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Abstract 

This report deals with the synthesis of band-limited 
functions that are generated by properly low-pass filtering a 
regular array of area-modulated unit-height pulses; simply 
choosing the pulse areas proportional to the corresponding sample 
values of the band-limited function to be generated, would result 
in an error. The exact relationship between the pulse areas and 
the corresponding sample values of the band-limited function to 
be synthesized, is derived. Error reduction can be achieved by 
using this relationship to calculate the pulse areas from the 
required sample values; in principle, a band-limited function can 
thus be realised to any degree of accuracy. I t is shown which 
amount of error reduction can be obtained, when only a limited 
number of terms of the exact relationship is taken into account. 
The application to computer-generated half-tone transparencies is 
described. 
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1. Introduction 

The well-known sampling theorem [1] pr.ovides a mathematical 

basis for the synthesis of coherent optical fields by means of 

computer-generated transparencies [2-3]. The theorem tells us 

that a band-limited function can be described completely by its 

values on a regular array of sample points. Moreover, it shows 

that a band-limited function whose sample values are known, can 

be synthesized by a proper low-pass filtering of a regular array 

of Dirac functions; the Dirac functions must be centered at the 

sample points and their "masses" must equal the corresponding 

sample values. 

In practice, when synthesizing a band-limited function by 

low-pass filtering an array of Dirac functions, the practically 

unrealizable Dirac functions have to be approxima ted by 

realizable functions. In the case of computer-generated 

transparencies, for instance, a Dirac function will often be 

approximated by a fully transparent dot on an opaque background, 

the area of the dot being proportional to the mass of the Dirac 

function. It will be clear that such a dot represents a Dirac 

function only if the dot size remains sufficiently small. 

Restricting ourselves to small dot sizes, however, we find 

ourselves limited in the dynamical range that can be reached in 

practice. We therefore look for a way that allows us to enlarge 

the dot size. 
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If, in the synthesis procedure mentioned above. we simply 

substitute for a Dirac function a function that approximates it 

more or less, an inevitable error will always occur in the 

band-limited function being generated at the output of the 

low-pass filter: the function will be "distorted." In a previous 

paper [4] we have derived a generalized form of the sampling 

theorem, in which the sample values of the band-limited function 

to be synthesized are IIpredistorted"; this generalized sampling 

theorem should be used in the case that Dirac functions are 

replaced by practically realizable functions. Applying 

predistortion, we can, in principle, completely eliminate the 

distortion that otherwise occurs in the band-limited function. In. 

the case of computer-generated transparencies, predistortion 

implies that the dot size (which need not remain small) is no 

longer proportional to the sample value at the corresponding 

sample point, but is determined, even in a nonlinear way, by 

neighbouring sample points, too. 

In this report we shall consider the synthesis of coherent 

optical fields by means of a computer-generated transparency that 

is based on area-modulation of a regular array of unit-height 

pulses. In order not to rest too heavily on Ref.4, the 

derivations given there are partly repeated in this report, but 

now with emphasis on the special case of pulse-area modulation. 

The way in which a two-dimensional band-limited function can 
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be synthesized by means of properly low-pass filtering a regular 

array of area-modulated (circularly-shaped unit-height) pulses is 

presented in Section 2. In particular, the relationship between 

the pulse areas and the corresponding sample values is derived 

[see Eq.(2.18)]. This nonlinear and nonlocal relationship is the 

main result of Section 2. 

The basic relationship given by Eq.(2.18) is linearized in 

Section 3. The linearized version provides the basis for a simple 

predistortion scheme. We investigate which error reduction can he 

achieved by such a simple predistortion. 

If the error reduction that is obtained by this simple 

predistortion scheme is not sufficient. a more sophisticated 

scheme must be derived. We therefore find, in Section 4, the 

inverse of Eq. (2.18) [see Eq. (4.6), which is the main result of 

Section 4]. The error reduction that is achieved by using 

Eq.(4.6) depends on the number of terms that we take into 

account. Several cases will be described and it will be shown 

that a substantial error reduction can be achieved, even if we 

restrict ourselves to a small number of terms. 

The application to computer-generated transparencies is 

described in Section 5. In that final section we also describe 

how we can synthesize, to any degree of accuracy, real or complex 

light amplitUdes by using holographic concepts. 
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We conclude this introduction with some remarks about 

notation. Bold-face lower-case characters will throughout be used 

to denote (two-dimensional) column vectors whereas bold-face 

upper-case characters will denote matrices; thus, x will denote a 

space vector, u a spacial-frequency vector, and j,k,m,n 

integer-valued vectors, while X, U, and I denote the sampling 

matrix, the periodicity matrix, and the unit matrix, respectively 

[see also Ref.S). Vector and matrix transposition will be denoted 

by the superscript t thus utx, with x-[xl,x21t and u-[u
l

,l\2 1t , 

denotes the inner product In integrals, the 

expressions dx and du are used to denote the products dx
1

dx
2 

and 

du
l

du
2

, respectively. 
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2. Generation of a two-dimensional band-limited function 

We consider a two-dimensional function cp(x) whose Fourier 

transform 

~(u) - J ~(x)exp[-iutx]dx (2.1) 

has a finite support n, i.e., ~(u) vanishes outside the frequency 

interval ueO. Throughout this report, the Fourier transform of a 

function is denoted by the same symbol as the function itself I 

but marked by a bar on top of the symbol; furthermore, if not 

stated otherwise, all integrations and summations extend from _00 

to +00, The periodic extension of ~(u). with periodicity matrix U, 

can be expanded into a Fourier series according to 

2 ~(u+Um) - det(X) 2 ~mexp[-iutXm], (2.2) 

m m 

where a matrix X [and its determinant det(X)] is introduced, 

which is related to U through the relation X
t

U_21T1. If the 

periodicity matrix U is chosen such that neighbouring replicas of 

~(u) [see Eq.(2.2)] do not overlap, then, for uEO, ~(u) can be 

expressed in the Fourier expansion given in the right-hand side 

of Eq. (2.2) 



~(u) - det(X) 2 ~mexp[-iutXmJ 
m 

6 

( uell) 

and the expansion coefficients ~ are given by the relation 
m 

1 J - t det(X)~m- 7de-t~(=U~) ~(u)exp[iu XmJdu. 

11 

(2.3) 

(2.4) 

Since the right-hand side of ·Eq. (2.4) equals det(X)~(Xm), we 

conclude that the expansion coefficients rp are 
m 

equal to the 

sampling values ~(Xm). Applying an inverse Fourier transformation 

on Eq.(2.3), we get 

(2.5) 

m 11 

Equation (2.5) tells us that ~(x) is completely described by its 

values ~(Xm)~ on the regular array of sampling points x-Xm, and 
m 

thus represents the well- known sampling theorem [lJ for 

band-limited functions; hence, the matrix X can be interpreted as 

a sampling matrix. If the frequency range 0 is such that its 

periodic extension with periodicity matrix U fills the frequency 
~ 

plane completely (and without overlap, of course), then the area 

of 11 is equal to det(U); we shall throughout assume that the 

condition of complete filling without overlap is met. 

It is well known that when the regular array of Dirac 
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functions 2 ~m6(X-lx-m) forms the input of a low-pass filter that 

passes all frequency components in the range uEO and blocks all 

other components. the band-limited output signal will have the 

form of Eq.(2.S). Instead of a sequence of practically 

unrealizable Dirac functions ~ o(X-lx-m), we usually apply to the 
m 

input of the low-pass filter an array of practically realizable 

-1 
functions p(X x-m;~), say: 

m 

(2.6) 

m 

[In the case of computer-generated transparencies, for instance, 

we often use an array of area-modulated unit-height pulses.] The 

-1 
function p(X x;~) depends on the variable x, with parameter ~; 

different values of this parameter determine different members of 

the set of p-functions, which may differ in their shapes. [In the 

case of area-modulated unit-height pulses. again, .,p would be a 

measure of the pulse area.] A p-function may be chosen rather 

arbitrarily; we only require that its Fourier transform p(xtu;~) 

can be expanded into a Taylor series around the center value .,p 
c 

- t 
p(X u;~) 2 rp(xtu)(~_~c)r. 

r~O 

(2.7) 

As an example we consider a function that can be used for 
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computer-generated transparencies: a unit-height pulse having a 

circular shape with variable radius (xtx)~ 

for xtx < (~~)2¢ 

for xtx > (~~)2¢. 
(2.8) 

The constant e can be chosen arbitrarily, at least for this 

moment: we shall relate it to the sampling matrix X in due 

-1 course. The Fourier transform of this function p(X x;¢) reads 

- t 
p(X u;¢) 

¢ ~(~~)2 Jl(~o~~) 
det(X) '<o~~ 

(2.9) 

with o_(utu)~, and can be expanded in the form of Eq.(2.7) with 

2 
0- (Xtu) _ ~(~O 

p det(X) 

(_1)r-l(,<o{)2(r-l) 
r! 

(r-2,3, ... ); 

Jr_l(~o~.;;r;.) 

<,,'o€ff.) r-l 
c 

(2.l0a) 

(2.l0b) 

(2.l0c) 

Eqs.(2.l0a,b) are, in fact, special cases of Eq.(2.l0c). Note 

that in the special case of ¢ -0, Eqs.(2.l0) reduce to 
c 



0- t 
p(X u) - 0 

2 
1- (Xt ) _ ,,(1)0 

p U det(X) 

2 
r- (Xt ) _ ,,(1)0 

p U det(X) 

9 

(_1)r-l(~as)2(r-l) 
r!(r-l)! 

(r-2, 3, ... ) . 

(2.11a) 

(2.11b) 

(2.11c) 

We now use the sequence of p-functions given by Eq.(2.6), as 

the input signal of a low-pass filter that passes all frequency 

components in the interval uEO and blocks all frequency 

components outside that interval. The band-limited output signal 

of the low-pass filter can be represented in the form of 

Eq.(2.5). In this section we shall derive the relationship 

between the samp I.e values '" of the output signal ",(x) and the 
m 

parameter values ~ of the input signal ~(x). We shall find this 
m 

relationship via the frequency domain. 

The Fourier transform of the input signal ~(x) given by 

Eq.(2.6), reads 

- '\ - t t 
~(u) - det(X) L p(X u;~m)exp[-iu XmJ 

m 

(2.12) 

D r-O 
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where the Taylor series expansion [Eq.(2.7)J has been 

substituted. The Fourier transform of the band-limited output 

signal ~(x) is given by Eq.(2.3). We require that in the 

frequency interval uEO these two Fourier transforms [Eqs. (2.3) 

r- t 
and (2.12) ] are identical. We now expand p(X u) in a Fourier 

series in this interval, yielding 

r- t \ r t 
p(X u) - L Pkexp[-iu XkJ (uEO) (2.13) 

k 

r 
with expansion coefficients Pk given by the relation 

r 1 J r- t t 
Pk - det(U) p(X u)exp[iu XkJdu; (2.14) 

o 

note the small difference between Eqs.(2.3) and (2.4) on the one 

hand and Eqs.(2.l3) and (2.14) on the other. Substituting 

Eq.(2.l3) into Eq.(2.l2), we arrive at 

~(u) - det(X) .. 
(UEO) , 

r-O 

( .• _ .• )r \ rpkexP[-iutXkJ 
"' .. "'c L 

k 

(2.15) 

which, after a suitable transformation of the summation variables 

(viz., first making the substitutions .. ~ k and k ~ m -k , and 

then the substitutions. ~ m and k ~ k), can be expressed as 



~(u) - det(X) 

11 

2 exp(-iutXm] 2 2 
m r-O k 

(uEO) . (2.16) 

Identity of the Fourier transform (Eq.(2.3)] of the output signal 

and the Fourier transform (Eq.(2.l6)] of the input signal in the 

interval uEO, implies the important relationship 

~m - 2 2 (2.17) 

r-O k 

between the output sample values ~m and the input parameter 

0-
values ~.' With ~c- p(O), Eq.(2.l7) can be expressed in the final 

form 

-2 2 (2.18) 

r-l k 

Let us now consider again the case of area-modulated 

circularly-shaped unit-height pulses described by 

Eqs.(2.8)-(2.11). The offset value ~ _Op(O) follows directly from 
c 

Eq. (2.10a) and takes the value ~ _("(~02/det(X)]~. The 
c c 

coefficients r pk (r-l, 2, ... ) follow from applying the operation 

described by Eq. (2.14) to the functions rp(Xtu) defined by 

Eqs.(2.l0b,c). In order to calculate the coefficients r pk we must 

choose the frequency interval 0 and the periodicity matrix U (and 
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sampling matrix X). We shall throughout consider two cases: 

(i) rectangular sampling. with the sampling matrix X and the 

periodicity matrix U equal to 

X - [: :] 
(2.19) 

respectively, and the frequency interval 0 as depicted in Fig.l, 

and 

(ii) hexagonal sampling. with the sampling matrix X and the 

periodicity matrix U equal to 

X _ r U2 
lEi3/2 

U2] 
-Ei3/2 

(2.20) 

respectively, and the frequency interval 0 as depicted in Fig.2 

[see also Ref. 5]. Note that the sampling matrix has been chosen 

in such a way that a periodic extension of a circle with radius 

"E [and normalized area >/>-1, see Eq.(2.8)] yields an array of 

circles that touch but do not overlap each other (see Fig. 3 for 

the rectangular case and Fig. 4 for the hexagonal case). Since 

2 
~("E) represents the area of such a circle and det(X) represents 

the area of an elementary cell of the periodic array. the 

quantity "("E)2/det (X) has a clear physical meaning: it expresses 

the packing density when a plane is packed with circles that 

touch but do not overlap; in the remainder of the report we shall 
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I u 2 

1T 
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1T 1T 

~ ~ u\ -
1T 

~ 

Figure 1. The support 0 for rectangular sampling. 

41T 

- 3~ 
21T 

-31' 

o 

2 
- ~ IJ' 

Figure 2. The support 0 for hexagonal sampling. 
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• 

Figure 3. The sampling geometry for rectangular sampling. 

Figure 4. The sampling geometry for hexagonal sampling. 
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throughout denote this quantity by D. Note that for rectangular 

sampling D equals D t-~/4-0.78540, while for hexagonal sampling rec 

D equals Dh -~/2j3-0.90690; this shows an advantage of hexagonal ex 

sampling over rectangular sampling, viz., a higher packing 

density. 

We have calculated the coefficients r pk for the special case 

of ~ -0. Note that for this special value of ~ the first-order 
c c 

1- t 2 
term p(X u)-~("O /det(X)-D is independent of the frequency u 

[see Eq.(2.llb)) and hence the first-order coefficients 

vanish for all values of k except for k-O; the coefficient 

1 
Pk 

1 
PO 

takes the value D, which equals D -~/4-0.78540 for rectangular 
rect 

sampling and Dh -~/2j3-0.90690 ex 
for hexagonal sampling. The 

higher-order co(,fficients r 
Pk (r-2, 3) for small values of 

t k-[kl ,k2 ) are listed in Tables la and lb for the rectangular 

case (in which case the coefficients possess 8 - fold symmetry. 

with symmetry axes kl-O, k2-O, k
l
-k2 and kl --k2) and in Tables 2a 

and 2b for the hexagonal case (in which case the coefficients 

possess l2-fold symmetry, with symmetry axes kl-O, k 2-O, kl -k2 , 

expressions for which we did for the second-order 

2 
coefficients Pk' For rectangular sampling we have (with 0~kl~k2; 

the remaining coefficients follow from the symmetry properties) 
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" 192 

t for k-[O,OJ 

16 

for k-[O,mJ
t 

with m-1,2, ... 

for k_[m,nJ t with n-1,2, ... and O~n. 

(2.21a) 

(2.21b) 

(2.21c) 

For hexagonal sampling we have (with O:S2k1 :Sk
2

; the remaining 

coefficients follow from the symmetry properties 

2 
P -k 

5 .. 3 

432/3 

" 

t for k-[O,OJ 

for k-[m, 2mj t with m-1,2, ... 

(2.22a) 

(2.22b) 

2 1 
Pk - 2 [4f(m+n)+f(2m-n)+f(2n-m)J 

96(m-n) 

for k-[m,nJ t with n-1,2, ... and O:s2m<n, (2.22c) 

where we have introduced the function f(m)-2sin(27rm/3)/m/3. 

Equation (2.18) explicitly expresses the sample values ~ of 
m 

the output signal in terms of the parameter values '" of the 
m 

input signal, and can be interpreted as the Volterra series [6-7J 

describing the input· output relationship of a nonlinear system. 

In the next section we will study which errors occur when we 

approximate this nonlinear system by the linear term of its 

Volterra series. 
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3. The linearized system 

In this section we investigate which errors occur when the 

nonlinear system equation (2.1S) is approximated by its linear 

term 

(3.1) 

The error between the output signal 'Y of the linearized system 
m 

[described by Eq. (3.1) 1 and the output signal <Pm of the exact 

system [described by Eq.(2.1S)], is given by the higher-order 

terms of Eq.(2.18) 

(3.2) 

We will study thLs error for the case of area-modulated circular 

0- 1-
unit-height pulses. Since in that case <P - p(O)~D'" and p(O)-D 

c c 

[see Eqs. (2 .10a. b)], we can as well express the linearized system 

in the form 

2 1 
Pm-k"'k; 'Y -m 

(3.3) 

k 

the coefficients 
1 
Pk still depend, of course, upon the choice of 

the center value 
"'c' 
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Let us first consider the case 1/J -0 I for which case the 
c 

coefficients 
r 
Pk (r-2, 3) are listed in Tables la, b for 

rectangular sampling and in Tables 2a, b for hexagonal sampling; 

we note that for this value of ~ the linearized system reduces 
c 

to -y -D1/J . An absolute upper bound for the error cp -'1 is now 
m m m m 

given by the expression 

(3.4) 

where we remark that the parameter 1/J is restricted to the 

interval OSlP~l, since in the case of area-modulated circular 

unit-height pulses we do not want to have pulses with 

areas nor pulses that overlap. Each of the summations 2 
negative 

r r 
Pm-lk"'k 

(r-2,3, ... ) that arise in the right-hand side of Eq.(3.4), takes 

its maximum absolute value for m=O, if lPk is chosen equal to 1 

for those values of k for which r pk is positive and equal to 0 

for those values of k for which r pk is negative. The second-order 

term 2 thus yields an error of 0 . .24223 in the 

rectangular case and 0.43071 in the hexagonal case; since the 

higher-order terms are much smaller, the absolutp upper hound for 

the right-hand side of Eq. (3.4) has the same order ·of magnitude. 

Of course, such a large error value will not ari'se in .practice. 

However, straightforward calculation of the propagation of a 

rectangular array of pulses with area values that -alter.nate 

between a high value "'h and a low value "'1 according to 



19 

yields the rectangular array of sample values 

cP -m 

1f 

- I; 

r-
+ p(7r, 7r) 

whereas the hexagonal input array 

yields the hexagonal output array 

(~h+2~1 ~Jl(27r~/3)-~Jl(2"~/3) 
3 + " 

(3. Sa) 

(3.6a) 

(3.Sb) 

(3.6b) 

Comparing these output signals [Eqs.(3.6)] with the signals that 

arise at the output of the linearized system, shows that in the 

practical case ~h -1 and ~l-O the error 'YO-CPO takes the value 
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,,/8 -J 1 ("/ j'i) /2j'i-0 .19740 for rectangular sampling and the value 

,,/3)3-J l (2,,/3)/)3-0.27633 for hexagonal sampling. We remark that 

the arrays given by Eqs.O.5) and (3.6) have Fourier transforms 

with components at the origin and at the vertices of the 

t l, '" intervals 0 , i.e., with a-(u u) -,,<2/E for rectangular sampling 

and with u_(utu) l,-41r/3E for hexagonal sampling (see Figs.l and 

2). We conclude that the simple approximation ~ ~D~ might yield 
m m 

large errors. 

The reason for the large errors that arise in the case of 

1jJ =0 is, of course, the fact that tP may take values in the 
c 

- t interval O:$,psl, whereas We have expanded p(X u:~) in a Taylor 

series around the center value t/J =0. We might expect that an 
c 

expansion around a center value somewhere in the middle of the 

interval would yield a much better result. We nO\-I try to find an 

optimum for this center value. 

Let us investigate how close the linearized system given by 

Eq. (3.3) with ~ "'0, c 
resembles the exact system given by 

Eq.(2.l8). We therefore apply to the linearized system the array 

of alternating parameter values given by Eqs.(3.5), for which the 

exact system yields the array of alternating sample values given 

by Eqs.(3.6). The linearized system responds to this input array 

with the output array 

~m (3.7a) 
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in the rectangular case and with the output array 

" 'Ym - 2]3 (3.7b) 

in the hexagonal case. Comparing Eqs. (3.6) and (3.7) shows the 

error cP -"'( between the two output sequences. When we substitute 
m m 

the values of "'h and "'1 for which this error takes its maximum 

absolute value, and then minimize this maximum error with respect 

to '" , we get an optimum for '" . We thus find for rectangular 
c c 

sampling the optimum value when '" satisfies the relation 
c 

J ("J", /2) -o c 
(3.8a) 

i.e" for'" -0.47183, for which value the error becomes 0.04419 
c 

when either "'h or "'1 equals "'c while the other one equals either 

1 or 0; for hexagonal sampling we find the optimum value when '" c 

satisfies the relation 

J (2,,~/3) - 2 
o c 

(3.8b) 

i.e. for'" -0.47522, for which value the error becomes 0.06267 
c 

when either "'h or "'1 equals "'c while the other one equals either 

1 or O. When we compare these error values with the errors that 

we found for '" -0 we conclude that the linearized system with 
c ' 

the optimum choice of '" according to Eqs.(3.8), is better than 
c 
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the simple system ~m-~m by a factor of about 4.4. The 

1 coefficients Pk for these optimum values of >/> c are listed in 

Table 3a for rectangular sampling and in Table 4a for hexagonal 

sampling. 

The concept of the linearized system allows us to achieve an 

error reduction when we want to generate a band-limited function 

by low-pass filtering a regular array of area-modulated 

unit-height pulses. Let the sample values of the band-limited 

function to be generated, be denoted by ~ . If we simply take the m 

widths ~. of the pulses equal to ~m!D, large errors may occur, as 

we have shown in the first part of this section. These errors can 

be reduced when we first apply a linear predistortion to the 

sample values: 

(3.9) 

where is the inverse operator of as described in 

Eq.(3.3). As we have shown, an error reduction by a factor of 4.4 

can thus be achieved. The coefficients lqk are listed in Table 3b 

for rectangular sampling and Table 4b for hexagonal sampling. 

Until now, we have based the analysis on the Taylor series 

expansion given by Eq.(2.7), and we have found an optimum 

linearized system by finding the optimum value of >/> c' If the 
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parameter values.,p are restricted to a certain interval, there 
m 

exists a different way to find a linearized system, viz., via 

power series econornization [8J of Eq. (2.7) using an expansion 

into (properly shifted and scaled) Tschebyscheff polynomials. To 

show this, let us confine ourselves to the parameter value 

- t interval OS~l. in which case we can express p(x u;~) in the form 

of a series of the Tschebyscheff polynomials 

Eq. (2.7) J : 

- t 
p(x u;~) -2 

r-O 

* T (~) 
r 

[c. f. 

(3.10) 

Redoing the analysis of section 2 now results in the system 

representation [c.f. Eq.(2.18)J 

~m - 2 2 rhD_kT:(~k) - °h(O) - lh(O) + 2 2 

r-O k k 

r * h kT (~k)' m- r (3.11) 

where use has heen made of the properties of Tschebyscheff 

* * r polynomials TO(~)-l and Tl(~)-2~-1; the coefficients hk are the 

Fourier series expansion coefficients of rh(Xtu) [c.f. 

Eq.(2.l4)J. The first and second terms in the right-hand side of 



24 

Eq.(3.ll) represent a mere offset for the output value; the third 

term represents the linearized system that we are looking for, 

whereas the last term represents the error between the exact 

system and the linearized system. We shall write the linearized 

system that we have found via the Tschebyscheff polynomials in 

the form 

(3.12) 

As an example we consider again the case of area-modulated 

circular unit-height pulses, described by Eqs.(2.8)-(2.11). In 

that case we have [using Eq.6.68l.l in Ref.9) 

1 

J - t * 2 -~ p(X u;~)TO(~)(~-~) d~ 

o 

(3.13a) 

o 

(3.13b) 
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0- 1-
hence h(O)- h(O)-O and 

- t 1- t 
h(X u) - 2 h(X u) -

(3.14) 

The coefficients hk of the linearized system follow by expanding 

- t h(X u) into a Fourier series [see Eq.(2.l4)); these coefficients 

are listed in Table Sa for rectangular sampling and in Table 6a 

for hexagonal sampling. Note the close resemblance between the 

coefficients hk and the coefficients lpk that we found in the 

case of the optimum linearized system [see Tables 3a and 4a). The 

inverse of the linearized system described by Eq. (3.12) can be 

expressed as 

(3.15) 

where gk is the inverse operator of h
k

; the coefficients gk are 

listed in Table Sb for rectangular sampling and in Table 6b for 

hexagonal sampling. 

To investigate how close, in the case of area-modulated 

circular unit-height pulses, the latter version of the linearized 

system resembles the exact system, we apply to this system again 

the alternating input array given by Eqs. (3.5). The linearized 
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system responds with the output array given by Eqs.(3.7), but now 

with JO(~J~c/2) replaced by 

[2Jl(~/2j2)/(~/2j2)1[2Jo(~/2j2)-2Jl(~/2j2)/(~/2j2)1 

and JO(2~~/3) replaced by 

[2Jl(~/3)/(~/3)1[2JO(~/3)-2Jl(~/3)/(~/3)J. 

Comparing then again Eqs.(3.6) and (3.7) shows the error tp --y 
m m 

between the two output sequences. This error now takes its 

maximum absolute value 0.04532 for ~h-O.47S33 and "'1-0 in the 

rectangular case, and its maximwn absolute value 0.06410 for 

"'h-0.4Sl0l and ~l-O in the hexagonal case. When we compare these 

error values with the errors that we found for the optimum 

linearized system, we conclude that the two linearized versions 

are almost of the same quality. 

If linear predistortion does not give sufficient error 

reduction, a more sophisticated way to reduce the errors must be 

applied. This will be the subject of the next section, where the 

inverse of the nonlinear system described by Eq. (2 .1S) will be 

derived. 
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4. The inverse system 

Equation (2.18) can be interpreted as the Volterra series 

[6 - 7] describing the input-output relationship of a nonlinear, 

discrete system. It explicitly expresses the sample values ~ of 
m 

the output signal in terms of the parameter values '" of the 
m 

input signal. In our case. however, the sample values of the 

band-limited output signal, which has to be generated, are given, 

and we ask for the parameters of the input signal. We can 

explicitly express ~m in ~m' too, if we know the Volterra series 

of the inverse nonlinear system. It is known [7] how the inverse 

Volterra series can be determined; we shall indicate how it can 

be constructed from the original series [Eq. (2.18)], using only 

the expressions for the algebraic reversion of ordinary power 

series [10]. 

Let ~ be given as a power series in ~: 

(4.1) 

The problem of series reversion is to find ~ as a power series in 

rp, i. e. , to determine the coefficients f in the expansion 
r 

(4.2) 



28 

The systematic way to do this is to write Eq.(4.1) in the form 

where the coefficients q (r-l,2, ... ) are defined by 
r 

(r-2, 3 , ... ) , 

and then substitute the formulas for the powers of ~: 

1 
~ - f 1", + f 2", 

2 + f 3", 
3 

+ ... 

~2 (f1",) 2 2 + 2(f1",)(f2", ) + ... 

~3 _ (f1",) 3 + ... 

By equating coefficients of ~ we get the formulas 

(4.3) 

(4.4a) 

(4.4b) 
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which determine the coefficients f successively. Substituting 
r 

these formulas in Eq. (4.2) and eliminating the coefficients f , 
r 

we arrive at the expression 

Formulas for power-series reversion up to a higher order are 

available [101. 

If we now compare Eq.(4.1) and Eq.(2.1S), we note that a 

multiplication with p in Eq. (4.1) corresponds to a convolution 
r 

. h r 
w~t p in Eq.(2.1S). Analogously, replacing in Eq. (4.5) 

multiplication with q by a convolution with 
r 

Volterra series of the inverse system 

r 
q yields 

any 

the 



~m-~c ~ 1 lqm_k(~k-~C) 
k 

k j 

k j 
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+ ... . (4.6) 

r 
The sequences qk follow - via Eq. (2.14) from their Fourier 

transforms rq(Xtu), which can be derived from the functions 

r- t 
p(X u) through the relations [c.f. Eqs.(4.4)] 

1- t 1- t 
q(X u) p(X u) ~ 1, (4.7a) 

r- t 1- t r- t 
q(X u) p(X u) - p(X u) (r-2,3, ... ). (4.7b) 

1 Note that only the first-order term p needs to be invertable. 

The concept of the inverse system allows us to achieve a 

complete compensation of the errors that occur when we want to 

generate a band-limited function by low-pass filtering a regular 

array of area-modulated pulses. Of course, the form of the 
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inverse system as described by Eq. (4.6) is rather complicated, 

and we have to restrict the nwnber of terms in Eq.(4.6) that we 

can take into account, when we apply nonlinear predistortion by 

means of a computer. 

Let us consider which error reduction can be achieved, in 

the case of area-modulated circular unit-height pulses. when we 

apply a second-order nonlinear predistortion. Let the sample 

values of the band-limited function to be generated, be denoted 

by "m' The second-order nonlinear predistortion now takes the 

form 

(4.8) 

k j 

where we have used the property that in the case of pulse-area 

1- 1-
modulation ~ ~ /0 and q(O)-l/ p(O)-l/O. When we apply the array 

c c . 

of alternating area values 

"Yh+"Y l "Yh-"Y l 
cos[1I"(m1+m2)] (4.9a) I' - 2 

+ 
2 m 

"Yh+2"Yl "Yh-"Yl 2 211" (4.9b) I'm 3 
+ 

3 cos[3(ml+ID2)] 

in the case of rectangular and hexagonal sampling, respectively, 

to the input of the nonlinear system described by Eq. (4.8), the 

array given by Eqs.(3.S) will be produced at the output of this 
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system; the values ~h and ~l Can be expressed explicitly in terms 

of the values ~h and ~l' The error between ~m (the sample values 

of the band-limited signal that is actually generated) and '1m 

(the sample values of the band-limited signal that we want to 

generate) follows from comparing Eqs. (3.6) and (4.9). When we 

substutue the values of ~h and ~l for which this error takes its 

maximum absolute value. and then minimize this maximum error with 

respect to We' we get an optimum for ~c. For rectangular 

sampling, we thus find the optimum value ~ c -0.38492, in which 

case the error takes its maximum absolute value 0.01723 for ~h-l 

and ~1~0.54414 or ~h-0.18825 and ~l-O; for hexagonal sampling, 

the optimum value reads ~ -0.43455, in which case the error takes 
c 

its maximum absolute value 0.02051 for ~h-l and ~l-O. 53335 or 

~h-0.15734 and ~l-O. When we compare these errors with the errors 

that we found in the case of optimum first-order predistortion 

(0.04419 for rectangular sampling and 0.06267 for hexagonal 

sampling) t we see that the optimum second- order predistortion 

gives a much better result. The coefficients 

these values of ~ are listed in Tables 7a,b for rectangular 
c 

sampling and in Tables 8a,b for hexagonal sampling. 

We finally consider the case .1. -0 "c ' and investigate which 

error reduction can be achieved when we apply second-order 

predistortion, described by 
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- D -3 

k 

and third-order predistortion, described by 

-5 + D 

(4.10) 

(4.11) 

We apply the array of alternating area values given by Eqs.(4.9) 

to the input of the nonlinear correction system described by 

Eq.(4.l0) or Eq.(4.ll), and determine those values ~h and ~l for 

which the error cp -~ (the difference between the sample values 
m m 

of the band-limited signal that is actually generated and the 

sample values of the band-limited signal that we want to 

generate) takes its maximum absolute value under the constraint 

that the pulse-area parameter ~ remains bounded by 0 and 1. In 
m 

the case of second-order predistortion, we thus find for 

rectangular sampling the maximum absolute error 0.05479 for 

~h-0.65766 and ~1-0.32749, while for hexagonal sampling we find 

the maximum absolute error 0.08173 for ~h-0.72l49 and ~1-0.24607. 

In the case of third-order predistortion. the maximum absolute 

error for rectangular sampling takes the value 0.02342 for 

~h-0.64968 and ~1-0.46l44, while for hexagonal sampling the 

maximum absolute error becomes 0.03620 for ~h-0.69l87 and 
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~1-0.363S6. All values for the various cases that we have 

considered are collected in Table 9a for rectangular sampling and 

in Table 9b for hexagonal sampling. We may conclude that the 

quality of the predistortion scheme increases with increasing 

complexity of the predistortion algorithm: 1st order (no 

correc tion) I optimum or Tschebyscheff Is t order. optimum 2nd 

order; note that in order to obtain a certain error reduction, 

the optimum predistortion schemes have a lower complexity than 

the schemes for which '" -0. c 
More complex, higher-order 

predistorion schemes are necessary, of course, if a better error 

reduction is required; such higher-order schemes can be found 

along the lines described in this report. 

When we want to use predistortion, we must restrict the 

values -y to a certain range -y . :5:"(5::'( . This range shou.ld be 
m mln max 

such that the resulting pulse areas..p are in the range Oslf:51; 
m 

hence, negative pulse areas and overlapping pulses are avoided. 

Finding the maximum value of ~max and the minimum value of ~min 

(yielding the largest range ~ -~ ) 
'max 'min 

such that for all 

situations the condition Os~l is satisfied, is difficult. To get 

an indication of ~ and ~ i ' we apply as input array to the 
max m n 

predistortion system, an array 1 whose values alternate between 
m 

~max and ~min [as in Eqs. (4.9), with ~h-~max and ~l-~minj, and 

find those values of ~ and ~. for which the system yields 
max mln 

pulse areas'" that alternate between 1 and 0 [as in Eqs.(3.Sl, 
m 

with "'h-l and "'l-Oj. These values of ~max and ~min and the 
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range ~ -~ i ' for the various predistortion schemes have been 
max rn n 

collected in Table lOa for rectangular sampling and in Table lOb 

for hexagonal sampling. We expect that for rectangular sampling, 

the optimum values of 1 and ~. will be close to the values 
max mln 

in Table lOa, since the alternating array [Eq. (3.5) J of pulse 

areas "'m has a "'h vs. "'1 distribution that resembles the sign 

distribution of the coefficient arrays r qk and gk; this is not 

the case for hexagonal sampling. Hence, we may expect that in the 

case of hexagonal sampling, the range will be somewhat smaller, 

with a lower value of "(max and a higher value of "(min than the 

values presented in Table lOb. 
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5. Application to computer-generated transparencies 

The technique of predistortion as described above, can be 

used in the synthesis of coherent optical fields, where a 

computer-generated transparency whose transparency function is 

given by "'(x) [c.f. Eq.(2.6)] is illuminated by a plane wav" of 

monochromatic laser light, and the light behind the transparency 

is low-pass filtered to construct the band-limited amplitude 

distribution ~(x) [c.f. Eq.(2.5)] in the output plane (see 

Fig.5). In many practical situations the computer-generated 

transparency will be a half-tone transparency consisting of, for 

instance, fully transparent circular pulses on an opaque 

background; in this case we can use the formulas derived in this 

report. Using predistortion in computer-generating half-tone 

transparencies, we can extend the dynamical range of the 

transparency, since we are no longer limited to narrow pulses in 

order to avoid distortion. 

If we use a half-tone transparency in the set-up of Fig.5, 

we can, of course, only synthesize real and positive light 

amplitudes. Moreover, to avoid negative pulse areas and 

overlapping pulses, the sample values that we want to 

generate, must be restricted to the range ~ . ~~~~ . The upper 
m~n max 

bound does not present a severe problem; it requires a mere 

scaling of the light amplitude. The lower bound, however, cannot 
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be solved that easily. If the required sample values 'Y extend 
m 

below ~ . . negative pulse areas may arise. The best we can do in 
m1n 

that case seems to replace a pulse having a negative area by a 

pulse having zero area; we must realize that an error will then 

occur. The problem of negative pulse areas can be solved 

completely, if we are allowed to properly modify the function 

that we want to synthesize and bring the required sample values 

within the necessary range. Such a modification is permitted in 

the important case of computer holography. 

Computer holography [2-3] enables us to realize a negative 

real or complex band-limited light amplitude <p 1 (x), say, 
comp ex 

whose Fourier transform ~ 1 (u) vanishes outside the interval 
comp ex 

uE0c ' by means of a transparency that can itself, if used in the 

set-up of Fig.S, realize the positive function 

<p(x) - b(x)+2Re(<p 1 (x)exp[iutx]). 
comp ex 0 

The additional bias function b(x) allows us to construct ~(x) in 

such a way that no negative pulse areas will occur in the 

transparency. If the modulating frequency u is chosen properly, 
o 

the Fourier transform 

i>(u) 

consists of three non-overlapping components. By blocking in the 
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L~u 

r~u 

Fourier plane 

cp(x) 

output plane 

Figure 5. Synthesis of coherent optical fields. 
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transparency 

}u.,.u,hu _._.~._._ 4,--
·!U· 2 c 

- - _. 

~{x) 

Fourier plane output plane 

Figure 6. Synthesis of coherent optical fields 

using holographic concepts. 
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Fourier plane all components except;P 1 (u-u) and shifting camp ex 0 

the optical axis over a distance u
o

' the complex amplitude 

m (x) will occur in the output plane (see Fig.6). In the rcomplex 

case of computer holography. our transparency resembles the 

computer hologram of Burch [11] rather than Lohmann's 

detour-phase hologram [12]. In fact, predistortion as described 

in this report cannot be applied to the Lohmann- type hologram, 

since in this type of hologram the pulses are not equally spaced. 

Nevertheless, the method of predistortion outlined in this 

report, allows us to synthesize band-limited complex light 

amplitudes to any degree of accuracy. 
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k2\k1 0 1 2 3 4 5 

0 -.16149 
1 .04909 0 
2 -.01227 0 0 
3 .00545 0 0 0 
4 -.00307 0 0 0 0 
5 .00196 0 0 0 0 0 
6 -.00136 0 0 0 0 0 
7 .00100 0 0 0 0 0 
8 -.00077 0 0 0 0 0 
9 .00061 0 0 0 0 0 

10 -.00049 0 0 0 0 0 

2 
Table 1a. Coefficients Pk for ~c-O in the rectangular case 

k2\k1 0 1 2 3 4 5 

0 .01550 
1 - .00732 .00205 
2 .00298 - .00051 .00013 
3 -.00142 .00023 -.00006 .00003 
4 .00082 - .00013 .00003 -.00001 .00001 
5 - .00053 .00008 -.00002 .00001 - .00001 .00000 
6 .00037 - .00006 .00001 -.00001 .00000 - .00000 
7 -.00027 .00004 - .00001 .00000 - .00000 .00000 
8 .00021 -.00003 .00001 -.00000 .00000 -.00000 
9 -.00017 .00003 - .00001 .00000 - .00000 .00000 

10 .00013 -.00002 .00001 -.00000 .00000 -.00000 

3 Table lb. Coefficients Pk for ~c-O in the rectangular case 
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k2\k1 0 1 2 3 4 5 

0 -.20719 
1 .04687 
2 - .00586 -.01260 
3 .00000 .00469 
4 .00073 -.00134 - .00315 
5 -.00037 .00000 .00167 
6 .00000 .00030 -.00059 -.00140 
7 .00014 -.00018 .00000 .00085 
8 -.00009 .00000 .00017 -.00033 -.00079 
9 .00000 .00008 -.00011 .00000 .00051 

10 .00005 - .00006 .00000 .00011 -.00021 -.00050 

2 
Table 2a. Coefficients Pk for ~c-O in the hexagonal case 

k2\k1 0 1 2 3 4 5 

0 .02121 
1 - .00664 
2 .00115 .00360 
3 .00017 -.00135 
4 -.00028 .00035 .00094 
5 .00012 .00005 -.00049 
6 .00001 - .00012 .00016 .00042 
7 -.00005 .00006 .00002 -.00025 
8 .00003 .00000 -.00006 .00009 .00024 
9 .00000 - .00003 .00004 .00001 - .00015 

10 -.00002 .00002 .00000 -.00004 .00006 .00015 

3 
Table 2b. Coefficients Pk for ~c-O in the hexagonal case 
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k2\kl a 1 2 3 4 5 

a .64299 
1 .04164 .00127 
2 - . 00970 -.00030 .00007 
3 .00426 .00013 -.00003 .00001 
4 -.00238 - . 00007 .00002 -.00001 .00000 
5 .00152 .00005 - .00001 .00001 - .00000 .00000 
6 -.00106 -.00003 .00001 - .00000 .00000 -.00000 
7 .00078 .00002 -.00001 .00000 -.00000 .00000 
8 - . 00059 -.00002 .00000 -.00000 .00000 - .00000 
9 .00047 .00001 -.00000 .00000 -.00000 .00000 

10 - . 00038 -.00001 .00000 -.00000 .00000 - .00000 

1 Table 3a. Coefficients Pk for ~c-O.47183 in the rectangular case. 

k2\k1 0 1 2 3 4 5 

0 1.58587 
1 - .10834 .01164 
2 .03345 -.00390 . 00133 
3 - .01574 .00188 - .00065 .00032 
4 .00906 - .00110 .00038 -.00019 .00011 
5 -.00586 .00072 -.00025 .00012 - .00007 .00005 
6 .00410 - .00050 .00017 -.00009 .00005 - .00003 
7 -.00302 .00037 - . 00013 .00006 - .00004 .00002 
8 .00232 - . 00029 .00010 -.00005 .00003 - . 00002 
9 -.00184 .00023 - . 00008 .00004 - . 00002 .00001 

10 .00149 - . 00018 .00006 - . 00003 .00002 - . 00001 

1 Table 3b. Coefficients qk for ~c-0.47183 in the rectangular case. 
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k2\k1 0 1 2 3 4 5 

0 .72383 
1 .04024 
2 - .00482 -.00967 
3 .00010 .00360 
4 .00052 - 00105 -.00240 
5 -.00028 .00003 .00128 
6 .00001 .00022 -.00046 -.00106 
7 .00010 -.00013 .00001 .00065 
8 -.00007 .00000 .00012 -.00026 - .00060 
9 .00000 .00006 - .00008 .00001 .00039 

10 .00003 - .00004 .00000 .00008 -.00016 -.00038 

1 Table 4a. Coefficients Pk for ~c-O.47522 in the hexagonal case. 

k2\k1 0 1 2 3 4 5 

0 1.41080 
1 - .07653 
2 .01028 .02818 
3 .00115 -.01077 
4 -.00216 .00281 .00759 
5 .00094 .00033 -.00400 
6 .00009 -.00092 .00128 .00343 
7 -.00042 .00047 .00016 - .00206 
8 .00025 .00004 -.00051 .00072 .00194 
9 .00002 -.00024 .00028 .00009 - .00125 

10 -.00014 .00015 .00002 - .00032 .00047 .00125 

1 Table 4b. Coefficients qk for ~c-O.47522 in the hexagonal case. 
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k2\k1 0 1 2 3 4 5 

0 .63769 
1 .04266 .00171 
2 - .00969 -.00040 .00009 
3 .00424 .00018 -.00004 .00002 
4 -.00237 -.00010 .00002 - .00001 .00001 
5 .00151 .00006 -.00001 .00001 - .00000 .00000 
6 - .00105 -.00004 .00001 - .00000 .00000 - .00000 
7 .00077 .00003 -.00001 .00000 - .00000 .00000 
8 -.00059 -.00002 .00001 -.00000 .00000 -.00000 
9 .00047 .00002 -.00000 .00000 - .00000 .00000 

10 - .00038 -.00002 .00000 -.00000 .00000 -.00000 

Table 5a. Coefficients hk in the rectangular case. 

k2\k1 0 1 2 3 4 5 

0 1. 60097 
1 - . 11277 .01139 
2 .03443 -.00372 .00123 
3 -.01612 .00178 - .00059 .00029 
4 .00926 -.00103 .00035 -.00017 .00010 
5 - .00598 .00067 -.00022 .00011 -.00006 .00004 
6 .00418 -.00047 .00016 - .00008 .00004 - .00003 
7 - .00308 .00035 -.00012 .00006 - .00003 .00002 
8 .00236 -.00027 .00009 -.00004 .00003 - .00002 
9 - .00187 .00021 -.00007 .00003 -.00002 .00001 

10 .00152 -.00017 .00006 - .00003 .00002 - .00001 

Table 5b. Coefficients gk in the rectangular case. 



46 

k2\kl 0 1 2 3 4 5 

0 .71855 
1 .04102 
2 -.00483 -.00949 
3 .00013 .00354 
4 .00050 - 00104 - .00235 
5 -.00027 .00003 .00125 
6 .00001 .00021 -.00045 -.00104 
7 .00009 -.00013 .00002 .00064 
8 -.00007 .00000 .00012 - .00025 -.00059 
9 .00000 .00005 -.00008 .00001 .00039 

10 .00003 - .00004 .00000 .00007 - .00016 -.00037 

Table 6a. Coefficients hk in the hexagonal case. 

k2\kl 0 1 2 3 4 5 

0 1. 42250 
1 -.07902 
2 .01062 .02858 
3 .00106 - .01089 
4 -.00213 .00287 .00763 
5 .00095 .00030 -.00402 
6 .00008 - .00090 .00130 .00344 
7 - .00041 .00047 .00014 -.00207 
8 .00025 .00004 -.00050 .00073 .00194 
9 .00002 -.00024 .00028 .00008 -.00125 

10 - .00014 .00015 .00002 - .00032 .00047 .00125 

Table 6b. Coefficients gk in the hexagonal case. 
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k2\k1 0 1 2 3 4 5 

0 1.51606 
1 -.08186 .00689 
2 .02425 - .00218 .00070 
3 - .01125 .00103 -.00033 .00016 
4 .00643 - .00060 .00019 -.00009 .00005 
5 - .00415 .00039 -.00012 .00006 - .00003 .00002 
6 .00290 -.00027 .00009 -.00004 .00002 - .00002 
7 - .00213 .00020 -.00006 .00003 -.00002 .00001 
8 .00164 -.00015 .00005 -.00002 .00001 -.00001 
9 -.00129 .00012 -.00004 .00002 -.00001 .00001 

10 .00105 -.00010 .00003 - .00002 .00001 - .00001 

1 Table 7a. Coefficients qk for ~c-0.38492 in the rectangular case. 

k2\k1 0 1 2 3 4 5 

0 -.23340 
1 .07633 -.00459 
2 -.02161 .00144 -.00046 
3 .00991 - .00068 .00022 - .00010 
4 -.00565 .00039 -.00013 .00006 - .00003 
5 .00364 -.00025 .00008 - .00004 .00002 - .00001 
6 -.00253 .00018 -.00006 .00003 -.00002 .00001 
7 .00187 - .00013 .00004 - .00002 .00001 -.00001 
8 -.00143 .00010 - .00003 .00002 - .00001 .00001 
9 .00113 -.00008 .00003 -.00001 .00001 -.00000 

10 - .00092 .00006 -.00002 .00001 -.00001 .00000 

2 Table 7b. Coefficients qk for ~c-0.38492 in the rectangular case. 



48 

k2\kl 0 1 2 3 4 5 

0 1. 37753 
1 -.06767 
2 .00907 .02423 
3 .00087 - .00922 
4 -.00180 .00244 .00646 
5 .00080 .00025 - . 00341 
6 .00007 -.00076 . 00110 .00291 
7 -.00034 .00040 .00012 -. 00175 
8 .00021 .00003 - .00042 .00062 .00165 
9 .00001 - . 00020 .00024 .00007 - .00106 

10 - .00012 .00013 .00002 - . 00027 .00040 .00106 

1 Table 8a. Coefficients qk for ~c-0.43455 in the hexagonal case. 

kz\k1 a 1 2 3 4 5 

a -.26691 
1 .06413 
2 -. 00845 - . 02135 
3 -.00059 .00808 
4 .00150 -.00218 -.00561 
5 -.00069 -.00017 .00296 
6 - .00005 .00063 - .00098 -.00252 
7 .00029 -.00034 -.00008 .00152 
8 -.00018 -.00002 .00035 - . 00055 -.00142 
9 -. 00001 .00017 - .00020 -. 00005 .00092 

10 .00010 -. 00011 - .00001 . 00022 -.00035 -. 00091 

2 Table 8b. Coefficients qk for ~c-0.43455 in the hexagonal case. 
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correction c. f. .pc rh r l .ph .pl "'h "'1 error 

1st order rr/D 0 .78540 1 .58800 .19740 
0 0 .19740 

2nd order (4.10) 0 .65766 1 .60287 .05479 
.32749 .25434 .38228 

3rd order (4.11) 0 .64968 1 .62626 .02342 
.46144 .41472 .48486 

Tschebyscheff (3.15 ) - .28012 .47833 .32544 .04532 
1st order .09556 0 .05024 

optimum (3.9) .47183 .68114 1 .63695 .04419 
1st order .47483 .47183 .51903 

.27744 .47183 .32163 

.09314 0 .04895 

optimum (4.8) .38492 .66938 1 .65214 .01723 
2nd order .54339 .54414 .56062 

.15682 .18825 .13959 
- .00897 0 .00826 

Table 9a. Errors arising with alternating arrays for rectangular 
sampling. 
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correction c.t. "'c 7h 71 "'h "'1 'Ph 'P1 
error 

1st order V>-7/D 0 .90690 1 .63057 .27633 
0 0 .13816 

2nd order (4.10) 0 .72149 1 .63976 .08173 
.24607 .16911 .28693 

3rd order (4.11) 0 .69187 1 .65567 .03620 
.36356 .28233 .38166 

Tschebyschett (3.15) - .30187 .48101 .36597 .06410 
1st order .06718 0 .03513 

optimum (3.9) .47522 .76189 1 .69922 .06267 
1st order .50348 .47522 .53482 

.29966 .47522 .36233 

.06566 0 .03432 

optimum (4.8) .43455 .73664 1 .71613 .02051 
2nd order .56883 .53335 .57908 

.15523 .15734 .13472 
- .00627 0 .00399 

Table 9b. Errors arising with alternating arrays for hexagonal 
sampling. 
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correction c. f. ')'min I'max range 

1st order ,p-I'/D 0 .78540 .78540 
2nd order (4.10) .14982 .63558 .48576 
3rd order (4.11) .18529 .60011 .41482 
Tschebyscheff (3.15) .19977 .58563 .38586 
opt.1st order (3.9) .19740 .58800 .39060 
opt. 2nd order (4.8) .20200 .58339 .38139 

Table lOa. Sample values I' and 1'. for which the pulse areas 
max m~n 

take the values 1 and 0, for rectangular sampling. 

correction c.f. "Ymin "(max range 

1st order ,p-I'/D 0 .90690 .90690 
2nd order (4.10) .09919 .70852 .60933 
3rd order (4.11) .12290 .66109 .53819 
Tschebyscheff (3.15) .13965 .62759 .48794 
opt.1st order (3.9) .13816 .63057 .49241 
opt. 2nd order (4.8) .14054 .62582 .48528 

Table lOb. Sample values I' and I' i for which the pulse areas 
max m n 

take the values 1 and 0, for hexagonal sampling. 
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