
 

Two-point boundary-value solver for stiff unstable linear
systems (suited for application to ILC theory)
Citation for published version (APA):
Roset, B. J. P. (2001). Two-point boundary-value solver for stiff unstable linear systems (suited for application to
ILC theory). (DCT rapporten; Vol. 2001.050). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9975267f-87f8-49ea-945b-28d1e2b84984


Stagerapport 200 1.50 

Two-point boundary-value solver for 
stiff unstable linear systems 
(suited for application to ILC theory) 

door Bas Roset 

Rapport van een interne stage 
uitgevoerd van 23 april2001 tot 20 september 2001 

Begeleider: M. J.G. van de Molengraft 
Afstudeerhoogleraar : M. Steinbuch 



.................................................................................................................... 1 INTRODUCTION 2 

2 NUMERICAL SOLUTION OF THE LINEAR BOUNDARY VALUE PROBLEM .............. 4 

............................................................................................ 3 COMPUTATIONAL ASPECTS 13 

........................................................................................ 3.1 'LSS~NG THE SOLVER IN MATLAB 13 

......... 4 PERFORMANCE COMPARED TO OTHER POTENTIAL SUITABLE SOLVERS 15 

5 CONCLUSIONS ..................................................................................................................... 19 

.......................................................................................................................... 5.1 STIFFNESS 19 
........................................................................................................................ 5.2 ACCURACY 19 

........................................................................................................... 5.3 COMPUTATION TIME 19 

6 FURTHER INVESTIGATION ON THE RICLBVP-SOLVER ........................... .... .. . 2 0  

........... APPENDIX B APPROXIMATION OF X3(T) AFTER EACH GRIf) ADAPTATION 22 

.......................................................................... APPENDIX C M-FILES RICBVP-SOLVER 23 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Introduction 2 

1 Introduction 

In this report an algorithm to numerically solve a two-point boundary-value problem is proposed. The 
algorithm should deal with the differential equations used to compute the control signal (feedforward 
signal) for ILC (Iterative Learning Control) control strategy applied to linear motion control systems. 
These Merentid equations are often very stiff, unstable and contain a non-causal part. The problem of 
numerically solving the non-causal part is being taken care of in [4]. 
The remaining stiff and unstable causal part has to be taken care of in this report by means of a suited 
two-point boundary-value problem solver. By suited we mean a solver that can cope with; linear, stiff 
and unstable differential equations and approximating its solution within a reasonable accuracy and 
computing time. 
k co~i ior iy  used aigor8ii ia  0ed -&GI the k~%t;:l!;Ity z d  ii~~=ca.;~&ty is ZPETC. ZPETC wce!s 
the non-causality by a time shift between the hput and output signal however the method that ZPETC 
uses to deal with the instability leads to an inaccurate approximation of the amplitude behavior of the 
solution. 
With a suitable two-point bomcOary-value problem solver this problem can be prevented and it offers 
also an additional advantage of control over the boundary conditions of the learnt signal. Especially in 
motion control it is desirable to have a feedforward signal (with its derivatives ) to be zero at start and 
endpoint. 
Previous investigations have shown that the current available two-point boundary-value solvers such as 
solvers based on single or multiple shooting techniques do not perform satisfactory. 

1.1 Problem description and approach 

We want to obtain a numerical solution of the following unstable time-invariant (A=constant) 
inhomogeneous linear set of n coupled first order dserential equations between pokt t=a and F b  
(a<b). 

With non-separated boundary-values: 

Eq. (2) is the general description in which the initial-value(s) and the end-value@) in respectively point 
t=a and t=b are prescribed. B, and BI, are constant nxn matrices that should satisfy the following 
condition: 

If Eq. (3) is not satisfied, Eq. (1) is either underdetermined or over-determined and cannot be solved. 
Standard numerical MATLAB solvers, such as the ODE-solvers, are only capable in solving initial- 
value problems &=O). In order to obtain the numerical solution of Eq. (1) with its unstable modes and 
with Eq. (2) as boundary-values some more computation effort has to be preformed. 
This report, in which an attempt is made to create a solver that can cope with the problem as sketched, 
the following parts can be distinguished: 
* Chapter2 

-Paragraph 2.1: Explains why the two-point boundary-value solvers based on single or 
multiple shooting techniques do not perform satisfactory. 

-Paragraph 2.2: Introduces a time dependent lransformatioq which transforms Eq. (1) with state 
variables x(t) into another set of equations with state variables y(t). The new 
obtained set of equations consist of a decoupled unstable and stable part. T!6s 
decoupling property can be used to overcome numerical problems which the 
shooting techniques are struggling with 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Introduction 3 

-Paragraph 2.3: Explains how the decoupling technique can be applied to a special class of 
boundary-value problem namely the separated boundary-value problem 

-Paragraph 2.4: Explains a technique that is a proposed solution to a complication that is caused by 
the transformation explained in paragraph 2.2. 

-Paragraph 2.5: Shows how the general non-separated boundary-value problem defined by Eq. (1) 
and Eq. (2) can be solved by the superposition of linear independent solutions of 
the separated boundary-value problem. 

Chapter 3: Explains some practical aspects about the implementation of the theory described 
in chapter 2. Chapter 3 also includes an explanation of how the algorithm should 
be used. 

e Chapter 4,5: Show some examples of non-separated boundary-value problems numerically 
solved by the proposed solver. Also a conaparis~n is made to other potentid 
suitable solvers from which some conc'iusions can be dram. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 4 

2 Numerical solution of the Linear Boundary Value Problem 

2.1 Shooting method (superposition method) 

Because Eq. (1) is linear one can split the solution of Eq. (l)x(f) into a homogeneous solution 

x ,  ( t )  and a particular solution 5, (t) . - 

The particular solution can be evaluated by imi~erically htegpatkg the fdlowing difFereda1 equation. 

d 
- x ( t )  = Ag, (t) t- &(t) a 4 1 4 b with initial conditions: _xp  (t = a) = 
dt -P 

(5) 

The homogeneous solution consists of a linear combination of arbitrary linear independent solutions of 
the homogeneous equation of Eq. (1). So one can write: 

In which @, (2) is a nxn matrix function (transition matrix) that contains the n arbitrary linear 

independent solutions of the homogeneous equation (fundamental solutions). is a superposition 
vector that contains the coefficients that deiine the linear relation between the arbitmy linear 

independent solutions of the homogeneous equation and the homogeneous solution X, (t) . 
The n arbitrary independent solutions of the homogeneous equation of Eq. (1) are obtained by 
integrating Eq. (7) n times with n arbitrary linear independent initial conditions. 

For ' 7  .> ~ ~ ( ~ ) l  =Ifi 

The superposition vector is obtained by substituting Eq. (6) into Eq. (4) and letting Eq. (4) satisfy 
the boundary conditions Eq. (2). 

The major problem of the shooting method is that it evaluates Eq. (I), which is unstable, by solving 
IVP's (Initial Value Problems). So in general, after a certain time between a and b, the numerical 
solution of the IVP will blow up and the obtained solution will be inaccurate. 
A multiple shooting technique also uses IVP's but for just a subinterval [tat,,] (i=O, . . . ,m-1) ,where 
a = t ,  < t ,  < - . . < t , - ,  < t ,  = b  
The idea is that the IVP's will be evaluated for just a short time, so the unstable increasing modes will 
not reach the unacceptable large grow factors that lead to numerical inaccuracy. After finding all the 
sub-solutions of the IVP's one has to solve a linear algebraic equation (one that resembles Eq. (8)). The 
dimension of that algebraic equation is m The drawback of this technique, and the reason why it 
cannot be used for our application, is that for very stiff unstable systems the amount of subintervals and 
so also the dimension (m) of the linear algebraic equation becomes unacceptably large. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 5 

2.2 Continuous decoupling 

If the solution space of Eq. (1) would only contain unstable solutions (increasing modes) or only stable 
solutions (decreasing modes) then the shooting method would probably be effective, because one could 
obtain the solutions respectively by solving EVP's (End Value Problem) or IVP's. Unfortunately this is 
not the case in general. 
However one can create a decoupling method [2], which is capable of decoupling the increasing and 
decreasing modes of the solution space of Eq. (1). 
Consider a homogeneous ODE of order n Eq (5). Any arbitrary solution consists of linear combinations 
of exponential functions, which can be reorganized into two vectors (lxn) p (t) and p ( t)  . 

-1 -2 

p ( i )  Ax14 g2 ( t )  c m b k  the eqment;.! fi=ctilons tht are respectively responsible for the increasing 
2 1  

and decreasing modes. 

f - e 7 I p 2  ( f ) (  - e -5t ( v ~ O , < ~ O )  
To make the problem easy to represent geometrically we will now consider the ODE to be 2- 
dimensional, but the theory also holds for n-dimensional ODE'S. 
For some arbitrary solution x,,~ (t) of the ODE it holds that it consist of a linear combination of 

pl ( t )  and p (t) containing respectively the unstable and stable modes, so: 
- -2 

x,, (t) = a1 - Pl (4 + a2 p2 (9 (9) 

To obtain the total fundamental solution @, ( t)  of the ODE (n=2) one needs another arbitrary solution 

linear independent of cleh,, (2) (see shooting ugehd): 

~ h , 2 ( ~ )  = f ig ,  < t > + P 2 4 f 2 1 t )  (10) 
For the geometric relation between the vectors see figure la. 

P J ~ )  f - 

figure l a  Geometric interpretation: zq, (t) and zk2(t) as Smear combination of pl(t) and p2(t) 

( t)  will grow asymptotically like p (t) (unless a, = 0 ) and will asymptotically have the same 
-1 

direction as p ( t )  . s,,, ( t )  will also grow asymptotically like p (t)  (unless P1 = 0) and also will 
-1 -1 

asymptotically have the same direction as p (t) . Conclusion: The obtained solutions (t) and -1 

x,,, (t) become numerically dependent as t becomes large, this is precisely why superposition used in - 

the shooting method fails. 
To prevent this problem one would like to create two (n) vectors instead of s,,, (t) and g,,, ( 8 )  which 

do not get dependent when t becomes large. A suitable solution would be to create a pair of vectors that 
stay orthogonal when t proceeds. This can be accomplished as follows: 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 6 

Let t, ( t)  be a unit vector in the direction of gh,l ( t )  

Xh,l(t) tl (t) = --- 
Y l ( 0  

Then, let t2 (t)  be a unit vector orthogonal to t, (t) . Now we can write the following linear relation of 

t, ( t)  and t2 (t)  with respect to g,,, ( t )  : 

Combining Eq. (9),(lO),(ll) and Eq. (12) gives: 

a, ( t>  - 
figure 1 b Geometric interpretation: of constructing t l  and t2 

Now examining figure lb  it can be seen that by y, (t) and y2 (t) will increase as p (t)  increases and 
-1 

y, ( t)  will decrease as p (t) is decreasing. 
-2 

Eq. (13) can in fact be rewritten in terms of the transition (fundamental) matrix defined in section 2.1. 

Eq. (14) and also Eq. (13) shows that the transition matrix @,(t) can be decomposed into a matrix T(t) 
which represents the direction of the solutions and another transition matrix QY(t) which is (block) 
upper triangular and has the requested decoupling behavior of the increasing and decreasing modes. 
The transition matrix @,(t) is descended from Eq. (1) on which the state variables x(t) where 
transformed into a set of other variables y(t) by the transformation matrix function T(t). 
Because of the decoupling behavior of T(t), the variables of y(t) can be partitioned into two parts yl (t) 

(n-k)xl 
(ER~' ) and y2(t) (a ) . Representing respectively the increasing and the decreasing solutions. 

Two-point boundary-value solver for s t 8  unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 7 

The question we are dealing with now is: What does one choose for the matrix functions T(t) and Z ? 
This will become clear in the next analysis. 
Taking the first derivative with respect of time of the right hand side of Eq. (14) gives: 

d dT(9 
-(T(o@, ( f ) )  = -p, ( t )  + T ( f )  

d@,(t) d 
dt 

= -a,Jt) 
dt dt 

A transition matrix function belonging to a homogeneous differential equation corresponding for 
example to Eq. (7) has the following property: 
d -cox ( f )  = A@, ( t )  
dt 

Substituting those into Eq. (16) gives an expression which results in a relation that Z and T(t) have to 
satisfy when one performs a transformation from Eq. (1) to Eq. (15). 

Eq. (17) consists of n2 equations for 2n2 variables (elements of Z and T(t)), so n2 degrees of freedom 
are iefi. With this exim freedom m e  WI d e ~ i a d  some extm constmkts QE Z and T@). 
To decompose a matrix in order to obtain a (block) upper triangular matrix function @,(t), which is 
needed to guarantee decoupling of the decreasing and increasing modes, can actud1y be achieved in 
two ways. 
1) QRdewmposition: This automatically leads to an orthogonal structure for the matrix function T(t) 

(in figure lb the geometric representation of this decomposition is presented) 
2) LUdecomposition: This leads to a lower triangular matrix function for the matrix function T(t) 
Because to obtain a lower triangular matrix function for T(t) is much easier and requires less 
computational effort than an orthogonal structure for the matrix function T(t), we will go on with the 
lower triangular form for T(t). 
Let T(?) be of the form: 

e- e- 
k n - k  

Now the structure of T(t) is prescribed and leaves us with k(n-k) degees of freedom left to prescribe 
the structure of Z. Because of the structure of @At), our requirement on Z is: Z21=0 (k(n-k) d.o.f'.'s). 
Substituting our choice of T(t) and Z into Eq. (17) gives: [, O O] - 4 4,][ 1 o ] [  1 O][Zll Z12] 
--R(f) 0 - A,, A,, Re) I R(t) I 0 Z,, 

In which A is partitioned in the similar way as Z 

u t-) 

k n - k  

Two-point boundary-value solver for stifF unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 8 

This leads to the following expressions for R(t) and Z. 

d 
- R(t) = A,, + A,, R(t) - R(t)All - R(t)A12R(t) with R(t = a) = 0 
dt 

Notice that Eq. (18) has a Riccati equation structure (asymmetric class of Riccati equation). 

Eq. (15) can 2ow be mitten 2s: 

In which: 
y2(t), which will be decreasing, can be integrated in forward direction with some initial value y2(t=a) 
without any stability problems. yl(t) ,which will be increasing, can be integrated in backward direction 
with some end value y,(t=b) without any stability problems. 
One major drawback however is the fact that R(t) can become unbounded in general. A way to handle 
this problem will be discussed in section 2.4. 

2.3 Separated Boundary-Value problem 

The Separated Boundary-Value problem is defined as: 

With boundary-values 

The separated boundary-Value problem is very suited to be solved by the continuous decoupling 
method describes in section 2.2. The continuous decoupling method needs n-k initial values and k end 
values, which are prescribed by the Separated Boundary-Value problem as: 

Substituting above equations in Eq. (22) gives: 

Two-point boundary-value solver for sMf unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 9 

Which leads to: 

With above initial and end values y(t) can be obtained by 20a,b and x(t) is then obtained by 

2.4 Integration restart 

As already mentioned in section 2.2, the solution of the non-linear matrix differential equation R(t) is 
not bounded in general. However in general R(t) grows less catastrophic than the IVP of Eq. (1) would. 
A way to deal with this problem is interrupting the integration at some time tl when IIR1(t)ll has reached 
some prescribed value. Then one can create a new basis for the solution subspace of R(t) and 
integration can proceed, until IIR1(t)ll may becomes unbounded again. The sequence can be repeated for 
a set of subintervals [t, t,l] (i=O, . . .,m-1) with a set of restart points (t1$,om ,with ta%<tl<. . . <tm=tb 
until tb has been reached. The result will be m-1 solutions d(t) with respect to m-1 different bases. In 
order to obtain the solution x(t) with respect to the origmal basis one transforms all the solutions xl(t), 
with their bases, back to the original basis. 

1) Obtaining a new basis for I?+'@: 
The new basis is obtained by a transformation of the state variables of Eq. (1) by an orthogonal 
transformation matrix Q1, so we get: 

The initial basis is defined as Q'=I,. The new transformation matrix Q'" is obtained by a QR- 
decomposition of [-R'(~J In-k] . According to Appendix A this will give: 

[- Ri (ti+l) InJU '+' = [0 Vi;'] (Vill =non-singular) 
ff f) 

k n - k  

Later on it will become clear why [-~'(t~) In-k] is a handy choice for decomposition to obtain u'" . 

The obtained orthogonal matrix ui" (ER-) will be USHI to create the new transformation matrix Q : 

2) Obtaining initial conditions needed to obtailz sot~tions R'(t) and yz'@ for i 4 ,  . . .,m-I 
To proceed the integration after a new basis has been introduced, one needs boundary conditions that 
are compatible with the new basis. With other words, when one at the end transforms all the solutions 
xl(t), belonging to bases i, back to the original basis the different time segments [t, t,+,] (i=O, . . .,m-1) of 
the solution x(t) will be connected properly and the resulting solution x(t) will be smooth. 
Using Eq. (23) the following relation between xl(tJ and y21(t1) can be obtained: 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to L C  theory) 



Numerical solution of the Linear Boundary Value Problem 10 

The relation between the state variables x(t) (which is the solution of Eq. (21)) and the state variables 
xl(t) (which are in fact also solutions of Eq. (21) but with respect to different bases) is: 

The relation between state variables xi(t) belonging to the ih basis and the state variables xi+l(t) 
belonging to the next basis can be obtained by: 

x i  (t) = u ~ + ~ ~ ~ + ~  (t) t E [ti titl] (i = 0 ,....., m - 1) - 

Substituting Eq. (28b) into Eq. (27) gives: 

y i  (ti) = [- ~ ' ( t , )  )Yi+lzi+l(ti) - 2 

Using decomposition Eq. (25) and xi+'(ti) ==~~+l(ti )y(t;)ifl @q. 23) leads to: 

Eq. (29) Shows that a convenient choice for the initial condition to integrate d/dR'(t) Eq. (18) would be 
R1(tJ=O. By doing so we obtain the following recursive relation for the initial condition used to 
integrate dIdyi(t) Eq. (20b). 

3) Obtaining end condition(s) needed to obtain sohtion(s) y2' (t) for i=O, . . .,m-1 
Evaluating Eq. (28a) for i=m and substituting this relation into Eq. (22) we can obtain the following 
relation for the end value xl@) and the end value belonging to the last basis xlm@). 

Notice that because one has chosen lti(ti)=O,  ti) =I, so Eq. (23) leads to the following property: 

Now we can rewrite Eq. (3 1) as: 

In which yl(b) is known &om the separated boundary condition (y,(b)=~~;'d~) and y*) is computed 
in the forward integration sequence. 

Two-point boundaq-value solver for stiff unstable hear  systems (suited for application to LLC t h e 0 ~ )  



To transform the begin condition ylm(b) (yll(ti)) into an end condition suited to start the backward 
integration sequence for the previous basis ylm-'(b) (yli-'(ti)) we establish, by using Eq. (28b), the 
following recursive relation for the end condition needed to integrate d/dyll(t) Eq. (20a). 

f 

figure 2 Graphical representation of the solutions 2(t) belonging to the different bases 

8 ~ r a n # o m i ~ ~ # j  ii&o 4:it)fsr i=O, . . .,m-1 
Summarizing the previous subsections 1,2 and 3 we can now obtain the initial-values (Eq. (30)) and 
end-values (Eq. (32) and Eq. (33)) necessary to obtain the solutions (~~(t),~z'(t)>~=o'"' with te[tl t,+~] 
(i=O, . . .,m-1) and (Y~(t))l,,.ll=O with te[t1 (i=m-1, . . .,0) respectively. 
Using R1(t), yll(t), y;(t) and Eq. (23) we obtain ~'(t): 

As mentioned before xi(t) can be transformed into x(t) by: 

x(t) = Qz xi ( t )  - t e [ t i  ti+,] ( i = O  ,....., m-1) 

2.5 Non-Separated Boundary-Value Problem 

A non-separated boundary-value problem is a general boundary value problem as defined by Eq. (1) 
with its boundary-value conditions. A non-separated boundary can not be partitioned in such a way that 
one can establish a boundary condition as is defined by Eq. (22) in section 2.3. So the continuous 
decoupling theory can not be used directly as it can be used by the separated boundary-value problem 
described in section 2.3. Yet a numerical solution for the non-separated boundary-value problem can be 
obtained with the continuous decoupling theory, with its favorable property, by applying the 
superposition theory of linear differential equations. The theory will basically be applied in the same 
way as it is used in the shooting method explained in section 2.1. The subtle difference is found in the 
way the particular solution Eq. (5) and the homogenous solution Eq. (6) will be solved. The particular 
solution and the homogenous solution will be solved by using the separated boundary-value problem of 
section 2.3. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Numerical solution of the Linear Boundary Value Problem 12 

- ParticuEar solution: zP ( t)  

With boundary-values: 

- Homgeneous solution: xh ( t )  = @ , (t)? 

Solving n times with n arbitrary linear independent boundary-value conditions. For example: 

Consequence for the transition (fundamental) matrix: 

Lax,21 @x,22 = I n - k  1 and [ @ , 1 1  @? l b  = [ I  01 
To obtain the superposition vector one can use relation Eq. (8) from section 2.1. 

Using this superposition method one will not face the problem of numerical dependency of vectors 

zh,, ( t)  (or h,l (1) and ,,, ( t)  ) as mentioned in section 2.2, because they will stay bounded as t 
becomes large. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Computational aspects 13 

3 Computational aspects 

Computations are being performed in MATLAB. For the written m-files see Appendix C. 
Integration in order to obtain the solutions (~'(t),~~(t)),==,,~="' with k[t, t1+~] (i=O, . . .,m-1) is carried out 
by one of the variable step size integration schemes, which are present in Matlab (ode-solvers). The 
choice of what integration scheme one should use is optional and can be chosen by the user. In ILC 
applications the input signal u(t) (see Eq. (1)) consists of a discrete signal corresponding to a 
equidistant discrete time interval [a b]. In order use the input equidistant signal u(t) in the variable step 
size integration schemes interpolation of the input signal gll(t) is unavoidable. 
Integration in order to obtain the solution(s) fyz'(t)),,-l'O with te[t, t,+,] (i=m-1, . . .,O) is also carried 
out by a variable step size integration scheme. The stored variable yZ1(t) with its variable step size 
formation and gi(t) with its equiciistantiai spaced suucwe are jiisi as gl(tj kiqo!iifezS, tk 
integration process. 
In order to minimize the accuracy of the solver to be a function of the used step size an accurate 
interpolation method is necessary. The interpolation method is also optional and the user can chose one 
of the interpolation methods available in M A W .  
To obtain the transition matrix cPx(t), used to obtain the homogeneous solution, is quite a time 
consuming job. In ILC application however, one only has to compute the transition matrix @,(t) once 
(offline). In fact computation time between the learning iterations will basically consist of computing 
the particular solution. 

3.1 Using the solver in iVlATLAB 

The following m-files are written in order to solve the non-separated boundary-value problem defined 
by Eq. (1) and Eq. (2): 
a R1CLBVP.m: Is a function which computes the non-separated boundary-value problem for 

input variables that prescribe the non-separated boundary-value problem 
which are: A,B,u,f B,,Bb,d (see Eq. (1) and Eq. (2)). Additional 
parameters are 
k: Some integer value between 1 and n-1 which specifies how the 

separated boundary-value problem will be partitioned (see Eq. 36). 
The integer value k represents the amount of unstable modes that 
are presented in Eq. (1). If k=O or k=n it suggests that there are 
respectively no unstable or no stable modes present in Eq. (1) 
and using this solver will nat be effective because T=I. You rather 
use W'S or EVP's (see section 2.2) 

Rmax: Some maximum value which (IR1(t )I]  is not allowed to reach. When 
this value has been reached integration will be restarted 
(see section 2.4) 

ReILTol: Relative integration error tolerance 
AbsTol: Absolute integration error tolerance 

Interp-methode: With the string variable 'interp-methode' the method of 
interpolation can be chosen. 

Ode: With string variable 'ode' one can select one of the integration 
schemes in MATLAB. 

FUNDS0L.m Is a function that computes the particular solution (defined by Eq. (36) and 
Eq. (37)) 

PARTS0L.m Is a function that computes the transition matrix cPx(t) (fundamental 
solutions). 

0 SEPI3VP.m Is a function that computes the separated boundary value problem including 
integration restarts. 

0 RandY2.m Is an odefile which integrates R1(t) and yz'(t) 
o Y1.m Is an odefile which integrates yll(t) 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Computational aspects 14 

When computing the non-separated boundary-value problem the previous listed m-files can be put into 
the following computation scheme. 

A , B , u , t , B , , B , , @ , i  I 

k R,, , Re EToE, AbsToE , i 
: PARTS0L.m FUNDS0L.m i 

'int erp - methode ', 'ode' i 

...................................................... , 

figure 3 Computation scheme 

One example of how to use the solver in MATLAB: 
Make surethevariablesA,B,u, t, Ba, Bb,d, k,Rmax, RelTo1,AbsTol are definedinthe 
MATLAB workspace. 
Select an inkrpolatioii method. 
For example the "spline" method, which is a standard MATLAB interpolation method, can be 
selected as follows: 
Define the string variable in t e rp - met hode in the workspace by typing; 
interp methode=' splinef 
Select anintegration scheme. 
For example "ode45", which is a standard MATLAB integration scheme, can be selected as 
follows: 
Define the string variable ode in the workspace by typing; ode=' ode4 5' 
If al variables are defined in the workspace and the needed m-files are present in the MATLAB 
path just type; 
x=riclbvp (A, B, u, t, Ba,Bb, d, k, Wax, RelTolfAbsTol, interp-methode, ode) 
Now x will be a vector corresponding to the given equidistant time vector t and will contain the 
numerical values of the approximated solution of the prescribed non-separated boundary-value 
problem. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Performance Compared to other potential suitable solvers 15 

4 Performance Compared to other potential suitable solvers 

The potential suitable solvers to which the numerical routine, described in previous chapters, (from 
now on we call this numerical routine RICLBVP-solver (RICLBVP stands for RICcati Linear 
Boundary-Value Problem)) is compared, are:. 

A routine from the NAG foundation (D02JBF) [5]  (program: FORTRAN) 
The D02JBF-routine uses a least squares method to approximate the solution by Chebyshev 
polynomials. 
A routine from Institut National Polytechnique De Toulouse (WASP) [6] (program: MATLAB) 
The WASP-routine (Wavelet Adaptive Solver for boundary value Problems) uses finite difference 
schemes [I]. After each attempt to obtain the approximate solution the grid is adapted by a 
wavelet analysis. Starting with a coarse grid (grid of resolution J), a new refined grid (of resolution 
jt i j is computed by addhg ppot?:s whexever $@$I waielet cwfficients are detected. We refer to 
[7] fop the details. 

4.1 Achievabie accuracy 

Assume we have the following unstable 2nd-order differential equation: 

d 2  
- x(t) + m(t) = u(t) with a < 0 or 
rdt 

d 
- x(t) = A_x(t) + Bu(t) with A = 
dt - 

Eq. (38) is approximated by the three solvers and compared to the analytical solution. Results are 
shown in figure 4 and table 1 

Figure 4 Result of evaluation of Eq. (38) by RICLBV-solver , DOZJBF and WASP :a=-10; u(t)=&cos(2*n*f'0*t) (discrete); 
&=I; fo=5f-Iz, dt=0.001 sec.. Because the error xl of the WASP-solver is presented in the same scale as the rest of 
the fimres it seems to be zero. however numericallv it is not zero. 

Two-point boundary-value solver for stiff unstable linear svstems (suited for application to L C  theory) 



Performance Compared to other potential suitable solvers 16 

( Input variables I RICLBVP-solver I D02JBF 1 WASP 

Integration scheme 
Interpolation method 
Integration tolerance RelTol and AbsTol 

Order of Chebyshev polynomials 

I IIW 
I I I 
I 10 (Amount of integration restarts ( - 

I I I 

Ode45 I - 

Number of collocation points 

Table 1 Used parameters and numerical results 

Spline 

le-9 

I 1000 (maximum) I 

Coarseness of grid 

Numerical value boundary condition 

x~(t=O) 

Our RICLBVP-solver solves the problem with an error of approximately the same order as the 
commanded tolerance. The accuracy of the WASP rouhe depends on the coarseness of the 
commanded grid. Using the same coarseness for the grid as the resolution of the discrete input signal 
u(t) we reach a higher accuracy as the other two solvers. However to obtain a higher accuracy for these 
two solvers one could further decreasing the integration accuracy of the RICLBVP-solver and 
increasing the Cnebyshev pofpx(~i~daI order of fie ED02JBF mutim. See SWe 5 m-d bble 2 for the 

144 

obtained results. 

Ox) 

0 

Figure 5 Result of evaluation of Eq. (38) by RICLBV-solver , D02JBF and WASP: a=-10; u(t)=&cos(2*~*f0*t) ; &=I; 
fo=SHz, dt=0.001 sec.; Tol=le-12 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 

1.082e-019 

2.266e-010 

202 sec. 

2.i68e-019 
-- 

XI@=~) 

RMS-value of error 

Computation time 

dt 

8.470e-022 

0 

4.194e-009 

286 sec. 

2.168e-019 

4.641e-009 

33 sec. 



Performance Compared to other potential suitable solvers 17 

I Input variables ) RICLBVP-solver I D02JBF I WASP 
I I 7 

Number of coIlocation points 

IIRII 
Coarseness of grid 

Numerical value boundary 

I I I I I 

Spline 

condition 
x1(t=O) 

xl(t=l) 

The error of the RTCLBV-solver again has almost reduced till the same value prescribed by the 
integration tolerance. The little deviation is mainly caused by interpolation errors and numerically 
errors introduced by solving the linear algebraic equations needed to obtain the superposition vector 
and initial and end-values needed for the integration restarts. 
Notice that increasing the Chebyshev polynomial order of routine DO~JBF does not hsodlice m 
improvement of the accuracy. Apparently no further improvement of the accuracy can be obtained. 
To further improve accuracy of the WASP routine one can refine the grid. 

844 

Integration scheme 
Interpolation method 
Integration tolerance RelTol and 
AbsTol 
Order of Chebyshev polynomials 

WS-value of error 

Computation time 

4.1 Stiff systems 

Ode45 
Spline 

le-12 
- 

0 

0 

Assume we have an unstable relatively stiff 31d-order system with the following zero-pole-gain 

Table 2 

5.449e-011 

1292 sec. 

representation: 
Zeros: none 
Poles : 0.1, -0.5, 10000 
Gain: 1 
Input: u(t)=Amcos(2*7.r*fo*t); Am=l,fo=3& 
With boundary conditions: 

2.168e-019 

2.168e-019 

The three solvers are again used to approximate the solution of the problem. Results are shown in 
figure 6 and table 3 

8.470e-022 

1.082e-019 

4.658e-009 

267 sec. 

Two-point boundary-value solver for stiff unstable bear  systems (suited for application to ILC theory) 

2.266e-010 

202 sec. 



Performance Compared to other potential suitable solvers 18 

Figure 6 Approximations by RICLBV-solver [ 1, D02JBF [ _ - - 1 and WASP [ .... . .. 1. Notice that the set of figures at 
the right represent the end part of the solution. This part is being zoomed in with respect to the time axis in order to 
represent the stiffness of the solution. 

1 Input variables I RICLBW-solver I D02JBF I WASP 
I 

1 
I I I 

spline 
Integration scheme OdelSs 

Notice that routine D02Jl3F fails. The Wasp routine does also seem to fail after computing the first 
solution with the initial grid (see Appendix B). Due to the efficient adaptation of the grid by a 
wavelet analysis it succeeds to obtain a meanin@ solution. The grid is refined on the locations where 
the solution profile is stiff and the integration scheme has trouble getting a meaningful solution. The 
adaptation does consume some more computation time. It is also uncertain how much adaptation cycles 
there will be necessary to obtain a particular accaacy. 

Integration tolerance RelTol and 
AbsTol 
Order of Chebyshev polynomials 

Number of collocation points 

IIRll 

x:(t=l) 
Computation time 

Two-point bow*-value solver for stiff unstable linear svstems (suited for application to ILC theow) 

1000 

- 10000 (amount of integration restarts Ox) 

le-9 
- 

pp 

Coarseness of grid 

Numerical value boundary 
concEitiop~ 

Table 3 

0 
756 sec. 

240 

Adaptable 

7.216e-016 
216 sec. 

0 
1 143 sec. (7x grid 
adaptation) 



Conclusions 19 

5 Conclusions 

5.1 Stiffness 

The WASP routine and the RICLBVP-solver can both deal with relative stiff unstable systems. 
Limitation of the RICLBVP-solver concerning the stiffness of a problem depends on the integration 
scheme that is used. But in spite of the relative stiff equations that one has to tackle, the actual 
equations that have to be integrated (R(t),yz(t),yl(t)) are relatively tame as stiffness is concerned. 
However because of the adaptive character of the WASP routine it can also solve very stiff problems. 
if grid refinement by the wavelet d y s i s  of the WASP routine will ir, genera! l e d  t~ convergence it 
can handle unlimited stiff systems. 

5.2 Accuracy 

The disadvantage of the WASP routine is the uncertainty of the amount of grid adaptations that will 
lead to a specific accuracy. 
The RICLBVP-solver does not have this disadvantage and will approximate the solution by a given 
accuracy, if a proper integration scheme is used and an accurate interpolation method is used to 
minimize the interpolation errors. 

5.3 Computation time 

The computing times which are given in tables 1,2,and 3 for the RICLBVP-solver are the total 
computation times. When using the solver in ILC-application only the computation time of the 
particular solution has to be taken into account (see chapter 3). This property makes the RICLBVP- 
solver in spite of its "expensive" computations a relatively fast solver compared to the WASP routine. 

Two-point boundarv-value solver for stiff unstable linear systems (suited for application to L C  theory) 



Further investigation on the RICLBVP-solver 20 

Further investigation on the RICLBVP-solver 

Further investigation could be preformed on the possibility to make the RICLBVP-solver more 
efficient to reduce computing time. Especially when one want to compute higher order problems 
the computing times are still relatively long. (Particularly when compared to ZPETC) 
Solvers designed especially to solve the matrix Riccati differential Eq. (18) could be implemented 
in stead of the standard ode-solvers from MATLAB 
Some method to prevent the interpolation of the stored variable yzl(t) (see chapter 3),which will 
cancel the interpolation error, could be investigated. 
''invariant kbddiiig7' f5 j app=ed to be a so!::fie,n fer this pit31em but it made the solver less 
suitable for st3fprobIerns. The exact reason why invariant imbedding creates tRis unwanted 
complication is not fully understood. More attention to this matter might lead to some advance. 
More accurate linear algebraic solvers to reduce errors introduced by solving the equations needed 
to obtain the superposition vector and initial and end-values needed for the integration restarts. 

References 

Uri M. Ascher , Robert MM. Pvlattheij, Robert D.Russel1 
Numerical Solution of Boundary Value Problem for Ordinary Diferential Equations 
P.M. van Loon 
Continuous decoupling fransformations for linear boundary value problems 
CWI Tract 52, Centrum for Mathematics and Computer Science 
Melvin R. Scott 
Invariant Imbedding and its Applications to Ordinary Differential Equations 
Mmice Schneiders 
Evaluation of (unstable) non-causal systems applied to iterative learning control 
Eirrdhoven Universeit sf Technslogy, Faculty of Mechanical Engineeriarg, Systems 
and Control Group, trainee report 200 1 .O8 
NAG Fortran library Mark 18 
h~:ilm~.enseeiht.fiWa~I-vviisi-,I 
WASP: a Wavelet Adaptive Solver for boundary value Problems 
J.B. Caillay J. Noailles 
A wavelet adaptive solution for boundary value problem 
Technical Report RT/APO/O 1/1, ENSEEIHT-IEUT, January 200 1. 

Two-point boundary-value solver for stigunstable linear systems (suited for application to TLC theory) 



Appendix A QR-decomposition 

Appendix A QR-decomposition 

For any k-dimensional subspace S1 c Rn there exists a column orthogonal, matrix QI such that 
S1=% (Q1). This is a result of the following: 
Let A, E R ~ ,  with ksn. Then there exist a column orthogonal matrix Q~ e.Rd and an upper triangular 
matrix R ~ ~ C R ~  such that 

This is called a QR-decomposition of A1 . 
If Al has full rank and we moreover require that the diagonal elements of Kl are positive, &en Q1 and 
Rl are uniquely determined. 
If A~ER'" , with k<n, then a QR-decomposition of Al is obtained by 

Where QERm is Orthogonal and R~ is upper triangular. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix B Approximation of x3(t) after each grid adaptation 

Appendix B Approximation of x4t) after each grid adaptation 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

Appendix C M-files RICBVP-solver 

function 
X=riclbvp (A, B,U, t, Ba, Bb, dl k, Rrnax,RelTol,%sTol, inter methode, ode) 
%X=RICLBVP (A, B,U, t, Ba, Bb, dl k, Rmax, RelTol,To, ' i n  - methode', 'ode' ) 
RICLBVP is a routine, which numerically computes the solution of n 
coupled first-order linear time-invariant differential equations with 
non-separated boundary-value conditions. The algorithm is especially 
suited to deal with stiff differential equations containing unstable 
modes. 

d/dtx (t) =A*x (t) +B*u (t) 

With Boundary conditions: 

The routine uses fundso1.m and partsol.m, which respectively compute 
the fundamental solution (PHI(t)) and particular solution fp(t)) of a 
separated boundary-value problem (see sepbvp.m). These solutions are 
used to obtain the solution for the specified non-separated boundary- 
value problem by means of superposition. 

x (t)=PHI (t) *v+p (t) in which v is the superposition vector. 

system matrix ( nxn 
inputmatrix (lxn) (SISO) 
input 
equidistant time vector 
(nxn) matrix which specifies the linear boundary-value 
condition 
(nxn) matrix which specifies the linear boundary-value 
condition 
(lxn) colornvector which specifies the linear boundary-value 
condition 
some integer value between 1 and n-1 (specifies how the 
separated boundary-value problem, calculated in sebvp.m, 
will be partitioned) 
maximum absolute value of R(t) at which numerical 
integration will be restarted (used because of the 
unboundness of the solution of the Riccati differential 
equation, which is used to obtain a continuous decoupling 
of de state variables necessary to obtain a numerical 
stable algorithm (see sepbvp.m)) 
relative error tolerance 
absolute error tolerance 

Binterp-methode := with string variable 'interp-rnethode' the method 
Y of interpolation can be chosen see interp1.m for 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theom 



Appendix C M-files RICBVP-solver 
% the different methods 

%ode := with string variable 'ode' one can select one of the 
- integretion schemes in Matlab that will be used for 

% numerical integration 
% 
%-output variables: ................................................... 
c 

% X := vector which contains the solutions of the non-seperated 
9- boundary-value problem 

% 
%-used m-files: ....................................................... 
8 
% fumdsol .m (not standard MATLAB) 
% partso1.m (not standard MATLAB) 
8 
% 
% Author: Bas Roset 
% Date: July 2001 

n=length (A) ; 

[PHI, PHI to, PHI tej =fundsol (A, t, k, Rmax, RelTol,AbsTol, interp-rnethode, ode 
) ; %~undemental solution of sep . bvp 
p=partsol (A, B,U,  t, k, Rrnax, RelTol , AbsTol, i n  - methode, ode) ; 
%Particular solution of sep. bvp 
v= (inv (Ba*PHI - tO+Bb*PHI - te) ) * (d-Ba*p ( : , 1) -Bb*p ( : ,end) ) ; %Superposition 
vector 

X=[I; 
n=length (t) ; 
for k=l:length(t), 

PHI-k= [ ] ; 
for i=0: (length (A) -1) , 

phi i=PHI ( : , k+i*n) ; 
PHI-k= - [PHI - k, phi-i] ; 

end, 
x=PHI k*v+p ( : , k) ; %Solution for nonsep. BVP 
X=[X XI ; 

end 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

function 
[PHIrPHI~a,PHI~bl=fundsol(AftIkrRmax,RelTol,sTolfinterp - methoderode) 

%[PHI,PHI a,PHI b] = FUNDSOL(A,tfkrRmax,RelTolrAbsTolr 'interp methode') 
F U N D S O L - ~ V ~ ~ U ~ ~ ~ ~  the fundamental solution of n coupled f irgt order 
linear time-invariant differential equations with separated 
boundary-value conditions. 

d/dtx (t j =A*x (t) A=[A 11 A 121 (k) 
[A-21 - A 2 2 1  - (n-k} 

(kl (n-k) 

With Boundary conditions: 

Ba=[O 0 1 (k) Bb=[Bbl 01 (k) d= [dl] (k) 
[ O  Ba2] (n-k) [ O  01 (n-k) Ld21 (n-kf 

To obtain the fundamental matrix (PHI(t)) with n linear independent 
solutions, the differential equation is solved n times by using 
linear independent separated boundary-value conditions. 

%-input variables: ................................................... 
% 
%t := equidistant time vector 
%A := system matrix (nxn) 
%k := Some integer value between 1 and n-1 
%Rmax := absolute value at which numerical integration will be 
% restarted(used because of the unboundness of the solution 
% of the riccati differential equation, which is used to 
8 obtain a continuous decoupling of de state variables 
9 necessary to obtain a numerical stable algorithm) 
BRelTol := relative error tolerance 
BAbsTol := absolute error tolerance 
Binterp - methode := with string variable interp-methode the method of 
% interpolation can be chosen see interp1.m for the 
3- different methods 
Bode := with string variable 'ode' one can select one of the 
8 integration schemes in Matlab that will be used for 
B numerical integration 
3- 

%-output ................................................. 
% 
% PHI := vector nx(n*t) which contains de fundamental solutions 
% PHI= [PHI 11 PHI 121 (k) 
9- [PHI-21 PHI-221 (n-k) 

- 
% (k) (nlk) 
9 

% PHI - a := fundamental matrix at t=a [PHI 21(t=a) PHI - 22(t=a)]= 
% [O I-n-kl 
% P H I  := fundamental matrix at t=b [PHI-11 (t=b) PHI - 12 (t=b) ] = 
8 E 1-k-0 I 

Two-~oint boundarv-value solver for stiff unstable linear systems (suited for application to ILC theoni) 



Appendix C M-files RICBVP-solver 

n=length (A) ; 

I=eye (n) ; 
boundary-values 

%n linear independent 

8% solving the homogeneous separated boundary-value problem (n times) 
PHI= [ I  ; 
for i=l:n, 

d=I ( :  ,i) ; 8 boundary-values 
dl=d(l:k) ; 
dZ=d(kfl:n) ; 

[t,phi]=sepbvp (A, zeros (length (A), 1) , t, zeros (1, length (t) ) fd2rdlrRmax,Rel 
Tol,AbsTol,interp - methoderode); 

PHI= [PHI,phil ; 
end, 

8% select PHI - a and PHI - b % %  
PHI a=[]; 
 PHI^= E I ; 
m=length (t) ; 
for i=0 : length (A) -1, 

phi a=PHI ( :  ,i*m+l) ; 
p h i - b = ~ ~ ~  ( : , i*m+m) ; 
PHI-a= [PHI a, phi-a] ; 
P H I - ~ = [ P H I - ~ , ~ ~ ~  - - - b]; 

end, 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

function p=partsol (A, B,U, t, k, Rmax, RelTol,AbsTol, inter - methode, ode) ; 

%p = PARTSOL(A,B,U,t,k,Rma~~RelTol,AbsTol,'inthode') 
% PARTSOL evaluates the particular solution of n coupled first order 
% linear time invariant differential equations with separated 
% boundary-value conditions. 
9 

% d/dtx(t)=~*x(t)+~*~(t) A=[A 11 A 121 (k) B=[B 11 (k) 
% [A-21 - A-221 - (n-k) [BIZ] (n-k) 
% 
Q ik) (n-k) (1) 

% 
% With Boundary conditions: 
% 
% Ba*x (t=a) +Bb*x (t=b) =d 
B 
% Ba=[O 0 ] (k) Bb=[Bbl 01 (k) d=[dl] (k) 
% [O Ba21 (n-k) [O 01 (n-k) [d21 (n-k) 
9 

% 
% To obtain the particular solution (p(t)) the differential equation is 
% solved by using the following boundary-value conditions: p2(t=a)=0 
% and pl (t=b)=O 
% 
%-input variables: ................................................... 
% 
%A := system matrix (nxn 
%B := input (lxn) (SISO) 
%k := some integer value between 1 and n-1 
%t := equidistant time vector 
%U := input 
%Rrnax := absolute value at which numerical integration will be 
% restarted (used because of the unboundness of the solution 
% of the riccati differential equation, which is used to 
% obtain a continuous decoupling of de state variables 
% necessary to obtain a numerical stable algorithm) 
%RelTol := relative error tolerance 
%AbsTol := absolute error tolerance 
%interp-rnethode := with string variable interp-methode the method 
% of interpolation can be chosen see interp1.m for 
9 the different methods 
%ode := with string variable 'ode' one can select one of the 
P integration schemes in Matlab that will be used for 
9 numerical integration 
% 
%-output variables: .................................................. 
% 
% p := vector which contains the particular solutions 
% 
%-used m-files: ...................................................... 
% 
% sepbvp.m (not standard MATLAB) 
% 
% 
% Author: Bas Roset 
% Date: July 2001 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

n=length (A) ; 

d=zeros (length (A), 1) ; 
dl=d (1: k )  ; 
d2=d(k+l:n) ; 

8 boundary-values 

%8 solving the inhomogeneous separated boundary-value problem 8% 
[t,p] =sepbvp (A,B, t,U,d2,d1,RmaxI RelTol,AbsTol,interp - methode, ode) ; 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

function 
[t,X] =sepbvp (A, B, t,u,d2,dlf Rmax,RelTol,Abs~ol, inter - methode, ode) 

% [t,X] = SEPBVP (A, B, t, u, d2,dl, Rmax, RelTol,AbsTol, 'interp-methode' ) 
% SEPBVP is an algorithm, which numerically computes the solution of n 
% coupled first-order linear time-invariant differential equations with 
8 separated boundary-value conditions. The algorithm is especially 
8 suited to deal with stiff differential equations containing unstable 
% modes. 
% 
% d/dtx(t)=~*x(t)+~*u(t) A=[A 11 A. 121 (k) - 1  (kj 
% [AW21 - A-2221 - (n-k) [B-21 (n-k) 
0 0 

8 (k) (n-k) (1 
9 

% With Boundary conditions: 
9 

8 Ba*x (t=a) +Bb*x (t=b) =d 
8 
% Ba=[O 0 ] (k) Bb=[Bbl 01 (k) d=[dl] (k) 
% [ O  Ba2J (n-k) [ O  01 (n-k) [d21 (n-k) 
8 
9 (n) (n) 
s 

% In this function Ba2 and Bbl cannot be specified by the user 
8 (Ba2=I-n-k,Bb=I k). The algorithm is based on a continuous decoupling 
& transformation Tx (t) =T (t) *y (t) ) (riccati transformation) of the state 
% variables. The transformation leads to the following set of 
8 differential equations. 
% 
% d/dtyl (t) =Z-11 (t) *yl (t) +Z 12 (t) *y2 (t) +gl (t) (k) 
% d/dty2 (t)= Z-22 - (t) *y2 (t) +g2 (t) (n-k) 
% 
% With Boundary conditions: 
% 
8 Ba*T (t=a) *y (t=a) +Bb*T (t=b) *y (t=b) =d 
3- 

% Ba=[O 0 ] (k) Bb=[Bbl 0] (k) d=[dl] (k) 
8 [0 Ba2] (n-k) [O 01 (n-k) [d21 (n-k) 
3- 

9 (n) (n) 
9- 

% Transformation matrix: 
% 
% T(t)=[I k 0 I 
9- [ R T ~ ) I n-kl 

- 
% 
8 with R(t) satisfying: d/dtR(t) =A_21+A - 22*R(t) -R(t) *A 11- 
% R (t) *~-12*~(t) with R (t=a) =O 
9 

% The transformation will decouple the stable decreasing modes (y2(t)) 
% and the unstable increasing modes (yl(t)). The obtained property 
8 makes it possible to integrate d/dty2(t) in forward direction 
8 followed by a backward integration of d/dtyl(t) without leading to 
8 stability problems during integration. A disadvantage however, is 
8 that R(t) is not bounded in general. In order to prevent that R(t) 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

% blows up between a<t<b, integration is canceled after some 
8 time when I IR(t)l l=Rmax is reached. After a reorthogonalization of 
% the solution basis of d/dtx(t) the integration will be restarted this 
8 procedure is repeated until t=b is reached. 
3 

% 
%-input variables: ................................................... 
% 
%A . .- - system matrix ( nxn 
% B := input matrix (lxn) (SISO) 
%dl := boundary condition at t=b 
% d2 := boundary condition at t=a 
% t ime := equidistant tim-e vector 
%u := input 
% Rmax := absolute value at which numerical integration will be 
restarted 
%RelTol := relative error tolerance 
%AbsTol := absolute error tolerance 
Binterp - methode := with string variable interp methode the method of 
a interpolation can be chosen-see interpl .m for the 
% different methodes 
%ode := with string variable 'ode' one can select one of the 
% integration schemes in Matlab that will be used for 
8 numerical integration 
% 
%-output variables: .................................................. 
8 
8 X := numerical solution of the separated boundary-value problem 
P 

%-used m-files: ....................................................... 
---- 
'5; 
B 

% Randy2.m (not standard MATLAB (ode-file) 
% y1.m (not standard WiTLAB (ode-file) 
8 spline .m (standard MALAB) 
8 
8 
% Author: Bas Roset 
% Date: July 2001 

n=length (A) ; 
k=length (dl) ; 
tO=t (1) ; 
dt=t (2) -t (1) ; 
te=t (end) ; 

&----------------------------- Initialization ........................ 8 

Bu=B*u; 
t Bu=t; 
~ i = e ~ e  (n) ; %QO=I 
Ui=eye (n) ; %UO=I 

n-k, k) ; 

%Initial value for solving 

%Initial value for solving d/dtR(t) 

%Amount of time steps from discrete 
%time vector that have been 
%integrated 

Two-point boundary-value solver for stiff unstable linear systems (suited for a~plication to ILC theory) 



Appendix C M-files RICBVP-solver 

Q - - - - - - - - - - - - - - - - -  solving {Ri (t) , y 2 i  (t) } i=O, . . . , m-l ------------% 

Y2 O=y2 0; 
why1 e t&t e , 

i=i+l; 
% %  Transformation of the state variables 8% 
&=Qi ' *A*Qi; 
Bui=Qi ' *Bu ( : , [Nint+l : length (Bu) ] ) ; 
8-------------- Integration of d/dtR(t) and d/dty-2(t) ---------8 
R - O=mat2colZ(R - 0); %Converting initial matrix R-0 into initial 

%colomvector 
RO y20=[R 0'. %Initial vector - - YL.- J I 

options = odeset('Events','onl~'RelTol,'AbsTol); 
[ti, R-y2]=feval (ode, 'Randy2 ', [to te] ,RO y20, options, t Bu,Ai,Rmax. 

Bui, k, interp-methode) ; %solving R and y2 
if ti (end) -ti (1) <dt, 

error('1ntegration time interval becomes smaller than the given 
discrete time vector (t) steps: => increase Rmax or 
decrease discrete time steps') 

end, 

for s=l:size(R-y2,2), %Converting vector solution of R into matrix 
rmat=colZmatmk (R y2 ( [l: (n-k) *k] , s) ,n-k, k) ; 
 mat= [Rmat. rmat] f 

end, 
y2=R-y2 ( [ (n-k) *k+l: (n-k) *k+ (n-k) 1 , : ) ; 
%----------------------------------------------------------------- % 

% %  Interval of input (Bu) used for integration % %  
Bui=Qil*Bu (: , [Nint+l: fix(ti (end) /dt) +l] ) ; 
t - Bui=t (Nint+l: fix (ti (end) /dt) +l) ; 
8% Storing variables % %  
eval(['Rmatf numZstr(i) ' = Rmat;']); 
eval (['y2' num2str(i) ' = y2; ' I ) ;  
eval(['ti1 numZstr(i) ' = ti;']); 
eval(['Qi1 nurnZstr(i) ' = Qi;']); 
eval(['Uiq numZstr(i) ' = Ui;']); 
eval(['Buil numZstr(i) ' = Bui;']); 
eval(['t-Bui' num2str(i) ' = t - Bui;']); 
8% New Qi en y2 0 % %  
[UifR]=qr( [eye(k) ;Rmat (:, [end-kfl:end] ] ) ; 
y2 - O=(Ui([k+l:n],[k+l:n]))'*yZ(:,end); 
Qi=Qi*Ui; 
Y2 0=[Y2 O,y2 01; % Storing initial conditions y2-0i 
8%-~otal-amount of steps which have been integrated 8% 
Nint=fix (ti (end) /dt) ; 
% %  Discrete time vector t left to integrate 8 %  
t Bu=[t(Nint+ll :dt:tel; 
8 8  New starting time for integration 8% 
tO=ti (end) ; 

end, 
m=i+l; 
i=m; 
eval(['Uil numZstr(i) ' = Ui;']); 
%---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -a  

%--------------- solving {y-li (t) =x-li) i=m-1, . . . , 0 ----------------% 

Qm=Qi ; 
Qmll=Qm([l:k], [l:k]); 

Two-point boundarv-value solver for stiff unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 
Qml2=Qm([l:k],[k+l:n]); %Transformation of end-value (dl) to the 

%appropriate solution basis 

xi1 - O=inv(Qmll) * (dl-Qml2*Y2 - 0 ( : ,m) ) ; 
for z=l:m-1, 

8% loading variables 8% 
hat=eval( ['hat' num2str (i-1) ] ) ; 
yZ=eval(['y2' num2str(i-l)]); 
Qi=eval(['Qil num2str(i-l)]); 
ti=eval( ['ti1 num2str (i-1) ] ) ; 
t Bui=eval(['t Bui' num2str(i-I)]); 
~ui=eval( [ ' ~ u i ~  num2str (i-1) ] ) ; 
Ui=eval( ['Ui' numZstr(i)] ) ; 
 in; \ 1*n*n; 

I n ~ l ;  

8---------------- Backward-integration of d/dty-l(t) ----------- % 

Rcol= [ 1 ; 
for j=l: length (ti), %Transforming the matrix riccati solution 

rcol=rnat2col2 (Rrnat ( : ,[ (j-1) *ktl: j*k] ) ) ; % n o  a colomvector 
%solution (nessecery 

Rcol= [Rcol, rcol] ; %to abtain compatibility 
%with the ode-solver) 

end, 
Ulli=Ui([l:k], [l:k]); %Recursive relation which 

%computes the new 
Ul2i=Ui ( [1: k] , [k+l:n] ) ; %end-value used for 

%Backward-integration 
xi1 - O= [Ulli,U12i] * [xil_O;Y2 - 0 ( : , i) ] ; %of d/dty-lit) 

options = odeset('RelTol',RelTol~lAbsTollvAbsTol); 
[t2i1xil]=feval (ode, 'yll, [ti (end) ti (1) ] ,xi1 O,options, t Bui, ti, 

Rcol,Ai,Bui ([l:k]T:), y2,inter*hode) ; 
xil=f lipud (xi1 ) ' ; %xl=yl 
xi1 - O=xil(:,l) ; 
%--------------------------------------------------------------- 

8 Interpolate xl=yl, y2 and R to the same equidistantial spaced 
8 time vector 
y2 inter= [I ; - 
for h=l: size (y2, I), 

Y2 inter=interpl(ti,yZ(h,:),t - Bui,interp-methode); 
y2-inter= - [y2 - inter;Y2 - inter] ; 

end, 
xi1 inter= [ I  ; 
for-h=l:size(xil, 1) , 

Xi1 - inter=interpl(flipud(t2i),xil(h,:),t - Bui,interp - methode); 
xil~inter=[xil~inter;Xilxil_inter=[xil_inter;Xil_inter];inter]; 

end, 
%xi1 inter=xil 
~colIinter= [ J ; 
for h=l: size (Rcol, 1) , 

rcol inter=interpl(ti,Rcol(h,:),t - Bui,interp-methode); 
~col-inter= - [Rcol - inter; rcol-inter] ; 

end, 
% %  Compute x2, x2=[R, In-k] * [yl;y2] (x=Ty) 8% 
xiZ=zeros (n-k, length (t-Bui) ) ; 
X=zeros(n,length(t-Bui)); 
for j=l:length(t Bui), 

xi2 ( : , j ) = [colFmatmk (Rcol-inter ( : , j ) , n-k, k) , 
eye (n-k) ] * [xi1 inter ( : , j ) ; y2-inter ( : , j ) ] ; 

%Compute the total solution by transforming all separate 
%solutions from the different solution basis's to the original 
%basis. 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to ILC theory) 



X=[l; 
for i=l:m-2, 

x=eval ( [ 'X' num2str (i) 1 ) ; 
X=[X,x(:, [l:end-11 )]; 

end 
x=eval(['X1 num2str(m-l)]); 
X= [X,xj ; 

mess = sprintf('Amount of integration restarts : %4df,m-2); 
disp (mess) 

Two-point boundary-value solver for s t B  unstable linear systems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

function varargout = 
Randy2 (t, Rcol, flag, t-Bu,A, Rmax, Bu, k, inter - methode) 

%varargout = Randy2 (t, yl, flag, t-Bu,A, Rmax, Bu, k,'interp methode ' ) 
Randy2 is an ODEFILE, which is used to integrate thematrix Riccati 
equation 

dR(t)/dt and the dy2(t)/dt in forward direction. 

%%-input variables: .................................................. 8 
8 
% A :=System matrix (nxn ) 
8 Bu :=Input 
8 Rcol :=Solution of Riccati differential equation R(t) converted 
% to colomvector form 
8 gl :=Input 
% y2 :=Solution obtained with forward integration (see odede 
8 t - Bu :=Equidistantial spaced time vector which is used to interpolate 
9 
0 gl(t-91) to gl(t) 
8 ti :=In general a non-equidistantial spaced time vector which is 
% used to interpolate Rcol(ti) and y2(ti) to Rcol(t) and y2(t) 
8 interp - methode := with string variable interp-methode the method of 
8 interpolation can be chosen see interp1.m for the 

switch flag 
case " % Return d~col/dt = f(t,Rcol). 

varargout{ll = f(t,Rcol,t~Bu,A,Bu,kIinterpPmethode); 
case 'events' 8 Return [~alue~isterminal~direction]. 

[varargout(l:3}] = events(t,Rcol,Rmax,A,k); 
otherwise 
error(['Unknown flag " '  flag "'.'I); 

end 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to L C  theow) 



Appendix C M-files RICBVP-solver 

function dkol = f (t, Rcol, t-Bu,A, Bur k,interp - methode) 
n=length (A) ; 
A ll=A(l:k,l:k); 
~-12=~(1: k, k+l:n) ; 
A-2l=~(k+l:n,l:k) ; 
~-22=A - (k+l : n, k+1: n) ; 

Bu - t=[]; 
for i=ls - 2  . a ~ z e  (Bu, I), 

bu-t=interpl(t-Bu,B~(i~:)~t~interp - methode); 
Bu-t=[Bu - t;bu tl; 

end, 

Rmat=col2matmk (Rcol(1: (n-k) *k) ,n-k, k) ; 
dRmat=A - 21+A - 22*Rmat-Rrnat*A - 11-Rmat*A - 12*Rmat; 

Z 22=A 22-Rmat*A 12; 
yT=~coi ( (n-k) *k+i: (n-k) *k+ (n-k) ) ; 
g2=-Rmat*Bu t([l:k],:)+Bu - t([k+l:nl,:); 
dy2=Z 22*y2Tg2 ; 
d~colZ[mat2col2 (dRrnat) ;dy2] ; 

function [value, i~terminal~direction] = events (t, Rcol, Rmax,A,k) 
n=length (A) ; 
A ll=A(l: k, 1: k) ; 
A-12=A(1:krk+l:n) ; 
A-2l=A(k+l:n,l:k) ; 
A-22=~(k+l:n,k+l:n); - 

value = Rmax-abs (Rcol) ; 

isterminal = ones(length(value),l); % stop at local minimum 
direction = zeros(length(value),1); % [local minimum, local maximum] 
8 .................................................................... 

Two-point boundary-value solver for stiff unstable linear ~ s t ems  (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

function dyl = yl (t, yl, flag, t - gl, ti,Rcol,A, gl, y2, interp - methode) ; 

%dyl = Yl (t, yl, flag, t-gl, ti, RcolrAf gl, y2, 'inter methode' ) 
8 Y1 is an ODEFILE, which is used to integrate dyl(t)/dt in backward 
direction. 
9 

% dyl (t) /dt=Z - 11 (ti) *yl (t) +Z - 12 (ti) *y2 (ti) +gl (t - gl) ; 
% 
%%-inpiit --- "dLldULes: - 2  -"' .................................................. 
9 

% A :=System matrix (nxn 
% Rcol :=Solution of Riccati differential equation R(t) converted 
% to colomvector vorm 
8 gl :=Input 
% y2 :=Solution obtained with forward integration (see odede 
% t - gl :=Equidistantial spaced time vector which is used to interpolate 
8 gl(t-gl) to gl(t) 
% ti :=In general a non-equidistantial spaced time vector which is 
B used to interpolate Rcol(ti) and y2(ti) to Rcol(t) and y2(t) 
Binterp - methode := with string variable interp-methode the method of 
Q interpolation can be chosen see interp1.m for the 

% different methods. 
% 
s 
%-output variable: .................................................... 
% 

% yl(t) 
% 

m-files: ...................................................... 
% 
% interp1.m (standard MATLAB) 
% col2matmk.m (not standard MATLAB) 
9- 

k=size (gl, 1) ; 
n=length (A) ; 
A ll=A(l:k,l:k); 
~-12=~(1:k. k+l:n) ; 
A-21=A(k+l:n, 1: k) ; 
~ - 2 2 = ~  (kt-1 : n, kS1: n) ; 
z-12=~ - - 12; 

gl-t= [I ; 
for i=l: size (gl.1) , 

GI t=interpl(t gl,gl(i,:),t,interp-methode); 
gl-t= - [gl - t; ~l-t] ; 

end, 

rcol= [ ] ; 
for i=l:size(Rcol,l), 

rcol i=interpl(tifRcol(ir:),trinterp - methode); 
rcol=[rcol; rcol-i] ; 

end, 
Rmat=col2matmk(rcol,n-k,k); 

Two-point boundarv-value solver for stiff unstable linear svstems (suited for application to ILC theory) 



Appendix C M-files RICBVP-solver 

y2 t=[l; 
for i=l:size(y2, I), 

Y2 t=interpl(tify2(i,:),tfinterp - methode); 
y2-t=[y2 - - t;Y2 - t]; 

end, 

Two-point boundary-value solver for sliff unstable linear systems (suited for application to ILC theon9 



Appendix C M-files RICBVP-solver 

function Pmat=col2matmk(Pcol,M,KJ; 

Q-------------------------------- check inputs ...................... % 
if size (Pcol, 2 )  -=1 

error('Pco1 has to be a colomvector') 
elseif M<1 I (fix (M) ) /M<1 1 size (M, 1) -=1 I size (M, 2) -=1 

error('M has to be a scalar integer-value >Of) 
elseif K<1 I (fix (K) ) /K<1 I size (K, 1) -=1 size (K, 2) -=1 

error ('K has to be a scalar integer-value >Of) 
elseif size (Pcol, 1) -=M*K 

error('co1omvector Pcol must have length M*Kt) 
end 

Pmat=zeros (M, K) ; 
1=1; 
for i=l:M, 

for j=l:K, 
Pmat (i, j ) =Pcol (1) ; 
1=1+1; 

end, 
end, 

Two-point boundarv-value solver for stiff unstable linear systems (suited for amlication to L C  theory) 



Appendix C M-files RICBVP-solver 

function Pcol=mat2col2(Pmat) 

BPcol = YAT2COL2 (Pmat) 
8 mT2COL2 converts a general matrix Pmat into a colomvector Pcol as 
follows 
8 
% [I 2 3 41 [ 1 2  3 4 5 6 7 8 9 10 11 121' 
5 6 7 81 ==> 
% [ 9  10 11 121 

!a 

% Pma t := Matrix 
B 
&-output ................................................... 

m=size (Pmat, 1) ; 
n=size(Pmat,2); 
Pcol=zeros (m*n, 1) ; 
1=1; 
for i=l:m, 

for j=l:n, 
Pcol(1) =Pmat (i, j ) ; 
1=1+1; 

end 
end 

Two-point boundary-value solver for stiff unstable linear systems (suited for application to JLC theory) 


	Voorblad
	Contents
	1. Introduction
	2. Numerical solution of the Linear boundary Value Problem
	3. Computational aspects
	4. Performance compared to other potential suitable solvers
	5. Conclusions
	6. Further investigation on the RICLBVP-solver
	Appendices
	Appendix A
	Appendix B
	Appendix C


