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Abstract

The theory of generalized functions as introduced by De Graaf, [GI], is
baseq on the triplet SX,A cXc TX,A' This triplet is fixed by a Hilbert
space X and a non-negative, unbounded self-adjoint operator A in X.
Besides a thorough investigation of the spaces SX,A and TX,A’ four types
of continuous linear mappings are discussed in [G]. Moreover, there are
brought up so-called Kernel theorems for each of these types. We remark
that a Kernel theorem gives conditions such that all linear mappings of
a specific type arise from kernels out of a suitable topological tensor
product.

In order to obtain theseKernel theorems, De Graaf has introduced the
topological tensor products ZA,Zé and EA’EB' In the firét partvof this
paper we shall discuss two general types of spaces, which are determined
by a Hilbert space Z and by two commuting, non*negétive, unbounded self-
adjoint operators in Z. The spaces ZA,Z% and EA,ZB are of these types.
For the newly introduced spaces we shall give topologies, a pairing and
characterizations of their intersections.

In the second part of this paper we shall apply the obtained results

to continuous linear mappings. It will lead to a fifth Kernel theorem,
and further, to a study of the algebras of continuous linear méppings :
from SX,A into itself cq. from TX,A into itself, and of extendable linear
mappings. The latter mentioned algebra may serve as a model for quantum
statistics. |

Finally, we shall discuss infinite matrices. It is possible to characterize

the continuous linear mappings on a nuclear SX 4 space completely by means
s



of their associated matrices. This characterization provides easy con-
struction of examples. Here we mention the so-called weighted shift

operators, which occur in one of the sections. Last but not least, the
matrix calculus leads to a construction of nuclear spaces SX A Oon which

s

a finite number of given operators in X act continuously.



Introduction

In his paper, [G], De Graaf gives a detailed discussion of the two types of
spaces SX,A and TX,A’ with the intention to describe distribution theory
on a general, functional analytic level. As observed in [GE], the space
SX,A which may serve as a test space, consists of all analytic vectors
of the non-negative, self-adjoint operator A in the Hilbert space X.
Therefore, spaces of type SX,A are called "analyticity spaces'. The ele-
ments of the gpace TX,A’ which can be considered as a space of general-
ized functions, are mappings F from (0,*) into X with the trajectory

property

F(t+1) = ™A F(t) , t,t >0,

Consequently, spaces of type TX A are called "trajectory spaces'.
b4
In [G], ch.V, topological tensor products of the spaces SX,A’ SY,B’ TX,A
and TY g are described. For a completion of the algebraic tensor product
3’ B
S @ S there can be taken an analyticity space and, similarly, for
X,A "a 7Y,B
a completion of T 0 T a trajectory space. These completions,
X,A a Y,B
S » +
X9 , ABB and TXQY,NBB can be regarded as spaces of continuous linear
mappings from TX,A into SY,B resp. from SX,A into Y,B° For analogous
results with respect to the algebraic tensor products T ® 8 and
X,A aY,B
S ® T one has to go beyond the common analyticity and trajectory
X,A "a Y,B
spaces. De Graaf solves this problem by introducing the spaces Xi and
Zé, which seem to be outsiders in the theory. However, they are the

needed topological tensor products. For instance, each element of Zi

corresponds to a continuous linear mapping from SX A into SY B
H ’



In this paper we are interested in the structures of the spaces ZA and
Zé. In order to understand their topological structure we introduce two
new types of topological vector spaces. The spaces Zi and ié are of
these types. But they include the spaces SX,A’ SY,Bandi,A’Tf,B as well,
So it yields a genuine extension of the notions of analyticity space

and of trajectory space.

This paperconsists of two independent parts, [EIJ and [E,]. Both [El]

and [EZ] have their own introduction, to which the reader is referred

for a more technical discussion of the respective contents,

The first part[E]] is devoted to the introduction of two general types

of spaces, S(Tz C,D) and T(Sz C,Q). Here C and D are two commuting, non-
3 3

negative, self-adjoint operators in a Hilbert space Z., We shall give to-

pologies and a pairing for these types of spaces. We note that for U =0

S(T =T and T(S D) =8 Further, we shall describe the

z,C’ z,C z,0’

intersection of the spaces T(S

z,C°

Z,C’v) and T(SZ,D’C)' It will lead to a

fifth Kernel theorem.

In [Ezj we discuss operator theory for analyticity and trajectory spaces,
where we feel inspired by operator theory for Hilbert spaces. Because

of the Kernel theorems the spaces ZA and Zé canbe considered as operator
spaces. In our discussion we involve the a}gebraic structure, the topo-
logical structure and their interrelation. Of course EA and Eé have
become much more tractable by the results in [E]]. Further, it is worth
mentioning that there has been constructed amatrix calculus for continuous
linear mappings on nuclear analyticity spaces. This calculus provides

a large variety of examples.



I. Analyticity spaces and trajectory spaces based on a pair of

commuting, holomorphic semigroups

Introduction

A main result in the theory on analyticity and trajectory spaces is the
validity of four Kernel theorems for four types of continuous linear
mappings which appear in this theory. A Kernel theorem provides conditions
such that all linear mappings of a specific kind arise from the elements
(kernels) out of a suitable topological temsor product. In this connec~
tionwerecall that TXQX,AEB is a topological temsor prqduct of TX,A

and TY,B’ and to each element of TX&N,AEB there correspon@s a continuous
linear mapping from SX,A into TY,B’ Then by [G1, Ch‘VI’TXQY,AEB comprises
all continuous linear mappings from SX,A into TY,B if one of the spaces

T or T is nuclear. If X = Y and A = B the condition of nuclearity
X,A Y,B

is even necessary.

In order to prove a Kernel theorem for the continuous linear mappings

from SX,A into SY,B’ resp. from TX,A into TY,B the rather_curlous spaces

ZA and Eé are brought up in [G]. The space ZA is a topological tensor

1
product of TX,A and SY,B and the space ZB of SX,A and TY,B'

In the second part of this paper we shall explicitly formulate the men—
tioned Kernel theorems within the framework of a thorough discussion of
continuous linear mappings on analyticity and trajectory spaces.

During the investigations which led to the second part of this paper,
[Ezj, we needed a clearer view on those remarkable spaces XA and zé.

To this end we studied two new types of spaces, namely S(T D) and

AN 6
T(SZ C,B) with C and P commuting, non-negative, self-adjoint operators
R .



in a Hilbert space Z. We shall present them here. Up to now these spaces
have no other than an abstract use. waever, the space S(TZ,C’D) can be
regarded as the ‘'analyticity domain' of the operator D in TZ,C cf.[GE],
Section 7. The space T(SZ,C’D) contains all trajectories of TZ,D through
SZ,C' We mention the following relations

= T(S ART)

To

X8, 188’ o Iy = > Ugey 108

= T(S @B) , I

xev, Aer !

T

The first section is concerned with the analyticity space S(TZ C,D).
2

This space is a countable union of Fréchet spaces

D= u e‘SD(T

ST ) =
5>0 ‘Z’C

-

z,¢’ s>0 e“SQ(Z),C

For the strong topology we take the inductive limit topology . We shall
produce an explicit system of seminorms which generates this topology,

and characterize the elements of S(T D). We looked for a character-

z,C
ization of null-sequences, bounded subsets and compact subsets of
S(TZ’C,D) and for the proof of its completeness; however, without success.
The second section is devoted to the trajectory space T(SZ;C’D)' With

the introduction of a 'matural’ topology, the space T(SZ’C,P) becomes

a complete topological vector space. Here we have been more successful.

The elements, the bounded and the compact subsets, and the null-sequences
of T(SZ,C’D) will be described completely. Since TX,A is a special

T(SZ C,D)“space the latter results extend the theory on the topological
t4

structure of TX A.Cf.[G], ch.II. In Section 3 we shall introduce apairing
*



between S(TZ C,D) and T(SZ C,D). With this pairing they can be regarded
b4 »
as each other's strong dual spaces. Further we note that for both spaces

a Banach-Steinhaus theorem will be proved.

The extendable linear mappings establish a fifth type of mappings in

the theory. They are continuous from SX,A into SY,B’ and can be 'extended'
to continuous linear mappings from TX,& into TY,B' In order to describe
the class of extendable linear mappings it is matural to look for a des-
cription of the intersectionm of ZA and Eé, or, more generally, of
T(SZ,C’D) and T(SZ,D’C)' Therefore in Section 4 we int:oduce the nome-
gative, self-adjoint operators C A D = max(C,D) and C v D = min(C,D).

To these both the theory in [G] and the theory of Sections 1-3 apply.

The operators C A D and C vV D enable us to represent intersections and

algebraic sums of the spaces SZ,C’ SZ,D’ TZ,C’ TZ,D’ S(TZ,C’D)’ etc., as
spaces of one of ocur types. Tt will lead to a fifth Kernel theorem in
[EZJ.

The spaces which appear in our theory are ordered by inclusion. In the
final section we discuss the inclusion scheme. Since each space can be
considered as a space of continuous linear mappings of a specific kind
the scheme illustrates the interdependence of these types.

The space S(T )]

Z,C?

Let C and U denote two commuting, non-negative, self-adjoint operators
in a Hilbert space Z. We take them fixed throughout this part of the

paper. Suppose (,D admit spectral resolutions (GA)AeI{ and (Hu)uen{,



such that

wdH .

O
R R

Then for every pair of Borel sets Al, 4, in R

G(Ai) H{pr,) = H(Az} G(AI) .

2)

Since the operators e-sD’ s > 0, and e-tc, t > 0, consequently commute,

for each fixed s > 0 the linear mapping e ¥ is continuous on the trajec-

tory space TZ ¢ (C£.[GE], Section 4). We now introduce the space
s

ST D) as follows.

z,C?

(1.1) Definition
1

-sD -7
ST, D)= U 9T, )= u e 2°(T, ).
z,C 550 2,07 hew 2,C
~5D -gD .
We note that e (TZ C) c e (TZ C) for 0 < o < s. Since the operator
’ b4
~-sD ., . . . ~sD . .
e is injective on SZ,C’ the space e (TZ,C) is dense in TZ,C by

duality. Hence S(TZ C,D) is a dense subspace of TZ c In the space
* 3

e—SD(TZ C) =T D , the strong topology is the topology generated
’ =S : '
e

(2),C

by the seminorms A o> B € N,
s

Y/ ~-sD
qs,n(h) = {le h('g) “Z , hee (TZ,C)
We remark that e—SD(Tz C) is a Fréchet space.
3

(1.2) Definition

The strong topology on S(TZ ,0) is the inductive limit topology, i.e.

,C



(1.3)

the finest locally convex topology for which all injections

; -sD
by T, ) > ST, D)

8

are continuous.

Note that the inductive limit is not strict!
A subset § ¢ S{TZ C’D) is open if and only if the intersection
s

-sD -sD
an e 8 . . i

e (TZ,C) is open in e (TZ,C) for each s > 0
In this section we shall produce a system of seminorms in S(Tz C,D)

b 2

which induces a locally convex topology equivalent to the strong topo-

logy of (1.2). Therefore we introduce the set of functions F(E?).

Definition

Let 6 be an everywhere finite Borel function on'Rz.Then 8 ¢ F(R?) if

and only if

sup (|0 (r,u)|e M8 et

A20
u20

Vs>0 Ejt>0 ) <=

Further, F+(m?) denotes the subset of all functions F(R?) which are
positive on {(A,u)|r 2 0, y 2 O} .
For 8 ¢ F(R?) the operator 6(C,p) in X is defined by
f
0@ = || 00Lw) Gy,
R2 '

Here dGAdeenotes the operator-valued measure on the Borel subsets of

ZR? related to the spectral projections of C and P. On the domain



(1.«

-}0—

D(s(C,D)) = {We Z| JJ | S(A,p)lz d(GkHuw,w} < @}
r2
8(C,D) is self-adjoint.
The operators 6(C,D), 8 € F(B?), are continuous linear mappings from
S(TZ c,ﬁ) into Z. This can be seen as follows. Let h € S(TZ C,D). Then
s s

define

8(C,D)h = (etca(c,ﬁ)e“sv)esp(h(t)).

sD

Since there exists s > 0 such, that e h(t) € Z for all t > 0, and since

¢ -
for each s > 0 there exists t > 0 such, that the operator et 8(C,D)e sD
is bounded on Z (cf. Definitiom (1.3)), the vector 6(C,D)h is in Z. Hence

the following definition makes sense.

Definition
For each 8 € F+(R2) the seminorm Py is defined by
pe(h) = HS(C,D)hHZ , he S(TZ,C’D) .
and the set ¥ » € >0, by
8,e

Ug e = (h e ST, 0,0 | H0(C,DInll, < el

The next theorem is the generalization of Theorem (1.4)in [G] to the type

of space S(TZ,C,ﬂ).



- 11 -

{1.5) Theorem

I. Foreach 8 ¢ F+CR2) the seminorm Py is continuous in the strong
topology of S(TZ,C’D)°

II. Let a convex set Q < S(TZ,C,D) have the property that for each s > 0
the set @ n eﬂsv(Tz’C) contains a neighbourhood of 0 in e'SD(TZ’C).
Then Q contains a set Ue,a for well-chosen § € F+(R?) and € > 0,
Hence the strong topology in S(TZ,C,D) is induced by the semi-
norms p,.

I. In order toprove that p, is a continuous seminorm on S(TZ,C’D) we
have to show that 9(C,D) is a continuous linear mapping from
S(TZ,C’D) into Z. Therefore, let s > 0. Then there ig t > 0 such
thatHetCG(C,D)e‘svﬂ < », So 8(C,D) is continuous on e*SD(TZ’C) (cf,
[GE] Section 4). Since s > 0 is arbitrarily taken, it implies that

6(C,D) is continuous on S(Tz C’D)'

II. We introduce the projections an, n,m ¢ N,

n-1 m1

Then an(ﬁ) contains an open neighbourhood of 0 in an(z). (We note

P ) . . e
that nm(S(TZ,C’D)) c an(z) ) So the following definition makes sense,

rn sup{p | (h € an(Z) A HanhH <p)=h¢e an(Q)} .

Next we define the function 8 as follows



8(A,p) = — A

m

(n-1,n] , v e (m1,m],

(%0 = O, x>0,

0(0,u) =

L
o~
Nt
L
g
S
-

i =
v
-
fo
-

!
un]

6(,u) = s A< 0 vu<o0,

We shall prove that © €.FCR?). To this end, let s > 0, Then there are

t >0 and € > 0 such that

{h| [ f e“sd(oxnuh(w,n(t)) <PHeqn e‘*sv(Tz’c).
0

0
gD

because Q2 n e 2 (TZ C) contains an open neighbourhood of 0 by assump~
»

tion. So we derive

r > € ent e—%(m—l)s
nm

y Nym € W,
With A € (a~1,nl], y € (m-1,m] it follows that

2 2
[ - 1 o { Py
(A, 1) egkt JTHS %,E_ oint o {m~1)s

nm
2 2 _ _
< m'm o0t L {m=1)s )
£
So sup (eikt e W° 8 (A,u) < .
A=0
u=0

We claim that

*) fedC,)hll <1 = h ¢ Q.



._13._

gD

Suppose h « e (Tz C) for some s > 0, Then for all ¢ > 0
b4

3 el e p n? < w

nm
n,m

and for o, 0 < 0 < s, fixed and every 1 > t

(x%) 160 &€ p hp g @ Ds=0) ~(a=D) (1-t)y D ~tC ,
nm nm

Because of assumption (*)

P hi < (nzm?”)“l r
nm

nm °
Hence n’m’ anh e Qn e-cD(TZ’C) for every n,m € l&. In e—GD(TZ,C) we
represent h by
N,M

h = ng‘m ;zj'ra—z(nzmanmh) +<(nZN)v(m>M) n—zlt-n—z-)hm

where
=1

o oo 27 (o)
With (#%) we calculate

ﬂeODe'TC hNMHZ <

< {N4 T T ew 3 3 ) e® eP_ni?)

n=N+1 m=| n=] m=M+l|

2

< [yt W@t | W e—2M(s—a)) 150 & tC 4|



(1.6)

_1{*..

Hence hNM + 0 in e—OD(Tz’C) because both t » 0 and T > t are taken
arbitrarily. So for sufficiently large N,M we have hNM e [&n e-UD(TZ’C)].
Since h is a sub-convex combination of elements in the convex set

Qn e-oD(Tz,c) the result h ¢ Q follows. J

Similar to [GE], Section 1, we should like to characterize bounded sub-
sets, compact subsets, and sequential convergence in S(TZ’C,D). However,
we think that this requires a method of constructing functions in E&R?)
similar to the comstruction of functions in B+(IU in the proofs of the
characterizations given in [G], Ch.I. Up to now, our attempts to solve

this problem were not successful.

Remark. As in [GE] the set B+(KU consists of all everywhere finite

Borel function ¢ on R which are strictly positive and satisfy

. = N
V€>O : sup {p(x)e ) < o,
%x>0

Finally, we characterize the elements of S(TZ C,U).
1

Lemma

h ¢ S(TZ C,D) iff there are ¢ ¢ B_.(R), W ¢ Z and s > 0 such that
b

h = e“qu, ©Cw .

Proof. The proof is an immediate consequence of the following equivalence:

FeT : F o= ((C)w {

z,c® 3¢EB+(‘IR) Fpez

As in [G], Ch.I,it can be proved that S(TZ C,D) is bornological and
s

barreled.



2.

2.1

(2.2)

_.15..

The space T(S D)

2,0’

The elements of TZ p are called trajectories, i.e. functions F from
y

(0,~) into Z with the following property:

~-oD
VS>0 V0>0 : F(s+0) = e F(s) .

Now the subspace T(Sz C,P) of TZ D is defined as follows:
s L]

Definition

The space T(Sz C,D) contains all elements G € TZ
s »

D which satisfy

v : G(s) € SZ,

>0 c

Remark. T(SZ,C’D) consists of trajectories of TZ,@ through SZ,C' The

space T(SZ C’D) is not trivial. The embedding of Z into TZ p maps
s b4

, - . =tD
SZ ¢ iato T(SZ C,U), because the bounded operators e SD, s >0 and e t ’
> s

£t > 0, commute.

In T(SZ C,D) we introduce the seminorms p g b€ B*(IO s 8 > 0, by
? b

¢

Py,s = IGOF@E) I, , F T, .0 .

¢s

The strong topology in T(SZ C,D) is the locally convex topology induced
b

by the seminorms p

b,s’

The bounded subsets of T(S D) can be fully characterized with the

Z,C?°
aid of the function algebra F+(BR2) . To this end we first prove the fol-

lowing lemma.



(2.3)

(2.4)

- 16 -

Lemma

The subset B in T(S D)is bounded iff for each s > 0 there exists

z,0’
t > 0 such that the set {F(s)[F € B} is bounded in the Hilbert space
e-tC(Z).
Proof. B is bounded in T(SZ C,U) iff each seminorm p¢ s is bounded on
3 14

B iff the set {F(s)|F ¢ B} is bounded in SZ ~ for each s > 0, From [GE],

*"

Section 1, the assertion follows.

Because of Definition (1.3) for every 9 ¢ F+CR2) and each W ¢ Z the

% D

vector G(C,D)e-S w is in SZ e So the trajectory s 6(C,D)e”s w is
s

an element of T(8 D) and it will be denoted by 9(C,D)w.

2,0

Theorem

The set B © T(8,, .,7) is bounded iff there exists 8 ¢ F+(m?) and a

Z,C
bounded subset V of Z such that I = 6(C,DY{(¥)

Proof.

«=) Let s > 0, Then there exists t > 0 such that

sD

lletc (c,me'spw o<l etce«:,v)e" Mwl .

Hence # is a bounded subset by Lemma (2.3).

=) Let n,m ¢ N . Define

n m

an=J f d6,H

n-1 m-1

and put r o = Sup (HanCH). Let s » 0. Then there are t > 0 and Ky t:»0

GEB ¥
such that
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]

n m

2

£ = sup (j [ d(G)\Hu G,G)) <
GeB ‘
n-]1 m-1

IA

n m
o2ms ~2(n-1)t sup q J e“zusezp‘td(G)\H G,G)) <
u
GeB
n~1 m-1

est e—2(n~l)t I 2ms e~2nt K2

etc G(S)H2 < e st

Thus we obtain the following

. -ms _nt
: < R
vs>0 3t:>0 3K>0 Vn,mell " m € e K

Define 8 on‘IR2 by

8 ,u) = om r if T #0, n-1 <A<n, ml € p<m,
_ .-n e

6(A,u) = e ifr =0,

8(A,n) =0 if A< 0oru<o0,

Then § ¢ F+(HR2) . To show this, let s > 0. Then there are 0 < t < | and

K > 0 such that for all A € [n-1,n) and ¥ ¢ [m-1,m)

-t -us _ nt -(m-1)s . s
B(A,u) e e Smmr e e Se Ks,t

if Lm # 0, and if Ym - o,
(A, u) eAt e "8 <l ent < 1.

.

For each G ¢ B define w by

-1 Tom
w=0(C?0 ¢= (—m anc>.

. nm
rnmaéo
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Then we calculate as follows

-2 -2

2 - 2
HWHZ = 2 n “m (rn

# 2 —-— -
24p 6’y <§ n’lm
r #0 n,m
) ﬂz -1
Hence w ¢ Z with lwll < &> and the set V = 6(C,D) '(B) is bounded in Z. [J
Since TX A is a special T(SZ C,ﬂ) space, Theorem (2.4) yields a charac-
b 2

terization of the bounded subsets of TX A
]

(2.5) Corollary

Let B ¢ TX A Then B is bounded iff there exists ¢ ¢ B+(R) and a bounded
3

subset V in X such that B = ¢(A) (V).
Special bounded subsets of T(SZ C,D) are the sets consisting of one
]

single point. This observation leads to the following.

(2.6) Corollary

Let H ¢ T(SZ C,D). Then there are W ¢ Z and 6 ¢ F+(m?) such that
2

H = o(C,Dw. (Cf.[GE], Section 2).

Similar to Lemma (Z2.3) strong convergence in T(Sz C,?) can be character—
3

ized.
{2.7) Lemma
Let (Hg) be a sequence in T(SZ’C,Q). Then H£ + 0 in T(SZ’C,ﬁ) iff
tC
Vs>0 3t>0 : lle FK(S)H > 0 .



Proof. (HK) is a null sequence in T(SZ'C,D) iff (Hﬁ(s) is a null sequence in
4

SZ ¢ for each s > 0. From [GE], Section 1 the assertion follows. 0

(2.8) Theorem

(Hg) is a null sequence in T(Sz C,Q) iff there exists a null sequence
2
, 2 -
(wt) in Z and 8 ¢ F+(]R } such that HK = e(C,D)wK.
Proof. The sequence (Hg} ig bounded in T(SZ C,D). Then construct 8€F+(R2)
14

as in Theorem (2.4):

O(A,u)=nmi*nm ifrnm%o,n—ls)\<n,m-15u<m,
- .

8(A,u) = e if L 0,

6(A,u) = 0 if A< QQorpu<9

where *  =max (IP__ H,I) .
om e nm £

Let € > 0, Then there are N,M ¢ N such that

2] p) < (8/2)2.
(n>N)v(m>M) n'm v
r“'l
. -1
Define wp = 8(C,D) Hy = ; __I_lr:_nn} an Hy £ ¢ N. Then for all £ ¢ N
nm#0
-2 =2 -2 2 2
(*) v n m (r WP u, 1 ) < (ef2)°,
%n>N)V(m>M) nm o nm £

Further, there exist t > 0 and KO € N such that for all £ > {’0

-2 ~2 =2 2
(%) N T I N Y
(HEN) A (m<M) Arnm%O nm ' nm £

(ngN) A (m<M) Arnme
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A combination of (*) and (%) yields the result
HWEH < e for all £ > 20 0

Since the choice of 8 ¢ F+(m2) in the proof of the previous theorem

has to do only with the boundedness of the sequence (Hg) in T(S, ),

é,C'
Theorem (2.8) implies the following.

(2.9) Corollarz
(FK) is a Cauchy sequence in T(SZ C,D) iff there exists 8 ¢ F+(R?) and
L
a Cauchy sequence (wg} in Z such that F£ = G(C,D)wt, £ ¢ N . Hence

every Cauchy sequence in T(SZ C,v) converges to a limit point.
1]

Further, we have the following extension of the theory in [C].

(2.10) Corollarz

(Ee) is a null (Cauchy) sequence in TX A if there exists a null (Cauchy)
»

sequence (wi) in X and ¢ ¢ B+(HU with F£ = ¢Aw,, £ ¢ N,

D).

Finally we characterize the compact subsets of T(Sz e’
b4

(2.11) Theorem

Let X <« T(SZ’C,D). Then ¥ is compact iff there exists § « F*CRZ) and
a compact subset ¥ ¢ Z such that ¥ = 6(C,p){¥).
=) Since X is compact, X is bounded in T(SZ,C’D)' So construct 6 ¢ F*CRZ)

and the bounded subset W of Z as in the proof of Theorem (2.4). We
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shall prove that W is compact. Let (WK) be a sequence in K. Then
(G(C,Q)wz) is a sequence in K. Since K is compact there exists a sub-

sequence (wzk} and W ¢ 2 such that

8(C,0) Wg=w) + 0 in T(S, 0,0) .

z,C’

The same arguments which led to Theorem (2.8) yield wﬁk + w in Z. Hence
W is compact in Z.

<« Since 6(C,0) : 2z +~T(SZ’C,Q)iscontinuousforeach 8 e F+(R2), the
compact 5€t W ¢ Z has a compact image 6(C,D) (W) in T(SZ,C’D) for

each § « F+(R2) 1

(2.12) Corollary

(2.13)

(2.14)

K < T(SZ C,O) is compact iff X is sequentially compact.
b}

Corollary

K c TX A is compact iff there exists a compact ¥ < X and ¢ ¢ B, (R) such,
, ,

that K = $(A) (W).

Theorem

T(SZ,C’D) is complete.

Proof. lLet (Fu} be a Cauchy net in T(S D). Then for each s > 0 the net

Z,C’

F . . . .
( O‘(s)) is Cauchy in SZ,C' Completeness of SZ,C yields F(8) ¢ SZ,C with

Fu(s) + F(s). Since (e~SD) is a semigroup of continuous linear mappings

520
on S_ ., the function s m» F(s) is a trajectory of T(S, .,D). {]
Z,C ) Z’C

Finally,we prove the following result.
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(2.15) Lemma

SZ c is sequentially dense in T(S M.
b

z,C’

Proof. Let H ¢ T(SZ C,U). Then H(%) ¢ 8 , ne N and HQ&) + H in

2,C
TGS, 00 0

3. The pairing of ST D) and T(S D)

2,0 2,0’

In this section we introduce a pairing of S(TZ C,D) and T(SZ C,D). It
s ]
is shown that S(TZ C,?) and T(Sz C,D) can be regarded as each other's
b4 L

strong dual spaces.

(3.1) Definition

Let h € S(TZ C,D) and let F ¢ T(SZ C,D). Then the number <€ h,F> is de-
b4 ’

fined by

<h,F» = <F(s), e hs

Here <+,*> denotes the usual pairing of S and T, A.
z,C z,C

We note that the above definition makes sense for s > 0 sufficiently
small and that it does not depend on the choice of s > 0 because of the

trajectory property of F.

{(3.2) Theorem
I. Let F ¢ T(SZ C,D). Then the functional
£
h+»<h,F>»

D).

is continuous on S(T .
z,C

II. Let £ be a continuous linear functional on S(Tz C,D). Then there exists
¥

G e T(S D) such that

z,C?
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Z(h) =<h,6> , h e S(TZ,C’D)

IITI. Let h € S(Tz C,D). Then the functional

F»<n,F>

is continuous on 1(S_, ,,0).
7,C
IV. Let m be a continuous linear functional on T(Sz C,D). Then there
]

exists g € S(TZ C,D) such that
n(F) =<g,F>» , F ¢ T(SZ,C’D)'

Proof.

I. For every W € TZ ¢ and every s > 0
b

<e'38w,p>= <F(s),W> ,

and W 0 in TZ c implies <F(s),wn> -+ 0, Hence the functional
s

h > <h,F> is strongly continuous on S(TZ C,D).
>
IT. Because of the definition of inductive limit topology, each linear
functional £ o e‘SD is continuous on TZ e So there exists G(s) ¢ SZ e
» »
with (£ » ensp)(W) = <G(8),W>, We T s > 0. Since (e-sD)
2T 2,0’ s20

is a semigroup of continuous linear mappings on SZ c it follows that
1 .

6(s+0) = e “Dg(s) , 5,020 .

So s + G(s) is in T(SZ C,D) and
£(h) = <G(s),e*Ph> = <h,G>, h « S(T, @D

III. Following Lemma (1.6), there are w ¢ Z, s > 0 and § « B+(IO with

h = e-SD¢(C)w. Hence the inequality
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Kh,F3 = |<w,¢(C)F(t)>| < Iwllip(CIF (L) Il

the continuity follows.
IV. The strong topology in T(Sz C,U} is generated by the seminorms p¢ s
¥ 2

where s > 0 and ¢ ¢ B+(IU . Since m is strongly continuous on

T(SZ C,D) there are 0 > 0 and ¢ ¢ B+(R) such that
b4

Im(F)| = p@,q(F) = lo(CYF(I, F e T(S, . ).
So the linear functional m ° w(C)bleov is norm continuous on the
dense linear subspace m(C)e—UD(T(SZ C,D)) ¢ Z. It therefore can be
s

extended to a continuous linear functional on Z. So there exists

Wwe Z with

-1 oD
e

(m o ¢(C) ) (@(C)F(0)) = (9 (C)F (o) ,w).

Put g = (C)e W € S(TZ C’

Definition

The weak topology on S(Tz C,D) is the topology generated by the seminorms

up(h) = [€0,F>|, b ¢ STy osD-

The weak topology on S(TZ C,D) is the topology generated by the seminorms
b4

w (F) = |<h,F>|, F e T(SZ,C’D)'

A standard argument [Ch], II,822 shows that the weakly continuous linear
functionals on S(Tz C,D) are all obtained by pairing with elements of
3
T(S, A,0) and vice versa. So it follows that S(T, .,0) and T(S, .,D) are
z,C z,C z,C

reflexive both in the strong and the weak topology.
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(3.4) Theorem (Banach-Steinhaus)
I. Let W < T(SZ,C’D) be weakly bounded. Then ¥ is strongly bounded.
I1. Let V < S(Tz’é,D) be weakly bounded. Then V is strongly bounded.
I. Let 5 > 0, and let ¢ ¢ B+(EU . Then following Lemma (1.6) e—SD¢(CNUa
€ S(TZ,C’D) for each W ¢ Z and by assumption there exists gﬂ > 0 such
that i<e'sv¢(0)w,F>l = | (w,$(C)F(s))]| < N FeW

By the Banach-Steinhaus theorem for Hilbert spaces there exists

o > 0 such that
S,¢

He(CYF(s) Il < A4

With Lemma (2.3) the proof is finished.
II. Let 6 ¢ F+(E?). Then for each W ¢ Z, 0{C,DHw ¢ T(SZ C,D).
s

By assumption there exists M, > 0 such that

T

| (6 (C,D)h,w)| < M,
for each W ¢ Z. Hence for all h ¢ V

heC,DHhil < ay

for some ay > 0. 0

The next theorem characterizes weakly converging sequences in T(Sz C’D)'
E]

{(3.5) Theorem

F£ + 0 in the weak topology of T(S D) iff there exists a sequence

z,C0’°
(wz) in Z with Wy > 0 weakly in Z, and a function § ¢ F*CRZ) such that

Fp = 0(C,Mw,, £ ¢ N.
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Proof

+) Trivial
=) The null sequence (Fﬁ) is weakly bounded. So by Theorem (3.4) it is

a strongly bounded sequence in Z. As in Theorem (2.8) define - for

n,m € N by
r = sup IP_F, I .
nm LeN nm £
Then ¥ 3 : sup{omr e_msent) < o, and the function 6 defined
s>0 "t>0 nm ’ :
n,m
by
8(3,1) = nm Lo if r o #0, n~1 €A <n, m! £ yu<m,
-n .
6(d,u) = e if rom s 0,
8(A,uw) = 0 elsewhere ,
is in F (]RZ) Putw, = 8(C 9)“11«“ = }: n~]m—lr-]P F £ e N,
+ . 3 ’ £ nm om £ °
r #0
nm
Let U ¢ Z, and let € > 0 and N,M ¢ N so large that
(n-zmng) < (5/2)2 .
(n>N)v(n>M)
Then
WP w )] <ut { ] P w nz)%
Py >
(n>N) v (m>M) "L \(n>Nv(m>M) nam{
rnm%o rnm*o
-2 -2, -2 2 i
suun(§ 2 m 2 (r IIPFH))'
(n>N) v (m>M) nm - nm £
r_ #0
nm

A

efollul .
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Further, since anu € S(TZ,C’D) for all n,m ¢ N, there exists 20 e N

such that for all £ > £O

A

-1 -1 -1
(u,?_ w )! 144 n m r P a},F >
(M) A(meM), "L (lesN)A(m M), R

rnm¥0 rnme

<gl2 .

Hence, for each € > 0 and U ¢ Z there exists £0 € N such that for

alt £ > KO

< +

(u,w,) (u,P__w,)
£ (§>N)v(m>M), £ (n<N)A(msM),

rnm’éo rnme

(u,Pnaqe) <€,

Thus we have proved that wz -+ 0 weakly in Z, and

Fz = 8(C,Dw,. 0

(3.6) Corollary
I. Strong convergence of a sequence in T(SZ C,U} implies its weak con~

vergence.

II., Any bounded sequence in T(SZ C,H) has a weakly converging subsequence,
3

(3.7) Corollary

(Fﬂ) is aweakly converging null sequence in TX A iff there exists a weakly
14
converging null sequence ng) in X and a function ¢ € B+(IU such that

F£=¢(A)W,£6No

Remark: From Theorem(2.4)and Definition(3.2) it follows that the strong

topology in S(TZ C,D) equals the so-called Mackey topology (C£.[Tr],p.369).
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Spaces related to the operators C v D and C A D

As in the previous sectionms, (GA)AEK{ and (Hu)ueﬁi denote the spectral

resolutions of C and D. The orthogonal projection P, defined by

P = [J dG)\H]’l
Azu

commutes with C as well as D.

Definition

The nonnegative, self-adjoint operator C A D is defined by

CAD=PCP+ (I-PYD(I~-P) .

The nonnegative, self-adjoint operator C v D is defined by

CvD=(I-P)C(I-P) + PDP.

Remark: The operators C A D and C v D are also given by

CAD-= max(A,W)dG.H , C v D= min(i,u)dG,H .
) A ) A
R R
The spaces SZ,CVD’ SZ,CAO’ Tz,CVD and TZ,CAD are well-defined by [GE],
Section | and 2, With the aid of these spaces sums and intersections of

SZ,C’ SZ,D’ TZ,C’ and Tz,ﬁ can be described.

Theorem

LS, a0 =3z,0e0=52,c " Sz,D
.3, w0 =Sz,¢ * S2.p
111, TZ,CAD = TZ,C+D = TZ,C + TZ,U
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Iv. TZ,

Toow =Tz, Ty pe

(In 1I, + denotes the usual sum in Z, and in III the usual sum in TZ 0+D")
1

Proof. From the definition of the projection P we derive easily that for

all t > 0 the operators Pe—tcetDP and (I~ P)e-toetc(f ~P) are bounded in Z.

I. Let £ ¢ SZ,CAD' Then there are t > 0 and W ¢ Z such that

D

£=etCDy L p 4 1=y (1= Py .

So f = e-tc'(:) with @ = Pw + (I—P)etce‘tv(I-P)w € 2, and hence f ¢ Sz e

’

Similarly it follows that f ¢ SZ D
s

On the other hand, let g ¢ SZ c " Sz D Then for some W,V ¢ Z and t > O,
b £

g = e-—th and g = e_tvv .

So g can be written as

-tC D

g=Pg+ (I-P)g=Pe ““Pw+ (I-Pe "

(I-Pyyy =

__=t(CAD) _
= e (Pw + (I-Pv) ¢ SZ,CAU'

Finally,we prove that S, S

Z,0AD  TZ,C+D°
Since C+P2CADit is obvious that S
-tC

2,040  3z,ca"

Now let fe § . Then £ = (Pe P+ (I -P)e_tv(l - P)w for certain

Z,CAD
t >0 and w ¢ Z. Thus we find

f = e“%t(C+D)[Pe—£tCe%tDP + (I- P)e%tve%tc(I-P)]w, and

£ e SZ,CH? :

IT. Let £ ¢ S « Then there are W ¢ Z and t > 0 such that

Z,0vD

£=etCDy - 0Py v 1-P)e (1= P .
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So £ « SZ c* SZ 0 On the other hand let u,v ¢ Z and let t > 0, Put
g = e“tcu + e-tpv. Then

= o EVD) L (CVD) ~tC e (CVD) -tD

4

g 1.

Since C vD <C and C v D < 7, this yields g « SZ,CVQ‘

Let ¢ € T ne Then W € Z and ¢ € B, (R) are such that G = ¢(CAD)w.
Z,CAD +

Since ¢(CAD) = o(C)P + o(DY(I-P),

C=o)Pw+ oI -Pw ¢ TZ,C + TZ,D'

On the other hand let ¢, « B+(1R) and let u,v ¢« Z. Put

G=olOu+ ¢Dv ,

Since the operators @(C)e-t(CAD) and ¢(D)e-t(CAD}, t > 0, are bounded on
Z, for all t > 0
TECD L (@ TECD) oy + T ECD 0y ¢ g

Hence G € TZ,CAQ’ Because SZ,C:\Q = SZ,C+D also topologically, it is clear

that Tz,CAD = TZ,C+D'

et H ¢ T n T, o+ Then there are ¢,x € B (R) and v,W ¢ Z such
z,C z,0 +

that H = ¢(C)w and H = x(D)v. So H can be written as

H=¢C)T-Pw + y(D)Pv ,

and ¢ ECDy = Ty (1 -Pyw + e Py (D)Py ¢ Z. This implies H ¢ T

Z2,0vp’

Since C vD < Cand C v D < D we have

T < TZ,

Z,0vD c @4 T, cvp < Tz,0° .
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It is obvious that the operators C A D and C v D commute. So the spaces

ST, ,Cv D), ST

CAD? cvp? CAD? cvp?

fined, Here, for convenience, we have omitted the subscript Z. Similar

Caly, T(S cCvD), TS C A D) are well de-

to Theorem (4.2) we shall prove the following.

Theorem
1. S(TC,D) n S(Tﬂ,C) = S(TCvD’C A D,
II. S(TC,D) + S(TD,C) = S(TCAD’C v,
III. T(SC,D) n T(SD,C) = T(SCAD,C v D),
1v. T(SC,D) + T(SD,C) = T(SCVD’C A DY,

Proof
I. Let k ¢ S(TC,D) n S(TD,C). Then there are ¢,$ ¢ B+(R), t > 0 and

u,v € Z such that k = e*tc¢(D)u and k = e”tv¢(C)v.

g
«
rt
<
il

max{9,$). Then x ¢ B _(R) and k is given by
k=e M and & = e Py()y

with G=X (D)o@ uezand ¥= x (C)¢(C)v € Z. So

]

K =Pk + (I -P)k = Pe Cx(0)a + (1 -Pe Px(0)%

= HCDy o v pyPR+ (1-P)VT .

This yields ke:S(TCVQ,C AD).

On the other hand, let ¢ ¢ B+(K0 and let W e¢ Z, t > 0, Then for h =

=¢(Cv D)e't(cm)w ’

h = @(C)e”tv(m(c)"lw(c v 9>etDe-t(CAD)w)_

HenCélHES(TC,D).Similarly it can be shown that h « S(TQ,C).
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Let h ¢ S(TC,D) + S(TQ,C). Then there are w,v ¢ Z, t > 0 and X ¢ g+tm),

such that
b= e Cx@w + e Py)v .

Hence h can be written as

e—t(Cvﬁ) t(va)e~tC

h = X(C A D)[e e A DxOw +

R e N A T

L 4

Since C v D < C,D and C A D 2 C,D, this yields h ¢ S(T cCvD.

CAD?

In order to prove the other inclusion, assume that g € S(TCAD’C v D).

Then there are We Z,t > O and 9 ¢ B+(]R) such,that

= e*t(CVD)Q(C>A Nw =

]

T ormw + e o) (T - Pyw e ST + S(Tp,0.

Let Q € T(S,,0) n T(S,,C) and let t > 0. Then there exists s > 0 such,
C D

sC -tD sD ~tC
e

that e e " Q € Z and e Q € Z.

Hence Pesce—tDPQ € Z and (I - P)esve“tc

es(CAD)e-t(CVQ)

(I - P)Q € Z which implies
Qe Z,
On the other hand, let R ¢ T(SCAU’C v D), and let t > 0. Then take

s > 0 such, that eS(CAD)e—t(CVD)R € Z. This ylelds

esve—tCR = {Pesoe-tcp + (1 ~ Pjespe—tc(l - P)YIR

- [Pe(s+t)0e-(8+t)c s(CAD)e-t(CVD)]R .

P+ (I~-Plle

So R can be seen as an element of T(SD,C), and similarly as an ele-

ment of T(SC,D).



_.33..

V. Let Q ¢ T(SC,D) + T(SD,C). Then there are Q1<£T(SC,U) and Q2 € T(SQ,C)
such that Q = Q, *+Q with the sum understood in TC+D' Let t > 0.

Then there is s >  such that

esce-thi € Z and esve‘“tCQ2 € Z .

s(CvD)e—t(CAD)

Hence e

Qr::

= (Pe(t+s)ve-(t*s)cp + (I-—P})esce_thl +

+ (P+ (I~ P)e(t+s)ce“(t+s)v(1~"P))esve"tCQ2 .

so that Q ¢ T(S CaAD.

Cvp?
Finally, let R ¢ T(SCVD’C A D) and let t > O, Then there is s > 0 with

es(CVD)e—t(CAI})R c 7.

sD -tC
e

Hence R = PR + (I - P)R and e PR =

- Pes(CvD)e-t(CAv) sCe~tD

R ¢ Z and similarly e Re 2,

Thus we have shown R ¢ T(SC,Q) + T(SQ,C) . ' {
The preceding theorems play a major role in the inclusion scheme which

we give in Section 5. The results of Theorem (4.3) will lead to a fifth

Kernel theorem in [E27.

. The inclusion scheme

The spaces which are introduced in [G] and in the previous sectioms fit

into an inclusion scheme. Here we shall give some properties of the spaces
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in this scheme. The reader may as well skip the proofs. They are added
for completeness. Let C and D denote two commuting, nonnegative, self-

adjoint operators in Z.

(5.1) Lemma

~

Let C 2 D. Then

8(73,0) = Sg and T(85,0) = 3.
Proof. It is clear that SE = S(Tﬁ,g) and T(S:ﬁ,lé) < Ta:.
So let f ¢ S(TN,E). Then there are t > 0 and ¢ ¢ B+(IR) and W ¢ Z such

that £ = e-tcnp(ﬁ)w, Hence

f = e't/2c(¢(5)e"t/2cw) < Sg

o~

because m(’ﬁ)ewtmc is a bounded operator on Z,

Similarly, TE* < T(S'ﬁ',g) can be proved.

(5.2) Lemma

$(T5.0 < T(sp.D) .

Proof. Let h ¢ S(Tﬁ,g). Then h can be written as

-t

h=e C(p(ﬁ)w .

wheret > 0, ¢ « B+(1R) and W ¢ Z. Hence, for all s > 0,

)

-s@etCh = cp(ﬁ)e“s we Z,

e

~

With emb(h) : s - e_SGh, the proof is complete.
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CaD) =T

SCVD < S(TCAD’C VD)< T(SCVO’ CAD

0 v V v u
Sevp € STpCv D) = T(SopD =T,

U U U [}
Sc c S(TD,C) < T(SC’D) c TD

] U U -U
Se = S0 = TGl v Dy = Topp

u U u ]
Seap = SUepC 2Dy = TSep,C v D) = Top

n N n [}
Sp = STpyps® © TEpCVD < Top

# n n N
S, © S(TpD) e T(8;.0) < Te

N n n i
Sewp © STV D e TSep, O = Tg

i n n n
SCVD © S(TCAD’C VD) < T(SCVD’C rD) = TCAD

Fig., (5.3) The inclusion scheme

A row in the inclusion scheme (5.3) is of the form

(5.4) Sp < s(rﬁ,6> c T(sg,ﬁ) < Ty

(5.5) Theorem

In (5.4) all embeddings are continuous and have dense ranges.
Proof. We proceed in three steps.
(1) SE < S(Tzﬁ,E)

Let (wn) be a null sequence in S@.Thenthere is t > 0 such that
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o~

tC

e wn—>0in2. So for all s > O

~ ~ ~

etcemb (wn) (s) = etce-‘spwn + 0

in X. This proves that the embedding emb : g,é,C, S(Tv,ﬁ) is continuous.
To show that SE’ is dense in S(T'ﬁ,a), let H € 7(35,5) with<f H»= 0
for all f € 3'5. Then <f,H> = 0 for all f ¢ SE' So H = 0, and SE is
dense in S(TN,E).

(ii)S(T’é‘,C) < T(SE,D) .

(iii) T(S'é,ﬁ) cTx .

First we remind that in Lemma (5.2) we showed how S(Tﬁ,t") can be em—
bedded in T(S"c*,ﬁ)‘ The embedding is continuous. To show this, let

8 >0 and ¢ ¢ B+(]R). Then the seminorm

n > e @e Onl
is continuous on S(T~,'5) .
Now let g ¢ S(Ta,ﬁ), the dual of T(Sa,*,ﬁ). Then g can be written as

g = ¢ (C)u where u ¢ Sﬁ and 9 ¢ 5’*(1{) . Suppose
<gh>»=0 , heST0.

Then for all f ¢ Sfé' and all X ¢ B+(]R)

@@t , xDu =0 .

Hence u = 0, and 3(75,'5) is dense in T(S'c’j).
D
The continuity of the embedding follows from the continuity of the
seminorms
£t fH(e) , £t >0,

on T(Sa,ﬁ).
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Further, let f ¢ 35 and suppose <f,H> = 0 for all H ¢ T(S~,5).

Then (£f,h) = 0 for all h ¢ 35. So f = 0.

Consider the inclusion subscheme of (5.3).

(5.6) S cS,c8

CaD C CvD

Then similar to Theorem (5.5) we show

(5.7) Theorem

In (5.6) all embeddings are continuous and have dense ranges.
Proof. We proceed in two steps.
(i) Let (fn) be a null sequence in SCAD' Then there is t > 0 such that

Het(CAD)an + 0. Hence

A

I ethn I < eCetCAD) )t (C"mfn I+ 0.

Further, let G ¢ TC and suppose for all f ¢ SCAv’

<£,G> = 0 ,

So for all x ¢ Z and t > O, (x,e—t(CAv)

G) = 0. This implies G = O,
and hence SCAU is dense in SC'

(ii) SC < chﬁ :

Follows from (i) because C = (C v D) A C .

(5.8) Corollary

In the inclusion scheme

Tewo < Te “Teap

all embeddings are continuous and have dense ranges.
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Proof. Follows from Theorem (5.7) by duality. 0

Finally we consider the inclusion subscheme.

(5.9) T(SpppsC ¥V D) © T(Sp,C v D) & T(S.,D) .

We prove

(5.10) Theorem

In (5.9) all embeddings are continuous and have dense ranges.
Proof. We proceed in two steps.

(i) Since the seminorms

-4 (CvD)

F > lle(Ce FIl , t>0,9¢B (R)

are continuous in T(SCAD’C v D), the embedding of T(SCAD’C v D) in
T(SC,C v D) is continuous. Further, SCAD c T(SCAD’C v D) is dense
in SC’ and SC is dense in T(SC,C v ). So T(SCAD’C v D) is dense in
T(SC,C vV D). (See Lemma (1.16)).

(ii) The seminorms
-t
G>llee "6l , t£>0,9c¢€B (R ,

are continuous in T(SC,C v D). So the embedding from T(SC,C v D) in-
to T(SC,Q) is continuous. Further we note that SC is dense both in
T(SC,C v D) and in T(SC,P) by Theorem (2.15). Hence T(SC,C v D) is
dense in T(SC,D). 0
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(5.11) Coreollary

In the inclusion scheme

S(TCAD,C vD) o S(TC,C vD) o S(TC,D)

all embeddings are continuous and have dense ranges.

Finally, the main result of this section will be given,

(5.12) Theorem

In (5.3) all embeddings are continuous and have dense ranges.

Proof. Follows from Theorem (5.5), (5.7) and {5.10), and from Corollary

(5.8) and (5.11).
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II. On continuous linear mappings between analyticity and trajectory spaces

Introduction

Here X and Y will denote Hilbert spaces, and A will be a nonnegative self-
adjoint operator in X and B a nonnegative self-adjoint operator in Y. In
[G], the fourth chapter contains a detailed discussion of the four types

of continuous linear mappings:

S

%A 7S

Y,B’ SX,A > TY,B’ TX S Cf.[GE], Section 4.

A5y, Txa” Tym

In order to prove a Kernel theorem for each of these types, in addition
to the topological tensor products SX@N,AEB and TXEX,AEB’ the spaces
EA and Zé have been introduced. ZA and Xé are topological tensor products
of T . 1
X, A and SY,B and of SX,A and TY,B Each element of EA corresponds
to a continuous linear mapping from SX A into SY g If every continuous
> ¥
linear mapping from § into S arises from an element of EA, then,
X,A Y,B
in De Graaf's terminology, the Kernel theorem holds true. Similar state-

) t
ments apply to L}, sx@w,AEB and Tx@y,AEB'

In order to gain a deeper understanding of the topological structure

of the spaces EA and Eé, we have introduced the more general type of spaces
T(SZ,C’D) and S(TZ,C,D), where C and D are commuting, nonnegative, self-
adjoint operators in the Hilbert space Z. The following relations have

been mentioned:

£} = T(SXQX,IQB,AQH) » Iy = S(Tkgﬂ’ng,A@ﬂ) s
%5 = TOxor, 401 1% » 75 = S(Tygy pop 199 -

So obviously results in [Elj apply to the spaces XA, Zé, ZA and Ig-
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Thus, the intersection of ZA and Eé is a space of type T(SZ C’D)' This
$

observation leads to a Kernel theorem for so-called extendable mappings.

Cf [GE], Section 4.

Precise formulations of the above-mentioned five Kermel theorems can be
found in Section 1. In the remaining sections we consider the case X = Y

and A = B. Hence, we investigate the spaces

™ - 18

A®T) and TA =T(S ®A).

XOK, TOA® xex AT |

In Section 2 we shall prove that TA and TA admit an algebraic structure
and that they are homeomorphic. The homeomorphism is denoted by €. The
mapping € is also a homeomorphism from the space SA = S(TX@K,AGK’IQA)
onto SA = S(TXER,I@A’AQE)' Put EA =5 TA n TA‘ Then EA is an algebra and
it inherits several properties of the algebras TA and TA’ The mapping ¢
is an involution on EA‘ The strong dual EA equals the algebraic sum

SA + SA. We shall extend ° to EA in a natural way.

In the sequel we shall confine our attention to nuclear analyticity
spacesSX A Then, because of the Kernel theorems the space TA(TA) comprises
s

all continuous linear mappings from S (TX A) into itself. Inspired by
»

X,A
operator theory for Hilbert spaces, we introduce the topology of point-—
wise and weak pointwise convergence in TA(TA).These topologies correspond
to the strong and weak operator topology for Von Neumann algebras, while

the weak and strong topology of TA(TA) correspond to the ultra-weak and

uniform operator topology.

In Sections 3 and 4 we study the relations between the algebraic and the
topological structure of TA and TA' It appears that separate multiplica-

tion is continuous in all mentioned topologies. The effects of the results
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of the previous sections on the algebra EA and its strong dual Ei are

investigated in Section 5.

In Section 6 we indicate possibilities to interprete parts of quantum
statistics by means of the mathematical apparatus developed for the spa-
ces EA and EA. They seem to be more appropriate than any operator algebra
on a Hilbert space, because in general E4 contains unbounded, self-
adjoint operators. However, we emphasize that we consider it as an Ansatz

only. We are not fully aware of all consequences of such redescription.

If the Kernel theoremholds true, each continuous linear mapping from<SX’A
into itself has a well-defined infinite matrix. Section 7 of this paper
is devoted to a thorough description of this kind of matrices. There are
manageable, necessary and sufficient conditions on the entries of an in-
finite matrix, such, that its corresponding linear mapping is continuous
on SX,A’ The thus obtained identification between TA and a class M(TA)
of well-specified infinite matrices enables us to construct a large
variety of elements in TA. Particularly, we note here that the matrix
calculus will be of great importance in a forthcoming paper on one-para-
meter (semi-)groups of elements of TA. In Section 8 we treat a subclass
of M(TA), the class of unbounded weighted shifts. Weighted shifts are the

simplest, non-trivial operators in TA.

In the final section our matrix calculus yields the construction of nu-
clear analyticity spaces on which a prescribed set of linear operators

act continuously,
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1. Kernel theorems

In this section we shall recall the four Kernel theorens introduced in

[G], ch.VI, and we shall add one to them.

The Hilbert space X®Y of all Hilbert-Schmidt operators from X into Y
can be regarded as a topological tensor product of X and Y. Let A and B
denote nonnegative self-~adjoint operators in X and Y. Let w ¢ D(A). Then

for all v € Y, we define
AT (wev) = Aty

With the aid of linear extension, the operator A®I is well-defined on the
algebraic tensor product D(A)QEY. It can be proved that A®I with domain
D(A)@;X is nonnegative and essentially self-adjoint. Cf.[W],[G]l. Similar-
ly I®B with domain XQED(B) is nonnegative and essentially self-adjoint
in X®Y. Further, the operators A®Il and I®B commute, i.e., their spectral

projections commute. So the operator AEB = A®! + I8B with domain

(W e X9N| f (A+p)2d((fk®Fu)w,W) < w}
&2
is self-adjoint and nonnegative. Consequently the spaces SX@N,AEB and
T - . » - » —
X®Y ,AEB are well-defined. In [G] it is proved that SX@W,AEB is a topo
logical product of SX,A and SY,B’ and TX@N,AEB a topological tensor pro-

-t (AEB) - e-tA@e-—tB

2z 0,
duct of TX,A and TY,B' We note that e , t 20

Case (a). Continuous linear mappings from Tx A into SY
s’

g

s

An . . . . _
element 8 ¢ SX@X,AEB induces a linear mapping TX,A - SY,B in the fol

lowing way. Let F ¢ TX Al Then 8F is defined by
s
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~eB

(a) fF = e (eEBGeeA)F(s)

where £ > 0 has to be taken sufficiently small.

(1.1) Theorem

I. For each 8 ¢ SX@N,AEB’ the linear operator O: TX,A > SY,B as defined
by (a) is continuous.

II. For 8 ¢ SX@N,AEB’ F e TX,A and G ¢ TY,B’

<8F,G>Y = <8’F®G>X®Y .

-tA  -tB ,

ITI. If for each t > 0 at least one of the operators e s € is Hil=

bert-Schmidt, then S AGB comprises all continuous linear mappings

i®y,
from T i
X,A into SY,B'
1v. SXSK,AEB comprlses all continuous linear mappings from TX,A into
SX A iff for each t > 0 the operator e-tA is Hilbert-Schmidt.
»

Proof. C£.[G], Theorem 6.1. {1

Case (b). Continuous linear mappings from S into T, .
— X,A Y,B

Let & ¢ TXQU,AEB' For f ¢ SX,A we define ¢f ¢ TY,B by

-{t-g)B

(b) @f) (t) = e se)eErs L eso0,

where ¢ > 0 has to be taken sufficiently small.

{1.2) Theorem

I. . . , .
For each ¢ ¢ TXQN,AEB the linear mapping ¢ SX,A'* TY,B defined by

{b) is continuous.
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IT. For each ¢ ¢ TX@Y,AEB’ f e SX,A and g ¢ SY,B

<g,<l>f>Y = <f®g,d>

XY °
~-tA  ~tB ,
ITI. If for each t > 0 at least one of the operators e , € is H.S.

then TXQY,AEB comprises all continuous minear mappings from SX,A in-

to TY,E'
1v. TXQR,AEB comprises all continuous linear mappings from SX,A into
TX A iff for each t > 0 the operator e_tA is H.S.
3
Proof. Cf.[G], Theorem 6.2. O

In [G], Ch.V, the spaces EA and Zé are introduced as follows.

Iy = (P e Tk@w,A@Il V.,oiP() € SX@R,AEB} R

It is not hard to prove that I} equals the space T(SXGK,IGB’AQQ) and Eé

the space T(ngy’Agg,Iﬁﬁ) both set theoretically and topologically. CE.

[El], Sectiom 2; [G], Ch.vV.

Let F ¢ T and g € S, 5. Then F®g is defined as the trajectory
X,A Y,B
F®g: t » F(t)®g.

Since F(t)é@(eesg) € X&& for e » 0 sufficiently small and all t > 0, the

trajectory F®g 1s an element of T(SXQY,IQB’A@H)' So the algebraic tensor

product of TX and SY,B is contained in T(SX&E,IQB’Agﬂ)’ De Graaf proves

A

that T(SXQN,I@B’A&H) is a complete topological tensor product of TX,A and

SY,B' Moreover, for F ¢ TX and g ¢ §

sA Y,B
element of S(TXQW,AQH’IQB)’ because there exists ¢ > 0 fixed such that

the tensor product F®g is an
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A B
(1®e"") (F®g). = FWQEB%) N TX®Y,A®I )

So the algebraic tensor product TX,A@%SY,B is also contained in
S(Ti@K,Aeﬂ’IQB)' By similar arguments it follows that the space
T(SXSH,AQH’ZQB) is a complete topological tensor product of the spaces

SX,A and TY,B' The algebraic tensor product SX,AQQTY,B is contained in

ST I®B) is included in

XSX,ZQB’AQH)' We note that S(T

oY, ARl

T(SXXN’IQB,AGH), and that S(TXQN,IQB’ASE) is included in T(SXEY,AQE’

Cf.[E}], Section 5.

1gB),

Case c. Continuous linear mappings from S into S, ,.
- X,A Y,B

Let P e T(S A®I). Then for f ¢ SX A Ve define Pf by
E

XY, 188°

() P(£) = P(e)eF,

where ¢ > 0 has to be taken sufficiently small. We note that (c) does not

depend on the choice of ¢ > 0, Since P(e) ¢ SXQY,I@B we have Pf ¢ SY,B'

(1.3) Theorem
I. Foreach?P ¢ T(ngy,zgg*Agﬂ) the linear operator P: SX,A > SY,B defined
by (¢) is continuous.

II. For each P ¢ T(8

ng,zgg,Aﬁﬂ), f c SX,A and G € TY,B
<Pf,(;>Y = <f ®G,P>>X@Y .
-tA  -tB .
I11. If for each t > 0 at least one of the operators e s € is H.S,.

then T(SXSN,ISB’Agﬂ) comprises all continuous linear mappings from

SX,A into SY,B’
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iv, T(SXQH,I@%’AQH) comprises all continuous linear mappings from SX,A
into itself iff for each t > 0 the operator e_tA is H.S.

Proof. Cf,.[G], Theorem 6.3.

Case (d). Continuous linear mappings from T into T, 5.
~zase X,A Y,B

Let K € T(SXQY,AQH’IQB)' For F ¢ TX,A’ define KF ¢ Tf,B by

e{t)A

(@) (KF) (t) = K(t)e F(e(t)) .

This definition makes sense for all t > 0 and for e(t) > 0 sufficiently
small. We have (KF)(t) ¢ SY,B’ because K € TX@Y,IQB'
(1.4) Theorem.

I. For each K ¢ T(SX@Y,N®I’IQB)’ the linear mapping K: TX,A - TY,B

defined in (d), is continuous.

II. For each K ¢ T(SXQY AQH’IQB)’ F ¢ TX A* B € SY 8

g KE>y =<F®g, KX .

I1I. If for each t > 0 at least one of the operators e_tA, emtB is H.S.,
then T(SXQY,AQU’IQB) comprises all continuous linear mappings from

TX,A into TY,B'

V. . . . .
v T(SXQK,AQH’IQA> comprises all continuous linear mappings from TX,A

into itself iff the operator e-tA is Hilbert—Schmidt.for all t > O.

Proof. Cf.[G], Theorem 6.4.

(1.5) Definition
A continuous linear mapping E from SX A into SY B is called extendable,
b b4

if E can be extended to a continuous linear mapping from TX A into TY g
3 ¥
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In [G], necessary and sufficient conditions are given in order that a
linear mapping on SX A is extendable.

’
In [El] for a pair of commuting, nonnegative, self-adjoint operators we

have defined the operator C A D by
CAD= f max(k,u)dGAHu,
R2
and the operator C v D by

CvD= min(k,u)dG)\Hu.

2

%‘———-—»

where (GA) AeR and (Hu)uem are the spectral resolutionsofC and D.

Moreover, we have shown that

TS, 0?0 TS, 5,0 = T(S cvD).

Z,0° Z,CAD?

Applying this result to the spaces T(SXQY I@’B’A@I) and T(S 1®B),
b

XY ,A®1°
we find that their intersection equals the space T(SXQY A@B’AQ’B) with
b4

AGB = (A®I) A (I€B) and A®B = (A®I) v (I®B).

(1.6) Definition

The canonical mapping emb: § + T(8

X,A®aSY,B X@Y,A@B’A@B) is defined by

emb(f@g) 1 t » egt(A@B)(febg)

.

It is obvious that emb(f@g) ¢ T(S ).

Xe¥ , AgB> OB

The space T(S AQB) is a complete topological temnsor product of the

QY ,AsB’

spaces SX and 8 . By this we mean

SA Y,B
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{(1.7) Theorem

I. T(S AGB) is complete.

XY ,AGB’
II. The mapping @ : SX,A X SY,B - T(SXQN,AGB’AQB) is continuous.

III. SX,AGBSY,B is dense in T(SX@H,AGB’AQB)'

Proof.
I. All spaces of this kind are complete. Cf[El], Section 2.
II. It is sufficient to check continuity at [0;0]. Let ¢ ¢ B+(30 , and

let t > 0. Then

lp(AaBye E AP (£ g oy oy <

< H¢(A)f"£igl§ + Hfl&"¢(3)g|§ < £,

as soon as I$(A)fll and ¢ (B)gll are small enough. C£.[G], Ch.I.

III. Following [G], Ch.V, the space Sx,AQBSY,B is dense in SXQN,AEB’
From [EI]’ Section 5, it follows that SX&H,AEB is dense in
T(SXQN,AGB’AQB)'

The strong dual space of T(SXQW A@ﬁ’AQB) is equal to the space

S(Txgﬂ,AﬁB’A&B)’ where

Hence, for all f ¢ SX,A’ g ¢ SY,B and all F ¢ TX,A’ G ¢ TY,B

f®G + F®g ¢ SUX@Y,A@B’A@B) .
Case (e). Extendable linear mappings from SX,A into SY,B'

Let E ¢ T(S A@B). Then for f ¢ SX 4 Ve define Ef by
3

XQY ,AGB’
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ee(AQB)i(e~sA cA

(el) Ef = ®1)(E(e))le £,

where € > 0 has to be taken sufficiently small. Definition (e]) does not

depend on the choice of &. Further Ef ¢ SY B because eT(“QB)(e—TAGE) is
s
a bounded operator on X&¥, and because E(T) ¢ SXEX,AGB c SX%X,T@E'

Let F ¢ TX,A' We define the extension E on TX,A by
) @@ = F A 107 @n)ef (e, £ > 0

where each €(t) > 0 has to be taken sufficiently small. We have EF ¢ TY B
b4

because the operator etAQB(IQQe_tB) is bounded on X& for all t > 0, and

because E(t) € Sx@N,AGB “ SX@X,A@ﬂ'

Remark: If E ¢ T(SXBK,AGB’A@B) then £ can be embedded in T(S

xex , 168°A1)

as follows

et(AvB)(e~tA

embl(E) it Iy (E(L)) ,

and in T(S I®B)Y as

xRy ,ARI°?

emb, €)1 ¢ + A% (107 B) @ (e)) .

Cf.[EI], Section 4.

The proof of the next theorem will be omitted; it is an immediate corol-

lary of Theorem (1.3) and (1.4).

{1.8) Theorem

I. By (e|) and (e,), each element of T(SXQY,AGB’AQB) provides a Qontinu”

ous and extendable linear mapping from S into S, ,.
X,A Y,B
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I1. For each E ¢ T(SX@Y,AGB’AQB)’ f e SX,A’ g ¢ SY,B’ F e TX,A and
G ¢ TY,B’
<f®G + F®g,E®»= <Bf,G> + <g,EF> .

~-tA -tB

III. If for each t > 0 at least one of the operators e or e is
Hilbert-Schmidt, then T(SXQN,AEB’AQB) comprises all extendable linear
mappings from SX,A into SY,B'

1v. T(SXQK,AGA’A@A) comprises all cxtendable linear mappings iff the

operator e‘tA is Hilbert Schmidt for all t > O,

By Theorem (1.8) we have given the space of extendable linear mappings
the structure of a space of type T(Z C,D), if at least one of the spaces
b4

SX,A and SY,B is nuclear.

The algebras TA, TA and EA

The space'f4= T(S ,A®]) comprises all continuous linear mappings
XQK, IQA
from SX A into itself if and only if the operator e“tA is Hilbert—-Schmidt
H
for all £ > 0. So in this case TA admits an algebraic structure, If the
space SX A is not nuclear, then it is less natural that TA is an algebra.
]

Yet it is true. To show this, let P,Py € TA. Then by the previous section

for each f ¢ S by definition,
X,A
S T A
P (2,0) = P, (1)) 1A, (x,)e™2 %)

where TysTy 2 0 have to be taken sufficiently small. Thus to the product

P}P2 there corresponds the trajectory (P1P2) in TA

(PPt > P](T)e?APz(t)
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" (2.3)
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A

where for each t > 0 we have to take T > 0 so small that e’ Pz(t) ~ X@X.
With the above-derived multiplication (P1’P2) > (PIPZ)’TAiS an algebra.
Similarly, there exists a multiplication operation on TA X TA’

<K1’K2) +(KIKZ), where

(KK): € > K1<t)e‘A1<2(r).

Definition

. . ¢ . .
The linear mapping = on TX@X,AE# is defined by

*
¢ st >e(e) , 9 € TX@(,A&:—}\‘

Remark: ¢° is called the adjoint of ¢.

L. I
P . - . .

~ T = 6.

The mapping =~ is a strongly continuous bijection on X€X , ABA with ¢ ®

. e s c
Proof. The lemma is a natural consequence of the definition of ~, and of

the strong topology in TX®X,AEW ‘ )

» * c ol

Since TA T, can be seen as subspaces of T the mappin is well~-
214 ubsp XOK , ABA pping

defined on TA and TA. It is not difficult to see that for P ¢ TA its

adjoint P¢ is given by P¢: ¢ > P(t)*. Here we note that t-P(t) is a

trajectory in TA.

Lemma

The mapping €is a bijection from TA onto TA’

Proof. Let t > 0, and let P ¢ TA. Then there is T > 0O such that

e"‘AP(t) € X9K
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or, equivalently

P(t) ¢ D(Toe™ .

. . . . . T . .
So its adjoint P(t)* is in D(e A@ﬂ), which yields P¢ « TA'

Similarly for K ¢ TA we derive K© ¢ TA. Hence © is a bijection. 0

(2.4) Theorem
e, A , .
The mapping : + Ty is a homeomorphism,

Proof. It is clear that € is a bijection satisfying (Ple)c = P;P?
Further, each seminorm on TA transforms into a seminorm on TA by the

mapping €. In particular, for all P ¢ TA,

%
TeAIP(E) e = T @ ANP(EN =1l G AIBDIP(E) " o s

where ¢ B, (R) and t > 0. Thus the result is established. Cf.[EIJ,

Section 2. 0

(2.5) Corollary
. c TA . .
The mapping : TA > is a homeomorphism.
The definitions (a) - (d) of the preceding section, which indicate how
the elements of each of the four tensor products induce continuous linear

mappings, lead to the following

(2.6) Lemma

Let f,g €S , and let F,G ¢ TX Then

X,A JAT



<f,dg> = <g,¢cf> sy ® ¢

<Pf,G> = <f,PCG> sy P o€ TA s

<g,KF> = <kg,F> , K e Ty s

e ———— c
<BF,G> = <8 G,F> , 8 ¢ SXQK,AEK s
We note that P is the representant in TA of P' and K® the repregentant

in TA of K', where P' and XK' denote the dual mappings of P and K.

Following [E}], Section 2, each element H € T(SZ C,@) can be written as
2
H = 0C,D)w, where W ¢ Z and 8 € F+CR?), i.e. a function frmmiRz into

+ . .
R satisfying

-tA_su
v 3 + sup (0(A,p)e e ") < o,
s>0 Tt>0 A20, 120

Applying this result to TA we can write for P ¢ TA
P = 0(I®A,ACT) (W) ,

for a well-chosen W ¢ X®X and © ¢ F+CR2). Then it is obvious that
p(e)'= (1@ )0 o1, T00) W) .

Hence P° = G(A@Q,IQH)(W*). Similarly for K ¢ T,, K = x(A®I,IQA) (V), where

Ve XX and x ¢ F+(R;),
K = y(IQA,ART) (V).

The strong dual spaces SA of TA and SA of TA are given by
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S, =S¢ @A)

A= SUxex aer!

and

tosr

xex A1 > [

As already observed by De Graaf, we have SA c TA and SA c TA'
The mapping ©is a continuous bijection from SA onto SA, and even a

homeomorphism S, - SA because of the equalities
A

1O (AT, IA) (8) Iy = Il o(I9A, AT ) (8%) s

for all 9 ¢ F+CR2) and for all 8 ¢ SA' Cf.[El], Section 1.

The elements SA and SA are characterized as follows.

A

VeSS o3 A

-t
peB, (R) Feo0 Fpexam * ¥ 7 (e

¢ cS, @3 - Ay .

geB, (R) Eat>0 3V€X®X 2o

Thus, it easily follows that

C

€ = YA € Sy

8¢ = w(A)V*emtA € SA

The weak topology for TA is the coarsest topology in which all linear
. . - . A .
functionals on TA obtained by pairing with elements of $ are continuous

Hence, the weak topology is generated by the seminorms

s,(®) = [<o,p3 , P T
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A .
where ¢ € § . Similarly the weak topology for TA is generated by
ry(K) = <Y, K>} , Ke TA’
where ¥ ¢ SA‘ The following lemma shows that € is weakly continuous,
(2.7)Lemma

Let P ¢ TA and let ¢ ¢ SA. Then

<5, P> = <45, P%>,

Proof. There are W,V ¢ X&X, and O ¢ F+(]1(2) , € B+(]R) and t > 0 such
that P = O(I®A,A®I) (W) and ® = ¢(A)Ve—tA. So employing spectral integrals

with respect to the spectral resolution (EJ\@E ) 2 of I®I, we may

u (A QH)GR
write

corn- |

—tA
R

. _ * .
Since (EuVE)\’w)X@x = (EKV Eu,uf*g@x, we derive

f -
<3,P5 = JJ ou,\)e t}‘q,(u)d(EAU*E N7}
/) o

R

= ” o, we Me()A(E V*E)\,w*)
R *

1t

—<e AV LAY, oo, TRA) W) > =

=<9%,p%> 0



(2.8) Theorem

I. The mapping € TA -> TA resp. TA > TA is weakly continuous .

II. The mapping s SA > SA resp. SA -+ SA is weakly continuous,

The algebra EA is defined as EA = TA nT,; it consists of extendable

linear mappings from S into itself. In Section 1 we have shown that

X,A

EA =T(SX@)X,A®\’A@4) .

Naturally, the strong topology of EA is generated by the seminorms
-t (AQA
5. ® = o P L5 Ey

where t > 0 and ¢ « B+(n0 . The seminorms s are equivalent to the semi-

¢,t
norms u¢,t and V¢,t’
o (E) = ¢(A)Ee ™A EckE
QJ,C . ] A’
v. @) = e rph EekE
$,t ’ A*

So the embeddings EA csTA and EA C;TA are continuous if the spaces carry
their strong topology.

The dual space EA of EA is expressed by the algebraic sum

L oA .
EA =8 + SA (+ in TX@K,AEA) .

Hence, the weak topology of EA is equivalent to the topology induced by
the weak topologies of TA and TA' Put differently, the embeddings EA q.TA
and EA C',TA are continuous if the spaces carry their weak topology.

The mapping € is a continuous bijection from EA onto itself. Since
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. c . , .
EA c TX@X,AEK’ the mapping =~ is well defined on Ej. We should like to

write

o

(3 + ¥)° = ¢ + ¥

A
,¢€S,W€SA5

. . . A
However, the choice of ¢ and ¥ is not unigque, because SA n S SX@K,AER'
In order to show the independence of the specific choice of ¢ and ¥ in

the wanted equality, suppose

A
where @1,@2 € S8 and ?l,Wz € SA' Then ¢, -0, = ?2 - ¥
A

@1 -9, € $'n SA = SX@X,AEA' This implies

. Hence

i
&
i

c c
2 =¥y 7Y € Syex Amp
which yields

c c c
@l + WZ = @2 + ¥, .

The above-mentioned result leads to the following theorem

(2.9) Theorem
I. The mapping € is a strongly and weakly continuous linear bijection

from EA onto itself. It satisfies

ce c_ _c.c
E =E, (EE)) = EjE| », E,EpE € Eye
Hence, ¢ is an involution on EA.

11I. The mapping “isa strongly and weakly continuous bijection from E&

onto itself with 8¢ = 6, 8 ¢ EA .
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III. Let E ¢ EA‘ Then E = O(A®GA,AQA) (W) for O ¢ F+(m?) and W € X&K., We
have ES = 0(AGA,A®A) (/%) .

IV, For E ¢ EA and 8 ¢ EA

<@, > = <8°,E> ,

If the Kernel theorem holds true, the algebra TA comprises all continuous
linear mappings from SX,A into itself. So TA can be identified with the
algebra of all continuous linear mappings from SX,A into itself,

As a space of linear mappings, TA obtains some natural topologies from
its domain space SX,A’ such as the topology of pointwise convergence and
the topology of weak pointwise convergence. Similar constructions exist
in the algebras TA and EA'

In the following chapters we shall deepen the topological structure of
the algebras TA, TA and EA' We shall investigate their affiliation with

the respective algebraic structures.

The topological structure of the algebra TA.

Iq the remaining part of this paper we assume that the space SX,A is nu~
clear. Equivalently, we assume that TA comprises all continuous linear
mappings from SX,A into itself. Then, besides its weak and its strong
topology denoted by Tg and T, in the sequel, we introduce the topologies

and T for TA.
'p wp

Definition, (The topology of pointwise convergence)
The topology & is the locally convex topology for TA induced by the semi~-

norms u
£,¢°
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ug = IWRED L P ™,

where f € SX,A and ¢ € B+(m). |
The net (Pa) in TA is rpﬂconvergent if and only if the net (qu) in SX,A
is strongly convergent for all f ¢ SX A The topology Tp is the coarsest

topology for which the linear mappings -> Sx A
]
P->Pf , P e TA,

are strongly continuous for all f ¢ SX Al
*
The following result is remarkable. In fact, the strong topology of TA

is not introduced as a specific operator topology. Yet, it is one.

Lenma

The topology T is equivalent to the topology of uniform pointwise conver-
gence on bounded subsets of SX,A’

Proof. Let (Pa) be a strongly convergent net in TA with limit P and let

B be a bounded subset of SX,A' Then there is t > 0 so that the set etA(B)

is bounded in X. For all f ¢ B, all ¢ ¢ B_(R) and all o
tA
H¢(A)(Pa - P)fll < H¢(A)(Pa(t) -P()hle £I .
On the other hand, let ¢ > 0 and let t > 0. Suppose
P f->Pf
o

strongly in SX A and uniformly on the bounded subset {e_tAwlﬂwH = 1}.
y

Then for each ¢ « 8+(HU there is @, such that

g Ay (P (t) - pCeNwll < e/2 ,
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for all o > a, and all w ¢ X with llwll = 1. Hence,

Ip(AY (P (&) = P(eN < e/2 < e .

Remark: In the proof of Lemma (3.2) we employed the norm ll*ll of the
Banach algebra B(X) instead of the Hilbert—-Schmidt norm HOHXGK‘ However,

this is allowed because of the following relation

-t/ A
IP(e) I < TP(x) HX@:ﬁIIP(t/Z)H lle t/2 Mx@( s Pe TA

Definition. (The topology of weak pointwise convergence)
The topology Twp is the locally convex topology generated by the semi-

nerm u
£,G6 ?

A
uf’G(P) = |<P£,G>| , PeT ,

where f ¢ SX,A and G € TX,A'

The net (Pa) in TA converges to P ¢ TA in Twp~sense if and only if
<(P, = P),G> > 0 for all f ¢ SX,A and G ¢ TX,A’ The topology Typ 1

the coarsest topology for which the linear mappings
P » <Pf,6> , P ¢ A

are all continuous. Tp is the topology of uniform weak pointwise conver-—
gence on bounded subsets of TX A The latter proposition is an immediate
s
consequence of the characerization of bounded subsets of TX Al The above
b4

introduced topologies for TA are ordered as follows

¢ =
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Here < means 'coarser than'.

( 3.5) Theorem. (Principle of uniform boundedness)
Let B be a subset of TA. Then the following statements are equivalent
I. Bis Ts—bounded.
I1I. B is Tw-bounded.
III. B is Tp~bounded
IV. B is 1 -bounded.
wp
Proof. The equivalence I®II follows from [Elj’ Section 3. Further, it is
clear that I=1II=>1V.
IV=1II: Each weakly bounded set in SX,A is strongly bounded, cf.[GE],
Section 3. From this observation the assertion follows.
III=1I: For all ¢ ¢ B+(BO , t >0 and w ¢ X, there exists a(t,$,w) such

that the set {¢(A)Pe"tA[P € B} is strongly bounded in B(X). Hence, the

uniform boundedness for B(X) yields a(t,¢) > O with H¢(A)Pe_tAH < a(t,d).
Hence
~tA -t /oA
APl < ale/p,u) e /200 o\ P € B, O
(3.5) Lemma
Let (Pn) be a sequence in TA such that lim Pnf exists in SX A for each
1

N

f e Sx A Then P : £ » lim Pnf is continuous, i.e., P ¢ TA.
’

bt e

Proof. By Theorem (3.5) the sequence (Pn) is Ts*bounded. So for each t > O
there is o, > 0 such that HPn(t)H S P ¢ N. It is obvious that P is
a linear mapping from SX A into itself. Further, for all w ¢ X, flwl = 1

and for all t > O
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1pe ol < i@ - 2 ye Mo+ o] <oy + 1

for n ¢ N sufficiently large. Hence P ¢ TA by [GE], Section 4. ]

(3.7) Theorem
TA is sequentially Tp-complete and, similarly,sequentially Twp?complete
Proof. The proof is an immediate consequence of Lemma (3.5) and the

(weak) sequential completeness of SX Al 0
b4

In the remaining part of this section we investigate the relation between
the topological structure of TA and its algebraic structure.

First we have the following result.

(3.8) Theorem

Joint multiplication is strongly sequentially continuous in TA.
Proof. Let (Pn) and (Tn) be two converging sequences in TA with P =P

and Tn + T, Let t > 0, and let ¢ « B+CR). Then there exists ¢ > 0 and

C > 0 such that

e (wi<c,nen,

and

le ey - TN > 0

because the sequence (Tn(t)) cgnverges to T(t) strongly in SX@K,IQA‘

Hence the inequality

14 A) B T = PII(E) ] <
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< 16 - B (e + @RI 1A =) (o)l
for all n ¢ N, yields the desired result. O

As observed by De Graaf SA < TA, we have the following stronger result,

(3.9) Lemma

SA is a proper two-sided ideal in TA.
Proof. From the characterization of the elements of SA we obtain the
equivalence ¢ € SA « § represents a continuous linear mapping from
. ~tA
S into e (X) for some t > O.
X,A

1,

further P] maps e_aA(X) into ewsA(X) for some B > 0 (cf.[GE], Bection4).

Let P P2 € TA and let ¢ ¢ SA. Then © maps SX A into some e‘aA(X) and
»

. -BA .
So P, oP, maps SX,A into e © (X) continuocusly, and hence P 9P, ¢ SA.

Since I ¢ SA’ the ideal SA is proper., O

(3.10) Corollary
SA is a proper, two-sided ideal in TA'
Proof., Follows directly from the properties of the adjoint mapping ¢

and Lemma (3.9).

(3.11) Corollary

Let ¢ ¢ SA and P ¢ TA. Then

<9,P»=<p%,I>=<0"P,1>

and
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<9,p> =<0, P > = <pe®, 1> = <p",1>.

(Note that‘géPc,Iﬁ*= trace (¢P€)).

Proof. The proof is an application of Lemma (2.2) and Corollary (3.9). [

(3.12) Definition
The algebra I with topology t is called locally convex, if

(Z,t) is a locally convex, topclocical vector space,

- Separate multiplication is continuous in (I,71).

(3.13) Theorem

The algebra TA is locally convex if it carries each of the topologies
Tgr Tyo TP and TWP.

Proof. We shall only prove the continuity of sepafate multiplication.

I. (TA,TS)

Let P « TA be fixed, Then for all T ¢ TA

14CA) (TR (6) gy < AT (e lyggll e (0D

for € > 0 sufficiently small., Hence T » TP is continuous. To show
the continuity of P > TP, let T ¢ TA be fixed, and let € > 0. Fur-
ther, let t > 0 and let ¢ ¢ B+(IU . Then there is an open null-

neighbourhood § in Sy 4 such, that

»A

e (ATEN < e/2

as soon as f « §. The existence of 2 folleows from the continuity of T.

Let (Pa) be a net ixlTA'that converges strongly to P. Then there
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exists o, such that for all f e {e"tAw|uwu < 1} uniformly

(Pa-P)f €N

if a > a,. So a, does not depend on the choice of £, (Lemma (3.2)).

Hence, if o > s then
llq)(A)T(Po‘- P)fll < £/2

for all £ ¢ SX A with HetAfH < 1. The latter observation leads
.

to the result
[I(p(A)T(Pa-P)(t) hse/2 <€

if o > a,. This finishes the proof.

II. (TA,1W> .

Let PI’PZ € TA. Then for each ¢ ¢ SA
c,..C
<6,P TP,>= <P{0P;,T> .
Hence

P K@’PITP?;

. . . A
is a weakly continuous seminorm on T .

I1I. Cr&,rp).

Let Taf -+ Tf for all f ¢ SX,A'

Then TaPZf ¢>TP2f and hence by continuity of Pj, PITQPZf > PITPZf'

This completes the proof.
Iv. {TA,TWP).

The seminorm

T |<T(p,f), P?G'>1
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is Twp—contlnuous for each f ¢ SX A and each G ¢ TX,A' O

>

The topological structure of the algebra TA

As we have already assumed in Section 3,TA comprises all continuous
linear mappings from TX,A into itself, The strong topology and the
weak topology of TA will be denoted respectively by oy and O In cor-
respondence with the topologies Tp and Twp of TA we first introduce

the topologies o_ and o .
P w

Definition
The topology Up is the locally convex topology of TA induced by the
seminorms v

F,t

vF,t(R) = EFY(H , R« TA
where F ¢ TX,A and t > 0.

The net (Ra) in TA converges to R ¢ TA in dp-sense if and only if
RaF -+ RF strongly for all F ¢ TX Al The topology op is the coarsest
s

topology for which the linear mappings TA - TX A
¥
R")RF ,R€TA,

are all continuous.

Lemma

The topology o is equivalent to the topology of uniform pointwise con-

vergence on bounded subsets of TX A
b
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Proof. Let (Rq) be a strongly convergent net in TA with limit R. Let

B be a strongly bounded subset of TX Al
s

and a bounded subset W of X such that B = $(A) (W) (Cf.[Eij, Section 2).

Then there exists ¢ € 8*(33

Hence for all w e W
e ™™ @, - Gl < 1@ (&) - RE)e@ITwE

On the other hand, lete> 0 and let ¢ ¢ B+(ID . Suppose RaF -+ RF
strongly in TX 4 and uniformly for F ¢ {¢(A)w|lwll < 1}. Then for each
b4

t > 0 there is a, such that

I (£) = RDAwl < e/2

for all a 2 o and all w ¢ X with w < 1. Hence

”(Ra(t) - R(eNYAYI < /2 <€ a

(Remember the remark after Lemma (3.2),)

Definition (The topology of weak pointwise convergence).

The topology Twp is the locally convex topology induced by the semi-

norms
vG’f(R) = |<f£,RG>| , R ¢ TA s

where f ¢ SX and G ¢ TX

)A ,A.

The net (Ra) converges to R in (TA,TWP) if and only if <f,(Ra-R)G>->0
for all f ¢ SX,A and G ¢ TX,A' The topology Tup is the coarsest topo—-

logy for which the linear mappings TA > C

Rww <f£,RG> , R ¢ TA s
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are all continuous., The topology a, is the topology of uniform, weak

pointwise convergence on bounded subsets of SX A
b

The above introduced topologies are ordered as follows

(4.5) Theorem (Principle of uniform boundedness).

Let B be a subset of TA. Then the following statements are equivalent
I. B is cs~bounded H
I1I. B is 0p~bounded 3
III. B is Gw~bounded ;
IV. B is ¢ _~bounded.
wp
Proof. We shall only prove the implication II = I. The other implica-
tions are trivial or easy corollaries of other structure theorems.
11 ua'I:‘E‘m: all t >0, we X and ¢ € B+(R),‘we thus assume that

the set
te ™Ry Ayw|R < B}

is strongly bounded in B(X). Hence, the uniform boundedness principle

for B(X) yields a(t,$} > O with He_tAR¢(A)H £ a(t,$), B ¢ B. Hence

e Ry (A) g < 2t AL, R e Bl

(4.6) Lemma

Let (R ) be a sequence in T, such that lim R F exists in T for each
n A . X,A -
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(4.8)
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FeT, ,. Then B: F > 1lim R_F is continuous, i.e. R e¢ T,.
X,A e B A
Proof. By the preceding theorem the sequence (Rn) is Ts~bounded. So for
each t > 0 there exists B, > 0 such that HRn(t)H S B, De N. It is
clear that R maps TX A into itself. Further, for all w ¢ X with lwll = 1,
b
and for all t > 0

le~Prull < e @& - BOWl + B, S B+ 1

for n ¢ N sufficiently large. Hence R € TA by [GE], Sectiom 4. 0

Theorem

TAzs sequentially 05" and owp—complete.

. . c .
In Section 2 we have proved that the mapping = from TA onto TA is
) . \ . c .
T <+ g and T _+ o _continuous, and its inverse is o_+ 1v_ and
s s w v 8 s
; . c .
qw6+ T, continuous. We do not know whether the mapping = is Tp4+ op con-

tinuous and whether its inverse is cp*+ rp continuous. However, for

f e SX,A and G ¢ TX,A’
|<Pf,G>| = |<£,P%6>] , P e ™,

So it follows that P Pc, P« TA, is twp++ Uwp continuous and R RC,
¢ TA’ is ¢+ t__ continuous.
wp wp
With the above observed kinds of continuity of the mapping € and the

mentioned properties of ¢ the following results are straightforward

corollaries of Theorem (3.8) and Theorem (3.13).

Theorem
- Joint multiplication is sequentially continuous in TA'

~ The algebra TA is locally convex if it carries each of the
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topologies Ogs O, and cwp.

Completing this section we prove the following.

Theorem
The algebra TA with topology Tp is locally convex.
Proof. Let RaF > RF for all F ¢ TX,A' Then for 31,32 eT,, Ra32F~+R82F

and hence by continuity of S], SIBQSZF - SIRSZF' This completes the

proof. 0

The topological structure of the algebra EA

Because of the assumption in Section 3 that SX,A is nuclear, EA comprises

all continuous linear mappings from SX,A into itself which are extend-

able to TX,A' In Section 3 we observed that the strong and the‘weak

topology of EA’ denoted by Pg and Py in the sequel, admit the following

characterizations

- g is the coarsest locally convex topology on EA for which the em-
beddings EA = TA and EA G TA are continuous with respect to the
strong topology of TA resp. TA'

- p“’is the coarsest locally convex topology on EA for which the em~
beddings EAc;TA and EA C;TA are continuous with respect to the weak
topology of TA resp. TA’

Similarly we introduce the topologies pp and pr.

Definition

The topology pp is the coarsest locally convex topology on EA for which

the embeddings EAC;TA and EA C‘TA are continuous with respect to Tp



- 72 -

resp. cp. The net (Ba> in EA converges to E if and only if Baf + EBf
strongly in SX;A for all £ ¢ SX,A as well as EaG - EG strongly in

-
i

TX,A for all G ¢ X,A°

(5.2) Lemma
The topology Pg is equivalent to the topology of uniform Tp- and
cpwconvergence on bounded sets in SX,A resp. TX,A'

Proof. Cf. Lemma (3.2) and (4.2). 8

(5.3) Definition
The topology pWp is the coarsest locally convex topology on EA for
which the embeddings EA QTA and EA C}TA are continuous with respect
to Twp resp. Gwp' The net (Ba) in EA converges to E if and only if
Eaf -+ Ef weakly in SX,A for all f ¢ SX,A as well as BaG + EG weakly

in TX,A for all G ¢ TX,A'

The above introduced topologies of TA are ordered as follows,.

(5.4) Ps

(5.5) Theorem (Principle of uniform boundedness)
Let B be a subset of EA' Then the fpllowing statements are equivalent.
I. B is ps~bounded;
I1. B is pw—bounded;

III. B is pp—bounded;
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5.7)

(5.8)
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IV. B is p __-bounded.
wp

Proof. Cf. Theorem (3.5) and (4.5). 0

Theorem
EA is sequentially complete in pp~ and p_ -sense.

Proof. Cf. Theorem (3.7) and (4.7). O

The adjoint mapping ¢ becomes an involution on the algebra EA. From
. . . c . .
the previous sections it follows that is p =y P~ and pwp—contlnuous.

From Theorem (3.13), (4.8) and (4.9) we obtain immediately

Theorem

~ Joint multiplication is strongly sequentially continuous in EA'

- Separate multiplication is Pes P, P and pwpvcontinuous.

w P

The dual space EA of EA can be represented by the algebraic sum of the
spaces SA and SA. So every continuous linear functional £ on EA can

be written as

2: B“*<K1$E>S +<K2’E>SA ’

A

where K1 € SA and K2 € SA. The choice of K1 and Ky is not unique be-
A .

cause SA nS = SX@ﬁ,AEA’ cf.[El], Section 4.

Proposition

The space SXQX,AEA 1s a proper, two—sided ideal in EA'

Proof. SA and SA are proper, two—sided ideals in TA resp. TA. Hence

SX@K,AEK = SA n SA is a proper two-sided ideal in TA n TA = EA' 0
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. ,
Let EI’EZ € EA' Then for all (K1 + Kz) € EA’ define

EI(KI + KZ)BZ:= EIK]E2+E]KZE2 .

Then EI(KI + KZ)BZ is a well—-defined element of EA by Lemma (3.9) and
Corollary (3.10). In order to prove this, we have to show that the

definition of EI(KI + KZ)BZ does not depend on the choice of Kz and

A
KZ' So let K, + K, = 0. Then Ky =K, € SA nsS = SX@K,AEK' By Propo

sition (5.8), EIKIB2 = -E\K,E, € SX@K,AEA. Hence, E K|E, + E|K)E, = 0,

which completes the proof.

These observations imply the following.

Lemma

Let K ¢ EA and F € EA' Then

<K,B» = <K, %>
<K, B> =<cK, 1>
<EK,I» = <€KE,I®» or equivalently trace (EK) = trace(KE).

Proof. Cf. Corollary (3.11).

In a forthcoming paper we shall give a complete description of two
subalgebras of EA’ where we no longer assume that SX,A is nuclear.
There we shall treat two topological algebras, the commutant of {A}'
and the double commutant {A}". Inspired by the thesis of Pijls [Pij],
we have been able to prove that {A}" <« EA is a commutative GW*~a1ge—

bra, i.e. a commutative generalized Von Neumann algebra. The notion

of GW*-algebra has been introduced by Allan,[Al].
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In the following section, we shall indicate how the theory could pro-
vide a mathematical model of quantum statistics. Therefore we intro-
duce the notion of state in EA and the notion of positive element in
EA' We realize that the applications in Section 6 probably will raise

more questions than they do answer.
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6. Applications to quantum statistics

In this section we consider a quantum mechanical system in which the
dynamics are determined by a Hamiltonian operator H, i.e. a self~-
adjoint operator in some appropriate Hilbert space X. We assume the
almost inevitable condition that there can be found a nuclear ana-
lyticity space SX A such that H and each of the unitary operators
?
iaH . . .
e »& € IR, are continuous linear mappings on SX A Further, for the
i)
states of the quantum system we take the one-dimensional subspaces

. . T -
of the trajectory space TX,A In [E3] we have proved that X,A con

tains almost all (generalized) eigenvectors of H.

In this section we adopt the terminology and notation of Dirac. The
elements of TX,A are called kets and they are denoted by |F>. Conju~
gate to the kets are the bras, denoted by <F|. The bra space is also
a trajectory space, it has an antilinear structure. In [E3] we have
interpreted Dirac's bracket notion so that the expression

<P |G>
makes sense for arbitrary kets and bras. In fact, <F|G> denotes the

function
<F|G> : s » <|F>(s),]|G>>

The elements of SX,A are called test kets. The bras conjugated to them
are called test bras. In this section we shall only consider the brack-
et of a test bra <g| and a ket |F> resp. of a bra <G| and a test ket
|f>. Then for their brackets we may take the ordinary numbers <g|F>(0)

and <G|£f>(0).
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At a certain instant the dynamical system is supposed to be in one

or other of a number of possible states according to some given pro-
bability law. Following Dirac, [Dil, these states may establish a dis-
crete set, a continuous range or both together. Here we look at the
discrete case. Suppose that the possible states are given by norma-
lized test kets |m>, m ¢ N. Let P, denote the probability that the
system is in the m~th state. Then we define the quantum density opera-
tor ¢ by

o <«

(6.1) p = z pmlm><m , E P, = 1, p_=20,
m=1 m=|

where, according to Dirac |m><m| = |m®|m>.
In Schrodinger's picture the kets will evoluate in time in accordance

with Schrodinger's equation
.4 4
it EE4F> = H|F>

and the bras with the hermetian conjugate of this equation. Since with-
out disturbance the system remains in the same state, corresponding
to a ket which satisfies Schrodinger's equation, the pm's are constant

in time. We therefore have the following equatiom

il

(6.2) ihg me (H|im><m| =~ jm><m|H)
m

]

Ho —pH= [H,p].
For convenience we shall take % = | in the sequel.

In our interpretation, the observables of the quantum system are repre-~

sented by self-adjoint operators in X, which maps SX A continuously
s



(6.3)

(6.4.a)
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into itself. Or, equivalently, by the symmetric elements of EA with
a self-adjoint extension in X.
If the system is in the m—~th state, the expectation value <> of any

observable B equals
<B> = <m|B|m>.

Hence, if we insert the distribution law of the system corresponding
to the above-introduced density operator p, then the average expecta-—
tion value <g> is given by
<g> = ) pm<mlslm> =<p,8>= tr(pB),
m

whenever p ¢ EA. Put B = I. Then it follows that

<I> =) P, =1 -
m
The solution of equation (5.2) is given by

1th eltH

p(t) = e 0 , t=20,

. . . i
where p(0) 1is Po* Since the unitary operators e GH, o ¢ R, are extend-
able, and since EA remains invariant under right and left multiplica-

tion by elements of EA. (See Lemma (5.2)), we have p(t) ¢ EA, t20

iff P € E;.

Let BO be any observable., Then the average expectation value at time

t equals

<8y (£) = <p(t), By(t)>=<py, e g (e >

where we have written so(t) to indicate that the observable 30 can

intrinsically depend on t. Put B(t) = eltHBO(t)e_ltH. Then

<. 3B
g = ilH,B] + 5e
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(6.5)

(6.6)
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é%(<3>) = i<[H,81> + <g%>

. _dB .
g%{r) = elTHjﬁ?(T)e lTH. The differential equations (6.4.a) and

where
(6.4.b) determine the evolution of the observables in the Heisenberg

picture.

Now we are in a position to describe a quantum mechanical system in
terms of observables out of some suitably chosen space EA’ and 'states'
in its corresponding strong dual EA. We emphasize that the notion of
state will get a meaning different from the one in the beginning of

this section.

Definition
A symmetric element P ¢ EA is called positive if <f£|P|f> 2 0 for all

test kets |f>.

A positive element P of EA leads to a positive, density defined, sym—
metric operator P in X. This operator P admits a so-called Friedrichs

extension P, in X, cf.[Fal. The operator P

- is positive and self-ad-

F

joint in X. Hence, at least every positive element of EA is an ob~-

servable.

Definition

Let ¢ ¢ EA. Then o is called real if o(P) ¢ R for all P ¢ EA with

From Section 5 we obtain the following characterization.
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(6.8)

(6.9)

Remark: let o € EA with o = ¢°. Then o = s
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Theorem

o € EA is real iff ¢ = o.

Proof. Let P ¢ E4 be symmetric. Then by Section 5

<0,P>» = <¢°, P>,
This leads to the following equivalences

<0,P»¢ R for all P ¢ EA with P = P &
@<, P»=<¢",P> for all P « E, with P = P¢ e

A o =g

The latter equivalence is due to the fact that every E € EA is a com-

C C
) ) . + , B -
bination of two symmetric elements, E = E 2E + 1(E 2iE )

. A
" " + s, with s, € S and
1

+ 8
2

ron

s, € SA‘ {(Cf. Section 5). Put s =

Definition
Let ¢ ¢ EA be a real functional. Then ¢ is called a state if

- o{(P) 2 0 for all positive P « EA :

- g(I) 1, i.e. a state is always normalized.

In order to characterize the states in E! we prove the following.

A

Lemma

O

A
.Thens ¢S and o =38 + s°.

Let E ¢ EA’ and let Il denote the orthogonal projection onto the linear

span of the first n eigenvectors of A. Then the sequence {HnBHn} con-
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verges to E in EA.

Proof. Let t > 0. Then we can take Tt > O such, that both

-1
lel™ee ﬁtAt%gx <=

and

ne"itABeZTAt&gg < o,

Now we compute as follows

le™E - nnznn)e'tA [P—_—
<t - nnmnne”t“nm,x « e - Hn)e~tAI%EK <
< d@ - nn)e”TAn - nn>e“§tAn)uezfAze”itAl&gm :

TA ~tA
Hence, e (E - HnEKn)e ‘&ﬁm ~ 0 forn oo,

Similarly we can prove
-tA TA
e (E - Hnﬁﬂn)e ngx + 0 for n » =,

So the assertion has been shown.

Remark: Let P ¢ EA be positive. Then for each n ¢ N, the operator
nnFHn 1s an element of EA' In fact nnPHn 1s a positive self-adjoint
Hilbert-Schmidt operator. So there exists f§n)e Hn(X), j = 1l,e0.,n,
such that

C o n) () __(n)
Pl = NaAED £
nn T LY €5 o<ty |

i o~

with My z 0. It leads to the following characterization.
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(6.10) Theorem

Let 0 € EA be real. Then o is a state iff
<g, |[f><f|l>®2 0

for all test kets |f>,
Proof

=) Trivial. The projections P‘ = |f><f| are elements of EA and posi-

£
tive, for all test kets |f>,
<) Let P ¢ EA be positive. Let the projection I ,neN,beas in

Lemma (5.9). The functional E + <g,E® is strongly continuous on

EA' Hence

<0,P®= lim<o, II_PN_>.
nn

n>e
With the above remark it can be easily seen that for all n ¢ N
<0,HnPHn>2 0. Hence <0,P>2 0,

Thus we have shown that o is a state. [

Remark: Since g « EA < Tyex ampe 2nd E><E] ¢ Syex AFA V€ derive
» s

<Lg, |f><f|>»= «f|o|f>. (See [Di]).

Special elements of EA are the pure states. Here is the definition.

(6,11) Definition
A state p is called pure if there exists a normalized test ket |f> with
o = |f><f].
Of course, one might wonder why we don't take normalizable kets in
Definition (5.11), i.e. kets in the Hilbert space X. The following

lemma shows the answer.
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6.13)

(6.14)
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Lemma

Let |w> be a ket. Then

[we<w] « EA & lu> is a test ket.

Proof
=) Suppose |u> ¢ Sx A Then there exists ¢ ¢ B+CR) such that
s

|lw> ¢ D($(A)). The operator ¢(A)2 is in EA’ but
<|w><wi, ¢(A)2>’= L

Hence |w><w| ¢ EA .

«) Trivial. O

The pure states admit the folllowing characterization.

Theorem
, . . A . 2
A state p is pure if and only if p ¢ § (or SA) with p~ = p.
Proof. If p is pure, p = |[f><f| for some test ket |f>. Hence
A . . .

p € SX&X,AEA =S n SA’ and p is a projection. On the other hand,

A . . c . .
p €S and p is a state yield p = p ¢ SA' Hence p GSXQK,AEK’ pis a

Hilbert-Schmidt projection with tr(p) = 1. So there exists a normalized

|f>eX with p = |£><f|. By Lemma (5.11) |f> is a test ket. 0

Theorem

Every pure state in EA is an extreme point in the set of states.
Proof. Let [£> be a normalized test ket, and Hn’ n ¢ N, denote the
projection as introduced in Lemma (6.9). Suppose there exist states

0,0, € EA and 0 <a < 1 such that
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[f><f] = ao + (1-&)02.

Then for all n ¢ N with Hnif> # 0

IInIf><fiIIn acl(IIn) [Hnolﬂn] . (l—a)oz(IIn) [anznn]

e wn et Loy e f Loy
n n n
Hk{f><f|IIk
Take k € N fixed, with Hk[f><fiﬂk # 0. Then 5 is an extreme
HHkIf>H

point of the unit ball of Hk(x)ﬁﬂk(x). Hence, we may assume

L £><ER, = T olf .

Slnge HkH£ = Hk for all £ = k we derive

Vnﬁl\]: Hnlf><f|IIn = Hnolﬁn .

By Lemma (6.9) the sequences {Hn[f><flﬂn} and {anﬁnn} converge to

| £><£| resp. 0, weakly. Hence o = [E><£] . O

In the following theorem we prove that the pure states are the only

extreme points in the set of states.

(6.15) Theorem
Let p be an extreme point in the set of states. Then p is a pure state

Proof, Since p # 0, there exists a normalized test ket |[f> such that
o(lf><f]) # 0 .

Remark: The following implication can be shown rather easily:
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v : p(IE2<£]) = 0) -(p=0) .
( lf)eSX,A
Put P‘f> = |£><f|. Then p can be written as

p=gpo Pl + p o (I'~Pl

> f>)
where (p ° Pe )(E) = p(P|¢E), E e Egu S0 (poP . )(I) = p(Bg,) # 0.

1) Suppose p © (I~*P|f>) # 0, and consequently p(I-Plf>) # 0. Then

we can write p = ap, * (1-'a)p2, where

LT PG
LD @ LY 2 T T )
o = p(P|f>).

The functionals oy and p, are states. This can be seen as follows

Q(P‘f>) _
p(Plf>)

i

and

p1(B) = (B, (B LE) = (B ) e (B 1 BR L),

For the latter equality see Lemma (5.9) and observe that Pff>= Plf>'
Thus we derive pI(E) € R for allE ¢ EA withg = g€ and pl(E) 29
for all positive E ¢ EA. Similarly, Py is a state. But now we have
got a contradiction, because p is extreme. Hence p o (I-Plf>) = 0,

and consequently p = p o Prg, and p(Plf?) = |, Further, it easily
i

follows that for all test kets |g>
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2
p(lg><gl) = [<flg>|" .

Employing the projections Hn’ n € N, as introduced in Lemma (5.9),

we find that for each symmetric E ¢ EA and for each n ¢ N there

exists u§n) € R andff§n)> € Hn(X) such that

n
men = ) u® )
LEE IS B B

and

n
o (I ET ) p<j£1u(n)‘f§n)><f§n)|) )

h] b}

n .
= 7 u® e ™12
j=1 J ]

i

<f|I_EN |£> .
nn .

Letting n~>~,by Lemma (5.9) we obtain
P(HnEHn) + p(E)
and

<f|I EN |[£f> =+ <f|E]|f>,
n n

Hence for all symmetric E ¢ EA’ p(E) = <f|E|f> .

This yields p = |f><f]. O

Remark: Let p ¢ EA be a real positive functional, i.e. p(P) 2 0 for
all positive I « EA . Let n ¢ N, and let E ¢ EA' Then the following

inequality is immediate from the finite-dimensional case
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2 c
lp(HnEIIn)I < pQU )p(IL ETEN ) .
So the limit n > «

lo(®)1% < p(D)p(EE).

Consequently p(I) =0 & p =0 .

(6.16) Theorem
The linear span of the pure states is dense in EA.
Proof. We assume that P ¢ EA and <f£|P|f> = 0 for all test kets |f>,
Then <f+g|P|f+g> and <f+ig|P|f+ig> = 0, and hence, Re(<f|P|g>) = 0 and

Im{<f|P|g>) = 0 for all test kets |f> and test bras <gl. So P = 0, O

Finally we shall characterize the state in SA {or SA) or equivalently

the states in SX@K,AER'

(6.17) Theorem
Let p € SXQK,AEA' Then the following statements are equivalent,

(1) p is a state.
(2) p is positive and self-adjoint with tr(p) = 1.

(3) There exist normalized |j> ¢ SX A and positive numbers P; satisfying
»

o0

37 2P <o,

s>o.=] i
and Ep. = ] such that
AN
3
p = ij|j><j1-

J
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Proof. The proof proceeds as follows: (1) = (2) = (3) = (1).
(=(2):
From Theorem (6.10) it follows that p is a positive operator on SX Al
>

Since p is Hilbert Schmidt and pc = p, p is a positive, self-adjoint
operator on X with tr(p) = I.
(2) = (3):

. e . ~sA,, —sA
By definition, there exists s > 0 such that p = e We for some

We XX with W 2 0. Since p ¢ XX and p 2z 0, there exists an orthonormal

basis (lj>) in X, and positive numbers Py such that

o = )p li><jl with Jp. =1 .
i i

sA

. - . . . - . SA, .
Further, since We sA is Hilbert Schmidt and We fi> = Iﬁe 13>,

T iwe A2 =} 21 1P <
j=1 j=11

3) =)
Note first that <p,I»= 7§ pj<j|j> = 3

=1 i=1
Let s > 0 as indicated. Then

p. = 1.
J

oli> =p.li> .
3> = pyl]

Put W = eSApeSA. Then WeASA§j> = pjeSAlj>.

Hence we_SA is Hilbert-Schmidt and thus we find that

e-sAwe~sA

< Syeox, AmA
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If E € EA is symmetric then <jlE{j> ¢ R and hence p(E) ¢ R. If E ¢ EA
is positive, then <j|E]j> 2 0 and hence p(E) > 0. Thus it is clear that

p is a state. ' 0

As a rule the dynamical state of a quantum system at a certain instant
cannot be represented by one single ket, but we have a statistical
mixture of kets, Therefore, in the beginning of this section we intro-
duced the quantum density p (cf.(5.1)). According to the probability
law determined by p, the quantum system is in one or other of a number
of possible states. So it makes sense to define p to be the state of

the quantum system at a given time.

If at t = 0 the quantum system iIs in the state Pgs at t = T the system

is in the state p(t) with

-itH  itH
p(t) = e bge -

So p satisfies the evolution equation (cf. (5.2))
6 = -i[H,p] .

In order to arrive at a mathematical rigorous theory, we only consider
Py € EA. Then for every t > 0, p(t) € F!, because eltH € EA for all
t € R. (See Section 4). At every time t we can compute the expectation

value <B> with respect to p of the observable B ¢ EA’

<B>(r) =<p(t),B3

where for convenience we have assumed that B is constant in time.

Now in general we shall assume that any state in EA as defined in Defi-

nition (5.8) represents an initial state of the quantum system in the
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above indicated way. A state 9 evoluates in time according to

~itH itH

e oge , £t >0 .

So the statistical mixture determined by the quantum density operator

p is a particular kind of state; states such as p have an immediate
physical interpretation. From (5.14) we obtain that every state

Py € SX&K,AEK induces a statistical mixture. The pure states are special
types of statistical mixtures; one knows with certainty that the sys—

tem is in a state determined by one test ket.

We conclude this section with a short discussion of the three possible

types of dynamical quantum systems.

The Hamiltonian operator { admits a purely discrete spectrum

This case is the easiest one to treat and it probably contains the most
promising results,

Let H{ be a Hamiltonian operator in X with eigenvalues E1 < Ey % ..,
and corresponding normalized eigenkets [E1>,]E2>,... . Then the eigen-
kets[gi>of H establish a complete orthonormal basis for X. Define the

positive numbers App m € N, as follows

Ay =E; A, = maxG_, +1,!En|), n>1,

and the self-adjoint operator A by
AlEn> = AnIEn>

followed by linear extension and unique self-adjoint extension to X.

e
Then the analyticity space SX A is nuclear because Z e Mt o for all
’ n=1
t > 0.



- G -

Further, His continuous on SX 5 because sup (lEn|e—Ant) < », Hence,
’ nelN .
H e EA’ Similarly if follows that the unitary operators elaH, o R,

are elements of EA' So the space SX A satisfies the required conditionms.
b4

An important example of a statistical mixture is given by the state

o oo
po= Loy [E><E |, 20, [py=1.
Then o is represented by a diagonal matrix, and seen as a bounded
operator on X, p clearly commuteswith A and H. Since p ¢ EA, it

satisfies -

-al, QA
= A 4 n my <M.
a>0 a>OaM>0Vneﬁ¢(pne e M) <M
Hence = G(e—kﬁa) dp eS8 It is obvious that without dis-
Pn > and P X&X ,ABA

turbance the state p does not depend on the time t. We note that it is
obvious that every term IEn><Enl of the series does not depend on t,
i.e. the system remains in a stationary state as long as disturbances

do not occur.

In general a state p is given by

b= Z pnmlEanml .
n,m

However, in many physically realistic cases the non-diagonal elements

can be neglected.

An example for class (1) is given by the one dimensional harmonic

2
oscillator where H = %(&% + xz + 1). Then H is self-adjoint in L2CR)
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with E =mn, n¢ N as its eigenvalues and the Hermite functions as its
eigenfunctions. Hence, we can take A = H. We note that the space
Sﬂz(ﬁﬁ, y 1is equal to the space Si of Gelfand-Shilov, Well-defined ob-
servables are the momentum operator iiL-and the position operator x.

dx

The Hamilton operator H admits a purely continuous spectrum

This is a harder case. We are able to construct a nuclear analyticity
space SX,A such that A is continuous on SX,A (cf. Section 9). Then to
almost every point in the spectrum of H there corresponds on eigenket
in the trajectory space TX,A‘ However, it is not clear whether the
unitary operators eiQH, o ¢ IR, are continuous on SX A® and this pro-~

s
blem has not been solved yet. Of course, we could weaken the conditions
on SX,A and skip nuclearity. Then the analyticity space SX,!HI with(H )=
(Hz)% would be ideal. But nuclearity seems to play an essential role
both in the discussions of this section and in our interpretation of

Dirac's formalism.

There is another approach. Sometimes iH is one of the skew—adjoint
generators of a unitary Lie group representation on X with nuclear
analyticity space. We shall explain this to some extent. Let G be a
finite dimensional Lie group with Lie algebra A(G). Let U be a repre~
sentation of ¢ into the space of unitary operators on X, and U

the corresponding infinitesimal representation of A(G) in X. Then
for every a ¢ A(G) the operator dl(a) is skew—adjoint in X, by Stone's
theorem.

Our first assertion is the following one.

~- There exists a; € A{G) such that iH = BU(al).
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Since G has dimension d < = there are Byyeeerdy € A(G) such that
{al,...,ad} generates the Lie group G in the usual way. Following
Nelson, [Nel, the analyticity space corresponding to the unitary re-

presentation U is equal to

Sy, at

where A = | - ((3U(a,>)2 + (3U(a2))2 o+ (GU(ad))Z).

Then our second assumption is

- S 1 is clear.
X, 0} nuclea

In [GE], Section 7, we have given several cases of unitary represent-

ations of Lie groups G with a nuclear analyticity space S More—

x,04°

over, we have proved that both the unitary operators {(g), g ¢ ¢ and

the skew~adjoint operators au(aj), j=1,...,d, are all continuous

on SX L So under the above-mentioned assumptions the nuclear analy-
b .

ticity space SX A has the desired properties.
B

An example for this type of operators is the Hamiltonian operator of
¥

the free particle in one dimension,

g o4
2

dx

An appropriate algebra is the six~dimensional algebra generated by

2

. d ., X d . 2
iy, ile—=x + x—), ix
P dax ax

,1x,-a;,1‘

It corresponds to the infinitesimal representation belonging to the

unitary representation of the Schrodinger groups on LZ(ER). The Schro-
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dinger group is obtained as a semidirect product of SL(2,IR) and of
Wl,the Weyl group. We note that the Schrodinger group is the symmetry

group of the Schrodinger equation of the free particle (see [Mi]).

(3) The Hamiltonian operator H admits a discrete/continuous. spectrum

In many applications the intersting part of the spectrum of H is the
discrete one. So we split X into the direct sum X = XdGKC such that
Hd’ the restriction of H to Xd, acts invariantly in Xd and Hd is a
self-adjoint operator in Xd with discrete spectrum,and such that Hc’
the restriction of H to Xc, acts invariantly in X, and Hc is a self-
adjoint operator in Xc with a purely continuous spectrum.

An example for this case is the Hamiltonian operator of the hydrogen

atom.
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7. Tne matrices of the elements of TA and TA

As in Section 3 we still assume that SX A is a nuclear space. So in
»
SX A there exists an orthonormal basis (Vj) for X consisting of eigen-
*

vectors of A with eigenvalues kj, Ay S A, <Ll satisfying

for all £ > 0, Then the space TA contains all linear mappings from

SX,A into itself, and TA all linear mappings from TX,A into itself.

Let L ¢ TA. Then to L there can be associated the well~defined matrix

(Lij) as follows

s = @viov), i = L2 .

This section is devoted to the kind of infinite matrices which arises
in this way. We shall produce necessary and sufficient conditions on
a matrix <Qij) in order that its associated linear operator @ is a
continuous linear mapping on SX,A' We emphasize that there are no
elegant nor applicable conditions on infinite matrices which imply

boundedness of its associated operator in X (see [Ha], Ch.IV).

Since the linear mapping [ is continuous on SX A’ it satisfies
*

:HSA ~tA

e e C

A

Yi>0%>073¢>0 hyex
where H~I|X®x denotes the norm in X¥X. This implies that the columms

ij, j € M, of the matrix (Lij) satisfy
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sA At

(7.1) Evi"x < Ce .

Vi>0%>07co0 iem e

Put bi = Ly,, i € N. Then the vectors b. span the range L(S A) and

1’
from (7.1) it follows that there exists s > 0 such that bi € e A(X),

i € N. Define the trajectory T (0,=) > X€X by

Iy =

Wo~18

Azt
1 (vi‘&)bi), t >0,

Then L(t) € SX@(’I@. To show this let 0 < t, < t, and choose s > 0

1
and C > 0 such that

lieSAbiH < gl i e N,

Then
1L (Ol gy = 2 e o Ol g
< 7 Mgy bl < C ] e riftmt))
i=1 i=1

Hence L(t S . It is obvi that
(t) e XOX, T is obvious tha
. +t)) = (e S F(e) L t.,t, > 0
1 2 270 "1*72 *

So L eTé'. Since for all f ¢ S
XA

ﬁf=igl(f,vi)bi = izl(f,vi)ﬁvi = Lf,

the linear mapping I is represented by the series
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<3
ié]vi@bi

with convergence in TA.

On the other hand, let there be given LITLIYRRS in SX A satisfying
»

(7.2) :HetAbiil < cetif

Vt>03t>03C>0Vi€N
o

Then it is obvious that the series vi®bi converges in TA, and re~
i=1
presents the linear mapping

£ o izl(f,vi)bi , £ € SX,A'

So the following characterization holds true.

(7.3) Characterization (the columns)

Let W be a linear operator in X with domain containing the linear span
<v1,v2,...>. Then W maps SX A continuously into itself iff the in,
b )

i € N, satisfy condition (7.2). W is represented in TA by the series
&3

iélv£®(in)‘

The conjugate LC of L is an element of T,. Hence, as a continuous

A

linear mapping from TX into itself .° satisfies the following con~

»A
dition
ptA c sA
Ves03ss03cs07he L€ lygy < Ce
Put Bj = chj € TX,A' Then they satisfy
_S)\'
. . o iB. .,
(7.4) Vt>Oas>OBC>OVJgIK”Bg(t)“x < Ce
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The trajectories B, span LC(T ), and
3 X,A

where the series converges in TX Al Hence Bj represents the j~th row
2

of the matrix (Lij)' Define the trajectory A by
I(t) = J B.(t)xv, , t > 0.
521 3 i

Then for each t > 0, 8q > 0 can be chosen such that
I < ~kjsg .
Bj(t)lIX—Ce , je N,

and for 0 < s < g

sA~
e L(t)ﬂ)@X

A

e sA
I jlej (£)®(e vi)ll XOX <

C z e_Aj(soﬁs) < w
j=1

A

Hence, z(t) € SXQK oA’ €7 0, and I e TA. Since
3

If = < f,B, > v, = LE,v.)v. = LE, £ € S, 4,
El » 3 VJ jzl( J) j s X,A

o0

the mapping L is represented by the series z B.@Nj with convergence
j=1

in TA.

On the other hand, let there be given By Bysees satisfying condition

o
(7.4), then similarly it can be shown that the series Z B.QNj repre-
j=1
sents the linear mapping



- 99 -

o0

£ z <f,Bj>vj , fe8

=1 %A

in TA‘ Thus we obtain a second characterization of the elements in TA.

(7.5) Characterization (the rows)

Let W be a linear operator in X with domain containing the linear

o

span <v,,v,,...>, and put Bj = Z (in,vj)vi. Then ¥ is continuous
i=}
on SX’Avlff Bj € TX,A’ j € N,with

-Aes
Vt>oas>03c>ovjem'mj(t)"x € Ce 17,

We have W = Z

B.Qv..
jm1 3 3

A complete characterization of the rows and columns of the matrices
LA, . . ..
of elements in T is quite something, however, a characterization of

the entries is much more useful. The following theorem characterizes

the entries.

(7.6) Theorem

Let the infinite matrix (Lij) satisfy

—Ast A:s
. : 1 . 0,
(7.7 Yis09g50° SuP (e "ive ILlJI) <

i,jeN

Then L defined by

L= z L..v.@bvi
i,j *
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is in TA, and conversely.
Proof,

= ) Let t > 0, Then there are s > 0 and C > 0 such that

.3
“ijtezk

(e isiLijl) <C, i,j e N,

This yields the following estimate

A -tA 2 =2t 2X:s 2
le%"Le "I = Je“itet M8 L, 1% <
XK i3 ij

< Cz 2 e-Ajte“Ais < =
i,]
Since t > 0 has been taken arbitrarily, the result L ¢ TA follows.

) Let L ¢ TA Then‘v’pOElS)O:

kit Ajs sA -tA -
sup (e "l e lLij]) slle™ e l&zx <

is]
where L.,. = {Iv.,v.).
ij j’’i

We shall often employ condition (7.7). It is of great help in the con-
struction of examples and counterexamples. In the sequel, we shall
identify the space TA with the space M(TA) of infinite matrices which
satisfy condition (7.7).

The following lemma shows that the product in TA corresponds to the

matrix product in M(TA).
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(7.8) Lemma

Let F,S € TA. Then the matrix of Ro S is given by

5 = g, . i, ]
(Roo)ij zE}Riz TR i,j ¢ N

where each of the series converges absolutely.,
Proof. Let t > 0, 1,j ¢ N . Following Theorem (6.6) there are s,s. > 0

0
such that

At =Agsg
ng CS e le

iA

and

CR e&}\RSO e"'A is

v
A

ig

for some C ,CR > 0. This leads to the following estimate

5
rsf v ~hst
]e 1 (gglgi£32j> e ] [ <
< z (}ellsﬁiz §l£50|leklsgs A tle %kQSO)
=1
L]
-3
s (f )

[+

Thus ( Z RS 23) is an element of M(TA). Finally we have

z(z RS, )v @v, =

i,j

= LU LR S s v))v.@v.
i,j(ﬁ,k i2°kj "k’ joi
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i

(y ) ( ; \
B, v,®v, |- z 5 . v.9v
\i,ﬁ i2 271 3ok kj ] k}

ReS,

The conjugation(:fTA-+'ﬁAinduces a conjugation on M(TA). The precise

result is given in the following lemma.

(7.9) Lemma

Let L ¢ TA. Then L€ ¢ TA’ and

c -
L= )} I..(v.®v,)
P 3 | i
i,j 3% 4
where convergence of the series is in TA’

Proof. From Theorem (7.8) we obtain

.
L(t) = Z'e J Lijvj®vi , t >0,

i,j
with convergence in Sxﬁm,l@A for each t > O, Hence we find
“Ast=.. v.Qv. =
L(t)* = z e JtLJl Vi VJ
i,j
= ze-;\iti.. v.9v, , t >0
Lo it 34
1,1
with convergence in SX@K,A@E for each t > 0.
1f L ¢ TA, then the matrix elements L., satisfy.V__.3 :

ji £>07s>0

sup (e_kitekjs|z..|) < o,
. L ji
1,1
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(7.11)

(7.12)
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Conversely, if the matrix (Qij) satisgfies, Vt>033>0:
sup e—AiteAj @..] <=,
. % ij
1,7

then (éji) is the matrix of an elements in TA.

Thus we arrive at the following theorem,

Theorem

Let (Qij) be an infinite matrix. Then

Q= 14 v;®v;
23
is an element of TA iff the matrix elements Qij’ i,j ¢ N, satisfy

-d:t A
. i
Vt>03s>0°§u? (e e ]

flog; <= .
1,]

.. = <y, S
We note that QlJ vl,QvJ

As a corollary of Theorem (7.6) and (7.10) we derive the following

Corollary

The matrix (Eij) represents an element of EA if and only if it satig-

fies the condition (7.7) and (7.11).

In the following section we introduce the class of weighted shift

operators. This kind of operators plays an important role in a lot of
computations in mathematical physics (cf. the annihilation- and creation
operator in a suitable representation). Further, because of their simple

structure, the above-mentioned class provides the necessary illustrations

of the theory.
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The class of Weighted shifts

For convenience we first introduce a set 9A of diagonal operators. A
diagonal operator I is a linear operator in X which is well-defined
on the linear span RSP PYRERES and which operates on this span as

follows:

with 5j € €. Hence, the matrix of D is diagonal. Following Theorem

(7.6), D ¢ TA if and only if

-A:t
Vt>0' s?p (lﬁjle 17) € »

Hence, D% is also in TA, and D is extendable.

Definition
DA c EA denotes the set of diagonal operators D in X which satisfy

-A:t
Vt>0. sup [6.]e "1 < w

jeN

where Sj, j € N, are the diagonal entries of the matrix of D.

This section contains a first investigation of the special class of
elements of TA established by the weighted shift operators or, shortly,
weighted shifts. A weighted shift ¥ is a linear operator in X which is
well defined on the linear span VY sVnseea>, and which operates as fol-

lows

Wv, =

; mjij , j e N,

with wj € €, j ¢ N, Hence, W is uniquely determined by its matrix with



(8.2)

(8.3)
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respect to the basis (vj) given by

ij 7030, 500 0PI €N

where qak denotes Kronecker's delta. Then following Theorem (7.6) the

linear mapping W ¢ TA if and only if

=h:t A: .48
. +1
Vt>03s>0' S?P (fwjie J7e"1*17) < =

and W° ¢ TA if and only if

Xj__ls) < ®,

-Ast

Vesodssgt sup (luy_jle"dve
i>1

Since Aj-l < Aj it is clear that continuity of ¥ implies continuity

of W°, Hence, a continuous weighted shift is extendable.

Condition (8.2) can be rewritten into

A,
+1
V, . .3 . sup Ia.lexp{-—-x.t(] - —3-—)} < o,
> > > AL
t>07s8>0 jeN h| J i
In the remaining part of this section we impose the following condition

on the eigenvalues of A,

aMyje]I: i%?l <M.
3
This condition is not very severe; they imply the following order esti-
mate, Aj = O(Mj). Less severe conditions restrict ;he number of weigted
shifts in TA. If condition (8.3) is dropped, then —i%i-+ ®, ] + =, Let
U be the unilateral shift given by &vj = Vj+l’ j e lg. So U is a

bounded operator on X. Suppose U ¢ TA. Then there should be s > 0 such

that



(8.4)

(8.5)

(8.6)
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M
o)
i+l Xj+]

sup (eAj+]T_xj) = sup e < o,
jeN jeN
A
Since Aj + @ and 3 50, the assumption U ¢ TA yields a contradic-

tion. Hence U ¢ TA, If the eigenvalues Aj do not satisfy condition
(8.3), there only occur Hilbert-Schmidt operators in EA‘
Because of condition (8.3) it follows that (8.2) reduces to
v sup (Im;le_ljt) < o,
£>0
jeN
So the following characterization is an immediate comsequence of Defi-

nition (8.1) and (8.4).

Characterization

Let W be a weighted shift. Then W € TA iff there exists a D ¢ DA such

that ¥ = UD.

The following definition generalizes the notion of weighted shifts,

Definition
A linear operator W(n) in X is called a weighted n—shift, n ¢ N y {0}
if W(n) satisfies
W(n)v. = wgn)v. ,n¢ N
] ] I%n
(n)

with mj € €.

Hence, a weighted O-shift is a diagonal operator, a weighted I-shift is
an ordinary weighted shift. Let W(n) be a weighted n-shift with weight

gsequence (an)). Then W(n) € TA if and only if
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(8.7) VesoJss0f SUP (v{ e i%er %) < w .
jeN J

Because of (8.3) there exists M > 0 such that

So (8.7) is equivalent to
(8.8) V. __.t sup (ian)le-kjt) <,
t>0" .
jeN

This yields the following characterization.

(8.9) Characterization

Let W(n) be a weighted n—shift, n ¢ W u {0}. Then W(n) € TA iff there
exists D « Dy such that ™ =y,

Since U ¢ EA and D ¢ EA for all D ¢ DA’ from (8.9) we derive that

every weigthed n-shift, n ¢ N u {0}, is extendable.

(8.10) Definition

The operator W(—n), ne N, is called a weighted (-n)-shift if

- -n . .
W( n)vj = m§~n) Vjun s J>mn, 1 e N

(-n)

with mj e C.

If the linear mapping W(—n) € TA then it satisfies
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v 3 : (-n) | ~Ast X: s
t>0" >0 S.zil(le-n le™" 3% %) < =,

. i>n
or equivalently

(8.11) Vt>0: sup (|w§—n)le-Xj*nt) < o
jeN

b4
since Aj—n < Aj for j > n, j € N. The latter condition is equivalent to

- ")\‘t
(8.12) Vt>0: sup (lmg n)|e 17y < >,
. 3N

The implication (8.12) = (8.11) is trivial. In order to prove that

(8.11) implies (8.12), let t > 0. Then

sup (lwg"n)‘e“}\jt) - sup ([wg"n)le-()\j/xj.'.ieaakj-}-n—]/)\j-}-n)kj,’.nt)
jenw jew s 3

A

-0
("'n) le-xj.‘_ntM ) <

sup (Jw,
jew

A,
with M > 0 such that "% <M, j ¢ N,
b}
So similar to (8.9) the weighted (-n)-shifts in TA are characterized

by

(8.13) Characterization

Let W("n) be a weighted (-n)-shift, Then W(_n) € TA iff there exists
D« DA such that W(“n) = D(U*)n.

Since U™ and D « DA both are extendable, each W(—n) is extendable, Fur-

ther, the product W(kl)w(kz) with k!,kz € Z 1is a weighted (k1+k2)-shift
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(ke

and the conjugate (W ) is a (*kl)-shift. So the weighted k~shifts

k ¢Z, establish an involutive semi-group in EA’

The weighted k—shifts, k ¢ Z, span the algebra TA in a very special

way.

{(8.14) Theorem

(k)

Let L ¢ TA with matrix (Lij)' Define the weighted k-shifts ¥ by

W(k)vj - Lj+k,j Vi j > max{0,~-k}, j € N,

where k ¢ Z. Then W(k) € EA and Z W(k) represents L. This series
keZ

converges absolutely.

Proof. The eigenvalues Aj of A satisfy the following estimates

For n ¢ W u {0},

(x) etj+n® < e"}‘n(30~s)e}‘j*n50

with j ¢ N, sg > 0, and 0 < s < Sg° For n ¢ N,
(+9) e At o omAn(tmtg) Ajtg

0> 0 and t > tO.

with j e N, j>n, t
First note that it is obvious that each W(k), k ¢ Z, is continuous
and hence extendable (cf.(8,9) and (8.13)). So we only prove the second

assertion, Let t > 0. Then there exists s > 0 such that

HeZSALe"itA

[ < o,

XX

For m ¢ N u {0} by (%) we have
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w® 1/2
sA_(n) -tA ~ApS 28Mn+j -taj 2
Te™ W™ e "oy < e Y e Lot ;e |

_;)\ —
VnS eZSALe étA

gy
For n € N by (**) we have

® . ey, o\1/2
eSAW(—n)e—tA X < e-%knt( ) ]eSXJ“nLj e £t3312)

j=n+l s

< e"p‘ntﬂeZSA e-%tA"X@( )

A combination of the above results yields for all Nl’N2 ¢ N

N

2
I ety o
k=~Nl
N, Ny
2sA. -itA -iA.t ~An,8
< 1l e?5Are ||X®X(2 Rt LN n)
n=1 n=0
Hence, the series z eSAW(k)e-tA converges absolutely in X8X,

keZZ
Since X®X is a Hilbert space absolute convergence implies convergence

and therefore

eSAﬂe-tA - 2 eSAW(k)e—tA,
keZZ

Thus we have proved the second assertion,

Since all weighted k~shifts, k € Z, are extendable, the following corol-

lary is immediate.
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(8.15) Corollary

The space TA in Theorem (8.14) can be replaced by TA'

For the weighted k-ghifts W(k)

spectral properties can be discussed
in detail and eigenvectors in Tx A and SX 4 can be constructed. This
? ¥

may be a subject for further investigation,

9. Construction of an analyticity space Sy A for some given operators im X
]

Given a finite number of linear operators in a Hilbert space X, the
question arises whether there can be constructed nuclear analyticity
spaces on which these operators are continuous linear mappings. In this
section we shall show that for a finite number of bqunded operators on
X, resp. for a finite number of commuting self-adjoint operators in X,
such a construction is indeed possible. The proof of the results of
this section .is closely related to the theory on matrices of elements

in TA {cf. Section 7).

Let P be a bounded, self-adjoint operator on X. Following [Hal, p.201,
P can be represented by a Jacobi matrix, i.e. there exists an ortho~

normal basis (er) in X such that the matrix of P satisfies
(Par,ej} =0 if |r-j|] <1, r,j ¢ N,

1f we define the positive self-adjoint operator A in X by
Aej=jej » e N,

followed by linear and unique self-adjoint extension, then we have the

following result.
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(9.1) Lemma

The self-adjoint operator P is an element of TA.

Proof. Following Theorem (7.6) we have to show

v i sup (e“JterS[(Pej,erﬂ) < oo,

3

t>Oas>0

Let t > 0, and let 0 < s < t. Then

sup e JEeTS | (Peyse)] s 1Pl It s o supy
r,]

where || Pll denotes the norm of P in B(X) 0

With the aid of Lemma (9.1) the more general case of an unbounded self-

adjoint operator 7 can be solved. To this end let (F denote

)\)kem
the spectral resolution of the identity for T and Hg’ £ e N, the

spectral projection

£ —p+1
%*(J [ )dr:k.
-1 L

Then X is decomposed into
[++]
X = '&)IHK(X)

1‘.‘:

where in each invariant subspace HK(X) the estimate
<
HTfKH £”f£H , fi € HE(X)’

holds true. So if we put TK = H£TII£ , then Tﬂ is bounded on X , and

there exists an orthonormal basis (eéﬁ))suCh that ((T£e§£)'e§£))) is

a Jacobl matrix.
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Define the positive self-adjoint operator A by
Aejfz) - (j+£)e§£), jeN, £LeN

followed by linear and unique self-adjoint extension. Then the eigen-—
values of A are the numbers An = n+] with multiplicity n, n ¢ N,

So all the operators e_tA, t > 0, are Hilbert-Schmidt and the anali-
ticity space SX,A is nuclear.

are the eigen-—

Put é;n) = egn+1-3)’ j = 1!,.u.,n. Then the vectors

J
vectors of A with eigenvalue An. Enumerating the

(n)
8
6§n)'s in the usual
way, we have constructed a complete orthonormal basis (gk) for X, which

yields the following theorem.

(9.2) Theorem
The operator | maps SX A continuously into itself,
14
Proof. Let £t > 0, and let 0 < s < t, Then
~tA

A
sup](es Te ~9,,9,)| =
£,k £k

= sup sup {e(r+n)se—(j+m)tl(Tegm)’e (n))i} =
r,n j,m J ¥

It

sup (e—m(t_s)sup (erse_jt‘(Tm€§m),€§m))|)) <

m r,]
< sup (me (t—s)) sup (™% <o, a
m Jr~3| <1

In order to establish a similar result for N bounded operators

31,32,...,BN on X, we shall construct an orthonormal basis in X such
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that the matrix of each Bv’ v =1,...,N, is column finite, i.,e, for

every j € N there exists r, € N such that

0

(Bv)rj =0 for r > y-

To this end, let (6r) be an orthonormal basis in X, Put ¢, = 61. There

I

exists an orthonormal set {82,23,.‘.,ak }u {el} with L (n+1) + 1,
1
such that

< =
Bvel € el""’akl>, Vo= 1,.04,N

and

52 L
1

Similarly, there exists an orthonormal set {ek IRTRRRPLN }i{el,...,ek },
1 2 1
kz < 2(n+1) + 1, such that
Bvez € <€iyeaesg >, V= lyeae,N

2
and

63 € <Ql,...,€k2>»

Continuing in this way we derive sets {ek£ 1+1,“..,ek£} with

k ~ +I,“'}€k }J-{Ql,...,ék _ } Such that

k < £{(n+1) + | and with {¢
£ £-1 12 £-1

Byep € ety > v S lyees,N

and

6£+l € <e1,...,ek£> .

Thus we obtain an orthonormal basis (ar) in X. This basis is complete



(9.3)

because 61 € <a1,€2,...,€k£
+1

1 £v £N, 18 column finite, because

>, £ € N, The matrix of each Bv’

(Bvej,er) =0 if r > JQN+1) + 1,
Now define the positive self-adjoint operator A by
Aej=jej,je]N,

followed by linear and unique self-adjoint extension. Then

Theorem

The linear operators Bl""’BN map the nuclear analyticity space SX A
»

continuously into itself.,

Proof., Let v ¢ {1,...,,N}, and let t > 0, s > O with 0 < 8 < ﬁéT' Then

-jt rs _
sup l(Bvaj’er)le e =
r,]
= ~-jt rs
sup (J(Bvej,er)[e ™) <

1Sr<j(n+1)+1

IA

1B lle® sup &3 (7D o o5yp

jeN
With the aid of Theorem (9,3) we can extend the result of Theorem (9.2)
to hold true for a finite number of commuting self-adjoint operators
in X. Let TI’Tz"“’TN be N commuting self-adjoint operators in X with
resolutions of identity (Fiv)) , V= 1,.0.,N, So their spectral projec~
tions commute, i.e. F(v)(Av)F(u)(Au) - F(U)(Au)F(V)(Av) where 4, &

denote Borel sets in R . Let ps Z e'NN , denote the projection
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m, = F(l)(ﬂl,] < Al < 21)000 F(N)(£N~l < Al < KN) .

Then for all 6£ € HZ(X)’ Tvﬁﬁ € HK(X) and HTvéﬁﬂ < ﬁvuﬁ£H .

Further, X = @ N H,@(X)'
LeW

Since each operator RlQéX) is bounded, there exists an orthormal basis
(a§£)) in HZ(X) such that for all v = 1,...,N,

£ . .
vej ,ei )) =0 if r > j(N+1) + 1,

Define the positive,self-adjoint operator A in X by

Aegz) = (j + l£l)a§£) s e BN, L e NN,
followed by the usual extensions (Note that [£] = 21+...+£N). Then the
eigenvalues of A are the numbers Ap = N+p, p ¢ N, with multiplicity
-
(N § 1). Hence, the analyticity space SX A is nuclear,
>

Renumerating the orthonormal basis (e§£)) yields an orthonormal basis

(gn)neni for X. We have

Theorem

Each of the operators T , v = 1,...,N is a continuous linear mapping

from into itself.
SX,A
Proof. Let v = 1,...,N, and let 0 < s < ﬁéTn. Then

sup | (e™r,e™ g 0,01 =

n,m
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= sup sup

(e"(lﬁi*'j)te(lkl*‘r)s
r,jeN h,leN

L) (k)
(Tvej ey )Ds

< ef supn(ﬂve-w| (t"S)) sup (e-j (t"(NH)B)) <o,
LeWN jeN
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