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Introduction

The notion of controllability has played a central role throughout the history of modern control
theory. Conceived by Kalman, the controllability concept has been studied extensively in the
context of �nite-dimensional linear systems, nonlinear systems, in�nite-dimensional systems, n-D
systems, hybrid systems, and behavioral systems. One may refer for instance to Sontag's book [2]
for historical comments and references.

Outside the linear context, characterizations of global controllability have been hard to obtain.
In the setting of smooth nonlinear systems, results have been obtained for local controllability but
there is no hope to obtain general algebraic characterizations of controllability in the large. The
complexity of characterizing controllability has been studied by Blondel and Tsitsiklis [1] for some
classes of hybrid systems, and these authors show that even within quite limited classes there is
no algorithm to decide the controllability status of a given system.

In this report, the results on the controllability of non-smooth systems attained within Work-
Package 5 of SICONOS are presented. In the �rst chapter, Bernard Brogliato studies the reacha-
bility within a prespeci�ed region of planar variational inequality systems. Based on a case-by-case
analysis, necessary and su�cient conditions are obtained. The second contribution is due to Kanat
Camlibel, Maurice Heemels and Hans Schumacher. This chapter studies the controllability of a
class of piecewise linear systems that are called conewise linear systems. Basically, these are sys-
tems for which the product of the state space and the input space is covered by a �nite number
of conical regions, and that on each of these regions separately we have linear dynamics, with
continuous transitions between di�erent regimes. By employing geometric control tools, as well as
mathematical programming methods, the contribution presents algebraic necessary and su�cient
conditions.

References
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On the controllability of planar variational inequalities

Bernard Brogliato1

INRIA Rhône-Alpes, France

Abstract. This note deals with the controllability of a class of planar complementarity
dynamical systems, which can also be viewed as planar evolution variational inequalities.
It is shown that the complementarity conditions inuence a lot the controllability of the
system.

1 Introduction

Hybrid dynamical systems constitute a very large class of systems [2]. It is consequently necessary
to focus on speci�c subclasses to make their study possible, see e.g. [13] for controllability issues
in piecewise-linear systems. An interesting subclass is made of so-called complementarity systems
[12] [1]. Similarly to the fact that the stability of unilaterally constrained systems can signi�cantly
di�er from that of their unconstrained counterpart [3] [4], it will be shown that their controllability
properties can di�er a lot as well. This reinforces the fact that such nonsmooth dynamical systems
deserve full attention and are not a mere extension of unconstrained or bilaterally constrained
systems. In this note we will restrict ourselves to a narrow class of complementarity systems, that
we call planar evolution variational inequalities. These systems are also sometimes called projected
dynamical systems [3] [6] and are used to model the dynamics of oligopolistic markets, spatial price
equilibrium, elastic demand tra�c equilibrium [3]. As illustrated at the end of the note, they can
also model some electrical circuits with ideal diodes. In this note it is shown that the controllability
of such systems depend a lot on the convex set within which the state is constrained to evolve.

2 Planar evolution variational inequalities

The linear complementarity systems (LCS) [1] we are dealing with in this study, possess the
following dynamics 8>>>><

>>>>:

_z1(t) = z2(t) + CT
1 �

_z2(t) = u(t) + CT
2 �

0 6 � ? Cz(t) + d > 0

(1)

where C = (C1 C2) 2 IR
m�2, C1 2 IR

m and C2 2 IR
m are the two columns of C, d 2 IRm, � 2 IRm.

The non-negativity is understood componentwise and m < +1. The LCS in (1) is equivalent to
the linear evolution variational inequality (VI)8<

:
h _z(t)�Az(t)�Bu(t); v � z(t)i > 0; 8v 2 K

z(t) 2 K; 8 t > 0
(2)

where z = (z1; z2)
T 2 IR2, A =

�
0 1
0 0

�
, B =

�
0
1

�
, K = fzj Cz + d > 0g = f(z1; z2) 2

IR2jC1z1 + C2z2 + d > 0g. The equivalence between (1) and (2) is obtained by noting that
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8<
:

_z(t) = Az(t) +Bu(t) + CT�

0 6 � ? Cz(t) + d > 0
, � _z(t) +Az(t) +Bu(t) 2 CT@ (IR+)m(Cz(t) + d)

,

8<
:
� _z(t) +Az(t) +Bu(t) 2 NK(z(t))

z(t) 2 K; 8 t > 0
(3)

where  (IR+)m(�) is the indicator function of (IR+)m, @ (IR+)m(�) is its subdi�erential, and NK(�)

is the normal cone to K. The last formalism in (3) is exactly (2), from the de�nition of the normal
cone. These equivalences are obtained from standard convex analysis rules and de�nitions [14] and
are not developped further here for the sake of brevity.

It is noteworthy that, seen from an LCS point of view, the controlled dynamics in (1) is rather a
narrow class. However the VI formalism in (2) shows that it is not so restrictive from an application
point of view, since VI are widely used in some domains of science (see [3] for market and �nance
applications). VI can also represent some electrical circuits with ideal diodes [4]. The LCS in (1) is
a particular gradient complementarity system [7], which is in turn equivalent to so-called projected
dynamical systems [3] [5] [6]. There certainly remains a big gap between this work, and obtaining
similar results for general projected dynamical systems (to say nothing for general LCS). Since
the studies on controllability of this type of dynamical systems are rare, this chapter nevertheless
has some interest. The following lemma is a direct consequence of [8, corollary 2.2]:

Lemma 1. Consider the system in (1). For all continuous inputs u(�) with locally L1-bounded
derivatives du

dt
(�), a continuous, right di�erentiable solution with locally bounded derivative exists

and is unique on [0;+1).

Let us now introduce a controllability de�nition.

De�nition 1. The system in (1) (equivalently in (2)) is said to be K�controllable, if any state
zf 2 K can be reached from any state zi 2 K, in a �nite or in�nite time T , and with an admissible
input u(�).

Admissibility of the input means that the well-posedness conditions of lemma 1 are respected.
We do not make the di�erence between �nite and in�nite T to simplify the presentation (as we
shall see below, this allows us to consider the controllablity in the whole of the closed convex set
K without excluding some isolated points of the boundary @K).

The objective of this work is to prove that, under some restrictions on the convex set K,
K�controllability holds. To begin with and to motivate the study, let us remark that in case
m = 1 and K = fzjz2 > �c; c < 0g, then surely the system is not K�controllable. Indeed z1 can
only move from the left to the right in the phase plane, since _z1 = z2 > �c > 0. This controlled VI is
accessible [10] with reachable subspaces from (z1(0); z2(0)) equal to f(z1; z2)jz1 > z1(0); z2 > �cg,
but not K�controllable.

Let us note that adding some \imaginary" state re-initialization rules on @K such thatK�cont-
rollability holds, is not envisaged here since the dynamical systems in (1) or (2) are the topic of the
study. However motivated by this simple example of non-controllability, one guesses that a crucial
step in the study will be to prove whether or not one is able to move on @K in order to reach
some states which are otherwise unreachable. Due to the complementarity conditions (third line
in (1)) which imply that the vector �eld is modi�ed when @K is attained, this will under certain
conditions be possible.

3 Main result

The following assumption is made and supposed to hold in the sequel:
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Assumption 1 The set K has a positive measure in IR2.

It is easy to construct C and d in (1) such that indeed K = ? or it has zero measure. Polyhedra
with a positive area are an example of sets K, as well as cones (see �gure 1), or half-planes.

Let C1 = (a1; :::; am)
T , C2 = (b1; :::; bm)

T , d = (d1; :::; dm)
T and let us denote the faces of the

convex set K as Di, such that Di � fzjaiz1+ biz2+ di = 0g and �Di = fzjaiz1+ biz2+ di = 0g. In
other words the faces are segments Di (possibly unbounded, like in the case K is a cone, or if K is
de�ned as a half-space), and the segments can be extended to straight lines �Di whose equations in
the plane are aiz1+ biz2+ di = 0, 1 6 i 6 m. For instance on �gure 1 and considering the set K1,
one has D1 = A0A whereas �D1 is the line passing through A0 and A and intersecting fzjz2 = 0g
at B. Let us place ourselves in the phase plane of the system, with the two axis (0; z1) and (0; z2).

Fig. 1. Examples of K�controllable and K�uncontrollable systems.

Then the following is true

Proposition 1. The system in (1) (equivalently in (2)) is K�controllable if and only if there is
no face of K such that:

{ there is a portion of Di with �nite negative slope on the right (resp. left) of the point �Di\fzjz1 =
0g, when K is below (resp. above) Di.

{ Di is vertical and above (resp. below) fzjz2 = 0g if K is on the right (resp. left) of Di.
{ Di is horizontal and in the half-space fzjz2 < 0g (resp. fzjz2 > 0g) if K is below (resp. above)
Di.

{ Di = fzjz2 = 0g.

For instance on �gure 1, the faces A0A of K1, or DC of K4, preclude controllability because
they satsify the �rst item.

Let us state intermediate results which characterize the motion on the boundary @K. The
proof of proposition 1 will then be a direct consequence of lemma 2. In the next lemma we place
ourselves in the case when there is a single constraint and we study the behaviour of the system
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Fig. 2. Trajectories on @K (vertical faces).

on this constraint. When K has several faces it will su�ce to consider each of them separately
and apply the results of the lemma independently to each constraint. Let us consider the system
in (1) or (2), with C1 = a 2 IR, C2 = b 2 IR, d = c 2 IR. Let us de�ne the coordinate change�
x1 = bz1 � az2 +

bc
a

x2 = az1 + bz2 + c
. We denote as P the intersection between the line az1+ bz2+ c = 0 and the

z1-axis, i.e. P is the origin of the new frame (x1; x2) and the constraint boundary is fxjx2 = 0g.
The new coordinate frame (x1; x2) is depicted on �gure 3.

Then the following holds:

Lemma 2. { (i)

� (positive slope) If �a
b
> 0, b 6= 0, any point x1f on the constraint can be attained from any

point x1i > x1f .
� (negative slope) If �a

b
< 0, b 6= 0, then any point x1f on the constraint can be attained

from any point x1i 6 x1f , and any point x1f on the constraint can be attained from any
point x1i > x1f only on the axis x1 2 [P;+1). Moreover the point P can be attained from
any x1i > 0 only asymptotically.

{ (ii) If a = 0 then the boundary is a horizontal line z2 = � c
b
and

� if (b > 0 and c < 0) or (b < 0 and c > 0), trajectories move from the left to the right,
� if (b > 0 and c > 0) or (b < 0 and c < 0), trajectories move from the right to the left,
� if c = 0 then the system remains stuck on @K at the contacting point.

{ (iii) If b = 0 then the boundary is a vertical line z1 = � c
a
and

� if (a > 0 and c > 0) or (a > 0 and c < 0) then the system is controllable in the set
fzjz2 < 0g and any trajectory initialized in the set fzjz2 > 0g detaches from @K,

� if (a < 0 and c < 0) or (a < 0 and c > 0) then the system is controllable in the set
fzjz2 > 0g and any trajectory initialized in the set fzjz2 6 0g detaches from @K.

Let us note that the case a = b = 0 is meaningless since the system is no longer constrained,
hence it is not treated in lemma 2. We note that the two depicted cases can be rotated to obtain
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Fig. 3. The new coordinate frame.

the admissible domain below the boundary. The axis (P; x2) points inside the admissible set
K. The dashed arrows on @K indicate the directions in which trajectories can be controlled on
@K. On �gure 1 the arrows also indicate the possible directions of motion on @K. Due to the
complementarity conditions, it follows that in some regions of @K, trajectories are restricted to
move in a single direction (otherwise they leave @K). The cases when the boundary is vertical, is
depicted in �gure 2.

Proof of lemma 2: (i) It is simple to calculate that the dynamics (1) in the coordinates
(x1; x2) is

8>>>><
>>>>:

_x1(t) =
�ab
a2+b2x1(t) +

b2

a2+b2x2(t)� au

_x2(t) =
�a2

a2+b2x1(t) +
ab

a2+b2x2(t) + bu+ (a2 + b2)�

0 6 � ? x2(t) > 0

(4)

Let us study the dynamics when the system evolves on fxjx2 = 0g on an interval [�; � + �),

� > 0. Consequently the derivatives x
(i)
2 = 0 as well for all i > 1 on (�; � + �). Then on [�; � + �)

the complementarity condition 0 6 � ? x2 > 0 implies that 0 6 � ? _x2 > 0. Indeed the \velocity"
can point only inside K on [�; � + �). Therefore one can replace (4) by
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8>>>><
>>>>:

_x1(t) =
�ab
a2+b2x1(t) +

b2

a2+b2x2(t)� au(t)

_x2(t) =
�a2

a2+b2x1(t) +
ab

a2+b2x2(t) + bu(t) + (a2 + b2)�

0 6 � ? _x2(t) > 0

(5)

Now since x2 = 0 on the considered time interval one deduces from (5)8>>>><
>>>>:

_x1(t) =
�ab
a2+b2x1(t)� au(t)

�a2

a2+b2x1(t) + bu(t) + (a2 + b2)� = 0

0 6 � ? _x2(t) > 0

(6)

Since � > 0 on @K, one deduces that � a2

a2+b2x1+ bu 6 0 is a necessary and su�cient condition
that both x1 and u(�) have to satisfy so that the system keeps moving on a face included in
fxjx2 = 0g. Detachment from this face occurs at a time td if and only if _x2(td) > 0, which implies

�(td) = 0 and �a2

a2+b2x1(td) + bu(td) > 0. We can say that the system grazes the surface when
x2 = 0 and � = 0. We conclude that the dynamics on a face included in fxjx2 = 0g is given by8<

:
_x1(t) = � ab

a2+b2x1(t)� au(t)

� a2

a2+b2x1(t) + bu(t) 6 0

(7)

If a 6= 0 then the feedback u = � 1
a

�
v + ab

a2+b2x1

�
yields from (7)8<

:
_x1(t) = v(t)

�x1(t)�
b
a
v(t) 6 0

(8)

where v is the new input. We notice that if �x1 �
b
a
v = 0 then the system grazes @K. If �a

b
> 0,

b 6= 0, then necessarily v 6 �a
b
x1, and v can be chosen < 0 so that x1 can be made to decrease

while staying on @K. If �a
b
< 0, b 6= 0, then necessarily v > �a

b
x1. If x1 < 0 then v > 0, so on

(�1; 0), x1 can only increase. On (0;+1) 3 x1, one can choose v = �a
b
x1 so that P is attained

only asymptotically from any x1i > 0.
(ii) Now if a = 0 (and consequently b 6= 0), the dynamics on @K is given by8>>>><

>>>>:

_z1(t) = � c
b

z2(t) = � c
b

u(t) + b� = 0 and � > 0 ) bu(t) 6 0

(9)

This is obtained in a similar way as above, noting that on @K ones has b _z2 = 0 and 0 6 � ? b _z2 > 0.
The results follow. The detachment from the surface bz2 + c = 0 occurs if and only if b _z2(td) > 0
at some time td, i.e. bu(td) + b2�(td) = bu(td) > 0 (indeed �(td) = 0 from the complementarity
conditions).

(iii) If b = 0 (and consequently a 6= 0) the dynamics on @K is given by8>>>><
>>>>:

z1(t) = � c
a

_z2(t) = u(t)

z2(t) + a� = 0 and � > 0 ) az2(t) 6 0

(10)

The results stated in lemma 2 (iii) are a direct consequence of (10).
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Lemma 3. The unilateral constraint fxj x2 > 0g in (1) can be activated or deactivated with a
continuous input signal u(�).

Proof: Let us consider (1) or equivalently (4). The contact phases, or active constraint, are char-
acterized by � > 0 and x2 = 0 whereas the non-contact phases, or inactive constraint, correspond
to � = 0 and x2 > 0. When steering the state inside K (i.e. in K n @K) it is always possible to
attain the boundary @K, and to remain on @K, with a continuous input. Indeed this amounts
to �nding a path in the phase plane (z1; z2), parameterized by t, linking two points z0 2 Int(K)
and z1 2 @K, and such that its second derivative with respect to t satis�es the inequality in (7)
on @K. Detachment can also be forced with a continuous control input. Indeed one sees from (5)
that as soon as @K is attained � is the solution of a linear complementarity problem (LCP) with
matrix a2 + b2 > 0 (a scalar in this case) and consequently depends continuously on u(�) (see
e.g. [15, ex. 4.8.15]). One can speak of a controlled LCP in (5) which can be controlled with a
continuous input. Consequently the controllability result holds with input signals u(�) which are
continuous and piecewise di�erentiable. This guarantees the existence of a unique solution of (1)
or (4) as a result of lemma 1. It is noteworthy that these results still hold if the codimension of
@K is > 2 (activation or detachment at corners of @K).

Proof of proposition 1: The proof is done by observing that under the stated conditions,
and from lemmas 2 and 3, then any point in K can be steered by a continuous u(�) to any other
point in K. Indeed if a state zf cannot be attained from zi via a trajectory in K n @K, then a
portion of path can be tracked on @K. Concatenating paths in the interior of K and on @K allows
one to construct a path linking zi to zf . The conditions of proposition 1 are su�cient but can
also be seen to be necessary, for if one of them fails then there exists couples of states in K which
cannot be joined by a controlled trajectory.

Examples: From the results of lemma 2, one sees that the boundary of the domain K3 on �gure
1 can be tracked clockwise. Consequently any point zf on the right of the line (l) can be attained
from any point zi on the left of (l). There has to be a portion of the trajectory that evolves on @K3

to reach zf from zi. Let us consider the set K1 on �gure 1. The system is not K1�controllable
because the only way to attain a point on the left of the vertical line (l) from a point on the right
of (l), is to follow the boundary @K1. However once the point A has been reached, it is impossible
to move on @K1 towards A0. The system can be steered on the line AA0 only in the direction of
B. Consequently all points of K1 which are situated on the left of (l), cannot be attained from
points in K1 on the right of (l). It is noteworthy that even local controllability [16, De�nition
3.7.4] may fail. For instance two arbitrarily close states zi and zf in K1, with zi on the right of
(l) and zf on the left of (l), cannot be joined by a solution of (1) with some control u(�). Consider
now K2. Then trajectories can be controlled from E to C, though C is reachable in in�nite time
only. Assume that C is just below the axis fzjz2 = 0g. It follows from lemma 2 that @K2 can be
tracked clock-wise by applying some suitable control input. Thus, the points on the right of the
vertical line (l0) can be steered to anywhere in K2 by �rst moving on FE. One may say that the
dynamics is suitably modi�ed on the boundary FE so that z1 can decrease in the �rst quadrant.
In the same way the system is K5�controllable, but it is not K4�controllable (the states on the
left of the line (l) cannot be reached from the states in K2). The system is K5�controllable since
as illustrated a state zf that cannot be attained from zi via a trajectory which remains in K n@K,
can be attained via a path ziABzf .

Remark 1. As we said after de�nition 1, including in�nite time T in the controllability allows us
to disregard some isolated points of K that may not be reachable in �nite time. This is the case
for the domain K2 where the point C can be attained asymptotically only.
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Fig. 4. A simple electrical circuit.

4 An example

Let us consider the simple electrical circuit in �gure 4, where R is a resistor, L is an inductor, C
is a capacitor, and the diode is supposed ideal. Its dynamics is given by8>>>><

>>>>:

_z1(t) = z2(t)

_z2(t) = �R
L
z2(t) +

u(t)
L
� 1

LC
z1(t)�

1
L
�

0 6 � ? �z2(t) > 0

(11)

where z1(�) is the time integral of the current accross the capacitor, z2(�) is the current across
the circuit and �� is the voltage of the diode, u(�) is a voltage control. One has K = fzj z2 6 0g.
One sees that this system is not controllable by simple application of proposition 1. One may
transform the system in (11) into the canonical form in (1), by applying a pre-feedback u(z1; z2) =
Lv(t)+ R

L
z2+

1
LC
z1. In fact the state z1(�) can only decrease, or be controlled to a constant value

on @K. Consequently the system in (11) is not K�controllable. This is intuitively sound since it
corresponds to having the capacitor loaded with a non-positive current at all times.

5 Conclusion

In this note we have proposed a characterisation of the controllability properties of planar evolu-
tion variational inequalities with control input. These systems are a subclass of complementarity
dynamical systems. They are nonsmooth and nonlinear. The material in this note relies heavily
on the properties of the system on the boundary of the constraint set and on the behaviour of
the trajectories of planar systems in their phase plane. Consequently an extension of this work
should rely on the analytical tools in [11] that characterize the control capabilities of a system,
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on the boundary of its admissible domain. The class of systems that is considered is a narrow
class of complementarity dynamical systems. However the results show that the controllabilty of
complementarity dynamical systems di�ers signi�cantly from that of unconstrained systems.

References

1. W.P.M.H. Heemels, J.M. Schumacher, S. Weiland, 2000 "Linear complementarity systems", SIAM J.
Applied Math., vol.60, no 4, pp.1234-1269.

2. A. van der Schaft, H. Schumacher, 2000 An Introduction to Hybrid Dynamical Systems, Springer,
LNCIS 251, London.

3. A. Nagurney, D. Zhang, 1996 Projected Dynamical Systems and Variational Inequalities with Appli-

cations, Kluwer's International Series in Operations research and Management Science, Boston.
4. D. Goeleven, B. Brogliato, 2004 \Stability and instability matrices for linear evolution variational

inequalities", IEEE Transactions on Automatic Control, vol.49, no 4, April.
5. D. Zhang, A. Nagurney 1995 \On the stability of projected dynamical systems", J. of Optimization

Theory and Applications, vol.85, no 1, pp.97-124.
6. P. Dupuis, A. Nagurney, 1993 \Dynamical systems and variational inequalities", Annals of Operations

Research, vol.44, pp.9-42.
7. W.P.M.H. Heemels, J.M. Schumacher, S. Weiland, 2000 \Projected dynamical systems in a comple-

mentary formalsim", Operations Research Letters, vol.27, pp.83-91.
8. D. Goeleven, M. Motreanu, V. Motreanu, 2003 \On the stability of stationary solutions of evolution

variational inequalities", Advances in Nonlinear Variational Inequalities, vol.6, pp.1-30.
9. H.K. Khalil, 1996 Nonlinear Systems, 2nd edition, Prentice-Hall.
10. H. Nijmeijer, A. J. van der Shaft, 1990 Nonlinear Dynamical Control Systems, Springer Verlag.
11. A.A. ten Dam, E. Dwarshuis, J.C. Willems, 1997 "The contact problem for linear continuous-time

dynamical systems: a geometric approach", IEEE Transactions on Automatic Control, vol.42, no 4,
pp.458-472, April.

12. B. Brogliato, 2003 \Some perspectives on the analysis and control of complementarity dynamical
systems", IEEE Transactions on Automatic Control, vol.48, no 6, pp.918-935.

13. A. Bemporad, G. Ferrari-Trecate, M. Morari, 2000 \Observability and controllability of piecewise
a�ne and hybrid systems", IEEE Transactions on Automatic Control, vol.45, no 10, pp.1854-1864,
October.

14. J.B. Hiriart-Urruty, C. Lemar�echal, 2001 Fundamentals of Convex Analysis, Springer, Grundlehren
Text Editions.

15. F. Facchinei, J.-S. Pang, 2003 Finite-Dimensional Variational Inequalities and Complementarity Prob-

lems, vol.1, Springer Series in Operations Research, New York.
16. E.D. Sontag, 1998Mathematical Control Theory, Springer Texts in Applied Mathematics 6, New York.



3

On the controllability of conewise linear systems

Kanat Camlibel1, Maurice Heemels2, and Hans Schumacher3

1 Eindhoven University of Technology, The Netherlands
2 Embedded Systems Institute, The Netherlands

3 Tilburg University, The Netherlands

Abstract. The problem of checking certain controllability properties of even very simple
piecewise linear systems is known to be undecidable. This chapter focuses on conewise linear
systems, i.e. systems for which the state space is partitioned into conical regions and a linear
dynamics is active on each of these regions. For this class of systems, we present algebraic
necessary and su�cient conditions for controllability. We also show that the classical results
of controllability of linear systems and input-constrained linear systems can be recovered
from our main result. Our treatment employs tools both from geometric control theory and
mathematical programming.

1 Introduction

In this chapter we present algebraically veri�able necessary and su�cient conditions for global
controllability of a large class of piecewise linear systems. We assume that the product of the state
space and the input space is covered by a �nite number of conical regions, and that on each of
these regions separately we have linear dynamics, with continuous transitions between di�erent
regimes. Systems of this type do appear naturally; some examples are provided in Section 2. The
systems that we consider are �nite-dimensional, but beyond that there is no restriction on the
number of state variables or the number of input variables.

The construction of veri�able necessary and su�cient conditions relies on the fact that, in a
situation where di�erent linear systems are obtained by applying di�erent feedbacks to the same
output, the zero dynamics of these systems are the same. On the basis of classical results in
geometric control theory, the systems may therefore be decomposed in a part which is common
and a part which is speci�c to each separate system but which, due to the invertibility assumption,
has a simple structure in the sense that there exists a polynomial inverse. The latter fact may
be exploited to \lift" the controllability problem from each separate mode to the common part.
The reduced controllability problem in this way is still nonclassical due to the presence of a sign-
dependent input nonlinearity. The controllability of such \push-pull" systems may be studied with
the aid of results obtained by R.F. Brammer in 1972 [4]. By a suitable adaptation of Brammer's
results, we arrive at the desired characterization of controllability.

Controllability problems for piecewise linear systems have drawn considerable attention re-
cently. Brogliato obtains necessary and su�cient conditions for global controllability of a class of
piecewise linear systems in a recent paper [5]. This work applies only to the planar case (state
space dimension equal to 2) and is based on a case-by-case analysis which does not seem to carry
over easily to higher dimensions. A characterization of controllability has been provided by Lee
and Arapostathis [24] for a class of \hypersurface systems". They assume, among other things,
that the number of inputs in each subsystem is equal to the number of states minus one. Their
conditions are not stated in an easily veri�able form. An algorithmic approach based on opti-
mization tools is suggested by Bemporad et al. [2]. Although this approach makes it possible to
check controllability of a given (discrete-time) system, it does not allow drawing conclusions about
any class of systems. The characterization that we obtain in this chapter is much more akin to
classical controllability conditions. Characterizations of controllability that apply to some classes
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of piecewise linear discrete-time systems have been obtained by Nesic [26]. In continuous time,
there is work by Smirnov [32, Ch. 6] that applies to a di�erent class of systems than we consider
here, but that is partly similar in spirit. Habets and Van Schuppen [15] discuss \controllability to
a facet", which is a di�erent problem from the one considered here.

The controllability result that we obtain in this chapter can be specialized to obtain a number
of particular cases which may be of independent interest. For instance, earlier work in [8] and [6]
on planar bimodal systems and on general bimodal systems, which in fact provided the stimulus
for continued investigation, can now be recovered as special cases, as is demonstrated in Section
4 below.

The chapter is organized as follows. The class of systems that we consider is de�ned in Section
2, and some examples are given to show how systems in this class may arise. Some preparatory
material about systems with linear dynamics but possibly a constrained input set is collected in
Section 3. Section 4 presents the main results and Section 5 concludes. The bulk of the proofs is
in Appendix C, which is preceded by two appendices which respectively summarize notation and
recall some facts from geometric control theory.

2 Conewise linear systems

A special class of piecewise linear systems is of interest in this chapter. These systems consist of a
number of linear dynamics that are active on some cones in the input-state space. More speci�cally,
they are systems of the form

_x(t) = Ax(t) +Bu(t) + f(Cx(t) +Du(t)) (1a)

u(t) 2 U (1b)

Cx(t) +Du(t) 2 Y (1c)

where x 2 Rn is the state, u 2 Rm is the input, A 2 Rn�n, B 2 Rn�m, C 2 Rp�n, D 2 Rp�m,
U � Rm, Y � Rp is a cone, and f is a conewise linear function on Y, i.e. there exist an integer r,
cones Yi, and matrices M i 2 Rn�p for i = 1; 2; : : : ; r such that

[ri=1Yi = Y; (2a)

f(y) =M iy if y 2 Yi: (2b)

These systems will be called conewise linear systems (CLS).
Some examples, with an increasing level of generality, are in order.

Example 1. The simplest examples of CLSs, except the trivial case of linear systems, are the
bimodal piecewise linear systems. Consider, for instance, the mechanical system shown in Figure 1.
We assume that all the elements are linear. Let x1 and x2 denote the displacements of the left and
right cart from the tip of the leftmost spring, respectively. Also let the masses of the carts denoted
by m1 (for the left one) and m2 (for the other), the spring constants by k0 (for the leftmost one)
and k (for the other), and the damping constant by d. Then, the governing di�erential equations
can be given by

m1�x1 + k(x1 � x2) + d( _x1 � _x2) + k0max(�x1; 0) = 0 (3)

m2�x2 + k(x1 � x2) + d( _x1 � _x2) = F (4)

where F is the force that is applied to the right cart. By denoting the velocities of the left and
right cars, respectively, by x3 and x4, one arrives at the following conewise linear system2

664
_x1
_x2
_x3
_x4

3
775 =

2
664

0 0 1 0
0 0 0 1

�k=m1 k=m1 �d=m1 d=m1

�k=m2 k=m2 �d=m2 d=m2

3
775
2
664
x1
x2
x3
x4

3
775+

2
664
0
0
0
1

3
775F +

2
664

0
0
0

f(x1)

3
775 (5)
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Fig. 1. Linear mechanical system with a one-sided spring

where the function f is given by

f(y) =

(
� k0

m1
y if y 6 0

0 if y > 0
:

Example 2. In general, a bimodal piecewise linear system with a continuous vector �eld can be
described in the form

_x =

(
A1x+B1u if cTx+ dTu 6 0;

A2x+B2u if cTx+ dTu > 0
(6)

where A1, A2 2 R
n�n, B1, B2 2 R

n�m, c 2 Rn, and d 2 Rm with the property that

cTx+ dTu = 0) A1x+B1u = A2x+B2u: (7)

Equivalently, A2 � A1 = ecT and B2 � B1 = edT for some n-vector e. To �t the system (6) into
the framework of CLS (1), one can take A = A1, B = B1, C = cT , D = dT , r = 2, Y1 = (�1; 0],
M1 = 0, Y2 = [0;1), and M2 = e.

Example 3. An interesting example of CLSs arises in the context of linear complementarity sys-
tems. Consider the linear system

_x = Ax+Bu+ Ez (8a)

w = Cx+Du+ Fz (8b)

where x 2 Rn, u 2 Rm, and (z; w) 2 Rp+p. When the external variables (z; w) satisfy the so-called
complementarity relations

C 3 z ? w 2 C� (8c)

where C is a cone and C� is its dual, the overall system (8) is called a linear cone complementarity
system (LCCS). A wealth of examples, from various areas of engineering as well as operations
research, of these piecewise linear (hybrid) systems can be found in [11, 16, 30, 31]. For the work
on the analysis of general LCCSs, we refer to [7, 10, 17, 18, 28, 29]. A special case of interest
emerges when C = R

p
+ and all the principal minors of the matrix F are positive. Such matrices

are called P -matrices in the literature of the mathematical programming. It is well-known (see
for instance [12, Thm. 3.1.6 and Thm. 3.3.7]) that every positive de�nite matrix is in this class.
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P -matrices enjoy several interesting properties. One of the most well-known is in the context of
linear complementarity problem, i.e. the problem of �nding a p-vector z satisfying

0 6 z ? q + Fz > 0 (9)

for a given p-vector q and a p � p matrix F . It is denoted by LCP(q; F ). When the matrix F
is a P -matrix, LCP(q; F ) admits a unique solution for any q 2 Rp. This is due to a well-known
theorem (see [12, Thm. 3.3.7]) of mathematical programming. Moreover, for each q there exists
an index set � � f1; 2; : : : ; pg such that

1. �(F��)
�1q� > 0 and q�c � F�c�(F��)

�1q� > 0,
2. the unique solution z of the LCP(q; F ) is given by z� = �(F��)

�1q� and z�c = 0

where �c denotes the set f1; 2; : : : ; pg n�. This shows that the mapping q 7! z is a conewise linear
function.

Remark 1. CLSs form a special class of linear hybrid systems (see for instance [22]). In fact, they
can be cast as hybrid automata for which

i. the vector �elds in each location are linear,
ii. the invariant sets are cones,
iii. the guard sets are the boundaries of these cones, and
iv. the reset maps are all identity.

Remark 2. Linear systems with piecewise linear input nonlinearities are of particular interest for
this chapter. They can be considered as special cases of Hammerstein-type (see e.g. [14]) systems.
A simple example can be given as

_x = Fx+

(
G1u if u 6 0

G2u if u > 0
(10)

where x 2 Rn and u 2 R. By taking A = F , B = 0, C = 0, D = 1, and

f(y) =

(
G1y if y 6 0

G2y if y > 0
(11)

one can �t (10) into the framework of (1).

2.1 Solutions of conewise linear systems

We say that an absolutely continuous function x is a solution of (1) for the initial state x0 and
the locally-integrable input u if (x; u) satis�es (1) almost everywhere and x(0) = x0.

The following will be a standing assumption throughout the chapter.

Assumption 2 The cones Yi are polyhedral and solid.

The cones Yi are closed due to the polyhedrality. This readily implies continuity of the function
f . Obviously, continuity implies Lipschitz continuity for conewise linear functions. This, in turn,
guarantees the existence and uniqueness of solutions for all initial states x0 2 R

n if U = Rm and
Y = Rp. The case U = Rm and Y = Rp is one of the two cases that we are mainly interested in
throughout the chapter. The other case is obtained by taking C = 0, D = I, and U = Y. The
existence and uniqueness of solutions for this case is straightforward. From now on, we will be
looking at either one of these two cases when we refer to (1).

Let us denote the unique solution of (1) for the initial state x0 and the input u by xx0;u. We
call the system (1)
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{ (completely) controllable with respect to U if for any pair of states (x0; xf ) 2 X �X there exists
a locally integrable input u such that u(t) 2 U for almost all t > 0 and the solution xx0;u of
(1) satis�es xx0;u(T ) = xf for some T > 0.

{ reachable from zero with respect to U if 0 2 X and for any state xf 2 X there exists a locally
integrable input u such that u(t) 2 U for almost all t > 0 and the solution x0;u of (1) satis�es
x0;u(T ) = xf for some T > 0.

We sometimes use the term \controllable" instead of \completely controllable". When the set U
is not mentioned, it is assumed to be Rm. Before proceeding further, we will briey review the
controllability problem for the case of linear dynamics.

3 Controllability of linear systems

Consider the linear system
_x = Ax+Bu (12)

where A 2 Rn�n and B 2 Rn�m.
Ever since Kalman's seminal work [21] introduced the notion of controllability in the state

space framework, it has been one of the central notions in systems and control theory. Tests
for controllability were given by Kalman himself and many others (see e.g. [20, 33] for historical
details). The following theorem summarizes the classical results on the controllability of linear
systems.

Theorem 1. The following statements are equivalent.

1. The system (12) is completely controllable.
2. The controllability subspace hA j imBi coincides with Rn.
3. The controllability matrix

�
B AB � � � An�1B

�
is of rank n.

4. The implication

� 2 C; z 2 Cn; z�A = �z�; BT z = 0 ) z = 0

holds.
5. The rank of the matrix

�
sI �A B

�
is equal to n for all s 2 C.

Sometimes, we say that the pair (A;B) is controllable meaning that the associated linear system
(12) is completely controllable.

In some situations, one may encounter controllability problems for which the input may only
take values from a set U � Rm. A typical example of such constrained controllability problems
would be a (linear) system that admits only nonnegative controls. Study of constrained controlla-
bility goes back to the sixties. Early results consider only restraint sets U which contain the origin
in their interior (see for instance [23]).

When only nonnegative controls are allowed, the set U does not contain the origin in its
interior. Saperstone and Yorke [27] were the �rst to consider such constraint sets. In particular,
they considered the case U = [0; 1]m. More general restraint sets were studied by Brammer [4].
The following theorem states necessary and su�cient conditions in case the restraint set is a cone.

Theorem 2. Consider the system (12) together with a solid cone U as the restraint set. Then,
(12) is completely controllable with respect to U if, and only if, the following conditions hold.

1. The pair (A;B) is controllable.
2. The implication

� 2 R; z 2 Rn; zTA = �zT ; BT z 2 U� ) z = 0

holds.



18 Kanat Camlibel et. al.

The proof of this theorem can be obtained by applying [4, Cor. 3.3] to (12) and its time-reversed
version.

Sometimes, we say that a pair (A;B) is controllable with respect to U whenever the linear
system (12) is completely controllable with respect to U .

The special case U = Rm+ , i.e. the case in which only nonnegative inputs are allowed, is of
particular interest. In this case, Brammer's result boils down to the following corollary.

Corollary 1. Consider the system (12) for which the locally-integrable input function is con-
strained by u(t) > 0 for almost all t. Then, (12) is completely controllable if, and only if, the
following conditions hold.

1. The pair (A;B) is controllable.
2. The implication

� 2 R; z 2 Rn; zTA = �zT ; BT z > 0 ) z = 0

holds.

4 Main results

4.1 Controllability of push-pull systems

The special case of CLS (1) when C = 0, D = I, and Y = U is of particular interest for the
controllability discussion as we shall see later. In this case, one has a CLS of the form

_x = Ax+ f(u) (13a)

u 2 U (13b)

where x 2 Rn, u 2 Rm, A 2 Rn�n, and f is a conewise linear function as de�ned in (2). Note that
U = Y = [ri=1Yi for this case.

Notice that these systems are of the form of Hammerstein systems (see e.g. [14]). We prefer
to call systems of the type (13) push-pull systems. The terminology is motivated by the following
special case. Consider the system

_x = Ax+

(
B1u if u 6 0

B2u if u > 0
(14)

where the input u is a scalar. In a sense, \pushing" and \pulling" have di�erent e�ects for this
system.

The following theorem presents necessary and su�cient conditions for the controllability of
push-pull systems. Later, we will show that controllability problem of a conewise linear system
can always be reduced to that of a corresponding push-pull system.

Theorem 3. The following statements are equivalent.

1. The system (13) is completely controllable with respect to U .
2. The system (13) is completely controllable with respect to U with C1-inputs.
3. The system (13) is reachable from zero with respect to U .
4. The system (13) is reachable from zero with respect to U with C1-inputs.
5. The implication

zT exp(At)f(u) > 0 for all t > 0 and u 2 U ) z = 0 (15)

holds.
6. The pair (A;

�
M1 M2 : : : Mr

�
) is completely controllable with respect to Y1 � Y2 � � � � � Yr.
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4.2 Controllability of conewise linear systems

Consider the CLS (1) with m = p and U = Y = Rm. Our �rst aim is to put it into a certain
canonical form. Let V� and T �, respectively, denote the largest output-nulling controlled invariant
and the smallest input-containing conditioned invariant subspaces of the system �(A;B;C;D).
Also let K 2 K(V�). Apply the feedback law u = �Kx + v where v is the new input. Then, (1)
becomes

_x = (A�BK)x+Bv + f(y) (16a)

y = (C �DK)x+Dv 2 Y: (16b)

Obviously, controllability is invariant under this feedback. Moreover, the systems �(A;B;C;D)
and �(A�BK;B;C�DK;D) share the same V� and T � due to Proposition 1 (see Appendix B).
Suppose that the transfer matrix D+C(sI�A)�1B is invertible as a rational matrix. Proposition 2
implies that the state space Rn admits the following decomposition

R
n = V� � T �: (17)

Let the dimensions of the subspaces V� and T � be n1 and n2, respectively. Also let the vectors
fx1; x2; : : : ; xng be a basis for X such that the �rst n1 vectors form a basis for V� and the last n2
for T �. Also let L 2 L(T �). One immediately gets

B � LD =

�
0
B02

�
(18)

C �DK =
�
0 C2

�
(19)

in the coordinates that are adapted to the above basis as V� � ker(C�DK) and im(B�LD) � T �.
Here B02 and C2 are n2 �m and p�n2 matrices, respectively. Note that (A�BK�LC+LDK)V� �
V� and (A � BK � LC + LDK)T � � T � according to Proposition 1. Therefore, the matrix
(A�BK�LC+LDK) should be of the form [ � 0

0 � ] in the new coordinates where the row (column)
blocks have n1 and n2 rows (columns), respectively. Let the matrices K and L be partitioned as

K =
�
K1 K2

�
L =

�
L1

L2

�

where Kk and Lk are m� nk and nk �m matrices, respectively. With these partitions, one gets

A�BK =

�
A11 L1C2

0 A22

�
(20a)

B =

�
L1D
B2

�
(20b)

where Akk and B2 are matrices of the sizes nk � nk and n2 �m. Also let the matrices M i, in the
new coordinates, be partitioned as

M i =

�
M i

1

M i
2

�
(21)

where M i
k is a matrix of the size nk �m and let fk be de�ned accordingly as

fk(y) =M i
ky if y 2 Yi: (22)

Now, one can write (16) in the new coordinates as

_x1 = A11x1 + g(y) (23a)

_x2 = A22x2 +B2v + f2(y) (23b)

y = C2x2 +Dv (23c)



20 Kanat Camlibel et. al.

where g(y) = L1y + f1(y) is a conewise linear function.

By construction, one has

V�(A22; B2; C2; D) = f0g (24a)

T �(A22; B2; C2; D) = Rn2 : (24b)

We already know from the invertibility hypothesis and Proposition 2 that the matrix
�
C2 D

�
is of

full row rank and the matrix col(B2; D) is of full column rank. Therefore, Proposition 2 guarantees
that the transfer matrix of the system �(A22; B2; C2; D) has a polynomial inverse. This allows us,
as stated in the following lemma, to reduce the controllability problem of the CLS (23) to that of
the push-pull system (23a) where the variable y is considered as the input.

Lemma 1. Consider the CLS (1) such that p = m, U = Y = Rm, Assumption 2 holds, and the
transfer matrix D+C(sI�A)�1B is invertible as a rational matrix. Then, the following statements
are equivalent.

1. The CLS (1) is completely controllable.

2. The push-pull system

_x1 = A11x1 + g(y) (25)

is completely controllable with respect to Y.

By combining the above lemma with Theorem 3, we are in a position to present the main result
of the chapter.

Theorem 4. Consider the CLS (1) such that p = m, U = Y = Rm, Assumption 2 holds, and the
transfer matrix D + C(sI � A)�1B is invertible as a rational matrix. The CLS (1) is completely
controllable if, and only if,

1. the relation
rX
i=1

hA+M iC j im(B +M iD)i = Rn (26)

is satis�ed and

2. the implication

� 2 R; z 2 Rn; wi 2 R
m

�
zT wTi

� �A+M iC � �I B +M iD
C D

�
= 0; wi 2 Y

�
i for all i = 1; 2; : : : ; r ) z = 0

holds.

Remark 3. Note that the the second condition is a statement about the real invariant zeros and
the invariant left zero directions of the systems �(A+M iC;B+M iD;C;D). A quick observation
shows that the invariant zeros of the systems �(A +M iC;B +M iD;C;D) coincide. They also
coincide with the invariant zeros of the system �(A;B;C;D). Therefore, this condition comes to
play only if the system �(A;B;C;D) has some real invariant zeros.

Remark 4. The necessity of the �rst condition is rather intuitive. What might be curious is that
this condition is not su�cient as shown by the following example. Consider the bimodal system

_x1 =

(
x2 if x2 6 0

�x2 if x2 > 0

_x2 = u:
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In order to cast this system as a CLS, one can take

A =

�
0 0
0 0

�
; B =

�
0
1

�
; C =

�
0 1
�
; D = 0 (27)

Y1 = R�; M1 =

�
1
0

�
; Y2 = R+; M2 =

�
�1
0

�
: (28)

Straightforward calculations yield that hA+M1C j im(B+M1D)i = hA+M2C j im(B+M2D)i =
R2. Hence, the �rst condition is ful�lled. However, the overall system cannot be controllable as
the derivative of x1 is always nonpositive. This is in accordance with the theorem since the second
condition is violated in this case for the values � = 0, z =

�
1 0
�
, w1 = �1, and w2 = 1.

Remark 5. The above remark shows that even though all the constituent linear systems are con-
trollable the overall system may not be controllable. On the other extreme, one can �nd examples
in which the constituent systems are not controllable but the overall system is. To construct such
an example, note that the second condition becomes void if the system has no real invariant zeros.
Therefore, it is enough to choose constitute linear systems such that i) they are uncontrollable, ii)
they do not have any real invariant zeros, and iii) they satisfy the �rst condition of Theorem 4.
For such an example, consider the bimodal system

_x1 = x2

_x2 =

(
�x1 if x5 > 0

�x1 + x5 if x5 6 0

_x3 = x4

_x4 =

(
�x3 + x5 if x5 > 0

�x3 if x5 6 0

_x5 = u:

To cast this system as a CLS, one can take

A =

2
66664
0 1 0 0 0
�1 0 0 0 1
0 0 0 1 0
0 0 �1 0 0
0 0 0 0 0

3
77775 ; B =

2
66664
0
0
0
0
1

3
77775 ; C =

�
0 0 0 0 1

�
; D = 0 (29)

Y1 = R�; M1 = 0; Y2 = R+; M2 =

2
66664
0
�1
0
1
0

3
77775 : (30)

It can be veri�ed that the system (A;B;C;D) has no real invariant zeros. So, the second condition
of Theorem 4 is void. It can also be veri�ed that hA +M1C j im(B +M1D)i = spanfe1; e2; e5g
and hA + M2C j im(B + M2D)i = spanfe3; e4; e5g where ei is the ith standard basis vector,
i.e. all components of ei are zero except the ith component which is equal to 1. Note that both
constituent linear systems are not controllable but the overall system is since the �rst condition
is satis�ed.

In what follows, we shall establish various already known controllability results as special cases of
Theorem 4.

Remark 6. (linear systems) Take C = 0 and D = I. Take r = 1. Let Y1 = R
m and M1 = 0. With

these choices, the CLS (1) boils down to a linear system of the form

_x = Ax+Bu:
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In this case, condition 1 is equivalent to saying that hA j imBi = Rn, i.e. the pair (A;B) is
controllable whereas the left hand side of the implication 2 can be satis�ed only with w1 = 0 as
Y�1 = f0g. This means, however, that the second condition is readily satis�ed provided that the
�rst one is satis�ed. Therefore, the system is controllable if, and only if, hA j imBi = Rn.

Remark 7. (linear systems with positive controls) Take C = 0 and D = I. For an index set
� � f1; 2; : : : ;mg, de�ne the cone Y� := fy 2 Rm j yi > 0 if i 2 �; yi 6 0 if i 62 �g. Obviously,
[�Y� = Rm and Assumption 2 is automatically satis�ed as the cones Y� are polyhedral and solid.
Let N� be a diagonal matrix such that the (i; i)th element is 1 if i 2 � or �1 otherwise. Note
that Y� = fy j N�y > 0g. Also note that N�y = jyj whenever y 2 Y�. Here jyj denotes the
componentwise absolute value of the vector y. De�ne M� = B(N� � I). Note that Bu+ f(Cx+
Du) = Bjuj with the above choices of C, D, N�, and Y�. Hence, the CLS (1) boils down to a
linear system of the form

_x = Ax+Bu

where the input is restricted to be nonnegative. Note that A+M�C = A and B+M�D = BN�.
Thus, hA+M�C j im(B+M�D)i = hA j imBN�i = hA j imBi as N� is nonsingular. This shows
that the condition 1 is equivalent to 1 of Corollary 1. Let � 2 R, z 2 Rn, and w� 2 R

m be as in
2, i.e. be such that �

�zT wT�
� �A� �I BN�

0 I

�
= 0 (31a)

w� 2 Y
�
� (31b)

for all � � f1; 2; : : : ;mg. It immediately follows from (31a) that

zTA = �zT (32a)

w� = N�BT z: (32b)

Note that Y� is self-dual, i.e. Y�� = Y�. So, (32b) implies that BT z > 0 as N�N� = I. Together
with (32a), this proves the equivalence of the condition 2 to 2 of Corollary 1.

As a consequence of above analysis, Corollary 1 can be seen as a special case of Theorem 4.
More generally, Theorem 2 becomes a special case whenever the set U is a closed convex solid cone
in Rm such that BU is closed.

Remark 8. (push-pull systems) To show that Theorem 3 is a special case of Theorem 4, one can
take B = 0, C = 0, D = I. In this case, one gets A +M iC = A and B +M iD = M i. Then,
hA+M iC j im(B +M iD)i = hA j imM ii. Note that

rX
i=1

hA j imM ii = hA j im
�
M1 M2 � � � Mr

�
i: (33)

Let � 2 R, z 2 Rn, and wi 2 R
m be as in 2, i.e. be such that�

�zT wTi
� �A� �I M i

0 I

�
= 0 (34a)

wi 2 Y
�
i (34b)

for all i. It immediately follows from (34a) that

zTA = �zT (35a)

wTi = zTM i: (35b)

Then, (34b) can be written as (M i)T z 2 Y�i in view of (35b). Consequently, the implication

� 2 R; z 2 Rn; zTA = �zT ; (M i)T z 2 Y�i for all i ) z = 0

is equivalent to the implication in 2. Together with (33), this shows that 1 and 2 hold if, and only
if, the pair (A;

�
M1 M2 � � � Mr

�
) is completely controllable with respect to Y1 � Y2 � � � � � Yr.
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Remark 9. (bimodal systems) In [6], necessary and su�cient conditions for the controllability of
single-input bimodal piecewise linear systems of the form

_x =

(
A0x+ bu if cTx 6 0;

(A0 + ecT )x+ bu if cTx > 0
(36)

are presented. It was shown, under the assumption that the transfer matrix cT (sI � A0)�1b is
nonzero, that necessary and su�cient conditions for controllability of the systems of the form (36)
are

1. the pair (A0;
�
b e
�
) is controllable, and

2. the implication

�
zT wi

� �Ai � �I b
cT 0

�
= 0; � 2 R; z 6= 0; i = 1; 2) w1w2 > 0;

where A1 := A0 and A2 := A0+ ecT holds. One can recover this result from Theorem 4 as follows.
To �t the system (36) into the framework of CLS (1), take m = 1, r = 2, A = A0, B = b,
C = cT , D = 0, Y1 = R�, M

1 = 0, Y2 = R+, and M2 = e. Note that A + M1C = A0,
A +M2C = A0 + ecT , and B +M1D = B +M2D = b in this case. With these choices, it can
be veri�ed that the implication 2 of Theorem 4 is equivalent to the one given by 2. Therefore, it
is enough to show that the condition 1 of Theorem 4 is equivalent to the one given by 1. Note
that hA+M1C j im(B +M1D)i+ hA+M2C j im(B +M2D)i = hA0 j im bi+ hA0 + ecT j im bi.
We claim that the latter equivalence holds if the transfer function cT (sI �A0)b is nonzero (hence
invertible), i.e. it holds that

hA0 j im bi+ hA0 + ecT j im bi = Rn , the pair (A0;
�
b e
�
) is controllable: (37)

Note that hA0 j im bi � hA0 j im
�
b e
�
i and hA0 + ecT j im bi � hA0 j im

�
b e
�
i. This immediately

shows that the pair (A0;
�
b e
�
) is controllable if hA0 j im bi + hA0 + ecT j im bi = Rn. For the rest,

we use the following well-known identity

(sI �X)�1 � (sI � Y )�1 = (sI �X)�1(X � Y )(sI � Y )�1: (38)

Now, suppose that the pair (A0;
�
b e
�
) is controllable. To show that hA0 j im bi+ hA0 + ecT j im bi

is the entire Rn, assume z 2 Rn such that zT (A0)kb = zT (A0 + ecT )kb = 0 for all integers k,
i.e. z is orthogonal to the subspace hA0 j im bi + hA0 + ecT j im bi. Stated di�erently, we have
zT (sI �A0)�1b � zT (sI �A0 � ecT )�1b � 0. By using (38), we get

0 � zT [(sI �A0 � ecT )�1 � (sI �A0)�1]b = zT (sI �A0 � ecT )�1ecT (sI �A0)�1b:

As the transfer function cT (sI�A0)�1b is nonzero, we get zT (sI�A0� ecT )�1e � 0. Now, we can
use (38) once more to obtain

zT (sI �A0 � ecT )�1e = zT (sI �A0 � ecT )�1ecT (sI �A0)�1e+ zT (sI �A0)�1e:

Hence, zT (sI � A0)�1e � 0. This means, however, that zT (sI � A0)�1
�
b e
�
� 0. As the pair

(A0;
�
b e
�
) is controllable, this can happen only if z = 0.

Remark 10. (bimodal planar systems) In [8], controllability of the systems (36) is investigated for
the planar case, i.e. x 2 R2. Under the assumption that (cT ; A0) is observable, it was shown that
the system (36) is controllable if, and only if,

f 6= 0; fT b = 0 ) fTA0b � fT (A0 + ecT )b > 0: (39)

Our aim is to show that this result is a special case of Theorem 4. As the case b = 0 is obviously
uninteresting, we assume that b 6= 0. For a single-input single-output observable planar linear
system, this means that the transfer function cT (sI � A0)b is not identically zero, and hence is
invertible. Let A1 = A0, A2 = A0 + ecT , and consider the following statements:
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1. 0 6= f 2 R2; fT b = 0 ) fTA0b � fT (A0 + ecT )b > 0,
2. hA0 j im

�
b e
�
i = R2,

3.
�
zT wi

� �Ai � �I b
cT 0

�
= 0 for i = 1; 2 and for some 0 6= z 2 R2 and � 2 R ) w1w2 > 0.

In view of Remark 9, it is enough to show that 1, 2 ^ 3. To do so, we distinguish two cases.

1. cT b = 0: We claim that all of the statements 1, 2, and 3 hold in this case.
To see the �rst one, let 0 6= f 2 R2 be such that fT b = 0. Due to planarity, f and c must be
linearly dependent, i.e., f = �c for some nonzero real number �. Hence, fTA0b�fT (A0+ecT )b =
�2(cTA0b)2. Then, statement 1 follows from the fact that cTA0b 6= 0 due to the observability.
To see the second one, note that cTA0b 6= 0 implies that b and A0b are linearly independent.
Hence, the pair (A0; b) is controllable. Then, statement 2 is obvious. To see the last one, note
that z and c should be linearly dependent if z satis�es the left hand side of the statement 3.
In other words, z = �c for some real number �. This would result in �cTA0+(w1+ ��)c

T = 0.
Since (cT ; A0) is observable, this can only happen if � = 0, i.e., z = 0. Therefore, the statement
3 holds trivially.

2. cT b 6= 0: In this case, one can verify that the following two statements are equivalent:

(a)
�
zT wi

� �Ai � �I b
cT 0

�
= 0 for i = 1; 2 and for some � 2 R

(b) z = �f; wi =
��
cT b

fTAib for some � 2 R and 0 6= f 2 R2 with fT b = 0.
This readily shows that the statements 1 and 3 are equivalent. To conclude the proof, one can
show that the statement 2 follows from 1. To see this, note that fT b = 0 and fTA0b 6= 0 imply
that b and A0b are linearly independent, i.e., (A0; b) is a controllable pair. Consequently, the
statement 2 follows from (37).

5 Conclusions

In this chapter we studied the controllability problem for a class of conewise linear systems.
The class of conewise linear systems is closely related to many other well-known hybrid model
classes like piecewise linear systems, linear complementarity systems and others. As such, previous
studies of controllability for these systems indicated the hard nature of the problem. Due to
additional structure implying continuity of the vector �eld of the conewise linear systems under
study, necessary and su�cient conditions for controllability could be given. To the best of the
authors' knowledge it is the �rst time that a full algebraic characterization of controllability
of a class of piecewise linear systems appears in the literature. The proofs of the main results
combine ideas from geometrical control theory and controllability results for constrained linear
systems. As such, the original results of controllability of linear systems and input-constrained
linear systems were recovered as special cases. Also, the preliminary work by the authors on
bimodal continuous piecewise linear systems [6, 8] form special cases of the main result of the
current chapter. Moreover, the controllability of so-called \push-pull systems" was completely
characterized. Interestingly, the algebraic characterization of controllability also showed that the
overall conewise linear system can be controllable although the subsystems are not. Vice versa, it
can happen that all linear subsystems are controllable but the overall system is not. This work
revealed the use of geometrical control theory and constrained control of linear systems in the �eld
of piecewise linear systems. Some structure on the piecewise linear system enabled the application
of this well-known theory. We believe that this opens the path to solving problems like controller
design, stabilization, observability, detectability, and other system and control theoretic problems
of interest for this class of systems. This investigation forms one of the major issues of our future
research.

A Appendix: Notation

In this chapter, the following conventions are in force.
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Numbers and sets. The Cartesian product of two sets S and T is denoted by S � T . For a set
S, Sn denotes the n-tuples of elements of S, i.e. the set S � S � � � � � S where there are n � 1
Cartesian products. The symbol R denotes the real numbers, R+ the nonnegative real numbers
(i.e. the set [0;1)), C the complex numbers. For two real numbers a and b, the notation max(a; b)
denotes the maximum of a and b.

Vectors and matrices. The notations vT and v� denote the transpose and conjugate transpose
of a vector v. When two vectors v and w are orthogonal, i.e. vTw = 0, we write v ? w. Inequalities
for real vectors must be understood componentwise. The notation Rn�m denotes the set of n �
m matrices with real elements. The transpose of M is denoted by MT . The identity and zero
matrices are denoted by I and 0, respectively. If their dimensions are not speci�ed, they follow
from the context. Let Mn�m be a matrix. We write Mij for the (i; j)th element of M . For � �
f1; 2; : : : ; ng, and � � f1; 2; : : : ;mg, M�� denotes the submatrix fMijgi2�;j2� . If n = m and
� = �, the submatrix M�� is called a principal submatrix of M and the determinant of M�� is
called a principal minor of M . For two matrices M and N with the same number of columns,
col(M;N) will denote the matrix obtained by stacking M over N . For a square matrix M , the

notation exp(M) denotes the exponential of M , i.e.
P1

k=0
Mk

k! . All linear combinations of the
vectors fv1; v2; : : : ; vkg � R

n is denoted by spanfv1; v2; : : : ; vkg.
Cones and dual cones. A set C is said to be a cone if x 2 C implies that �x 2 C for all � > 0.

A cone is said to be solid if its interior is not empty. A cone C � Rn is said to be polyhedral if it is
of the form fv 2 Rn jMv > 0g for some m� n matrix M . For a nonempty set Q (not necessarily
a cone), the dual cone of Q is the set fv j uT v > 0 for all u 2 Qg. It is denoted by Q�.

Functions. For a function f : R ! R, f (k) stands for the kth derivative of f . By convention,
we take f (0) = f . If f is a function of time, we use the notation _f for the derivative of f . The set
of all arbitrarily many times di�erentiable functions is denoted by C1. The support of a function
f is de�ned by supp(f) := ft 2 R j f(t) 6= 0g.

B Appendix: Some facts from geometric control theory

Consider the linear system �(A;B;C;D)

_x = Ax+Bu (40a)

y = Cx+Du (40b)

where x 2 Rn is the state, u 2 Rm is the input, y 2 Rp is the output, and the matrices A, B, C,
D are of appropriate sizes.

We de�ne the controllable subspace and unobservable subspace as hA j imBi := imB+A imB+
� � � + An�1 imB and hkerC j Ai := kerC \ A�1 kerC \ � � � \ A1�n kerC, respectively. It follows
from these de�nitions that

hA j imBi = hkerBT j AT i? (41)

where W? denotes the orthogonal space of W.
We say that a subspace V is output-nulling controlled invariant if for some matrix K the

inclusions (A�BK)V � V and V � ker(C�DK) hold. As the set of such subspaces is non-empty
and closed under subspace addition, it has a maximal element V�(�). Whenever the system � is
clear from the context, we simply write V�. The notation K(V) stands for the set fK j (A�BK)V �
V and V � ker(C �DK)g.

One can compute V� as a limit of the subspaces

V0 = R
n; Vi = fx j Ax+Bu 2 Vi�1 and Cx+Du = 0 for some ug: (42)

In fact, there exists an index i 6 n� 1 such that V j = V� for all j > i.
Dually, we say that a subspace T is input-containing conditioned invariant if for some matrix

L the inclusions (A�LC)T � T and im(B �LD) � T hold. As the set of such subspaces is non-
empty and closed under the subspace intersection, it has a minimal element T �(�). Whenever
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the system � is clear from the context, we simply write T �. The notation L(T ) stands for the set
fL j (A� LC)T � T and im(B � LD) � T g.

We sometimes write V�(A;B;C;D) or T �(A;B;C;D) to make the dependence on (A;B;C;D)
explicit.

We quote some standard facts from geometric control theory in what follows. The �rst one
presents certain invariants under state feedbacks and output injections. Besides the system � (40),
consider the linear system �K;L given by

_x = (A�BK � LC + LDK)x+ (B � LD)v (43a)

y = (C �DK)x+Dv: (43b)

This system can be obtained from � (40) by applying both state feedback u = �Kx + v and
output injection �Ly.

Proposition 1. Let K 2 Rm�n and L 2 Rn�p be given. The following statements hold.

1. hA j imBi = hA�BK j imBi.
2. hkerC j Ai = hkerC j A� LCi.
3. V�(�K;0) = V�(�0;L) = V�(�K;L) = V�(�).
4. T �(�K;0) = T �(�0;L) = T �(�K;L) = T �(�).

The next proposition relates the invertibility of the transfer matrix to the controlled and
conditioned invariant subspaces.

Proposition 2 (cf. [1]). The transfer matrix D+C(sI�A)�1B is invertible as a rational matrix
if, and only if, V� � T � = X ,

�
C D

�
is of full row rank, and col(B;D) is of full column rank.

Moreover, the inverse is polynomial if, and only if, V�\hA j imBi � hkerC j Ai and hA j imBi �
T � + hkerC j Ai.

We de�ne the invariant zeros of the system (40) to be the zeros of the non-zero polynomials
on the diagonal of the Smith form of

P�(s) =

�
A� sI B
C D

�
: (44)

The matrix P�(s) is sometimes called the system matrix.
We know from [1, Thm. 2] that the invariant zeros coincide with the eigenvalues of the mapping

that is obtained by restricting A�BK�LC+LDK to the subspace V�=(V�\T �) whereK 2 K(V�)
and L 2 L(T �) such that hkerC j Ai � kerK and imL � hA j imBi.

It is known, for instance from [34, Cor. 8.14], that the transfer matrix D + C(sI � A)�1B is
invertible as a rational matrix if, and only if, the system matrix P�(�) is of rank n+m for all but
�nitely many � 2 C. In this case, the values of � 2 C such that

rankP�(�) < n+m (45)

coincide with the invariant zeros.
If � 2 C is an invariant zero, then the elements of the kernel of the matrix P�(�) are called

invariant (right) zero directions (see e.g. [25]). They enjoy the following dynamical interpretation.
Let � 2 C be an invariant zero and col(�x; �u) be an invariant zero direction, i.e.�

A� �I B
C D

� �
�x
�u

�
= 0: (46)

Then, the output y of (40) corresponding to the initial state �x and the input t 7! �u exp(�t) is
identically zero.

The following proposition presents su�cient conditions for the absence of invariant zeros. It
can be proved by using (42).
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Proposition 3. Consider the linear system (40) with p = m. Suppose that V� = f0g and the
matrix col(B;D) is of full column rank. Then, the system matrix

�
A� �I B
C D

�

is nonsingular for all � 2 C.

Systems that have transfer functions with a polynomial inverse are of particular interest for our
treatment.

Proposition 4. Consider the linear system (40). Suppose that the transfer matrix D + C(sI �
A)�1B has a polynomial inverse. Let H(s) = H0 + sH1 + � � �+ shHh be this inverse. For a given
p-tuple of C1-functions �y, take

x(0) =

hX
`=0

`�1X
j=0

AjBH`�y(`�1�j)(0) (47a)

u(t) = H(
d

dt
)�y(t): (47b)

Then, the output y, corresponding to the initial state x(0) and the input u, of the system (40) is
identical to �y.

Proof. Since H(s) is the inverse of G(s), one has G(s)H(s) = I. This yields

jX
i=0

GiHh�j+i = 0 for j = 0; 1; : : : ; h� 1 (48a)

hX
i=0

GiHi = I (48b)

hX
i=0

Gj+iHi = 0 for j = 1; 2; : : : (48c)

where G(s) = D+ s�1CB + s�2CAB + � � � = G0 + s�1G1 + s�2G2 + � � � . Note that the following
identity follows from integration by parts

Z t

0

exp(A(t� s))BP �y(k)(s) ds =� exp(At)

k�1X
j=0

AjBP �y(k�1�j)(0) +

k�1X
j=0

AjBP �y(k�1�j)(t)+

+Ak
Z t

0

exp(A(t� s))BP �y(s) ds (49)
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where �y is any p-tuple C1-function, P 2 Rp�p, and k > 0 is an integer. Then, one has

y(t) = Cx(t) +Du(t) (50a)

(47b)
= C exp(At)x(0) +

Z t

0

C exp(A(t� s))B

hX
`=0

H`�y(`)(s) ds+D

hX
`=0

H`�y(`)(t) (50b)

(49)
= C exp(At)x(0)� C exp(At)

hX
`=0

`�1X
j=0

AjBH`�y(`�1�j)(0) +

hX
`=0

`�1X
j=0

CAjBH`�y(`�1�j)(t)+

+

hX
`=0

Z t

0

CA` exp(A(t� s))BH`�y(s) ds+D

hX
`=0

H`�y(`)(t) (50c)

(47a)
=

hX
`=0

`�1X
j=0

CAjBH`�y(`�1�j)(t) +D

hX
`=0

H`�y(`)(t)

| {z }
=:y1(t)

+

hX
`=0

Z t

0

CA` exp(A(t� s))BH`�y(s) ds

| {z }
=:y2(t)

:

(50d)

First, we look at y1. It can be checked that

y1(t) =

hX
`=0

`�1X
j=0

CAjBH`�y(`�1�j)(t) +D

hX
`=0

H`�y(`)(t) (51a)

=

hX
`=0

`�1X
j=0

Gj+1H`�y(`�1�j)(t) +G0
hX
`=0

H`�y(`)(t) (51b)

=

hX
`=0

X̀
j=0

GjH`�y(`�j)(t) =

hX
`=0

X̀
m=0

G`�mH`�y(m)(t) (51c)

=
X̀
m=0

hX
`=m

G`�mH`�y(m)(t) (51d)

= �y(t) (from (48a) and (48b)): (51e)

One can also check that

y2(t) =

hX
`=0

Z t

0

CA` exp(A(t� s))BH`�y(s) ds (52a)

=

Z t

0

hX
`=0

1X
m=0

CA`Am
(t� s)m

m!
BH`�y(s) ds: (52b)

Note that

hX
`=0

1X
m=0

CA`Am
(t� s)m

m!
BH` =

hX
`=0

1X
m=0

G`+m+1H` (t� s)m

m!

(48c)
= 0: (53)

Hence, y1 + y2 = �y.

The last proposition presents su�cient conditions under which the values of the output and its
higher order derivatives at a certain time instant uniquely determine the state at the same time
instant.
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Proposition 5. Consider the linear system (40) with p = m. Suppose that V� = f0g. Let the
triple (u; x; y) satisfy the equations (40) with the pair (u; y) being (n � 1)-times di�erentiable. If
y(k)(t) = CAk�x for k = 0; 1; : : : ; n� 1 for some t and �x 2 Rn then x(t) = �x.

Proof. Note that y(t) = C�x results in

Cx(t) +Du(t) = C�x

and hence x(t)� �x 2 V1 in view of (42). Similarly, y(1)(t) = CA�x results in

CAx(t) + CBu(t) +Du(1)(t) = CA�x:

This would mean that A(x(t) � �x) + Bu(t) 2 V1 and hence x(t) � �x 2 V2. By continuing in
this way, one can show that x(t) � �x 2 Vk for all k = 0; 1; : : : ; n � 1. This, however, means that
x(t)� �x 2 V�. Therefore x(t) = �x by the hypothesis.

C Appendix: Proofs

C.1 Proof of Theorem 3

We will show that the following implications hold:

2 ) 1 ) 3 ( 4
* * +
4 6 , 5 ) 4

Note that the three implications in the �rst line are evident.
3 ) 5 : Suppose that 3 holds. Let z 2 Rn be such that

zT exp(At)f(u) > 0 (54)

for all t > 0 and for all u 2 U . Then, for any solution x of (13) with x(0) = 0 one has

zTx(T ) = zT
Z T

0

exp(A(T � s))f(u(s)) ds > 0: (55)

As 3 holds, x(T ) may take any arbitrary value by choosing a suitable input function. Therefore, z
must be zero.

5 ) 6 : Suppose that 5 holds. Due to Theorem 2, it is enough to show that

i. the pair (A;
�
M1 M2 � � � Mr

�
) is controllable, and

ii. the implication

� 2 R; z 2 Rn; zTA = �zT ; (M i)T z 2 Y�i for all i = 1; 2; : : : ; r ) z = 0

holds.

i. Let s0 2 C and v 2 Cn be such that v�
�
s0I �A M1 M2 � � � Mr

�
= 0. This means that

s0v� = v�A (56a)

v�M i = 0 (56b)

for all i = 1; 2; : : : ; r. Let � and ! be, respectively, the real and imaginary parts of s0. Also let
v1 and v2 be, respectively, the real and imaginary parts of v. One can write (56) in terms of
�, !, v1, and v2 as �

vT1
vT2

�
A =

�
� !
�! �

� �
vT1
vT2

�
(57a)

vT1 M
i = vT2 M

i = 0 (57b)
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for all i = 1; 2; : : : ; r. Note that (57a) results in�
vT1
vT2

�
exp(At) = exp(

�
� !
�! �

�
t)

�
vT1
vT2

�
: (58)

Together with (57b), this implies that vTj exp(At)M i = 0 for all t, for all i, and for all j 2
f1; 2g. In view of 5, both v1 and v2 must be zero. Hence, so is v. Consequently, the pair
(A;

�
M1 M2 � � � Mr

�
) is controllable.

ii. Let z 2 Rn and � 2 R be such that

zTA = �zT (59a)

(M i)T z 2 Y�i (59b)

for all i = 1; 2; : : : ; r. Then, zTM iv is nonnegative for any v 2 Yi. Since U = [ri=1Yi, one
even has zT f(v) > 0 for all v 2 U . Note that zT exp(At) = exp(�t)zT due to (59a). Then,
zT exp(At)f(v) > 0 for all v 2 U . In view of 5, this implies that z = 0.

Now, the statement 6 follows from i, ii, and Theorem 2.

5 ) 4 : This implication follows from the following lemma.

Lemma 2. Consider the system (13). Suppose that the implication

zT exp(At)f(u) > 0 for all t > 0 and u 2 U ) z = 0 (60)

holds. Then, there exist a positive real number T and an integer ` such that for a given state xf
one can always �nd vectors �i;j 2 Yi for i = 1; 2; : : : ; r and j = 0; 1; : : : ; ` � 1 such that the state
xf can be reached from the zero state in time T by the application of the input

�u(t) = �i;j��`(t� (jr + i� 1)�`) for (jr + i� 1)�` 6 t 6 (jr + i)�` (61)

where �` = T=(`r) and �� : R! R is a nonnegative valued C1-function with supp(��) � (�4 ; 3
�
4 )

and Z �

0

��(t) = 1: (62)

Proof. First, we show that if (60) holds then there exists a positive real number T such that the
implication

zT exp(At)f(u) > 0 for all t 2 [0; T ] and u 2 U ) z = 0 (63)

holds. To see this, suppose that the above implication does not hold for any T . Therefore, for all
T there exists 0 6= zT 2 R

n such that

zTT exp(At)f(u) > 0 for all t 2 [0; T ] and u 2 U : (64)

Without loss of generality, we can assume that kzT k = 1. Then, the sequence fzT gT2N admits a
convergent subsequence due to the well-known Bolzano-Weierstrass theorem. Let z1 denote its
limit. Note that kz1k = 1. We claim that

zT1 exp(At)f(u) > 0 (65)

for all t > 0 and u 2 U . To show this, suppose that zT1 exp(At0)f(u0) < 0 for some t0 and u0 2 U .
Then, for some su�ciently large T 0, one has zTT 0 exp(At0)f(u0) < 0 and t0 < T 0. However, this
cannot happen due to (64). In view of (60), (65) yields z1 = 0. Hence, by contradiction, there
exists a positive real number T such that the implication (63) holds.

Now, consider the input function in (61). Note that

f(�u(t)) =M i�u(t) if (jr + i� 1)�` 6 t 6 (jr + i)�`:
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The solution of (13) corresponding to x(0) = 0 and u = �u is given by

x(T ) =

Z T

0

exp[A(T � s)]f(u(s)) ds (66a)

=

`�1X
j=0

rX
i=1

Z (jr+i)�`

(jr+i�1)�`

exp[A(T � s)]M i�i;j��`(s� (jr + i� 1)�r) ds: (66b)

Straightforward calculations yield that

x(T ) = �(�`)

`�1X
j=0

rX
i=1

exp[A(T � (jr + i� 1)�`)]M
i�i;j (67)

where �(�) =
R�
0
exp(�As)��(s) ds. Then, it is enough to show that there exists an integer `

such that the above equation is solvable in �i;j 2 Yi for i = 1; 2; : : : ; r and j = 0; 1; : : : ; ` � 1 for
any x(T ) 2 Rn. To do so, we invoke a generalized Farkas' lemma (see e.g. [13, Thm. 2.2.6]).

Lemma 3. Let H 2 RP�N , q 2 RP , and a closed convex cone C � RN be given. Suppose that HC
is closed. Then, either the primal system

Hv = q; v 2 C

has a solution v 2 RN or the dual system

wT q < 0; HTw 2 C�

has a solution w 2 RP but never both.

An immediate consequence of this lemma is that if the implication

wTHv > 0 for all v 2 C ) w = 0 (68)

holds then the primal system has a solution for all q. Consider, now, (67) as the primal system.
As Yi is polyhedral cone, M

iYi must be polyhedral and hence closed. Also note that �(�`) is
nonsingular for all su�ciently large ` as it converges to the identity matrix as ` tends to in�nity.
Then, �(�`) exp(A�)M

iYi is closed for all su�ciently large ` and for all � since exp(A�) is
nonsingular for all � . Therefore, in view of (68), in order to show that for an integer ` (67) has a
solution for arbitrary x(T ), it is enough to show that the relation

zT�(�`)

`�1X
j=0

rX
i=1

exp[A(T � (jr + i� 1)�`)]M
i�i;j > 0 (69)

for all �i;j 2 Yi, i = 1; 2; : : : ; r, and j = 0; 1; : : : ; `� 1 can only be satis�ed by z = 0. To see this,
suppose, on the contrary, that for each integer ` there exists z` 6= 0 such

zT` �(�`)

`�1X
j=0

rX
i=1

exp[A(T � (jr + i� 1)�`)]M
i�i;j > 0 (70)

for all �i;j 2 Yi, i = 1; 2; : : : ; r, and j = 0; 1; : : : ; ` � 1. Clearly, we can take kz`k = 1. In view of
Bolzano-Weierstrass theorem, we can assume, without loss of generality, that the sequence fz`g
converges, say to z1, as ` tends to in�nity. Now, �x i and t 2 [0; T ]. It can be veri�ed that there
exists a subsequence f`kg � N such that the inequality (j`kr + i� 1)�`k 6 T � t 6 (j`kr + i)�`k

holds for some j`k 2 f1; 2; : : : ; `kg. It is a standard fact from distribution theory that �� converges
to a Dirac impulse as � tends to zero. Hence, �(�`) converges to the identity matrix as ` tends
to in�nity. Let ` = `k and j = j`k in (70). By taking the limit, one gets

zT1 exp(At)M i� > 0
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for all t 2 [0; T ], � 2 Yi, and i = 1; 2; : : : ; r. Consequently, one has

zT1 exp(At)f(u) > 0 (71)

for all t 2 [0; T ] and u 2 U . Hence, z1 must be zero due to (63). Contradiction!

6 ) 5 : Suppose that 6 holds. It follows from Theorem 2 that

i. the pair (A;
�
M1 M2 � � � Mr

�
) is controllable, and

ii. the implication

� 2 R; z 2 Rn; zTA = �zT ; (M i)T z 2 Y�i for all i = 1; 2; : : : ; r ) z = 0

holds.

At this point, we invoke the following lemma.

Lemma 4. Let G 2 RN�N and H 2 RN�M be given. Also let W � RM be such that its convex
hull has nonempty interior in RM . Suppose that the pair (G;H) is controllable and the implication

� 2 R; z 2 RN ; zTG = �zT ; HT z 2 W� ) z = 0

holds. Then, also the implication

zT exp(Gt)Hv > 0 for all t > 0 and v 2 W ) z = 0

holds.

The proof can be found in the su�ciency proof of [4, Thm. 1.4]. TakeG = A,H =
�
M1 M2 � � � Mr

�
,

and W = Y1 � Y2 � � � � � Yr. It follows from i and ii that the hypothesis of the above lemma is
satis�ed. Therefore, the implication

zT exp(At)
�
M1 M2 � � � Mr

�
v > 0 for all t > 0 and v 2 Y1 � Y2 � � � � � Yr ) z = 0

holds. In particular, the implication

zT exp(At)f(u) > 0 for all t > 0 and u 2 U ) z = 0

holds.

6 ) 1 : Note that if the statement 6 holds for the system (13) so does it for the time-reversed
version of the system (13). Therefore the statement 4 holds for both (13) and its time-reversal.
This means that one can steer any initial state �rst to zero and then to any �nal state. Thus,
complete controllability is achieved.

4 ) 2 : As the statement 4 holds for both (13) and its time-reversal, one can steer any initial
state �rst to zero and then to any �nal state.

C.2 Proof of Lemma 1

We need the following auxiliary results. The �rst one guarantees the existence of smooth functions
lying in a given polyhedral cone.

Lemma 5. Let Y � Rp be a polyhedral cone and y be a C1-function such that y(t) 2 Y for all
t 2 [0; �] where 0 < � < 1. Then, there exists a C1-function �y such that

i. �y(t) = y(t) for all t 2 [0; �]
ii. �y(k)(1) = 0 for all k = 0; 1; : : :, and
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iii. �y(t) 2 Y for all t 2 [0; 1].

Proof. We only prove the case p = 1 and Y = R+. The rest is merely a generalization to the
higher dimensional case. Let ��y be a C1-function such that ��y(t) = 1 for t 6 �=4, ��y(t) > 0 for
�=4 < t < 3�=4, and ��y(t) = 0 for 3�=4 6 t. Such a function can be derived from the so-called bump
function (e.g. the function ' in [19, Lemma 1.2.3]) by integration and scaling. It can be checked
that the product of y and ��y proves the claim.

The second auxiliary result concerns the existence of solutions of CLS with certain properties.
It follows from [9, Lem. II.10, Lem. II.11, and Thm. II.12].

Proposition 6. Consider the CLS (1) with U = f0g and Y = Rp. Then, for each initial state x0
there exist an index set i and a positive number � such that y(t) 2 Yi for all t 2 [0; �].

We turn to the proof of Lemma 1. Obviously, 1 implies 2. For the rest, it is enough to show
that the system (23) is controllable if 2 holds.

Note that V�(A22+M
i
2C2; B2+M

i
2D;C2; D) = f0g and T �(A22+M

i
2C2; B2+M

i
2D;C2; D) =

Rn2 for all i = 1; 2; : : : ; r due to (24) and Proposition 1. Further, the matrices
�
C2 D

�
and

col(B2; D) are of full, respectively, row and column rank. According to Proposition 2, the transfer
matrix D + C2(sI �A22 +M i

2C2)
�1(B2 +M i

2D) has a polynomial inverse for all i = 1; 2; : : : ; r.
Take any x10; x1f 2 Rn1 and x20; x2f 2 Rn2 . Consider the system (23). Apply v = 0. By

applying Proposition 6, we can �nd an index i0 and an arbitrarily small positive number � such
that y(t) 2 Yi0 for all t 2 [0; �]. By applying Lemma 5, we can get a C1-function yin such that

i. yin(t) = y(t) for all t 2 [0; �]

ii. y
(k)
in (1) = 0 for all k = 0; 1; : : :, and

iii. yin 2 Yi0 for all t 2 [0; 1].

Then, by applying Propositions 4 and 5 to the system �(A22+M
i0
2 C2; B2+M

i0
2 D;C2; D), we can

�nd an input vin such that the output y of (23b)-(23c) is identically yin and the state x2 satis�es
x2(0) = x20. Note that the input vin should be zero on the interval [0; �] by the construction of
yin and invertibility. Moreover, x2(1) = 0 due to ii and Proposition 5. Therefore, the input vin
steers the state col(x10; x20) to col(x010; 0) where x

0
10 := x1(1). By employing the very same ideas

in the reverse time, we can come up with an input vout such that it steers a state col(x01f ; 0)
to col(x1f ; x2f ). Now, we will show that the state col(x010; 0) can be steered to col(x01f ; 0). To
see this, apply Theorem 3. This gives a positive number T > 0 and a C1-function y = ymid

such that the solution x1 of (25) satis�es x1(0) = x010 and x1(T ) = x01f . According to Lemma 2,

ymid function can be chosen such that y
(j)
mid(0) = y

(j)
mid(T ) = 0 for all j = 0; 1; : : :. Moreover, one

can �nd a �nite number of points, say 0 = t0 < t1 < � � � < tQ = T , such that ymid(t) 2 Yiq
whenever t 2 [tq; tq+1]. Since the transfer matrix D + C2(sI � A22 +M i

2C2)
�1(B2 +M i

2D) has
a polynomial inverse for all i = 1; 2; : : : ; r, repeated application of Proposition 4 to the systems
�(A22+M

iq
2 C2; B2+M

iq
2 D;C2; D) yields an input vmid and a state trajectory x2 such that (23b)-

(23c) are satis�ed for y = ymid. Moreover, x2(0) = x2(T ) = 0 due to Proposition 5. Consequently,
the concatenation of vin, vmid, and vout steers the state col(x10; x20) to the state col(x1f ; x2f ).

C.3 Proof of Theorem 4

In view of Lemma 1 and Theorem 3, it is enough to show that the controllability of the pair

(A11;
�
L1 +M1

1 L1 +M2
1 � � � L1 +Mr

1

�
)

with respect to Y1 � Y2 � � � � � Yr is equivalent to the conditions presented in Theorem 4. Note
that the former is equivalent to the following conditions.

i. the pair (A11;
�
L1 +M1

1 L1 +M2
1 � � � L1 +Mr

1

�
) is controllable, and
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ii. the implication

zTA11 = �zT ; � 2 R; (L1 +M i
1)
T z 2 Y�i for all i = 1; 2; : : : ; r ) z = 0

holds.

Our aim is to prove the equivalence of i to 1 and of ii to 2.

i , 1:
Note that hA+M iC j im(B +M iD)i = h(A�BK) +M i(C �DK) j im(B +M iD)i for any

K due to Proposition 1. Take K 2 K(V�). Note that the condition in 1 of Theorem 4 is invariant
under state space transformations. Therefore, one can, without loss of generality, take

(A�BK) +M i(C �DK) =

�
A11 (L1 +M i

1)C2

0 A22 +M i
2C2

�
B +M iD =

�
(L1 +M i

1)D
B2 +M i

2D

�
: (72)

Let Ri denote h(A� BK) +M i(C �DK) j im(B +M iD)i. Note that Ri is an input-containing
conditioned invariant subspace of the system �(A;B;C;D). Hence, T �, the smallest of the input-
containing conditioned invariant subspaces, must be contained in Ri. In the coordinates that we
chose, this is equivalent to the inclusions

im

�
0
In2

�
� Ri: (73)

At this point, we need the following auxiliary lemma.

Lemma 6. Let O, P, and Q be vector spaces such that O = P �Q. Also let �P(�Q) : O ! O be
the projection on P (Q) along Q (P). Suppose that the linear maps F : O ! O, G : S ! O, and
~F : O ! O satisfy the following properties:

� P is F -invariant,
� �PF�P = ~F , and
� Q � hF j imGi.

Then, h ~F j im(�PF�Q) + im(�PG)i � hF j imGi.

Proof. Note that

~F hF j imGi = �PF�PhF j imGi (74a)

= �PF (P \ hF j imGi) (74b)

� �P(P \ hF j imGi) (74c)

� (P \ hF j imGi) � hF j imGi: (74d)

This shows that the subspace hF j imGi is ~F -invariant. Note also that

im�PF�Q = �PFQ � �PF hF j imGi � �PhF j imGi � hF j imGi (75)

and

im�PG � imG � hF j imGi (76)

These two inclusions show that the subspace hF j imGi contains im(�PF�Q)+im(�PG). Since h ~F j
im(�PF�Q)+im(�PG)i is the smallest ~F -invariant subspace that contains im(�PF�Q)+im(�PG),
the inclusion

h ~F j im(�PF�Q) + im(�PG)i � hF j imGi

holds.
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Now, take

O = R
n; P = im

�
In1
0

�
; Q = im

�
0
In2

�
; S = Rm (77a)

F i = (A�BK) +M i(C �DK); Gi = B +M iD; ~F =

�
A11 0
0 0

�
: (77b)

Note that

�P =

�
In1 0
0 0

�
and �Q =

�
0 0
0 In2

�
:

Then, one has

�PF
i�P =

�
A11 0
0 0

�
(78a)

�PF
i�Q =

�
0 (L1 +M i

1)C2

0 0

�
(78b)

�PG
i =

�
(L1 +M i

1)D
0

�
: (78c)

Note that the �rst hypothesis of Lemma 6 is satis�ed due to (72). It follows from (77b) and (78a)
that the second one is also satis�ed. Finally, the third follows from (73). Then, Lemma 6 results
in

h

�
A11 0
0 0

�
j im

�
(L1 +M i

1)C2 0
(L1 +M i

1)D 0

�
i � Ri: (79)

By the invertibility hypothesis, the matrix
�
C2 D

�
must be of full row rank. Then, the above

inclusion can be written as

h

�
A11 0
0 0

�
j im

�
L1 +M i

1

0

�
i � Ri: (80)

Summing both sides over i, one gets

rX
i=1

h

�
A11 0
0 0

�
j im

�
L1 +M i

1

0

�
i �

rX
i=1

Ri: (81)

This implies that

h

�
A11 0
0 0

�
j im

�
L1 +M1

1 L1 +M2
1 � � � L1 +Mr

1

0 0 � � � 0

�
i �

rX
i=1

Ri: (82)

Together with (73), the above inclusion implies that the implication i ) 1 holds. For the reverse
direction, suppose that 1 holds but i does not. Then, there exist a nonzero vector z and � 2 C
such that z�

�
�I �A11 L1 +M1

1 L1 +M2
1 � � � L1 +Mr

1

�
= 0. It can be veri�ed that the real part

of z, say w, belongs to R?i for all i. Thus, w belongs to \ri=1R
?
i = (

Pr
i=1Ri)

?. This, however,
contradicts 1.

ii , 2: Note that the statement 2 is invariant under state space transformations. This means
that it is enough to prove the statement for the system (23). Let � 2 R, v 2 Rn1 , z 2 Rn2 , and
wi 2 R

m be such that

�
vT zT wTi

� 24A11 � �I (L1 +M i
1)C2 (L1 +M i

1)D
0 A22 +M i

2C2 � �I B2 + (L1 +M i
2)D

0 C2 D

3
5 = 0:

This would result in

vTA11 = �vT (83)�
zT wTi � vT (L1 +M i

1)
� �A22 +M i

2C2 � �I B2 + (L1 +M i
2)D

C2 D

�
= 0: (84)
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Note that V�(A22 + M i
2C2; B2 + M i

2D;C2; D) = f0g for all i. Then, it follows from (84) and
Proposition 3 that z = 0 and wTi = vT (L1 +M i

1). This implies that ii is equivalent to 2.
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