that it does 

not require symmetry properties from the functions f and g. On the other hand it does not 
guarantee the uniqueness of the periodic solution. 

2.6 Dragilev's Theorem 

This theorem [lo] provides necessary conditions for existence of stable limit cycles in the 
Lienard's systems 2.9. 

Let G(x) := J," g(s)ds, and the following conditions hold: 
1. xg(x) >Owhenx#O,andG(fco)=+co .  
2. xF(x) < 0 when x # 0, and 1x1 is sufficiently small. 
3. There exist a constant M > 0 and K > KT such that F(x)  2 K when x > M 

and F(x)  < KT when x < -M. 
Then the system 2.9 has stable limit cycles. 

2.7 Yan-Qian Theorem 

This Yan-Qian theorem [lo] provides conditions for existence of stable or unstable limit 
cycles. 

Let G(x) := J," g(s)ds, and let xF(x) < 0 when 1x1 # 0, and 1x1 is sufficiently small, and 
there exist constants M > 0, x1 > 0, and x2 > 0 such that: 

1. xg(x) > 0 when -x2 < x < 0 and 0 < x < X I ;  

2. F(x) 2 -M (or F (x )  < M) when 0 < x < XI, andF(xl )  > M + &Z (or F (x l )  < 
-M - a); 

3. F(x)  5 M (or F(x)  > -M) when -xz < x < 0, andF(-x2) 5 -Ad - a (or 
F ( - ~ 2 )  2 M + a ) ;  

where I = max[G(xi), G(-x2)]. The= the system 2.9 has stable (unstable) limit cycles. 

Let G(x) := J," g(s)ds and suppose that in 2.9 g(x) satisfies xg(x) > 0 when a: # 0, G ( f  co) = 
+co; and suppose that after a change of variables 

the function Fl (z) and F2 (z) satisfy the following conditions: 
(i) For small z (0 < z < 6) we have Fl (z) 5 F2 (z) but Fl (z) does not identically 

equal t o  F2(z); and Fl(z) < a& and F2(z) > -a&, where 0 < a < 6. 



(ii) There exists a number zo > 0 such that 

and, when z > zo , Fl (z) 2 F 2  (z), Fl(z) > -a f i  and F 2  (z) < a&. 
Then the system 2.9 has stable limit cycles. 
It  is noted [?GI that from the condition (i) of this theorem, one can establish a rule to 

determine nonexistence of periodic orbit. 

Corollary 2 if Fl(z) 5 F2(z) for  all z > 0, and Fl (z) does not identically equal to 
F2(z) i n  (0,6) fur  any 6 > 0, then the system 2.9 does not have a closed trajectory. 

2.9 Ponso-Wax Theorem 

This theorem [2] provides conditions for existence of periodic orbits of the autonomous 
system 

x + f (x, X)X + g(x) = 0. (2.11) 

It  is interesting that 2.11 can model some realistic mechanical systems such as a rigid 
manipulator. In fact 2.11 is a special case of the famous Lagrangian formulation of rigid 
mechanical system for one degree of freedom. The equation 2.11 in its equivalent Cauchy 
normal form is rewritten as 

Ponso-Wax Theorem: Assume that in 2.12 f ,  g E C1 are real-value functions, and 

1. f (0,O) < 0, there a re  a < 0 < b such that 

f (a, y) = f (b, y) = 0 f o r  all Y E R, 
f (x, y) > 0 if x E (-co, a) U (b, co) for  all y E R, 

for y 2 0 and for every x < a the function y f (x, y) is increasing in y, and lim,,, y f (x, y) = 
co, 
there is an M > 0 such that for  x E [a, b] : f (x, y) 2 -M; 

2. xg(z) > 0 for x # 0, for  G(z) = J,"g(s)ds, liin,,~,G'(x) = m; 

3. for the function u : (-co, a) -+ R+ defined implicitly by 

u f (x, u) + g(x) = 0, x < a 

assume that G(x) := max,<, - u(s) exists fo r  x < a .  

Then 2.11 has at least one periodic solution. 

2.10 Smith's Theorem 

Smith's theorem [2], unlike the previous theorems, is applicable for a more general au- 
tonomous systems of the form 

x = f (x) (2.13) 



where f : X + R n  is a Cfunction on an open and connected set X C Rn. Let cp : 
[-oo, oo] + X be a solution of 2.13 and y = {x E Rn : x = cp(t), -co < t < co) its path. 
An w-limit set of y is defined exactly as in the case of planar systems. 

This theorem guarantees the existence of periodic orbits of 2.13 and stated as follows. 
Smith's Theorem I: Let K C X be a compact set and suppose that there exits a 

real symmetric n x n matrix P having 2 negative and n - 2 positive eigenvalues such that 
for amy pair of solutions cpl(t) a,nd cp2(t) of 2.13 staying in K for every t E R, i.e. cp1[t), 
cp2 (t) E K ,  t E R ,  we have U(cpi (t)- cp2 (t)) < 0 for t E R where U is the quadratic form 
U(x) = xTPx; if for a positive semi trajectory y+ of 2.13, we have yf C K ,  and the w-limit 
set, w(y+) of yf does not contain any equilibria then w(y+) contains at  least one periodic 
orbit. 

Compare to the PoincarBBendixson's theorem, even with the additional assumptions on 
2.13, the Smith's theorem is not a full generalization of the Poincark-Bendixson's theorem 
since it allows more than one periodic orbit in w ( ~ + ) .  It is noted that the conditions imposed 
on 2.13 make it possible to project the omega limit set into a two dimensional plane in a 
homeomorphic way and draw a conclusion from the projected phase portrait. 

In order to have a full generalization of the Poincark-Bendixson's theorem further con- 
ditions are to be imposed upon system 2.13. The following hypothesis will be used: 

(H) Assume that there are real symmetric n x n matrices P ~ a n d  P 2  such that PI - P 2  has 
2 negative and n - 2 positive eigenvalues; let K C X be a c o ~ p a c t  set and assume that there 
are positive constants p l ,  ~ 1 ,  p2, ~2 such that the quadratic forms &(x) := xTpix (i = 1,2) 
satisfy the inequalities 

and 

for every t at which cpl (t), cp2(t) E K where cpl and cp2 are arbitrary solutions of 2.13. 
Smith's Theorem 1I:Suppose that hypothesis (H) holds and 2.13 has a positive semi- 

trajectory yf C K; if the omega limit set w(yf) does not contain any equilibrium point of 
2.13, then it consists of a single periodic orbit. 

These two theorems show the difficulties that arise in establishing the existence of pe- 
riodic orbits in higher dimensions. In these theories the results could be achieved because 
the conditions made it possible to project the problem into a two dimensional plane. These 
conditions, especially (H), may seem to be rather artificiai. Nevertheless, the results can 
be applied , e.g., for important classes of feedback control systems [9] of the following form: 

where A is a n x n, B is a nxr ,  and C is a s x n  constants real, and F : RS -+ RT. 



Chapter 3 

Stability of Periodic Orbits 

This chapter will explain stability criteria of periodic orbits using the Floquet Theory [6] 
Here, we consider the stability of periodic solutions of autonomous systems 

where x is an n-dimensional state vector and p is an m-dimensional parameter vector. Let 
the periodic solution of (3.1) at p = po be denoted by xo(t) with period T. Then, a 
disturbance y superimposed on xo, resulting in 

Substituting (3.2) into (3.1), assuming that f is a t  least twice continuously differentiable 
(i.e. @), expanding the result in Taylor series about xo and retaining only linear terms in 
the disturbance, we obtain 

where A is the Jacobian matrix of f .  The stability analysis is local because we linearized 
in the disturbance y. The matrix A is periodic in time and has a period T ,  which is the 
period of the periodic solution xo(t). However, T may not be the minimal period of A. 
For instance, when f has only odd nonlinearities, the minimal period of A is $T. Floquet 
theory deals with linear systems, such as (3.3), with periodic coefficients. 

The n-dimensional linear system (3.3) has n linearly independent solutions yi, where 
i = 1,2, ..., n. These solutions are usually called a fundamental set of soiutions. This 
fundamental set can be expressed in the form of n x n matrix called a fundamental matrix 
solution as 

Clearly, Y satisfies the matrix equation 

Changing the dependent variable in (3.5) from t to T = t + T, we arrive at  

on account of the fact that A is periodic, A(r  - T ;  po) = A(T; po). Hence, if 



is a fundamental solution, then 

is also a fundamental matrix solution. Because (3.3) has at most n linearly independent 
solutions and because the yi(t) are such that n linearly independent solutions, the yi(t + T) 
must be linear combinations of the yi (t), i = 1, ... , n; that is 

where @ is n x n constant matrix. We note that @ depends on the chosen fundamental matrix 
solution and is not unique. This matrix may be thought of as a map or a transformation 
that maps an initial vector in Rn at t = 0 to another vector in Rn at time t = T. Specifying 
the initial condition 

where I is the n x n identity matrix and setting t = 0 in (3.7), we obtain 

T i e  matrix Q, defined by (3.7-3.9), is called the monodromy matrix. 
The eigenvalues pi, i = 1, ..., n of the monodromy matrix @ are called Floquet multipliers. 

These Floquet multipliers provide a measure of the local orbital divergence or convergence 
along particular direction over one period of the closed orbit of (3.1). Thus, they determine 
the local stability of the periodic solutions of (3.1). It  is important to note that one of the 
Floquet multipliers associated with a periodic solution xo(t) of an autonomous system, such 
as (3.1), is always unity. In order to show this, differentiate (3.1) once with respect to time 
t and obtain 

x = Dz f (x; p)x. (3.10) 

Consequently, if x is a solution of (3.1) then x is a solution of (3.10) and hence of (3.3). 
Moreover, since xo (t) = xo (t + T) then xo (t) = xo (t + T)  and hence 

io (0) = i o  (T). (3.11) 

Furthermore, because xo(t) is a solution of (3.3), it must be a linear combination of yl(t), ..., y,(t); 
that is 

where a is a constant vector. Evaluating (3.12) at t = 0 and at t = T yields 

xo (0) = Y (0)a and 50 (T) = Y (T)a. (3.13) 

Considering (3.11) and (XU), we obtain 

Using (3.8) and (3.9), we rewrite (3.14) as 

Therefore, 1 is an eigenvalue of @ corresponding to the eigenvector a = xo(0) = f (xo(0); p). 
A periodic solution of (3.1) is known as a hyperbolic periodic solution if only one of 

its Floquet multipliers is located on the unit circle in the complex plane. A hyperbolic 



periodic solution is asymtotically stable if there is no Floquet multiplier outside unit circle. 
All neighboring positive orbits are attracted to this periodic orbit. Hence, this periodic 
solution is called a stable l imi t  cycle. A hyperbolic periodic solution is unstable if one or 
more Floquet multipliers lie outside the unit circle. In this case, all neighboring positive 
trajectories are repelled from this periodic solution. Hence, this solution is called an unstable 
l imit  cycle. 

If two or more Floquet multipliers are located 011 the unit circle, the periodic solution is 
called a nonhyperbolic periodic solution. A nonhyperbolic periodic solution is unstable if 
one or more the associated Floquet multipliers lie outside the unit circle. If none of the 
Floquet multiplier lies outside the unit circle, a nonlinear analysis is necessary to determine 
the stability of a nonhyperbolic periodic solution. 



Computat ional Met hod for 
Bifurcations of Limit Cycles 

Bifurcations of limit cycles refer to any qualitative changes with respect to limit cycles, 
i.e. the birth, the disappearance, the multiplicity, and the change of stability of the limit 
cycies. There are four kinds of bifurcations of iimit cycles, namely: Hopf, Fold, Fiip, and 
Neimark-Sacker bifurcations. For further information about these bifurcations see [7]. This 
chapter will concern about computational methods to determine the type of bifurcations of 
limit cycles. This computational methods are needed because generally it is very hard if 
not impossible to determine a type of bifurcations of limit cycles analytically. Since the 
bifurcations have a qualitative flavor whereas the branches of solutions represent qualitative 
elements, then the computational for bifurcations analysis consists of computing branches 
of solutions and to determine the bifurcation points of those branches. 

4.1 Tracing a Branch of Periodic Solutions 

Tracing a branch of solutions is also known as path following (continuation) technique. In 
this technique [3] the system is parameterized as 

and the solutions are computed for some values of the parameter r such that they form a 
branch of solutions. It is very important to determine the range, the step size and the 
direction of increments of the parameter r in order to have a complete branch of solutions. 
Since our interest is bifurcation of limit cycles then we are interested in finding branches of 
periodic solutions of system (4.1). The periodic solutions of (4.1) are computed by using 
shooting algorithm, for further information about shooting algorithm see [7]. The shooting 
algorithm finds periodic solutions of (4.1) by solving two points boundary value problem, in 
which the solutions are sought of 

where xo is the states of (4.1) on the periodic solution, T is the period of the periodic 
solution, z = [ xo T I T  is the extended states because the algorithm needs to find the 
periodic solution and its period simultaneously. 

The path following algorithm starts with a periodic solution z:, for a given parameter 
value r,,l- the subscript s indicates a solution - which is computed by the shooting algorithm. 



Then, a branch of solutions can be followed by means of a predictor-corrector mechanism. In 
predictor step k, the tangent bzk pT,k]T to the solution branch at [z:, rsIklT is determined 
by 

In the first predictor step, p , l  is set to 1 if r must be increased initially or p,,l is set to -1 
if r must be decreased initially. In subsequent, steps, pr,k can be set to  I such that (4.3) 
can be solved for p,,k. The tangent is scaled by a factor g P , k ,  which is derived from the 
elliptical constraint 

where a k  is the step size of parameter r ,  which lies in a user defined interval 

In step k > 1, the sign of a p , k  is chosen such that the scaled tangent of two succeeding steps 
form an actual angle. It can be achieved by requiring 

This ensures that a solution branch is followed in the same direction. The prediction 
T [ z ~ , ~  rp,k]T is given by 

In general, this prediction will not meet the convergence criterion that is used, hence an 
iterative correction process is needed. 

A corrector step m is given by 

In the first corrector step, the first term on the right-hand side of (4.8) will be set equals 
to the prediction in (4.7). Corrections are calculated by solving the following system of 
equations, which is similar to  the Newton-Raphson algorithm 

In this equations, h, ah/&, dhldr  are evaluated at [ r$, rc,k,m ] and it will force the 

corrections to be orthogonal to the solution space. The corrector term [ zCk,,+, rc,k,,+1 l T  
from (4.8) is accepted as the next solution [ r$+, r,,k+l l T  if the convergence criterion 
is met. Since this algorithm is similar to  the Newton-Raphson algorithm then the same 
convergence property holds. 

An adaptation mechanism of the step size a k  is needed to ensure that the algorithm 
follows the branch of solutions correctly. The changing of the step size is determined by 
the ratio between the Euclidean norm of the correction at step k - 1 and step k - 2. If this 
ration is lower than a user defined minimum, the step size will be increased. As soon as 
it exceeds a user defined maximum the step size will be decreased and the last prediction 
will be recalculated using the new step size. Furthermore, during the iterative correction 
process, it is required that the norm of the residue is decreased monotonically, that is 

If this inequality is violated, the last prediction is rejected and a new prediction will be 
calculated by using a smaller step size. The path following algorithm fails if the required 
step size nk is smaller than omin, thus amin must be refined. 



$ emmating solution 

Figure 4.1: Branch switching 

4.2 Computational Bifurcation 

Since in the path following technique the calculated branch consists of a chain of discrete 
solutions. It is most unlikely that the continuation happens to hit a bifurcation exactly. 
Rather a bifurcation will be hidden in the space between the calculated solutions. Hence, 
the tasks of a computational bifurcation analysis [8] are 

1. detect a bifurcation point. The minimum requirement is to straddle the bifurcation, 
that is to calculate one solution on either "side." This information can be easily 
condensed to a rough approximation to  the bifurcation. For some applications it is 
necessary to 

2. calculate the bifurcation point accurately. The occurrence of bifurcation of limit cycles 
can be detected by checking whether the Floquet multipliers associated to  computed 
limit cycles crossing unit circle: Fold Bifurcation is indicated by one real Floquet mul- 
tiplier crosses the unit circle at (+I,  0), Flip Bifurcation (period doubling) is indicated 
by one real Floquet multiplier crosses the unit circle at (-1, O), and Neimark-Sacker 
Bifurcation is indicated by a pair of complex Floquet multipliers crosses the unit circle. 
After having carried out steps 1 and 2, enough data may be available to 

3. determine the type of bifurcation. Depending on the type of bifurcation, a new branch 
may bifurcate off distinct from the branch that was calculated during the continuation. 
Then the completing step is to 

4. switch branches. 

In the branch switching, it is needed to  calculate one solution on each emanating branch. 
This "first" solution provides information on the quality of the solutions on that new branch, 
and on its direction. The four basic tasks of the computational bifurcation analysis are 
summarized in Figure 4.1. 



A qualitative bifurcation analysis involves even more tasks. For example, the linear 
stability of at least one solution on either side of a bifurcation needs to be tested. To 
obtain a more global picture, the approximate domain of attraction of a stable solution 
will be explored by selecting initial vectors in a larger neighborhood, and by integrating the 
initial-value problems until it becomes clear to which attractor the trajectory is approaching. 
This kind of expensive exploration by simulation frequently will be based on a trial-and- 
errer-basis. The find aim is tc! explore the diameter of the domain of a,ttra,ction to get a 
feeling for the sensitivity of a stable solution. The question is, how large a perturbation 
of a stable solution is allowed to be such that the response to the perturbation decays to 
zero. Naturally, the various kinds of bifurcation have required to develop various different 
solution strategies to the above-mentioned tasks. 



Examples 

In this chapter, we will demonstrate how the described tools can be used to analyze the 
limit cycling phenomena in the following two examples. 

5.1 A Planar System 

Consider the following planar system [2] 

j: = -px  + (,u2 - l ) y  + (1  - x2 - y2)2 ( (1  - p2)x  - py)  (5-1) 

= (1  - p2)x  - py + (1  - x2 - y2)2(px + (1  - p 2 ) ~ )  (5-2) 

where p is a real parameter, and 1,uI is small. It  can be checked easily that the only 
equilibrium point of this system is ( x ,  y )  = (0,O). Performing the polar transformation 
x = T cos 13, y = T sin 6, the above system becomes 

This transformation helps us to define the annulus region D where the w-limit set of (5.1- 
5.2) lies . The equilibrium of (5.3) will the radius of the periodic orbit given 8 # 0. For 
lpl < 1, p # 0, we have 8 = 0 iff (1  - T ~ ) ~  = (,u2 - 1 ) l p  which has solutions only if p < 0. 
It  is because ,u2 < 1 for 1,uI < 1. On the other hand, for .i. = 0 apart from T = 0 we have 

i.e. for -1 < p < 0 the system has no periodic orbit, and since '? > - p ~ ,  all solutions tend 
to infinity as t + oo. At p = 0, from (5.5) we have r = 1 and from (5.4) we have 9 = 1 ,  thus 
the system has a single periodic orbit which is given by 

For 0 < ,u < 1, following (5.5) the system has two periodic orbits whose equations are 

x2 + y2 = 1 - ( p l ( 1 -  p2) ) ' l2 ,  and 
2 1 / 2  x 2 + y 2  = l + ( p l ( l - , u  )) , 
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Figure 5.1: Bifurcation Diagram of Limit Cycles of 5.1 and 5.2 
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provided the right-hand side of (5.7) is positive. The right-hand side of (5.7) is positive if 
0 < p < (-1+&)/2 E 0.618. The eigenvalues of the Jacobian matrix of (5.1-5.2) a t  (O,O), 
i.e. linearization around the equilibrium, are 

-.. . . - ... . . . --. -.. . . 
- a .  . . . . . - . . . -.. 

stable branch 
. 

It follows that the equilibrium is unstable for -1.6 < p < 0.618. This gives us insight that 
the small periodic orbit (5.7) should be a stable limit cycle and the bigger periodic orbit 
(5.8) is an unstable limit cycle. It agrees with the fact that the sign of i. is positive inside 
the smaller periodic orbit, i. is negative between the two periodic orbits, and i. is positive 
outside the bigger periodic orbit, which confirms that the smaller orbit is stable and the 
bigger one is unstable. 

Since the system (5.1-5.2) has one stable limit cycle and one unstable limit cycle for 
0 < p < 0.618, and one periodic orbit at p = 0, then periodic solutions of (5.1-5.2) experience 
fold bifurcation where the bifurcation point is obtained a t  p = 0. 

By using equations (5.6), (5.7), and (5.8) we can compute the bifurcation diagram of the 
system (5.1-5.2) which is presented in Figure 5.1. 

5.2 Higher Dimensional System 

For planar system we can solve its periodic solutions analytically and compute its bifurca- 
tion diagram from these solutions. It is very difficult if not impossible to solve the periodic 
solutions of higher dimensional systems analytically. Fortunately we have computational 
method, which is described in Chapter 5, to find periodic solutions and computes its bifur- 
cation diagram of higher dimensional systems. 

Consider a model of the dynamics of the photon-excitation interaction of an optical 



Figure 5.2: Period doubling bifurcations of system (5.10-5.14) 

semiconductor, which is described by 5-dimensional autonomous differential equations [5]: 

where gl, = 0.5, g l i  = 40.0, g 2 T  = 0.01, g2i = -2.0, g3 = 5.0, 94  = 0.5, 02 = 1. fiom 
the physical point of view, the crucial bifurcation parameter is d which acts as a constant 
driving force of the system. 

The periodic solutions and their bifurcations with respect to the parameter d of the 
system (5.10-5.14) are computed by using the continuation software package CANDYSIQA. 
The resulting bifurcation diagram for 33 < d 5 36 is depicted in Figure 5.2, which shows a 
cascade of period doubling bifurcation of limit cycles. 
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