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Abstract

This report deals with the synthesis of band-limited
functions that arxe generated by properly low-pass filtering a
regular array of area-modulated unit-height pulses; simply
choosing the pulse areas proportional to the corresponding sample
values of the band-limited function to be generated, would result
in an error. The exact relationship between the pulse areas and
the corresponding sample values of the band-limited function to
be synthesized, is derived. Error reduction can be achieved by
using this relationship to calculate the pulse areas from the
required sample values; in principle, a band-limited function can
thus be realised to any degree of accuracy. It is shown which
amount of error reduction can be obtained, when only a limited
number of terms of the exact relationship is taken into account.
The application to computer-generated half-tone transparencies is
described.
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1. Introduction

The well-known sampling theorem [1] provides a mathematical
basis for the synthesis of coherent optical fields by means of
computer-generated transparencies [2-3]. The theorem tells wus
that a band-limited function can be described completely by its
values on a regular array of sample points. Moreover, it shows
that a band-limited function whose sample values are known, can
be synthesized by a proper low-pass filtering of a regular array
of Dirac functions; the Dirac functions must be centered at the
sample points and their "masses" must equal the corresponding

sample values.

In practice, when synthesizing a band-limited function by
low-pass filtering an array of Dirac functions, the practically
unrealizable Dirac functions have to be approximated by
realizable functions. In the case of computer-generated
transparencies, for instance, a Dirac function will often be
approximated by a fully transparent dot on an opaque background,
the area of the dot being proportional to the mass of the Dirac
function. It will be clear that such a dot represents a Dirac
function only if the dot size remains sufficiently small.
Restricting ourselves to small dot sizes, however, we find
ourselves limited in the dynamical range that can be reached in
practice. We therefore lock for a way that allows us to enlarge

the dot size.



If, in the synthesis procedure mentioned above, we simply
substitute for a Dirac function a function that approximates it
more or less, an inevitable error will always occur in the
band-limited function being generated at the output of the
low-pass filter: the function will be "distorted." In a previous
paper [4] we have derived a pgeneralized form of the sampling
theorem, in which the sample values of the band-limited function
to be synthesized are "predistorted"; this generalized sampling
theorem should be used in the case that Dirac functions are
replaced by practically realizable functions. Applying
predistortion, we can, in principle, completely eliminate the
distortion that otherwise occurs in the band-limited function. In.
the case of computer-generated transparencies, predistortion
implies that the dot size (which need not remain small) is no
longer proportional to the sample value at the corresponding
sample point, but is determined, even in a nonlinear way, by

neighbouring sample points, too.

In this report we shall consider the synthesis of coherent
optical fields by means of a computer-generated transparency that
is based on area-modulation of a regular array of unit-height
pulses. In order not to rest too heavily on Ref.4, the
derivations given there are partly repeated in this report, but

now with emphasis on the special case of pulse-area modulation.

The way in which a two-dimensional band-limited function can



be synthesized by means of properly low-pass filtering a regular
array of area-modulated (circularly-shaped unit-height) pulses is
presented in Section 2. In particular, the relationship between
the pulse areas and the corresponding sample values is derived
[see Eq.(2.18)]. This nonlinear and nonlocal relationship is the

main result of Section 2.

The basic relationship given by Eq.(2.18) is linearized in
Section 3. The linearized version provides the basis for a simple
predistortion scheme. We investigate which error reduction can be

achieved by such a simple predistortion,

If the error reduction that 1s obtained by this simple
predistortion scheme is not sufficient, a more sophisticated
scheme must be derived. We therefore find, in Section 4, the
inverse of Eq.(2.18) [see Eq.{(4.6), which is the main result of
Section 4}]. The error reduction that 1is achieved by using
Eq.(4.6) depends on the number of terms that we take into
account. Several cases will be described and it will be shown
that a substantial error reduction can be achieved, even if we

restrict ourselves to a small number of terms.

The application to computer-generated transparencies 1is
described in Section 5. In that final section we also describe
how we can synthesize, to any degree of accuracy, real or complex

light amplitudes by using holographic concepts.



We conclude this introduction with some remarks about
notation. Bold-face lower-case characters will throughout be used
to denote (two-dimensional) column vectors whereas bold-face
upper-case characters will denote matrices; thus, x will denote a
space vector, u a spatial-frequency wvecter, and j,k,mmn
integer-valued vectors, while X, U, and I denote the sampling
matrix, the periodicity matrix, and the unit matrix, respectively

[see also Ref.5]. Vector and matrix transposition will be denoted

u ]t
1'72°

denotes the inner product Uy X, X, . In integrals, the

by the superscript t; thus utx, with x.—[xl,x2  and u={u

expressions dx and du are used to denote the products dxldx2 and

dulduz, respectively.



2. Generation of a two-dimensional band-limited function

We consider a two-dimensional function ¢(x) whose Fourier

transform
p(u) = J @(x)exp[—iutx]dx (2.1

has a finite support @}, i.e., ¢(u) vanishes outside the frequency
interval uefl. Throughout this report, the Fourier transform of a
function 1is denoted by the same symbol as the function itself,
but marked by a bar on top of the symbol; furthermore, if not
stated otherwise, all integrations and summations extend from -=

to +o, The periodic extension of @(u), with periodicity matrix U,

can be expanded into a Fourier series according to

E @(uwilm) = det(X) } @mexp[-iutXm], (2.2)

where a matrix X [and its determinant det(X)] is introduced,
which is related to U through the relation x“U-271. If the
periodicity matrix U is chosen such that neighbouring replicas of
@(u) [see Eq.(2.2)] do not overlap, then, for ucfl, @(u) can be
expressed in the Fourier expansion given in the right-hand side

of Eq.(2.2)



e(u) = det(X) } wnexp[—iutXm] {uenl) (2.3)

and the expansion coefficients ¢, are given by the relation

det(X)p Eﬁﬁi J #(wexp[iu"Xm]du. (2.4)
Q

Since the right-hand side of Eq.(2.&) equals det(p(Xm), we
conclude that the expansion coefficients ¢, are equal to the
sampling values ¢(Xm). Applying an inverse Fourier transformation

on Eq.(2.3), we get

o(x) = } o E%fﬁ _[ exp|iu" (x-Xm)]du. (2.5)
Q

Equation (2.5) tells us that ¢{x) is completely described by its
values @(Xm)=¢m on the regular array of sampling points x=Xm, and
thus represents the well-known sampling theorem [1] for
band-limited functions; hence, the matrix X can be interpreted as
a sampling matrix, If the frequency range ft is such that its
periodic extension with periodicity matrix U fills the frequency
¥
plane completely (and without overlap, of course), then the area

of 0 is equal to det(U); we shall throughout assume that the

condition of complete filling without overlap is met.

It is well known that when the regular axrray of Dirac



functions } ¢m§(xtlx-m) forms the input of a low-pass filter that
passes all frequency components in the range weQl and blocks all
other components, the band-limited output signal will have the
form of Eq.(2.5). Instead of a sequence of practically
unrealizable Dirac functions ¢m§(x_1x-m), we usually apply to the
input of the low-pass filter an array of practically realizable

functions p(X-lx-m;¢m), say:

B0 = ) P xemivy). (2.6)

[In the case of computer-generated transparencies, for instance,
we often use an array of area-modulated unit-height pulses.] The
function p(X-lx;¢) depends on the variable x, with parameter i;
different values of this parameter determine different members of
the set of p-functions, which may differ in their shapes. [In the
case of area-modulated unit-height pulses, again, ¥ would be a
measure of the pulse area.] A p-function may be chosen rather
arbitrarily; we only require that its Fourier transform ﬁ(xtu;¢)

can be expanded into a Taylor series around the center value ¢c
o

P(Xwiy) = } T w (- )" (2.7
r=0

As an example we consider a function that can be used for



computer-generated transparencies: a unit-height pulse having a

circular shape with variable radius (xtx)%

1 1 for xtx < (%5)2¢
p(X "x¢) = ¢ 9 (2.8)
0 for ="x > (%&)7¢.

The constant & can be chosen arbitrarily, at least for this
moment; we shall relate it to the sampling matrix X in due

course. The Fourier transform of this function p(X_lx;ﬁ) reads

2 3, (G108 /$)
Py - ¢ T
kol /P

(2.9)

with a=(utu)5, and can be expanded in the form of Eq.(2.7) with

O (xfuy = ZLE) I, Gt ) (2.10a)
p det(X) "e ’ |
lzaffJ;

1'(11{t ) = 1r(1:E):2 AINCTIRTIN, .
P u) = det(X) 0 o) o) |
X w - r(s6)2 (1T Leogy 2T D I Cog )

det (X) r! (L‘UE«/\b_c)r-l

(r=2,3,...); 100

Egs.(2.10a,b) are, in fact, special cases of Eq.(2.1l0c). Note

that in the special case of ¢Cm0, Egs.(2.10) reduce to



02 xtuy = 0 (2.11a)
Lo oty o 70)° (2.11b)
PXW) = 3 (%) ‘

2 r-1 2(r-1)
ro ot e (-1)7 (ko) -
PO = T00 T (r=2,3,...). (2.11c)

We now use the sequence of p-functions given by Eq.(2.6), as
the input signal of a low-pass filter that passes all frequency
components in the interval wusfi and blocks all frequency
components outside that interval. The band-limited output signal
of the low-pass filter can be represented in the form of
Eq.(2.5). In this section we shall derive the relationship
between the sample wvalues Cn of the output signal ¢(x) and the
parameter values wm of the input signal %(x). We shall find this

relationship via the frequency domain.

The Fourier transform of the input signal ¥(x) given by

Eq.(2.6), reads

$(w) = det(X) §I3<xtu;¢_)exp[-iutx-n1 -

- det(X) E expl-iutXm) E Tpxtuy (v )" (2.12)
m r=0
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where the Taylor series expansion [Eq.(2.7)] has been
substituted. The Fourier transform of the band-limited output
signal o(x) 1is given by Eq.(2.3). We require that in the
frequency interval uefl these two Fourier transforms [Egs.(2.3)
and (2.12)] are identical. We now expand rﬁ(xtu) in a Fourier

series in this interval, yielding

T5xtay - E rpkexp[-iuth} (uen) (2.13)
k

with expansion coefficients rpk=given by the relation

1 . .
rpk - S ® I 5 (X“u)exp [ iutXk) du; (2.14)
Q

note the small difference between Eqs.(2.3) and (2.4) on the one
hand and Eqs.(2.13) and (2.14) on the other. Substituting

Eq.(2.13) into Eq.(2.12), we arrive at

P(u) = det(X) } exp( - i Xn] } W BT E Tpyexp[ - iuKk]
m =0 k
{us=l) , (2.15)

which, after a suitable transformation of the summation wvariables
(viz., first making the substitutions m -+ k and k - m -k , and

then the substitutions m -+ m and k =+ k), can be expressed as



11

P(u) = det(X) § exp[-iu Xn] } } n_k(¢k—wc)r (uel). (2.16)
=0 k

Identity of the Fourier transform [Eq.(2.3)] of the output signal
and the Fourier transform [Eq.(2.16)] of the input signal in the

interval uwefi, implies the important relationship

r r 0- r r
som-§ } Po (V¥ = PO +§ } Pk ¥e) (2.17)
—=0 k =1 k

between the output sample wvalues ©n and the input parameter

values ¢n. With @C-Oﬁ(O), Eq.(2.17) can be expressed in the final

form
o0
T
r~1 k
Let us now consider again the case of area-modulated
circularly-shaped unit-height pulses described by

Eqs.(2.8)-(2.11). The offset wvalue wcwoﬁ(O) follows directly from
Eq.(2.10a) and takes the value wc-[x(sg)z/dec(x)wc. The

coefficients (r=1,2,...) follow from applying the operation

r

Py
described by Eq.(2.14) to the functions rﬁ(Xtu) defined by
Eqs.(2.10b,c). In order to calculate the coefficients rpk we must

choose the frequency interval § and the periodicity matrix U (and
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sampling matrix X). We shall throughout consider two cases:

{i) rectangular sampling, with the sampling matrix X and the

periodicity matrix U equal to

€ 0 27/€ 0
X - U = (2.19)

0 ¢ 0 2/t

respectively, and the frequency interval Q1 as depicted in Fig.1l,
and
(ii} hexagonal sampling, with the sampling matrix X and the

periodicity matrix U equal to

£/2 £/2 2n/¢€ 2n/€
X - U - ] (2.20)
£f372 -¢/3/2 2n/ef3  -2n/8/3

respectively, and the frequency interval @ as depicted in Fig.2
[see also Ref.5]. Note that the sampling matrix has been chosen
in such a way that a periodic extension of a circle with radius
}¢ [and normalized area =), see Eq.(2.8)] yields an array of
circles that touch but do not overlap each other (see Fig. 3 for
the rectangular case and Fig. 4 for the hexagonal case). Since
n(h&)z represents the area of such a circle and det(X) represents
the area of an elementary cell of the periodic array, the
quantity ﬂ(ké)zfdet(X) has a clear physical meaning: it expresses
the packing density when a plane 1s packed with circles that

touch but do not overlap; in the remainder of the report we shall
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i
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Figure 1. The support O for rectangular sampling.

Figure 2. The support {1 for hexagonal sampling.
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\JAAT =

Figure 3. The sampling geometry for rectangular sampling.

Figure 4. The sampling geometry for hexagonal sampling.
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throughout denote this quantity by D. Note that for rectangular
sampling D equals Drect=ﬂ/430.78540, while for hexagonal sampling
D equals Dhex=ﬂ/2J§-0.90690; this-shows an advantage of hexagonal
sampling over rectangular sampling, viz., a higher packing

density.

We have calculated the coefficients rpk for the special case
of ¢C=0. Note that for this special value of ¢C the first-order
texrm lﬁ(XFu)=ﬂ(%é)2/det(X)-D is independent of the frequency u

[see Eq.(2.11b)] and hence the first-order coefficients 1pk

vanish for all wvalues of k except for k=0; the coefficient lpo

takes the wvalue D, which equals Drect-w/4—0.78540 for rectangular

sampling and D X-ﬂ/2J§=0.90690 for hexagonal sampling. The

he

higher-order cocfficients rpk (r=2,3) for small wvalues of
k:=[kl,k2]t are listed in Tables la and 1lb for the rectangular
case (in which case the coefficients possess 8-fold symmetry,

with symmetry axes k,=0, k =0, k -k2 and k --kz) and in Tables 2a

1 2 1 1

and 2b for the hexagonal case (in which case the coefficients

=0, k2-0, kl=k2,

kl=-k2, k1-=2k2 and k2-2k1). In principle, we can find analytic

expressions for

possess 12-fold symmetry, with symmetry axes kl

rpk, which we did for the second-order

coefficients 2pk. For rectangular sampling we have (with Osklskz;

the remaining coefficients follow from the symmetry properties)
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2 T t
Pr = " 193 for k=[0,0] (2.21a)
2o = o ZCD) o k0,0 " with me1,2, ... (2.21b)
K 2
64m
2pk -0 for k={m,n]" with n=1,2,... and Odmsn. (2.7lc)

For hexagonal sampling we have (with 052k <k

: aini
15K 5 the remaining

coefficients follow from the symmetry properties

2 Sw3 t

P = - for k=[0,0] (2.22a)
4323

2 T |

Pk - for k=[m,2m] " with m=1,2,... (2.22b)
144/3n

’py = —— [4E(mtn)+E(2m-n)+£(2n-m)]

96{m-n)

for k-[m,n]% with n=1,2,... and O0<?m<n, (2.22¢)

where we have introduced the function f(m)-2sin(2rm/3)/mJ§.

Equation (2.18) explicitly expresses the sample values ? of
the output signal in terms of the parameter values ¢m of the
input signal, and can be interpreted as the Volterra series [6-7]
describing the input-output relationship of a nonlinear system.
In the next section we will study which errors occur when we
approximate this nonlinear system by the linear term of its

Volterra series.
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3. The linearized system

In this section we investigate which errors occur when the
nonlinear system equation (2.18) is approximated by its linear

term

Ty Pe } 1Pm_k(¢k-¢c)- (3.1)
k

The error between the output signal o of the linearized system
[described by Eq.(3.1)] and the output signal “m of the exact
system [described by Eq.(2.18)], is given by the higher-order

terms of Eq.(2.18)

r=2 k

We will study this error for the case of area-modulated circular
unit-height pulses. Since in that case @C-Oﬁ(O)=D¢C and l13(0)==D
[see Egs.(2.10a,b)], we can as well express the linearized system

in the form

T = § 1pm_k¢k; (3.3)
k

the coefficients lpk still depend, of course, upon the choice of

the center value ¢C.



18

Let us first consider the case ¢c-0, for which case the
coefficients rpk {r=2.3) are 1listed in Tables 1la,b for
rectangular sampling and in Tables 2a,b for hexagonal sampling;
we note that for this wvalue of ¢c the linearized system reduces
to 7m-D¢m. An absolute upper bound for the error Py Ty 1S DoV

given by the expression

lo -7l SE | } i | (3.4)
r=2 k

where we remark that the parameter % is restricted to the
interval 0=<y<l, since in the case of area-modulated circular
unit-height pulses we do not want te have pulses with negativé
areas nor pulses that overlap. Each of the summations E rpm-kﬁkr
(r=2,3,...) that arise in the right-hand side of Eq.(3.4), takes
its maximum absolute value for m=0, if wk is chosen equal to 1
for those values of k for which rpk is positive and equal to 0
for those values of k for which rpk is nepative., The second-order
term } 2pm_k¢k2 thus yields an error of 0.24223 in the
rectangular case and 0.43071 in the hexagonal case; since the
higher-order terms are much smaller, the absolute upper bound for
the right-hand side of Eq.(3.4) has the same order of magnitude.
0f course, such a large error value will not arise in practice.
However, straightforward calculation of the propagation of a
rectangular array of pulses with area values that alternate

between a high value wh and a low value wl according to
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P +P P -3
¢m = h2 1 + h2 1 cos{x(ml+m2)] (3.5a)

yields the rectangular array of sample values

T Y] A
rm= ) [30.00 25+ irm 2rt cosiaimpmy1] -

T ¢h+¢'1 o zthl(ﬂJ d‘lh/z) Y 2"1[’1‘]1 (ﬂw‘ ¢'l/2)
- 5 + - cos[n(m1+m2)]],

(3.6a)
whereas the hexagonal input array
¥, +29 P -9
~ "h 71 h "1 2=
wm - 3 + 3 2 cos| 3(m1+m2)] (3.5b)
yields the hexagonal output array
. ity Lo 3 2nf /3)-Sby 3, (2m b /3)
“m = 273 3 ﬂ
2 zr + 3.6b)
cos| 3(m1 m2)} . (3.

Comparing these output signals [Egs.(3.6)] with the signals that
arise at the output of the linearized system, shows that in the

practical case ¢h=1 and wl-O the error T0™%0 takes the wvalue
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ﬂ/S-Jl(n/JE)/215=0.197ﬁ0 for rectangular sampling and the value
ﬁ/3J§-J1(2w/3)/J§=O.27633 for hexagonal sampling. We remark that
the arrays given by Eqs.(3.5) and (3.6) have Fourier transforms
with components at the origin and at the vertices of the
intervals @ , i.e., with c=(utu)h—ﬂJ§/ﬁ for rectangular sampling
and with Oﬂ(utu)h‘&ﬂ/3f for hexagonal sampling (see Figs.l and
2). We conclude that the simple approximation 1m=D¢m might yield

large errors.

The reason for the large errors that arise in the case of
¢C=0 is, of course, the fact that ¥ may take wvalues in the
interval 0=<y<1, whereas we have expanded ﬁ(Xtu:¢) in a Tayler
series around the center wvalue ¢c=0. We might expect that an
expansion around a center value somewhere in the middle of the
interval would yijeld a much better result. We now try to find an

optimum for this center value.

Let us investigate how cleose the linearized system given by
Eq.(3.3) with ¢c#0, resemblies the exact system given by
Eq.(2.18). We therefore apply to the linearized system the array
of alternating parameter values given by Egs.(3.5), for which the
exact system yields the array of alternating sample values given
by Eqs.(3.6). The linearized system responds teo this input array

with the output array

P+ ¥ -9
’Ym ='Z [h2 1 + JO(” /‘bc/z) _hi—l cos[w(ml+m2)]] {3.7a)
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in the rectangular case and with the output array

P, +2 ¥ -y
Yo = T [+ Soenliyn 5t 2 costBmpmpl] )

in the hexagonal case. Comparing Egqs.(3.6) and (3.7) shows the
erYor @ - between the two output sequences. When we substitute
the values of ¢h and wl for which this error takes its maximum
absolute value, and then minimize this maximum error with respect
to ¢c, we get an optimum for ¢c. We thus find for rectangular

sampling the optimum value when ¢C satisfies the relation

3, (n/J2)
JO(‘JL/‘!/JC/Z) -2 —7r/—72—, (3.8a)

ji.e., for ¢c=0.a7183, for which wvalue the error becomes 0.04419
when either ¢h or ¢l equals ¢C while the other one equals either
1 or 0; for hexagonal sampling we find the optimum value when ¢c

satisfies the relation

J, (2n/3)
Jo(znﬁ;ﬁ) =2 5 (3.8b)

i.e. for ¢c=0.47522, for which value the error becomes 0.06267
when either wh or wl equals ¢C while the other one equals either
1 or 0. When we compare these error values with the errors that
we found for ¢C=O, we conclude that the linearized system with

the optimum choice of ¢c according to Eqs.(3.8), is better than
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the simple system 1m-D¢m by a factor of about 4.4. The

coefficients for these optimum wvalues of ¢C are listed in

1
Pr
Table 3a for rectangular sampling and in Table 4a for hexagonal

sampling.

The concept of the linearized system allows us to achieve an
error reduction when we want to generate a band-limited function
by low-pass filtering a regular array of area-modulated
unit-height pulses. Let the sample values of the band-limited
function to be generated, be denoted by T If we simply take the
widths ¢n of the pulses equal to 7m/D, large errors may occur, as
we have shown in the first part of this section. These errors can
be reduced when we first apply a linear predistortion to the

sample values:
$ =)' (3.9)
m Ip-x"k )

k

is the inverse operator of as described in

where 1

I Pk
Eq.(3.3). As we have shown, an error reduction by a factor of 4.4
can thus be achieved. The coefficients lqk are listed in Table 3b

for rectangular sampling and Table 4b for hexagonal sampling.

Until now, we have based the analysis on the Taylor series
expansion given by Eﬁ.(2.7), and we have found an optimum

linearized system by finding the optimum value of ¢c. If the
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parameter values ¢m are restricted to a certain interval, there
exists a different way to find a linearized system, viz., via
power series economization [8] of Eq.(2.7) using an expansion
into (properly shifted and scaled) Tschebyscheff polynomials. To
show this, let us confine ourselves teo the parameter value
interval O=y=<l, in which case we can express ﬁ(XFu;¢) in the form
of a series of the Tschebyscheff polynomials T:(¢) [e.£f.

Eq.(2.7)]):

p(Xujy) = E RGEWT, (). (3.10)

r=0

Redoing the analysis of section 2 now results in the system

representation [¢.f. Eq.(2.18)]

T * 0- 1- 1
Pm = E } hn—k?r(¢k) = "h{(0) - "h(0®) + E 2 hn-kwk +
r=0 k k
b *
+ } } hm_k?r(¢k), (3.1
r=2 k

where wuse has heen made of the properties of Tschebyscheff

polynomials Tg(w)sl and T;(¢)=2w-l; the coefficients Th, are the

k

Fourier series expansion coefficients of rE(Xtu) [c.£.

Eq.(2.14)]. The first and second terms in the right-hand side of
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Eq.(3.11) represent a mere offset for the output value; the third
term represents the linearized system that we are looking for,
whereas the last term represents the error between the exact
system and the linearized system. We shall write the linearized

system that we have found via the Tschebyscheff polynomials in

the form
Ty ™ § hm—k¢k’ (3.12)
k
where h, =2 lh
k k’

As an example we consider again the case of area-modulated
circular unit-height pulses, described by Egs.(2.8)-(2.11). In

that case we have [using Eq.6.681.1 in Ref.9]

1
w2 [ pCwn T (89" ey -
0
i
= s aotag I8 Iy(xa) (3.13a)

Mt - 5<xtu;¢)T’{(,;,>(¢-¢2>“’d¢ -

E N
O Sy

LY

= s derm Y16 (o) -J,Ce)]; (3.13b)
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hence 05(0)wlﬁ(0)wo and
P = 1-..t
hi(Xu) = 2 "h(X u) =

2 23 (Mot) 23 (%0€)
x0s£)2 2N 1
" det(X) e [HpUf) - — 7

I (3.14)

The coefficients hk of the linearized system follow by expanding
E(Xtu) into a Fouriler series [see Eq.(2.14}]; these coefficients
are listed in Table 5a for rectangular sampling and in Table 6a

for hexagonal sampling. Note the close resemblance between the

1pk that we found in the

coefficients hk and the coefficients
case of the optimum linearized system [see Tables 3a and 4a]. The
inverse of the linearized system described by Eq.(3.12) can be

expressed as
¢m = } n-k'k’ (3.15)
k

where Bl is the inverse operator of h the coefficients By are

Kk’
listed in Table 5b for rectangular sampling and in Table éb for

hexagonal sampling.

To investigate how close, in the case of area-modulated
circular unit-height pulses, the latter version of the linearized
system resembles the exact system, we apply to this system again

the alternating input array given by Eqs.(3.5). The linearized
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system responds with the output array given by Eqs.(3.7), but now
with JO(ﬂJE:7§) replaced by

(20, (n/2/2)/ (7 /2/2) 11235 (%/2J2)- 23 (x/242) / (x/2/2))

and JO(ZnJE;/3) replaced by

(23, (x/3)/ (/32T (n/3)-20 (=/3) /(x/3)].

Comparing then again Eqs.(3.6) and (3.7) shows the error P Tm
between the two output sequences. This error now takes its
maximum absolute wvalue 0.04532 for ¢h=0.47833 and ¢1=0 in the
rectangular case, and its maximum absolute wvatue 0.06410 for
¢h=0.48101 and ¢1-0 in the hexagonal case., When we compare these
error values with the errors that we found for the optimum
linearized system, we conclude that the two linearized versions

are almost of the same quality.

If linear predistortion does mnot give sufficient exror
reduction, a more sophisticated way to reduce the errors must be
applied. This will be the subject of the next section, where the
inverse of the nonlinear system described by Eq.(2.18) will be

derived.
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4, The inverse system

Equation (2.18) can be interpreted as the Volterra series
[6-7] describing the input-output relationship of a nonlinear,
discrete system. It explicitly expresses the sample values P of
the output signal in terms of the parameter values wm of the
input signal. In our case, however, the sample values of the
band-limited cutput signal, which has to be generated, are given,
and we ask for the parameters of the input signal, We can
explicitly express ¢m in Py too, if we know the Volterra series
of the inverse nonlinear system. It is known [7] how the inverse
Volterra series can be determined: we shall indicate how it can
be constructed from the original series [Eq.(2.18)]}, using only

the expressions for the algebraic reversion of ordinary power
series [10].
Let ¢ be given as a power series in ¥

@=p1¢+p2¢2+p3¢3+ L (4.1)

The problem of series reversion is to find 3 as a power series in

@, i.e., to determine the coefficients fr in the expansion

2 3
P = flw + fzw + f3¢ R (4.2)
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The systematic way to do this is to write Eq.{(4.1) in the form

o - (¥ 4+ )

b = o —ap - (¥ a0, (4.3)
where the coefficients 9, {(r~1,2,...) are defined by

9Py = L, (4.4a)
qrpl = pr (r=2,3,...), (4.4Db)

and then substitute the formulas for the powers of :

1 2 3

Y o= flw + f2¢ + f3¢ S
2 2 2

¥ - (£,9° T

By equating coefficients of ¢ we get the formulas
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1
flqo = 4;9,

2 2
f2‘p = —qz(fltp) 3

3 3 2

which determine the coefficients fr successively. Substituting
these formulas in Eq.(4.2) and eliminating the coefficients fr’

we arrive at the expression

¥ = ape - qz(q1‘P)2 - q3(q190)3 + 2q2(qlrp)[q2(qlw)2] + ... . (4.5)

Formulas for power-series reversion up to a higher order are

available [10].

If we now compare Eq.{4.1) and Eq.(2.18), we note that a
multiplication with P, in Eq.(4.1) corresponds to a convolution
with rp in Eq.(2.18). Analogously, replacing in Eq.(4.5) any
multiplication with q, by a convolution with rq yields the

Volterra series of the inverse system
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%wc=§%m¢%wg

=

2 1 2
- } qm—k[ } qk-j(tpj-q’c)]
k i

3

1

3
tpicl ) My P30
]

+

2 1 2 1 2
2 E q__k[[ } U 3 (0q79 ) I } U3 } 45.n(Pn P ] }]
k 3 k| n

The sequences follow - wvia Eq.(2.14) - from their Fourier

r
I
transforms rd(xtu), which can be derived from the functions

rf)(xtu) through the relations [c.f. Egs.(4.4)]

faxwlptw = 1, (6. 7a)

T w @ w = 5zt (r=2,3,...). (4.7b)

Note that only the first-order term lp needs to be invertable.
The concept of the inverse system allows us to achieve a

complete compensation of the errors that occur when we want to

generate a band-limited function by low-pass filtering a regular

array of area-modulated pulses. Of course, the form of the
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inverse system as described by Eq.(4.6) is rather complicated,
and we have to restrict the number of terms in Eq.(4.6) that we
can take into account, when we apply nonlinear predistortion by

means of a computer.

Let us consider which error reduction can be achieved, in
the case of area-modulated circular unit-height pulses, when we
apply a second-order nonlinear predistortion. Let the sample
values of the band-limited function to be generated, be denoted
by T The second-order nonlinear predistortion now takes the

form

1 2 1 2
Ve = 2 1k - E 9k’ } qk_jTj-wc) ) (4.8)
k k i

where we have used the property that in the case of pulse-area
modulation ¢c=wc/D and lﬁ(0)=1/1f3(0)=1/D. When we apply the array

of alternating area values

1.+ Yy Y
h ‘1 h 'l
Tw™ "2t cos[ﬂ(ml+m2)] (4.9a)

1 +2y Yy Y
h 771 h 'l 2n
T = 3 + 3 2 cos[-ﬂj-(ml+m2)] (4.9b)

in the case of rectangular and hexagonal sampling, respectively,
to the input of the nonlinear system described by Eq.(4.8), the

array given by Egs.(3.5) will be produced at the output of this
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system; the values L and .31 can be expressed explicitly in terms
of the values ¢h and y')l. The error between P (the sample values
of the band-limited signal that is actually generated) and T
{the sample values of the band-limited signal that we want to
generate) follows from comparing Eqs.(3.6) and (4.9). When we
substutue the wvalues of v'.vh and gbl for which this error takes its
maximum absclute value, and then minimize this maximum error with
respect to ybc, we get an optimum for z[:c. For rectangular
sampling, we thus find the optimum value 1[)(;«0.38&92, in which
case the error takes its maximum absolute value 0.01723 for u’Jh=1
and ¢1=0.54414 or ¢h-0.18825 and y’:l—O; for hexagonal sampling,
the optimum value reads 1[:‘:-0.&3&55, in which case the error takes
its maximum absolute wvalue 0.02051 for th-l and 1})1—0.53335 or
¢h—0.15734 and 1,b1-0. When we compare these errors with the errors
that we found in the case of optimum first-order predistortion
(0.04419 for rectangular sampling and 0.06267 for hexagonal

sampling), we see that the optimum second-order predistortion

2

9 for

gives a much better result, The coefficients 1qk and
these wvalues of y’;c are listed in Tables 7a,b for rectangular

sampling and in Tables 8a,b for hexagonal sampling.

We finally consider the case vj:cmO, and investigate which
error reduction can be achieved when we apply second-order

predistortion, described by
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-1 -3\ 2 2
Yp=D 1D } | (4.10)

k

and third-order predistortion, described by

-1 -3\ 2 2 -4\ 3 3
¢m =D Tm C b } Pok"k D E Pokk *
k k
- 2
£00 2 Y B ) By (4.11)
k j

We apply the array of alternating area values given by Egs.(4.9)
to the input of the nonlinear correction system described by
Eq.(4.10) or Eq.(4.11), and determine those values Th and Ty for
which the error e (the difference between the sample values
of the band-limited signal that is actually generated and the
sample <wvalues of the band-limited signal that we wantc to
generate) takes its maximum absolute wvalue under the constraint
that the pulse-area parameter wm remains bounded by 0 and 1. In
the case of second-order predistortion, we thus find for
rectangular sampling the maximum absolute error 0.05479 for
7h=0.65766 and 71-0.327A9, while for hexagonal sampling we find
the maximum absolute error 0.08173 for 7h=0.72lh9 and 11»0.24607.
In the case of third-order predistortion, the maximum absolute
error for rectangular sampling takes the wvalue 0.02342 for
7h=0.64968 and 11=0.46144, while for hexagonal sampling the

maximum absolute error becomes .03620 for =(), 69187 and

h
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71=0.36356. All wvalues for the wvarious cases that we have
considered are collected in Table 9a for rectangular sampling and
in Table 9b for hexagonal sampling. We may conclude that the
quality of the predistortion scheme increases with increasing
complexity of the predistortion algorithm: lst order (no
correction), optimum or Tschebyscheff 1st order, optimum 2nd
order; note that in order to obtain a certain error reduction,
the optimum predistortion schemes have a lower complexity than
the schemes for which ¢Cm0. More complex, Thigher-order
predistorion schemes are necessary, of course, if a better error
reduction is required; such higher-order schemes can be found

along the lines described in this report.

When we want to use predistortion, we must restrict the

values te a certain range - - . This range should be
Tm 8¢ Tmin™~"max g

such that the resulting pulse areas wm are in the range O=<y<1;

hence, negative pulse areas and overlapping pulses are avoided.

Finding the maximum value of « and the minimum value of «y__
max min

(yielding the 1largest vrange - Yy such that for all

max 'min

situations the condition 0<y<1 is satisfied, is difficult. To get

an indication of Yna and Ymin' V€ apply as input array to the

x

predistortion system, an array Tm whose values alternate between

Ynax and Ymin fas In Eqgs.(4.9), with =T nax and leymin}’ and

find those values of vy and v . for which the system yields
max min

ulse areas ¥ that alternate between 1 and 0 [as in Egs.(3.5),
P m

with ¢h=l and ¢1-0]. These wvalues of Y ax and Ymin and the
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range -y for the various predistortion schemes have been

max 'min’

collected in Table 10a for rectangular sampling and in Table 10b

for hexagonal sampling. We expect that for rectangular sampling,

the optimum values of ~y and v . will be close to the wvalues
max min

in Table 10a, since the alternating array [Eq.(3.5)] of pulse

areas ¢m has a wh Vs, ¢l distribution that resembles the sign

distribution of the coefficient arrays and B this is not

by

9K
the case for hexagonal sampling. Hence, we may expect that in the
case of hexagonal sampling, the range will be somewhat smaller,

with a lower value of 7 and a higher value of 7y . than the
max min

values presented in Table 10b.
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5. Application to_computer-generated transparencies

The technique of predistortion as described above, can be
used in the synthesis of coherent optical fields, where a
computer-generated transparency whose transparency function is
given by $(x) [c.f. Eq.(2.6)] is illuminated by a plane wave of
monochromatic laser light, and the light behind the transparency
is low-pass filtered to construct the band-limited amplitude
distribution ¢{x) ([c.f. Eq.(2.5)] in the output plane (see
Fig.3). In many practical situations the computer-generated
transparency will be a half-tone transparency consisting of, for
instance, fully transparent .circular pulses on an opaque
background,; in this case we can use the formulas derived in this
report. Using predistortion in computer-generating half-tone
transparencies, we can extend the dynamical range of the
transparency, since we are no longer limited to narrow pulses in

order to avoid distortion,

If we use a half-tone transparency in the set-up of Fig.5,
we can, of course, only synthesize real and positive light
amplitudes. Moreover, to avoid negative pulse areas and
overlapping pulses, the sample wvalues Tm that we want to

== . upper
generate, must be restricted to the range YminS T max The upp

bound does not present a severe problem; it requires a mere

scaling of the light amplitude. The lower bound, however, cannot
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be solved that easily. If the required sample wvalues Tn extend
below Tmin’ negative pulse areas may arise. The best we can do in
that case seems to replace a pulse having a negative area by a
pulse having zero area; we must realize that an error will then
occur, The problem of negative pulse areas can be solved
completely, if we are allowed to properly modify the function
that we want to synthesize and bring the required sample values
within the necessary range. Such a modification is permitted in

the important case of computer holography.

Computer holography [2-3] enables us to realize a negative

real or complex band-limited light amplitude wcomplex(x)’ say,

whose Fourier transform ¢ (u) vanishes outside the interval

complex
ueﬂc, by means of a transparency that can itself, if used in the
set-up of Fig.5, realize the positive function

w{x) = b(x)+2Re{p (x)exp[iuzx]}.

complex
The additional bias function b(x) allows us to construct ¢(x) in
such a way that no negative pulse areas will occur in the
transparency. If the modulating frequency u is chosen properly,

the Fourier transform

*

p(u) = blu)+p (u-u_)+o (utu )

complex complex

consists of three non-overlapping components. By blocking in the
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transparency Fourier plane output plane

Figure 5. Synthesis of coherent optical fields.

Wx) Rx)
’jl.!,;‘Uol U
U- - ]
-3U
transparency Fourier plane output plane

Figure 6. Synthesis of coherent optical fields

using holographic concepts.
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Fourier plane all components except ¢ (u—uo) and shifting

complex
the optical axis over a distance u, the complex amplitude

@ (x) will oceur in the output plane (see Fig.6). In the

complex

case of computer holography, our transparency resembles the
computer hologram of Burch [11] rather than Lohmann's
detour-phase hologram {12]. In fact, predistortion as described
in this report cannoct be applied to the Lohmann-type hologram,
since in this type of hologram the pulses are not equally spaced.
Nevertheless, the method of predistortion outlined in this
report, allows us to synthesize band-limited complex 1light

amplitudes to any degree of accuracy.
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Table la. Coefficients 2

for wc-O in the rectangular case

kZ\kl 0 1 2 3 4 5
0 .01550
1 -.00732 .00205
2 .00298 .00051 .00013
3 -.00142 .00023 .00006 .00003
4 .00082 .00013 .00003 .00001 .00001
5 -.00053 .00008 .00002 .00001 -.00001 .00000
6 .00037 .00006 .00001 .00001 .00000 -.00000
7 -.00027 . 00004 .00001 .00000 -.00000 . 00000
8 .00021 .00003 .00001 .00000 .00000 -,00000
9 -.00017 .00003 .00001 .00000 - .00000 .00000
10 .00013 .00002 .00001 .00000 .00000 -.00000

Table 1b. Coefficients 3pk for wc-O

in the rectangular case
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k2\k1 0 1 2 3 4 5

0 -.20719

1 .04687

2 -.00586 .01260

3 .00000 . 00469

4 .00073 .00134 -.00315

5 -.00037 .00000 .00167

6 .00000 .00030 -.00059 -.00140

7 .00014 .00018 .00000 .00085

8 -.00009 .00000 .00017 -.00033 -.00079

9 .00000 .00008  -.00011 . 00000 .00051

10 .00005 .00006 . 00000 .00011 -.00021 -.G0050
Table 2a. Coefficients Py for wcnO in the hexagonal case
kQ\kl 0 1 2 3 4 5
0 .02121

1 -.00664

2 00115 .00360

3 .00017 .00135

4 -.00028 .00035 .00094

3 .00012 .00005 -,00049

6 .00001 .00012 .00016 .00042

7 -.00005 . 00006 .00002 -.00025

8 . 00003 .00000 -.00006 .00009 00024

9 .00000 .00003 . 00004 .00001 -.00015

10 -.00002 .00002 .00000  -.00004 .00006 .00015
Table 2b. Coefficients 3

Px

for ¢c=0 in the hexagonal case
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k2\kl 0 1 2 3 4 5

0 .64299

1 04164 .00127

2 -.00970 .00030 .00007

3 .00426 .00013 -.00003 . 00001

4 -.00238 . 00007 .00002 -,00001 .00000

5 .00152 .00005 -,00001 .00001 - .00000 .00000

6 -.00106 .00003 .00001 -.,00000 .00000 -.00000

7 .00078 .00002 -.00001 .00000 -.00000 . 00000

8 -.00059 .00002 .00000 -.00000 .00000 - . 00000

9 .00047 .00601 -.00000 .00000 -.000G0 .00000
10 -.00038 .00001 .00000 -.00000 .00000 - .00000
Table 3a. Coefficients Py for ¢c-0.47183 in the rectangular case.
k2\k1 0 1 2 3 4 5

0] 1.58587

1 -.10834 .01164

2 .03345 .00390 .00133

3 -.01574 .00188 -.00065 .00032

4 .00906 .00110 .00038 -.00019 .00011

5 -.00586 .00072  -.00025 .00012 - .00007 . 00005

6 .00410 .00050 .00017  -.00009 .00005 - .00003

7 -.00302 .00037  -.00013 .00006 -.00004 . 00002

8 .00232 .00029 .00010 - .00005 .00003  -.00002

9 -.00184 .00023 - .,00008 .00004 - ,00002 .00001
10 .00149 .00018 .00006 - .00003 .00002 -.00001
Table 3b. Coefficients lqk for ¢c=0.47183 in the rectangular case.
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kz\k1 0 1 2 3 4 5

0 .72383

1 .04024

2 -.00482 .00967

3 .00010 .00360

4 00052 00105 -.00240

5 -.00028 .00003 .00128

6 .00001 .00022 -.00046 -.00106

7 .00010 .00013 .00001 .00065

8 -.00007 .00000 .00012 -.00026 -.00060

9 .00000 .00006 - .00008 .00001 .00039

10 .60003 .00004 .00000 .00008 -.00016 -.00038
Table 4a. Coefficients Pr for wc-0.47522 in the hexagonal case.
kz\k1 0 1 2 3 4 5

0 1.41080

1 -.07653

2 .01028 .02818

3 .00115 .01077

4 -.00216 .00281 .00759

5 .0009%4 .00033 -.00400

6 .00009 .00092 .00128 .00343

7 -.00042 . 00047 .00016 -.00206

8 .00025 .00004 -.00051 .00072 .00194

9 .00002 .00024 .00028 .00009 -.00125

10 -.00014 .00015 .00002 -.00032 .00047 .00125

. . 1

Table 4b. Coefficients U

for ¢C—0.47522 in the hexagonal case.
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kZ\kl 0 1 2 3 4 5
0 .63769
1 04266 .00171
2 -.00969 . 00040 .00009
3 .00424 .00018 -.00004 .00002
4 -.00237 . 00010 .00002  -.00001 .00001
5 .00151 .00006 -.00001 .00001  -.00000 . 00000
6 -.00105 .00004 .00001 -.00000 .00000 - ,00000
7 .00077 .00003 -.00001 .00000 -.00000 , 00000
8 -.00059 .00002 .00001 -.00000 .00000 - .0Q0000
9 . 00047 .00002 - .00000 .00000 - .00000 . 00000
10 -.00038 . 00002 .00000 -.00000 .00000 - .00000
Table 5a. Coefficients hk in the rectangular case.
ky\k; 0 1 2 3 4 5
0 1.60097
1 -.11277 .01139
2 .03443 .00372 .00123
3 -.01612 .00178 -.00059 .00029
4 .00926 .00103 .00035 -.00017 .00010
5 -.00598 .00067 -.,00022 .00011 -.00006 . 00004
6 .00418 .00047 ,00016 -.00008 .00004 -.00003
7 -.00308 .00035 -.00012 .00006 -.00003 .00002
8 .00236 .00027 .00009 -.00004 .00003 -.00002
9 -.00187 .00021  -.00007 .00003 -.00002 .00001
10 . 00152 .00017 .00006 -.00003 .00002 -.00001
Table 5b. case.

Coefficients i in the rectangular
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kz\k1 0 1 2 3 4 5
0 .71855

1 .04102

2 -.004B3 .00949

3 .00013 .00354

4 .00050 00104 -.00235

5 -.00027 .00003 .00125

6 .00001 .00021  -.00045 -.00104

7 .00009 .00013 .00002 .00064

8 -. 00007 .00000 .00012 -.00025 -.00059

9 .00000 .00005 -.00008 .00001 .00039
10 .00003 .00004 . 00000 .00007 -.00016 -.00037
Table 6a. Coefficients h, in the hexagonal case.
k2\k1 0 1 2 3 4 5
0 1.42250

1 -.07902

2 .01062 .02858

3 .00106 .01089

4 -.00213 .00287 .00763

5 .00095 .00030 -.00402

6 .00008 .00090 .00130 .00344

7 -.00041 . 00047 .00014 -.00207

8 .00025 .00004 -.00050 .00073 .00194

9 .00002 .00024 .00028 .00008 -.00125

10 -.00014 .00015 .00002 -.00032 .00047 .00125
Table 6b.

Coefficients Bic in the hexagonal case.
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kz\k1 0 1 2 3 4 5

0 1.51606

1 -.08186 .00689

2 .02425 .00218 .00070

3 -. 01125 .00103 -.00033 .00016

4 00643 .00060 .00019 -.00009 .00005

5 -. 00415 .00039 -.00012 .00006 - .00003 .00002

6 .00290 .00027 .0000% - .00004 .00002 -.00002

7 -.00213 .00020 -.00006 .00003 -.00002 .00001

8 .00164 .00015 .00005 -.00002 .00001 -.00001

9 -.00129 .00012 -.00004 .00002 -.00001 . 00001
10 .00105 .00010 .00003 -.00002 .00001 -.00001
Table 7a. Coefficients lqk for ¢C=0.38492 in the rectangular case.
kz\k1 0 1 2 3 4 5

0 -.23340

1 .07633 .00459

2 -.02161 .00144 - .00046

3 .00991 .00068 ,00022 -.00010

4 -.00565 .00039 -.00013 .00006 -.00003

5 .00364 .00025 .00008 -.00004 .00002 -.00001

6 -.00253 .00018 -.00006 .00003 -.00002 .00001

7 .00187 .00013 .00004 -.00002 .00001 -.00001

8 -.00143 .000L0 -.00003 .00002 -.00001 .00001

9 .00113 .00008 .00003 -.00001 .00001 -.00000
10 -.00092 .00006 - .00002 .00001 -.00001 .00000
Table 7b. Coefficients 2 38492 in the rectangular case.

A

for ¢C-O.
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k2\kl O 1 2 3 4 5

0 1.37753

1 -. 06767

2 .00907 .02423

3 .00087 .00922

4 -.00180 .00244 .00646

5 .00080 .00025 .00341

6 . 00007 .00076 .00110 .00291

7 -.00034 .00040 .00012 .00175

8 .00021 .00003 .00042 .00062 .00165

9 . 00001 .00020 .00024 .00007 -.00106

10 -.00012 .00013 . 00002 .00027 .00040 .00106
Table 8a. Coefficients 1qk for ¢c=0.43455 in the hexapgonal case.
kz\k1 0 1 2 3 & 5

0 -.26691

1 .06413

2 -.00845 .02135

3 -.00059 .00808

4 .00150 .00218 .00561

5 -.00069 .00017 .00296

6 -.00005 . 00063 .00098 .00252

7 .00029 .00034 .00008 .00152

8 -.00018 . 00002 .00035 00055 -.00142

9 -.00001 .00017 .00020 .00005 .00092

10 .00010 .00011 .00001 .00022 -.00035 -.00091
Table 8b. Coefficients 2qk for ¢c—0.43455 in the hexagonal case.
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carrection c.f. ¢c T M wh ¢1 @, P error

lst oxrder P=v/D 0 . 78540 1 .58800 .19740
0 0 .19740

2nd order (4.10) 0 .65766 1 .60287 .05479
L32749 .25434 .38228

3rd order {4.11) 0 . 64968 1 .62626 .02342
LA46144 414772 48486

Tschebyscheff| (3.15) - .28012  .47833 .32544 04532
1st order .09556 0 .05024

optimum (3.9) .47183 .68114 1 .63695 .04419
1lst order 47483 47183 .51903
27744 47183 .32163
.09314 0 .04895

optimum (4.8) . 38492 .66938 1 .65214 .01723
2nd order .54339 .54414 .56062
.15682 .18825 .13959
-.00897 0 .00826

Table 9a. Ervors arising with alternating arrays for rectangular

sampling.
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correction c.f. ¢C T "1 ¢h ¢l N2 error

1st order ¥=r/D 0 .90690 1 .63057 .27633
0 0] .13816

?nd order (4.10) 0 . 72149 1 .63976 .08173
. 24607 .165911 .28693

3rd order (4.11) 0 .69187 1 .65567 .03620
.36356 .28233 .38166

Tschebyscheff (3.15) - .30187 .48101 .36597 .06410
1st order .06718 0 .03513

optimum (3.9) .47522 .76189 1 .69922 .06267
1st order .50348 47522 .93482
.29966 L47522 .36233
.06566 0 .03432

optimum (4.8) .63455 .73664 1 .71613 .02051
2nd order .56883 .53335 .57908
.15523 .15734 13472
-.00627 0 .00399

Table 9b. Errors arising with alternating arrays for hexagonal

sampling.
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correction c.f. Tmin Vnax range
lst order Yy /D 0 . 78540 .78540
2nd order (4.10) .14982 .63558 .48576
3rd order (4.11) .18529 .60011 .41482
Tschebyscheff | (3.15) .19977 .58563 .38586
opt.lst order | (3.9) .19740 .58800 .39060
opt.2nd order (4.8) .20200 .58339 .38139

Table 10a. Sample wvalues T max and Ymin for which the pulse areas

take the values 1 and 0, for rectangular sampling.

correction c.f. Yoin Ynax range
1st order Y=7/D 0 .90690 .90690
2nd order (4.10) .09919 . 70852 .60933
3rd order (4.11) .12290 .66109 .53819
Tschebyscheff | (3.15) .13965 .62759 .48794
opt.lst order (3.9) .13816 .63057 .49241
opt.2nd order (4.8) . 14054 .62582 48528

Table 10b. Sample values Tmax and Yoin for which the pulse areas

take the values 1 and 0, for hexagonal sampling.
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