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CONTENTS 5

ABSTRACT. This report contains the results of a study that was performed by the Infor-
mation and Communication Theory Group of Eindhoven University for KPN Research in
Leidschendam, The Netherlands. The objective of this study was to improve upon the
implementation of the Context-Tree Weighting (CTW) algorithm that was produced in
previous work for KPN Research. The improvements that were desired were reduction of
the storage compexity and a higher processing speed. This report shows that the storage
complexity can be reduced by a factor of six, while the processing speed increases by a
factor between two and five, without loosing (compression) performance. The main ideas
behind our investigations are an efficient representation of the estimated and weighted
CTW-probabilities and the use of hashing to create the dynamical context tree structure.
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CHAPTER 1

Proposal (In Dutch)

1. Titel, Opdrachtgever, Uitvoerders, Datum

TITEL: Complexiteitsreductie van het Context-Tree Weighting Algorithme en
Performanceverbetering van Lempel-Ziv Technieken

OPDRACHTGEVER: KPN Research

UITVOERDERS: Vakgroep Informatie- en Communicatietheorie, T.U. Eindhoven
DATUM: 17 october, 1995

2. Achtergrond

2.1. Het Context-tree weighting algorithme.

2.1.1. Ferste resultaten. Binaire informatie bronnen met een tree-model (zie Rissanen
[27] en Weinberger, Rissanen en Feder[48]) worden gekarakteriseerd door een propere en
complete binaire boom, waarbij aan elk blad een parameter gekoppeld is. Deze model-
boom bepaalt de kansverdeling volgens welke de bron het volgende symbool (x;), genereert.
Dit geschiedt op de volgende manier. We starten in de wortel van de boom. Het rijtje
X1, Tt—2, L¢3, - beschrijft, omdat de boom proper en compleet is, eenduidig een pad
in de boom dat naar een blad leidt. De parameter gekoppeld aan dit blad, geeft aan met
welke kans de bron nu een 1 genereert. Voor bronnen met een tree-model geldt dus dat
een nieuw symbool statistisch gezien afhankelijk is van een aantal, meest recente, symbolen
(context symbolen) uit het verleden.

Datacompressie-algorithmes voor bronnen met een (onbekend) tree-model, maakten
tot voor kort (zie Rissanen [25] en Weinberger, Rissanen en Feder[46]) voor elk nieuw
symbool een schatting van de relevante context-lengte, d.w.z. ze probeerden deze lengte zo
te kiezen dat de context naar een blad van het werkelijke tree-model zou leiden. Uitgaande
van deze lengte werd dan de kans op een 1 voor het nieuwe symbool geschat en daarna
gebruikt om (arithmetisch) te coderen. Er kon bewezen worden dat, wanneer de bronrij-
lengte maar bleef groeien, men na verloop van tijd altijd in staat moest zijn om de relevante
context-lengte correct te schatten, waarmee men asymptotisch optimaal redundantiegedrag
verkreeg, ongeacht het werkelijke model.

Aan het context-tree weighting (CTW-)algorithme, ontwikkeld in de vakgroep EI [56],
[67],[53] ligt een ander principe ten grondslag. Dit algorithme tracht niet telkens de
relevante context-lengte te schatten, maar middelt op een slimme manier over alle mogelijke
contexten. Dit middelen gebeurt recursief in een context-boom, door gebruik te maken van
een wel zeer eenvoudige operatie (vermenigvuldigen, optellen en delen door 2). Per verwerkt
bronsymbool zijn slechts enkele operaties van dit type nodig. Een belangrijke eigenschap
van het CTW-algorithme is dat deze methode op een natuurlijke en zeer eenvoudige manier
geanalyseerd kan worden. Uit deze analyse blijkt dat het algorithme niet alleen voor

9



10 1. PROPOSAL (IN DUTCH)

asymptotisch lange bronrijen(data) goed presteert maar ook voor eindige bronrijtjes de
gewenste performance (compactie) geeft.

2.1.2. Verdere ontwikkelingen. Na de eerste resultaten voor het CTW-algorithme werd
het onderzoek uitgebreid in een aantal richtingen. Belangrijk is de generalisatie van
het CTW-algorithme naar algemenere context algorithmen (zie Willems, Shtarkov en
Tjalkens[58]). Terwijl voor tree-modellen de volgorde van de contextsymbolen langs het
pad van wortel van de model-boom naar een blad vastliggen, is er ook een model-klasse
denkbaar waarbij deze volgorde nog kan variéren. In elke knoop van de model-boom bepaalt
nu een contextsymbool met een bepaald label, hoe we verder gaan, richting bladeren. Ook
voor deze bronnen kan een recursief-werkend context-weighting algorithme worden gefor-
muleerd. De analyse is ook nu weer eenvoudig, de performance zoals gewenst. Dit is
slechts een eerste generalisatie van de tree model-klasse; er zijn overigens nog twee verdere
generalisaties beschreven in [58].

Het toepassen van weighting-technieken bleek ook voordelen op te leveren bij het
coderen van geheugenloze bronnen die niet stationair zijn. Zo werden voor deze bron-
nen weighting-algorithmen geformuleerd in Willems[55] die optimaal bleken te zijn omdat
ze de lower bound van Merhav[20] bereikten.

Het context-tree weighting algorithme geniet ook veel belangstelling van andere onder-
zoeksinstellingen vooral in Japan maar ook in de U.S.A. (zie [9], [13], [17], [18], [19], [39],
40], [41]).

2.2. Lempel-Ziv algorithmen. Lempel-Ziv algorithmen zijn adaptieve compactie
schemas waarin data gecomprimeerd wordt door te verwijzen naar reeds eerder opgetreden
subrijen in de data. Deze subrijen vormen een dictionaire van rijen die mogelijk geparsed
kunnen worden. Het fundamentele werk van Ziv en Lempel resulteerde in twee basis
schemas, nl. het buffer schema [67] en het lijst schema [68]. Ziv en Lempel bewezen
voor het lijst schema dat dit de optimale compactie, d.i. de bron entropie, bereikt voor
elke stationaire ergodische bron in de limiet als de datarij lengte oneindig groot wordt.
Voor het buffer algorithme duurde het wat langer om de optimaliteit aan te tonen, maar
door gebruik te maken van repetitietijden (zie Willems [50] en Wyner and Ziv [61]) waren
Wyner en Ziv in 1994 in staat om dit probleem op te lossen [63],[64].

Het feit dat de compactie van actuele datarijen redelijk is en de belofte van een asymp-
totisch optimale compactie, samen met de lage complexiteit van deze algorithmen hebben
ertoe geleid dat van Lempel-Ziv afgeleide algorithmen momenteel veel toegepast worden,
b.v. in V.42 bis en compactieprogrammas als UNIX COMPRESS en Stacker.

3. Vorig Project

In een vorig project heeft de vakgroep Informatie- en Communicatietheorie voor KPN
Research een onderzoek gedaan naar de prestaties van het nieuwe CTW-algorithme en de
bekende Lempel-Ziv methodes. Daarbij waren de criteria performance (compactieverhoud-
ing) en complexiteit (geheugengebruik, rekensnelheid). Belangrijkste conclusie (zie [35]) uit
het vorige onderzoek was dat bij eenzelfde (niet al te grote) hoeveelheid geheugen, Lempel-
Ziv methodes en het CTW-algorithme bij benadering dezelfde compactieresultaten geven.
Krijgt men echter de beschikknig over meer geheugen dan blijken Lempel-Ziv technieken
niet tot betere compactie in staat, terwijl het CTW-algorithme wel een betere compactie
laat zien.
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De experimenten werden uitgevoerd op het Calgary corpus; dit is een verzameling
ASCII files. Lempel-Ziv methodes zijn uitermate geschikt voor compactie van ASCII files.
Het in principe binaire CTW algorithme kan gemakkelijk gegeneraliseerd worden naar
alfabetgrootte 128, maar dit levert niet de gewenste compactie-resultaten op. Het bleek
beter te zijn de ASCII symbolen te beschouwen als rijtjes van 7 binaire symbolen, die
dan elk met een eigen CTW algorithme worden behandeld. De context (het verleden)
voor elk binair symbool bestaat nu uit alle vorige binaire symbolen. Voor het schatten
moesten we gebruik maken van een aangepaste Krichevski-Trofimov schatter. Deze heeft
de eigenschap dat hij een constante redundantie geeft wanneer er een all-zero of een all-
one rij wordt gezien, wat resulteert in een betere compactie bij deterministisch gedrag.
Verder was het zinvol alleen maar te wegen op ASCII-grenzen. Dit leidt tot een lagere
model-redundantie.

4. Voorstel Nieuw Project

4.1. Complexiteitsreductie van het CTW-algorithme. Omdat de geheugencom-
plexiteit van het CTW-algorithme groot is, is er gezocht naar manieren om deze complex-
iteit te verlagen. Uit voorstudie bleek dat er in principe twee mogelijkheden zijn:

e Het weglaten van stukken van de context-boom. Het blijkt dat bepaalde subbomen
irrelevant zijn omdat ze corresponderen met een all-zero of all-one subsequence.
Het aantal overbodige knopen is vaak meer dan 2/3 van het totale aantal. De
compactieverhouding wordt wel een beetje lager door het weglaten van “overbodige”
knopen.

o Het efficienter representeren van weeg- en geschatte kansen. Het blijkt dat in principe
de verhouding van weeg- en geschatte kans volstaat om het CTW-algorithme uit te
kunnen voeren. Deze verhouding kan daarbij het beste logarithmisch gerepresenteerd
worden. Verder loont het de moeite om te onderzoeken of de zero- en one-counts niet
gezamelijk op een efficientere manier kunnen worden opgeslagen. Daarnaast blijkt
een lijst-implementatie i.p.v. een binaire boom implementatie in elke ASCII-knoop
een geheugenbesparing op te leveren.

Deze observaties geven een geheugencomplexiteitsreductie van ongeveer een fac-
tor 2, misschien zelfs 3. De aanpassingen hoeven de compactieverhouding niet nadelig
te beinvloeden.

Concluderend zou een totale geheugencomplexiteitsreductie van een factor 5 tot de mo-
gelijkheden moeten behoren, bij gelijkblijvende compactie. Daarnaast is het zo dat de
logarithmische representatie een snelheidsverbetering tot gevolg zal hebben. Dit alles zal
geanalyseerd, geprogrammeerd en gesimuleerd worden in het kader van dit project.

4.2. Performanceverbetering bij Lempel-Ziv technieken. Tot voor kort was
er een duidelijke verschil in performance en complexiteit tussen Lempel-Ziv algorithmes
([67],[68]) en context methoden ([25],(46],[48],[57]). De performance (compactie) van
Lempel-Ziv algorithmes is dan wel slechter, maar de complexiteit (verwerkingssnelheid,
geheugenbeslag) is ook beter dan bij context algorithmes. Omdat de prijs van halfgeleider-
geheugens echter steeds daalt en processoren steeds sneller worden, zullen context algo-
rithmes in de toekomst waarschijnlijk de overhand gaan krijgen en Lempel-Ziv algorithmes
gaan verdwijnen.
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Recentelijk op het 1995 IEEE International Symposium on Information Theory heeft
Ziv echter laten zien dat het mogelijk is een combinatie te maken van Lempel-Ziv en context
algorithmes[66],[10]. De overigens nog niet uitgewerkte ideeen van Ziv leiden mogelijk
tot een nieuwe generatie van algorithmes die aan de ene kant de lagere complexiteit van
Lempel-Ziv algorithmes hebben, maar die daarnaast ook de goede performance van context
algorithmes bezitten.

In het kader van dit vervolgproject zal onderzocht worden wat deze synthese kan oplev-
eren. Aan de ene kant zullen Lempel-Ziv algorithmes (nogmaals) bestudeerd moeten wor-
den, waarbij in de analyse de conditionele versie van Kac’s stelling een voorname rol zal
spelen. Aan de andere kant zullen context-ideeen op een juiste manier ingepast moeten
worden. Het is vanzelfsprekend dat daarbij performance en complexiteit tegen elkaar afge-
wogen moeten worden. Literatuurverkenning is natuurlijk een onderdeel van dit onderzoek
dat uiteindelijk moet leiden tot uitspraken over deze nieuwe hybride algorithmen.



CHAPTER 2

Executive Summary CTW-1 Project

In this report we describe the results of a series of experiments that were done to com-
pare the performance of Lempel-Ziv based data compression algorithms and the recently
developed context-tree weighting method.

The Lempel-Ziv algorithms encode a next part of the data by replacing it by a code that
refers to an earlier occurence of this part. These methods can be divided in two classes.
First there are the buffer methods in which a buffer is used to look for earlier occurences.
These algorithms are based on [67]. The methods in the second class, the tree algorithms,
are all based on [68). These methods grow a tree of strings that have occurred earlier in
the data. The V42-bis standard is also Lempel-Ziv based. Techniques from both the buffer
and the tree method are combined in this implementation.

The context-tree weighting method was developed in the Information and Communi-
cation Theory Group at Eindhoven University of Technology [56]. It is a statistical data
compression algorithm, i.e. it tries to approximate the statistic of the data by counting
occurrences of symbols, given the preceeding symbols (their context). Using this statistic
an arithmethic code can do the actual encoding and decoding. A problem with these meth-
ods always was to determine for each symbol how large the corresponding context length
should be. By using a recursive weighting technique, the context-tree weighting method
avoids this problem and finds a good statistic.

Before starting the experiments it was well-known that Lempel-Ziv methods combine an
acceptable compression-rate with a low storage complexity and a high processing speed.
From preliminary experiments it became clear that the context-tree weighting method
had the advantage of having an excellent compression-rate but also the disadvantages of
requiring more memory and having a lower processing speed. It was the objective of the
present project to compare the compression-rate versus memory trade-offs of both the
Lempel-Ziv methods and the context-tree weighting method. The files in the Calgary
Corpus were used as test-data.

Five Lempel-Ziv variants were implemented in software, the buffer methods LZ77 and
LZSS, and the tree methods LZ78, LZW, and LZWE. The experiments showed that they
achieve compression-rates not smaller than 3 bit per symbol for the text files in the Calgary
Corpus. Processing speed is between 20 K (for encoding for buffer methods) and 400 K
symbols per second (for tree methods). The required memory is usually between 10 kbyte
and 1Mbyte.

The contex-tree weighting method was implemented using binary decomposition, weight-
ing only at byte boundaries, zero-redundancy estimation, binary search trees, pruning
of unique contex paths, and the missing-context idea. This implementation can achieve
compression-rates below 2 bit per symbol for large text files in the Calgary Corpus. The

13



14 2. EXECUTIVE SUMMARY CTW-1 PROJECT

encoding and decoding speed is between 1 K and 2 K symbols per second. The amount of
memory used is typically between 1 Mbyte and 100 Mbyte.

Increasing the amount of memory for Lempel-Ziv algorithm above 1 Mbyte does not give
a better compression-rate. Decreasing the available memory for the context-tree weighting
method below 1 Mbyte makes the compression-rate worse (as expected). If for both classes
of algorithms the amount of memory is the same and in the range from 10 kbyte to 1
Mbyte, the compression-rates for both classes are comparable. This is without doubt the
most important conclusion of the project. Taking into account that the cost of storage is
decreasing and that larger amounts of memory are typical in the future, one will stop to
use Lempel-Ziv algorithms like V42-bis since their compression-rate will not decresase any
further and start to use statistical methods like the contex-tree weighting algorithm instead.
The contex-tree weighting method achieves the desired decrease in compression-rate.

Although these first experiments for the context-tree weighting method show the supe-
riority of this algorithm, it should be recognized that the development of the context-tree
weighting algorithm has just started. In the future the objective must be to develop new
methods for and implementations of the context-tree weighting method that decrease the
amount of memory needed and that increase the speed of the algorithm.



CHAPTER 3

The Context Tree Weighting Method: Basic Properties

AUTHORS: Frans M.J. Willems, Yuri M. Shtarkov! and Tjalling J. Tjalkens

(This chapter is almost identical to [57].)

Abstract

We describe a sequential universal data compression procedure for binary tree sources
that performs the “double mixture”. Using a context tree, this method weights in an
efficient recursive way the coding distributions corresponding to all bounded memory tree
sources, and achieves a desirable coding distribution for tree sources with an unknown
model and unknown parameters. Computational and storage complexity of the proposed
procedure are both linear in the source sequence length. We derive a natural upper bound
on the cumulative redundancy of our method for individual sequences. The three terms in
this bound can be identified as coding, parameter and model redundancy. The bound holds
for all source sequence lengths, not only for asymptotically large lengths. The analysis that
leads to this bound is based on standard techniques and turns out to be extremely simple.
Our upper bound on the redundancy shows that the proposed context tree weighting
procedure is optimal in the sense that it achieves the Rissanen (1984) lower bound.

Keywords

Sequential data compression, universal source coding, tree sources, modeling procedure,
arithmetic coding, cumulative redundancy bounds.

1. Introduction, Concepts

A finite memory tree source has the property that the next-symbol probabilities depend
on a finite number of most recent symbols. This number in general depends on the actual
values of these most recent symbols. Binary sequential universal source coding procedures
for finite memory tree sources often make use of a context tree which contains for each string
(context) the number of zeros and the number of ones that have followed this context, in the
source sequence seen so far. The standard approach (see e.g. Rissanen and Langdon[29),
Rissanen[25],[27], and Weinberger, Lempel and Ziv[46]) is that, given the past source
symbols, one uses this context tree to estimate the actual ‘state’ of the finite memory
tree source. Subsequently this state is used to estimate the distribution that generates
the next source symbol. This estimated distribution can be used in arithmetic coding
procedures (see e.g. Rissanen and Langdon[29]) to encode (and decode) the next source
symbol efficiently, i.e. with low complexity and with negligible additional redundancy.

nstitute for Problems of Information Transmission, Ermolovoystr. 19, 101447, Moscow, GSP-4.
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16 3. THE CONTEXT TREE WEIGHTING METHOD: BASIC PROPERTIES

After Rissanen’s pioneering work in [25], Weinberger, Lempel and Ziv[46] developed a
procedure that achieves optimal exponential decay of the error probability in estimating
the current state of the tree source. These authors were also able to demonstrate that their
coding procedure achieves asymptotically the lower bound on the average redundancy, as
stated by Rissanen ([26], theorem 1, or [27], theorem 1). Recently Weinberger, Rissanen
and Feder[48] could prove the optimality, in the sense of achieving Rissanen’s lower bound
on the redundancy, of an algorithm similar to that of Rissanen in [25].

An unpleasant fact about the standard approach is that one has to specify parameters
(o and G in Rissanen’s procedure [25] or K for the Weinberger, Lempel and Ziv[46]
method), that do not affect the asymptotical performance of the procedure, but may have
a big influence on the behavior for finite {(and realistic) source sequence lengths. These
artificial parameters are necessary to regulate the state estimation characteristics. This
gave the authors the idea that the state estimation concept may not be as natural as one
believes. A better starting principle would be, just to find a good coding distribution.
This more or less trivial guideline immediately suggests the application of model weighting
techniques. An advantage of weighting procedures is that they perform well not only on
the average but for each individual sequence. Model weighting (twice-universal coding)
is not new. It was first suggested by Ryabko[31] for the class of finite order Markov
sources (see also [32] for a similar approach to prediction). The known literature on model
weighting resulted however in probability assignments that require complicated sequential
updating procedures. Instead of finding implementable coding methods one concentrated
on achieving low redundancies. In what follows we will describe a probability assignment
for bounded memory tree sources that allows efficient updating. This procedure, which
is based on tree-recursive model-weighting, results in a coding method that is very easy
to analyze, and that has a desirable performance, both in realized redundancy and in
complexity.

2. Binary Bounded Memory Tree Sources

2.1. Strings. A string s is a concatenation of binary symbols, hence s = g;1q2—1 - - - qo
with ¢_; € {0,1} for i =0,1,---,l — 1. Note that we index the symbols in the string from
right to left, starting with 0 and going negative. For the length of a string s we write {(s).

A semi-infinite string s = ---¢g_19o has length I(s) = co. The empty string A has length
I[(A) =0.
If we have two strings s’ = ¢|_,q}_p---qp and s = q1_ig2—1-- - qo then s's 2 Qi oy Gy

-+ +qhq1_1G2—1 * * * Qo is the concatenation of both. If V is a set of strings and ¢ € {0, 1}, then
Vxq&{vg:veV}

We say that a string s = q,_iga—;- - - qo is a suffiz of the string ' = ¢{_,qb_p - ¢ if
I <!l'and q_; =¢_, for i =0, — 1. The empty string X is a suffix of all strings.

2.2. Binary bounded memory tree source definition. A binary tree source gen-
erates a sequence 7% of digits assuming values in the alphabet {0,1}. We denote by
z? the sequence T,,Tmy1 - Tn, and allow m and n to be infinitely large. For n < m the
sequence zy, is empty, denoted by ¢.

The statistical behavior of a binary finite memory tree source can be described by means
of a suffir set S. This suffix set is a collection of binary strings s(k), with k =1,2,---,|S|.
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We require it to be proper and complete. Properness of the suffix set implies that no string
in S is a suffir of any other string in S. Completeness guarantees that each semi-infinite
sequence (string) - - Tn,—2T,_1Z» has a suffix that belongs to S. This suffix is unique since
S is proper.

Let D € {0,1,---} be fixed throughout this paper. A bounded memory tree source has
a suffix set S that satisfies I(s) < D for all s € S. We say that the source has memory not
larger than D.

The properness and completeness of the suffix set make it possible to define the suffix
function Bs(-). This function maps semi-infinite sequences onto their unique suffix s in
S. Since all suffixes in § have length not larger than D, only the last D symbols of a
semi-infinite sequence determine its suffix in S. To each suffix s in S there corresponds a
parameter §,. Each parameter (i.e. the probability of a source symbol being one) assumes
a value in [0, 1] and specifies a probability distribution over {0,1}. Together, all parame-

ters form the parameter vector Og 2 {0s : s € S}. If the tree source has emitted the
semi-infinite sequence 7} up to now, the suffix function tells us that the parameter for
generating the next binary digit z; of the source is 6,, where s = ﬁs(xtb). Thus

DEFINITION 2.1. The actual next-symbol probabilities for a bounded memory tree
source with suffix set S and parameter vector ©s are

Po(X, =1]al7h, 8,05) =1 - Pu(X, = 0[2{7}, 5,05) S Oy uery, forall . (1)

The actual block probabilities are now products of actual next-symbol probabilities, i.e.
P(Xt=2t|20_p,S,0s) = It Pu(X, = z,|27}, S, Os).

All tree sources with the same suffix set are said to have the same model. Model and
suffix set are equivalent. The set of all tree models having memory not larger than D is
called the model class Cp. It is possible to specify a model in this model class by a natural
code by encoding the suffix set S recursively. The code of S is the code of the empty string
A. The code of a string s is void if I(s) = D, otherwise it is 0 if s € S and 1 followed by
the codes of the strings Os and 1s if s € S. If we use this natural code, the number of bits
that are needed to specify a model S € Cp is equal to I'p(S), where

DEFINITION 2.2. I'p(S), the cost of a model S with respect to model class Cp, is
defined as

Tp(8) 28| =1+ |{s:s€8,Is) # D}, (2)
where it is assumed that S € Cp.

EXAMPLE 2.1. Let D = 3. Consider a source with suffix set S = {00,10,1} and
parameters fpp = 0.5, 619 = 0.3, and 6; = 0.1 (see Figure 3.1). The (conditional) proba-
bility of the source generating the sequence 0110100 given the past symbols ---010 can be
calculated as follows :

Pa(O].].OlOOI . 010) = (1 - 910)90091(1 - 91)910(1 - 01)(1 - 910) = 0.0059535. (3)
Since D = 3, the model (suffix set) S can be specified by
code(S) = code(\) = 1 code(0) code(l) =1 1 code(00) code(10) 0=1100 0. (4)
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91 =0.1

1T
910 = 0.3 /\

0l

900 =0.5

FIGURE 3.1. Model (suffix set) and parameters.

Tree sources are related to FSMX sources that were first described by Rissanen[27].
FSMX sources can be considered as tree sources whose suffix set S is closed. A suffix set is
said to be closed if the generator of each suffix s € S belongs to S or is a suffix of an s € S.
The generator of a suffix s = ¢;_;+--q_1qo is q1_; - - - ;. Note that S = {00,010,110,1} is
a tree model, but not an FSMX model. Each finite memory tree source with suffix set S
has a finite state machine implementation. The number of states is then |S| or more. Only
for tree sources with a closed suffix set S (i.e. for FSMX sources) the number of states is
equal to |S].

3. Codes and Redundancy

Let T € {1,2,---}. Instead of the source sequence z] £ 1129 - - o7 itself, the encoder

sends a codeword ¢t 2 ¢y ¢y consisting of {0,1}-components to the decoder. The
decoder must be able to reconstruct the source sequence z7 from this codeword.

We assume that both the encoder and the decoder have access to the past source sym-
bols 9_, = z1_p---z_17, so that implicitely the suffix that determines the probability
distribution of the first source symbols, is available to them. A codeword that is formed
by the encoder therefore depends not only on the source sequence zI but also on z9_p.
To denote this functional relationship we write cZ(z7|2z%_,). The length of the codeword,
in binary digits, is denoted as L(zT|zJ_}).

We restrict ourselves to prefiz codes here (see [4], chapter 5). These codes are not
only uniquely decodable but also instantaneous or self-punctuating which implies that you
can immediately recognize a codeword when you see it. The set of codewords that can
be produced for a fixed zI_, form a prefix code, i.e. no codeword is the prefix of any
other codeword in this set. All sequences c;c; - - - ¢, for some [ =1,2,---, L are a prefix of
CiCy---Cy,.

The codeword lengths L(z¥|29_,) determine the individual redundancies.

DEFINITION 3.1. The individual redundancy p(2T|29_p, S, ©s) of a sequence z] given
the past symbols z9%_,, with respect to a source with model S € Cp and parameter vector
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Og, is defined as?

1
22 p,S,0s) £ L(zT)2d_p) ~ 1
p(z1 |21_p, S, Os) (z1 |21-p) — log @l p, S, 0s)’ (5)
where L(z7|2z%_p) is the length of the codeword that corresponds to z7 given z9_,. We
consider only sequences z7 with positive probability P,(z¥|x3_,,S,Os).

The value log(1/P.(zT|z9_p, S, Os)) can be regarded as the information contained in
zT given the past 20_,. It is often called the ideal codeword length. Note that we do
not divide the redundancies by the source sequence length T, we consider only cumulative
redundancies. Note also that our redundancies can be negative.

The objective in universal source coding is to design methods that achieve small in-
dividual redundancies with respect to all sources in a given class. Since it is also very
important that these methods have low (storage and computational) complexity, it would
be more appropriate to say that the emphasis in source coding is on finding a desirable
trade-off between achieving small redundancies and keeping the complexity low.

4. Arithmetic Coding

An arithmetic encoder computes the codeword that corresponds to the actual source
sequence. The corresponding decoder reconstructs the actual source sequence from this
codeword again by computation. Using arithmetic codes it is possible to process source
sequences with a large length 7. This is often needed to reduce the redundancy per source
symbol.

Arithmetic codes are based on the Elias algorithm (unpublished, but described by
Abramson[1] and Jelinek[12]) or on enumeration (e.g. Schalkwijk[34] and Cover[3]). Arith-
metic coding became feasable only after Rissanen|[24], and Pasco[21], had solved the ac-
curacy issues that were involved. We will not discuss such issues here. Instead we will
assume that all computations are carried out with infinite precision.

Suppose that the encoder and decoder both have access to, what is called the coding
distribution P(z!),z! € {0,1},,t=0,1,--- ,T. We require that this distibution satisfies

Pc(¢) = 1,
Pc(xi-l) = Pc(xi_l, X = 0) + Pc((l,‘i—l,Xt = ]_), for all xtl_l € {O, 1}t“1,t =1,---,T,
and P.(zT) > 0 for all possible zT € {0,1}7, (6)

where possible sequences are sequences that can actually occur, i.e. sequences z7 with
P.(zT) > 0. Note that ¢ stands for the empty sequence (z?9).
In appendix 9 we describe the Elias algorithm. It results in the following theorem.

THEOREM 4.1. Given a coding distribution P.(zt),z} € {0,1}},t = 0,1,---,T, the
Elias algorithm achieves codeword lengths L(zT) that satisfy

T __1__ 7
L(z7) < log BT +2, (7)

for all possible zT € {0,1}T. The codewords form a prefir code.

2The basis of the log(-) is assumed to be 2, throughout this paper.
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The difference between the codeword length L(zT) and log(1/P,(zT)) is always less
than 2 bits. We say that the individual coding redundancy is less than 2 bits.

We conclude this section with the observation that the Elias algorithm combines an
acceptable coding redundancy with a desirable sequential implementation. The number of
operations is linear in the source sequence length T It is crucial however that the encoder
and decoder have access to the probabilities P.(z}™!, X; = 0) and P.(z%™, X; = 1) after
having processed z;z3 - x—y. If this is the case we say that the coding distribution is
sequentially available.

It should be noted that our view of an arithmetic code is slightly different from usual.
We assume that block probabilities are fed into the encoder and decoder and not conditional
probabilities as usual. The reason for this is that it creates a better match between our
modeling algorithm and the arithmetic code, and avoids multiplications.

If we are ready to accept a loss of at most 2 bits coding redundancy, we are now left
with the problem of finding good, sequentially available, coding distributions.

5. Probability Estimation

The probability that a memoryless source with parameter 8 generates a sequence with a
zeros and b ones is (1 — 6)26°. If we weight this probability over all 6 with a (3, 3 )-Dirichlet
distribution we obtain the so-called Krichevsky-Trofimov estimate (see [15]).

DEFINITION 5.1. The Krichevski-Trofimov(KT) estimated probablhty for a sequence
containing a > 0 zeros and b > 0 ones is defined as

P.(a,b) =

2 T

This estimator has properties that are listed in the lemma that follows. The lemma is
proved in appendix 10.

LEMMA 5.1. The KT-probability estimator P.(a,b)
1. can be computed sequentially, i.e. P.(0,0)=1, and fora >0 andb >0

a+3 b+1

— 9)36bdg. (8)

= . 1) = - P,(a,b), 9
P.(a+1,b) P P.(a,b) and P.(a,b+ 1) TEr1 (a,b) (9)
2. satisfies, for a +b > 1, the following inequality
1 b
P, g 10
(a, b)_2 \/a—-i-_b(a+b) (a+b) (10)

The sequential behavior of the KT-estimator was studied by Shtarkov[37]. An other
estimator, the Laplace estimator, is investigated by Rissanen[27],[28]. This estimator can
be obtained by weighting (1 — 6)*6° with 6 uniform over [0, 1].

For the KT-estimator the parameter redundancy can be uniformly bounded, using the
lowerbound (see lemma 5.1) on P.(a,b), i.e.

(1 - 6)°6° < log (1 — 0)°6°

Pe(a’b) - ; a+b) (a+b)b B 2

foralla+b>1andall § € [0,1]. It is mposmble to prove such a uniform bound for the
Laplace estimator.

log log(a +b)+1, (11)
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6. Coding for an Unknown Tree Source

6.1. Definition of the context tree weighting method. Consider the case where
we have to compress a sequence which is (supposed to be) generated by a tree source, whose
suffix set S € Cp and parameter vector ©s are unknown to the encoder and the decoder.
We will define a weighted coding distribution for this situation, study its performance and
discuss its implementation. The coding distribution is based on the concept of a context
tree (see Figure 3.2).

DEFINITION 6.1. The context tree 7p is a set of nodes labeled s, where s is a (binary)
string with length I(s) such that 0 < I(s) < D. Each node s € Tp with I(s) < D, ‘splits
up’ in two nodes, Os and 1s. The node s is called the parent of the nodes 0s and 1s, who
in turn are the children of s. To each node s € 7Tp, there correspond counts a;, > 0 and
b, > 0. For the children 0s and 1s of parent node s, the counts must satisfy ags + a1; = as
and bgs + bys = bs.

Now, to each node there corresponds a weighted probability. This weighted probability
is defined recursively on the context tree 7p. Without any doubt, this is the basic definition
in this paper.

DEFINITION 6.2. To each node s € Tp, we assign a weighted probability P} which is
defined as

Pe(asa bs) fOI‘ l(S) = D, (12)

The context tree together with the weighted probability distributions of the nodes is called
a weighted context tree.

ps & { 1P.(as,b,) + s PYPL for 0 <l(s) < D,

This definition shows a weighting of both the estimated probability in a node and the
product of the weighted probabilities that correspond to its children. The next lemma
gives another way of looking at the weighting that is performed in (12). It explains that a
weighted probability of a node can be regarded as a weighting over the estimated proba-
bilities corresponding to all (sub-)models that live above this node. The cost (see (2)) of
a (sub-)model determines its weighting factor. The proof of this lemma can be found in
appendix 11.

LEMMA 6.1. The weighted probability P: of a node s € Tp withi(s) =d for0<d < D
satisfies

Py= " 27To-al) I P.(ays, bus), (13)

UeCp_qg uel

with Y e, 2770-2®) = 1. The summation is over all complete and proper suffiz sets U.

To be able to define a weighted coding distribution, we assume that the counts (as, bs),
s € Tp are determined by the source sequence z} seen up to now, assuming that zd_p are
the past symbols.

DEFINITION 6.3. For each s € Tp let a,(zt|z9_p), respectively bs(x§|x‘1’_D),Tl_)<la the

number of times that z, = 0, respectively z, = 1, in zf for 1 < 7 < t such that Trlys) =
s. The weighted probabilities corresponding to the nodes s € Tp are now denoted by
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Ps(zt|z9_p). For any sequence z9_p of past symbols, we define our weighted coding
distribution as

A
P.(z1]z]_p) = Pp(zil2l_p), (14)
for all z} € {0,1},,¢=0,1,---,T, where A is the root node of the context tree 7p.

This coding distribution determines the context tree weighting method. Note that the
counts indeed satisfy the restrictions mentioned in definition 6.1. To verify that it satisfies
(6) we formulate a lemma. The proof of this lemma can be found in appendix 12.

LEMMA 6.2. Lett=1,2,---,T. If s € Tp is not a suffix ofacﬁ:lD, then
Py(zi! Xe = 0lay_p) = Pi(ai ", X, = 1[2f_p) = P21 e1-p), (15)
and, if s is a suffiz of zi~1, then
P21 Xe = 0lz]_p) + Po (21", X, = 1]2}_p) = Pi(a1M21_p). (16)
To check that the weighted coding distribution defined in (14) is an allowable coding
distribution observe that P)(#|z%_p) = 1. Subsequently, note that lemma 6.2 states that
Pzt X, = 0l29_p) + PMatL, X, = 1|zd_p) = P (271 z0_p) since A is a suffix of all
strings z;_,. From this we may conclude that our weighted coding distribution satisfies

(6) after having verified that weighted probabilities are always positive.
We are now ready to investigate the redundancy of the context tree weighting method.

6.2. An upper bound on the redundancy. First we give a definition.

DEFINITION 6.4. Let
(z)é z for0<2<1
NE) = slogz+1 forz>1,
hence 7(-) is a convex-N continuation of 1logz + 1 for 0 < z < 1 satisfying v(0) = 0.

The basic result concerning the context tree weighting technique can be stated now.

THEOREM 6.3. The individual redundancies with respect to any source with model S €
Cp and parameter vector Og are upper bounded by
T
5]
for all zT € {0,1}7, for any sequence of past symbols z°_,,, if we use the weighted coding
distribution specified in (14).

p(ailad_p,S,0s) < Tn(S) +ISv(7g) + 2, (17)

Note that (17) can be rewritten as

Tp(S)+T +2 for T=1,---,|S| -1
T,..0
p(71[21-0, 5,05) < { I'p(8) +Sllog L +18|+2 for T=1S],|S|+1,- -

The redundancy bound in theorem 6.3 holds with respect to all sources with model S €
Cp and parameter vector ©g, and not only the actual source. Using the definition of
redundancy (see (5)) we therefore immediately obtain an upper bound on the codeword
lengths.
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COROLLARY. Using the coding distribution in (14), the codeword lengths L(zT|z9_p)
are upper bounded by

1
T < min | minlo
L{zi|#1_p) < min (es 8 P, 3, 03)

for all 2T € {0,1}T, for any sequence 2°_, of past symbols.

+Fm&++ﬂﬂwp)+z (18)

PRrOOF. Consider a sequence z7 € {0,1}7, a suffix set S € Cp and a parameter
vector ©s. Let a, = a,(27]|z%_p) and b, = by(z¥|z)_p) for all s € Tp. We split up
the individual redundancy in three terms, model redundancy, parameter redundancy and
coding redundancy :

1
T..0 _
L(ml |x1—-D) log Pa(xflx?_u,s, (_)S)

HSGS Pe(as, bs) + log Pa(l'{lx?_D, S, (93)
P(zT|2%_p) [T,es Pe(as, bs)

1
T,..0
—log ————1. 9
+ (L6T10) = o8 i) (19)

For the last term, the coding redundancy, we obtain, using theorem 4.1, that

p(:r{'x?—D? S’ 65) =

= log

1
L(aT1ad_p) ~ 108 g < (20)
P(z{|2}_p)
We treat the parameter redundancy, the middle term, as follows
Pa T\,0 ,S, _ as b_,
HSES Pe(as,bs) s€S P(asa )
< Z <—2— log(a, + bs) + 1)
5€8:as+bs >0
=w§q|@+w
sES
as + b, T
< ISh(Q_— = |Sh(tg)- (21)
I l (SEZS |S| ) I |S|

The product [], s Pe(as, b;) makes it possible, to split up the parameter redundancy in |S|
terms representing the parameter redundancies corresponding to each of the |S| suffixes
in S. The term corresponding to suffix s € S can be upper bounded by 1log(as + b;) + 1
as we have seen before in (11), however only for a, + b; > 0. For a, + b = 0 such a term
does not contribute to the redundancy. This is why we have introduced the function 7.
Its N-convexity makes it possible to apply Jensen’s inequality (see Cover and Thomas[4],
p. 25).

What remains to be investigated is the first term in (19), the model redundancy term.
It follows from lemma 6.1 that

P = Z o~Tp(U) HPe(as,bs) > 9~ To(® Hpe(asa bs). (22)

UeCp seuU sES
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FIGURE 3.2. Weighted context tree T3 for z7 = 0110100 and z?_p, = ---010.

Using (14) we obtain the following upper bound for the model redundancy :

Hses P.(as, b )<log 1
P.(z] 120_p) ~ 2-To(S)

Combining (20), (21), and (23) in (19) yields the theorem. O

=T'p(S). (23)

log

Theorem 6.3 is the basic result in this paper. In this theorem we recognize beside
the coding and parameter redundancy the model redundancy. Model redundancy is a
consequence of not knowing the (actual, or best in the sense of minimizing (18)) model
S, and therefore not being able to take distribution [], s Pe(as,bs) as coding distribution.
This results in a loss, the model redundancy, which is upper bounded by I'5(S) bits. Note
that in section 2 we have described a natural code that would need I'p(S) bits to specify
the model S. Therefore our weighted method is at least as good as a two-pass method,
in which first the best model is determined and transmitted, followed by the code for the
sequence given that model.

EXAMPLE 6.1. Suppose a source generated the sequence 27 = 0110100 with sequence
of past symbols z9_, = --.010. For D = 3 we have plotted the weighted context tree
Tp in Figure 3.2. Node s contains the counts (a,, b,), the Krichevsky-Trofimov estimate
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P.(as, bs), and the weighted probability P3. The coding probability corresponding to this
sequence is 95/32768.

The upper bound for the model redundancy with respect to the model & = {00, 10,1}
of the source from example 2.1 is I'p(S) = 5 bits. This also follows quite easily from

P} > 1POPL> 2( p°°p1°) P

> %(% (%Pe(aoo,boo)> (iPe(am,bw)>) (%Pe(al,bl)). (24)

6.3. Implementation of the context tree weighting method. Before discussing
implementation issues we refer to appendix 9 for notation concerning arithmetic encoding
and decoding.

6.3.1. Encoding First we set B(¢|z?_p) := 0. Then, fort = 1,2,---,T we create nodes
s(d) := !} for d = 0,1,---, D (if necessary) we do a dummy 0-update on these nodes
to find P.(zi"!, X; = O|x1_D), we update B(z{™!z{_p) to B( L X = z]2%_p), and we
then do the actual update of the nodes s(d) for d=0,1,---,D for X; = z;. This results in
P(z'™!, X, = z;]2%_,). After having processed z;; - - -z we compute cZ(z7|z?_p) from
B(zf |531 p) and Pe(z [z]_p).

6.3.2. Decoding. First we set B(¢|z%_p) := 0 and determine F, from c;c;- CL(zT)
CraTys1, - - Then, for t = 1,2,---,T we create nodes s(d) := z;_4 ford = 0,1,---,D
(if necessary), we do a dummy O-update on these nodes to find P.(zi™, X; = 0]29_,), we
compare Fy, with B(z!™|2?_p) + P.(2i7!, X; = 0|z%_p) to find ¢, update B(z%{*|z?_p)
to B(act_l X: = z¢|2?_p), and we then do the actual update of the nodes s(d) for d =
0,1,---,D for Xt = ;. This yields P.(z%™!, X, = z;). After having processed z,z; - - 2r
we compute L(zT) from P.(zT) so that we know the start of the next codeword.

6.3.3. C’omments. We assume that a node s € Tp contains the pair (as, bs), the esti-
mated probability P.(as,bs) and the weighted probability P,. When a node is created, the
counts a; and b, are made 0, the probabilities P.(as,bs) and P2 are made 1.

Doing a dummy 0-update of the nodes s(d) for d = 0,1, , D means that we assume
that X; = 0. Then, ford = D,D —1,---,0 we update as indicated by (9) in lemma, 5.1,
as(d) + 1/2

(25)

pe(as(d) + 1, bs(d)) = Pe(as(d)a bs(d)) : as(a) +b (d) + 1’

where the~tilde above a variable indicates that this variable is a temporary one. After that
we form Po?) .= P.(aspy + 1,bspy), and ford =D —1,D —2,--- ,0 we compute

N 1~ 1. _
Pj,(d) = —Pe(as(d) +1, bs(d)) + —Z-Pzt"’“ls(d)Pi"d‘ls(d) (26)

s(d+1) Fe—a-15(d) has

where we note that z,_4_;s(d) = s(d + 1), so Py was changed, and P,
remained the same (see lemma 6.2). All this eventually results in P.(z% !, X, = 0|z3_p).
It will clear from (36) that

-1 x o120 . B2l p) if 2, =0
B(-’rl aXt - $t|331—D) - { B(xi—llx(l)—D) + Pc(xtl—l’Xt — le(l)—D) lf x = 1
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It should be noted that we use block probabilities to feed into the arithmetic encoder and
decoder instead of conditional probabilities as usual. This avoids multiplications in the
arithmetic encoder and decoder, which is a pleasant side effect of the weighted approach.

If X; = 0, the actual update is identical to (25) and (26), the only difference is that
now we update Fe(as,b;) and P; and increment a, instead of computing the temporary
values P,(a,,b,) and PS. If X; = 1 the actual update requires incrementing of b;, etc. Note
that we only have to update the nodes s(d) for d = 0,1,--- , D, the nodes along the path
in the context tree that is determined by the past symbols ¢},

The codeword c£(z7) is finally computed as in definition (33) in appendix 9 and trans-
mitted to the decoder.

The decoder forms F,, as in (32) in appendix 9. Note that F., is compared to the
threshold D(z{™!) = B(z{™!29_p) + P.(zt7, X, = 0]2%_p), see (39) appendix 9. Finally,
the length L(zT) is computed as in definition 9.3.

6.3.4. Complerxity issues. For each symbol z; we have to visit D + 1 nodes. Some of
these nodes have to be created first. From this it follows that the total number of allocated
nodes can not be more than T(D + 1). This makes the storage complezity not more than
linear in T. Note also that the number of nodes can not be more than 2P+ — 1, the total
number of nodes in 7p. This shows exponential behavior in D. We did not take into
account here, that for infinite precision arithmetic, the number of digits that are needed
to specify the counts a, and b, and the probabilities P.(as,bs) and PJ, is growing with
increasing ¢, making the storage space for one node measured in e.g. bytes getting bigger
each time.

The computational complexity, i.e. the number of additions, multiplications, and divi-
sions, is proportional to the number of nodes that are visited, which is T(D+1). Therefore
this complexity is also linear in T. Again we have neglected the fact here, that for infinite
precision arithmetic the number of digits that are needed to specify the counts a; and b, and
the probabilities P.(as,bs) and P, is growing rapidly, making additions, multiplications
and divisions becoming more complex with increasing .

7. Other Weightings

The coding distribution defined by (12) (and (14)) yields model cost not more 2|S| -1,
i.e. linear in |S|, if we assume that S has no leaves at depth D. This is achieved by giving
equal weight to P.(a,bs) and P2 P2 in each (internal) node s € Tp.

It is very well possible however to assume that these weights are not equal, and even
to suppose that they are different for different nodes s. In this section we will assume that
the weigthing in a node s depends on the depth [(s) of this node in the context tree 7p.
Hence

P} = 0u(s)Pu(s, ba) + (1 — 0u(e)) PSP, with ap = 1. (27)

Now note that each model can be regarded as the empty (memoryless) model {A} to which
a number of nodes may have been added. The cost of the empty model is — log ag, we can
also say that the model cost of the first parameter is —logag bits. Our objective is now
that, if we add a new node (parameter) to a model, the model cost increases by 4 bit, no
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matter at what level d we add this node. In other words
l1-ao
a—d cah, =27, (28)
d

for 0 < d < D — 1, or consequently

(ald) =27 (ﬁ) 2 +1. (29)

If we now assume that § = 0, which implies that all models that fit into S € Cp have
equal cost, we find that (ap-1)* = 2, (ap-2)™ =5, (ap_3)~! = 26, (ap_q)~! = 677, etc.
This yields a cost of log 677 = 9.403 bit for all 677 models in 73 and 150.448 bit for D = 8,
etc. Note that the number of models in Cp grows very fast with D. Incrementing D by
one results roughly in squaring the number of models in Cp. The context tree weighting
method is working on all these models simultaneously in a very efficient way!

If we take § such that —logag = d, we obtain model cost §|S|, which is proportional

to the number of parameters |S|. For D = 1 we find that § = —log —[5.’2‘—1 = 0.694 bit, for
D =2 we get § = 1.047 bit, § = 1.411 bit for D = 4 and for D = 8 we find § = 1.704 bit,
etc.

8. Final Remarks

We have seen in lemma 6.1 that P.(zT|2?_,) as given by (14) is a weighting over all
distributions J],s Pe(as,bs) corresponding to models S € Cp. From (8) we may conclude
that [T s Pe(as,bs) is a weighting of [, (1 — 6,)* 6%, where all components of ©5 are
assumed to be (3, 1)-Dirichlet distributed. Therefore we may say that P.(z]|z3_p) is a
weighting over all models S € Cp and all parameter vectors Og, also called a “double
mixture” (see [47]). We should stress that the context tree weighting method induces a
certain weighting over all models (see lemma 6.1), which can be changed as e.g. in section
7 in order to achieve specific model redundancy behavior.

The redundancy upper bound in theorem 6.3 shows that our method achieves the lower
bound obtained by Rissanen (see e.g. [26], theorem 1) for finite state sources. However
our redundancy bound is in fact stronger, since it holds for all source sequences z¥ given
29_p and all T, and not only averaged over all source sequences z] given z3_, only for
T large enough. Our bound is also stronger in the sense that it is more precise about the
terms that tell us about the model redundancy.

The context tree weighting procedure was presented first at the 1993 IEEE International
Symposium on Information Theory in San Antonio, Texas (see [56]). At the same time
Weinberger, Rissanen and Feder[48] studied finite memory tree sources and proposed a
method that is based on state estimation. Again an (artificial) constant C and a function
g(t) was needed to regulate the selection process. Although we claim that the context tree
method has eliminated all these artificial parameters we must admit that the basic context
tree method, which is described here, has D as a parameter to be specified in advance,
making the method work only for models S € Cp, i.e. for models with memory not larger
than D. It is however possible (see [52]) to modify the algorithm such that there is no
constraint on the maximum memory depth D involved (Moreover it was demonstrated
there that it is not necessary to have access to z9_p.) This implementation thus realizes
infinite context tree depth D. The storage complexity still remains linear in T'. It was
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furthermore shown in [52] that this implementation of the context tree weighting method
achieves entropy for any stationary and ergodic source.

In a recent paper Weinberger, Merhav and Feder[47] consider the model class con-
taining the finite state sources (and not only the bounded memory tree sources). They
strengthened the Shtarkov pointwise minimax lower bound on the individual redundancy
([37], theorem 1), i.e. they found a lower bound (equivalent to Rissanen’s lower bound
for average redundancy [26]) that holds for most sequences in most types. Moreover they
investigated the weighted (“mixing”) approach for finite state sources. Weinberger et al.
showed that the redundancy for the weighted method achieves their strong lower bound.
Furthermore their paper shows by an example that the state-estimation approach, the au-
thors call this the “plug-in” approach, does not work for all source sequences, i.e. does not
achieve the lower bound.

Finite accuracy implementations of the context tree weighting method in combination
with arithmetic coding are studied in [54]. In [58] context weighting methods are described
that perform on more general model classes than the one that we have studied here.
These model classes are still bounded memory, and the proposed schemes for them are
constructive just like the context tree weighting method that is described here.

Although we have considered only binary sources here, there exist straightforward gen-
eralizations of the context tree weighting method to non-binary sources (see e.g. [43]).
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9. Appendix: Elias Algorithm

The first idea behind the Elias algorithm is that to each source sequence 2T there
corresponds a subinterval of [0,1). This principle can be traced back to Shannon[36].

DEFINITION 9.1. The interval I(z}) corresponding to z%{ € {0,1}!,t = 0,1,---,T is
defined as

I(z}) £ [B(z}), B(a}) + Pu(a})) (30)
where B(zt) £ 2 st <zt Fe(Z]) for some ordering over {0,1}".

Note that for ¢ = 0 we have that P.(¢) = 1 and B(¢) = 0 (the only sequence of
length 0 is ¢ itself), and consequently I(4) = [0,1). Observe that for any fixed value of
t,t =0,1,---,T, all intervals I(z}) are disjoint, and their union is [0, 1). Each interval has
a length equal to the corresponding coding probability.

Just like all source sequences, a codeword cf = cjc; -+ ¢ can be associated with a
subinterval of [0, 1).

DEFINITION 9.2. The interval J(cf) corresponding to the codeword cF is defined as
J(c") 2 [F(cP), F(ch) +27F), (31)
with F(ct) 2 S a2

To understand this, note that c* can be considered as a binary fraction F(cF). Since
cl is followed by other codewords, the decoder receives a stream of code digits from which

only the first L digits correspond to c*. The decoder can determine the value that is
represented by the binary fraction formed by the total stream c;cz2---crep4r -+, e
Fu® Y cat (32)
1=1,00

where it should be noted that the length of the total stream is not necessarily infinite.
Since F(ct) < Fy < F(ct) + 27% we may say that the interval J(c%) corresponds to the
codeword c’.

To compress a sequence 7 , we search for a (short) codeword c*(zT) whose code interval
J(ct) is contained in the sequence interval I(zT).

DEFINITION 9.3. The codeword c£(z¥) for source sequence z7 consists of L(zT) £
[log(1/P.(zT))] +1 binary digits such that

F(c*(«])) £ [B(a]) - 2407 - 27D), (33)
where [a] is the smallest integer > a. We consider only sequences z7 with P.(zT) > 0.
Since
F(c*(z1)) 2 B(a1) (34)
and

F(c*(2T)) + 226D < B(aT) 4 27L61) 4 27160 < B(zT) + P.(27). (35)
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we may conclude that J(cf(zT)) C I(2T), and therefore F, € I (:vl) Since all intervals

I(zT) are disjoint, the decoder can reconstruct the source sequence zi from F,,. Note that
after this reconstruction, the decoder can compute cX(z¥), just like the encoder, and find
the location of the first digit of the next codeword. Note also that, since all code intervals
are disjoint, no codeword is the prefix of any other codeword. This implies also that the
code satisfies the prefix condition. From the definition of the length L(zT) we immediately
obtain theorem 4.1.

The second idea behind the Elias algorithm, is to order the sequences z! of length ¢
lezicographically, for t,t = 1,--- ,T. For two sequences z{ and #! we have that ¢ < %t
if and only if there exists a 7 € {1,2,---,t} such that z; = %, for ¢ = 1,2,--- ,7 — 1 and
T, < %,. This lexicographical ordering makes it possible to compute the interval I(z¥)
sequentially. To do so, we transform the starting interval I(¢) = [0,1) into I(z,), I(z122),

, and I(zjz, - - z7) respectively. The consequence of the lexicographical ordering over
the source sequences is that

B(z}) = ) P.&) Z P( TN+ Y Pt E) =BET) + ) PlaiT &)

&<zl #ic Ze<a: Ze<zs

(36)

In other words B(z%) can be computed from B(z{™!) and P.(z{™', X; = 0). Therefore
the encoder and the decoder can easily find I(zt) after having determlned I(zh), if it
is ‘easy’ to determine probabilities P.(z!™!, X; = 0) and P.(z{™!, X; = 1) after having
processed T1Zg -+ Tyq-

Observe that when the symbol x; is being processed, the source interval I(z{™') =
[B(zt™1), B(zt™!) + P.(2%1)) is subdivided into two subintervals

Iz, X, =0) = [B(i™"),B(@i") + Pzl !, X; =0)) and
It X, =1) = [B@i™)+ Pz, X. =0),B(zi!) + P(at7h)). (37)

The encoder proceeds with one of these subintervals depending on the symbol z;, therefore
I(zt) C I(z%™!). This implies that

I(z{) C I(z]™) C--- C I(9). (38)

The decoder determines from F,, the source symbols zi,zs, -,z respectively by
comparing F,, to thresholds D(zi™).

DEFINITION 9.4. The thresholds D(z%™!) are defined as
D(a{") £ B(a$™") + Pu(e™, X = 0), (39)
fort=1,2,---,T.

Observe that threshold D(z¢™!) sphts up the interval I(z!™') in two parts (see (37)).
It is the upper boundary point of I(z%™", X, = 0) but also the 1ower boundary point of
I(z!™', X, = 1). Since always F,, € I(zT) C I(z}), we have for D(z{™") that

Foo < B(z}) + Po(z}) = B(zi™) + Pe(zi™, X, = 0) = D(277") if z, = 0, (40)
and
Fo > B(z}) = B(zt™Y) + P(at!, X; =0} = D(z}7Y) if 2 = 1. (41)



10. APPENDIX: PROPERTIES OF THE KT-ESTIMATOR 31

Therefore the decoder can easily find z, by comparing Fy to the threshold D(z!™!), in
other words it can operate sequentially.

Since the code satisfies the preﬁx condition, it should not be necessary to have access
to the complete F,, for decoding z7. Indeed, it can be shown that only the first L(zT)
digits of the codestream are actually needed.

10. Appendix: Properties of the KT-Estimator
PROOF. The proof consists of two parts.
1. The fact that P.(0,0) = 1 follows from

/2
dsin’a = / 2da = . (42)
0

1 1 da /2 1
/0 V(1 —6) —/0 sin o cos &

It is easy to see that P.(a +1,b) + P.(a,b+ 1) = P.(a,b). We obtain (9) from

(b+1/2)P(a+1,b) = +7r1/ 2 / (1 g)+1/2g0-1/24p
0
1 [l
— _/ (1 _9)a+1/2d0b+1/2
T Jo
1 /1
— __/ 9b+1/2d(1 _ 9)a+1/2
T Jo
1
= 2 +ﬂ1/ 2 / (1 - 6)*"26"*1/24 = (a + 1/2) P(a, b + 1).(43)
0
2. Define
P.(a,b
Ala,b) & (a,5) —. (44)
7 (e Gs)’
First we assume that a > 1. Consider
A(a+1,b) —aa(a+1/2) a+b+1 a+b+1/2 45)
Ala,b) — (a+1)*H a a+b ) ' (
To analyze (45) we define, for ¢ € [1,00), the functions
A, tHt+1/2) A, t+10
=Inp——~—~——~L2 = In(—— . 46
&M ad o) £ () (46)
The derivatives of these functions are
df (t) t 1 dg(t) t+1 t+1/2
= =1 - . 47
a it ire ™ Tw TR ey (47)
Take a = ;62 and observe that 0 < o < 1/3. Then from
t l-a a® o 1
1 = = -2 — Yt —=4:-)< 20 =~ 48
s S T e Sy (48)
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we obtain that %(:l < 0. Therefore

a*(a+1/2) > 1 a*(a+1/2) 1

GF D 2o o e e (49)
Similarly from
t+1 o b 20 t+1/2
=9 4+ —4..)<2 3 S )= =
In " (a+3+5+ Y<2{a+’+a’+ ) T—a? {1 (50)
we may conclude that did(tﬂ < 0. This results in
a+b+1 e o GHbHT L
> 1 a+ +1/2 = e. 51
( a+b ) _a+}>r—r»loo( a+b ) ¢ (51)
Combining (49) and (51) yields that
Ala+1,b) > A(a,b) for a > 1. - (52)

Next we investigate the case where a = 0. Note that this implies that b > 1, and consider

A(Lb) 1

A(0,b) 2

(HTl)H.l/z' (53)

If we again use the fact that ‘%(:l <0, we find that
A(1L,b) > g - A(0,b). (54)
Inequality (52) together with (54), now implies that
A(a+1,b) > A(a,bd) for a > 0. (55)
Therefore
A(a,b) > A(0,1) = A(1,0). (56)

The lemma now follows from the observation A(1,0) = A(0,1) = 1/2. It can also easily
be proved that A(a,b) < +/2/7. Both bounds are tight. a

11. Appendix: Weighting Properties

PrOOF. We prove by induction that the hypothesis in lemma 6.1 holds. For d = D
this is true. Next assume that the hypothesis also holds for 0 < d < D. Now consider a
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node s with [(s) = d — 1, then

s __ 1 1 0s 1s
P = 2Pe(as,bs) + 2Pw P,
1

= _Pe as:bs
L. (0.,b)
1 ~Tp_a(V) —Tp_a(W)
+§ Z 27 D4 HPe(av037bv0$) Z 27 b= H Pe(awls,bwls)
VeCp-_4 veVY WeCp—4 wew
= 27'P(as,bs)+ Y 271 To-eMTo-eO) TT Py(ay,, by,)
VWECp_q u€VX0UWx1

= Y 2o TT Pau, bus). (57)

UECD-d+1 ueld

We have used the induction hypothesis in the second step of the derivation. Conclusion is
that the hypothesis also holds for d — 1, and by induction for all 0 < d < D.
The fact ) ec,_, 27724 =1 can be proved similarly if we note that

N =

1 1 1
-I'p- (u) — — -I'p_ (v) . ~TI'p- (W) —_ - —_— =
E 9~Tp-aniM) — 2 4 5 E 9-Tp-a E 9-Tp-4 > + 5 1.
UeCp_q+1 VeCp_q WECp_4

12. Appendix: Updating Properties

Proor. First note that if s is not a suffix of xﬁ:}, no descendant of s can be suffix
of z!~},. Therefore for s and its descendants the a- and b-counts remain the same, and
consequently also the estimated probabilities P.(as,b;s), after having observed the symbol
z;. This implies that also the weighted probability P? does not change and (15) holds.

For those s € Tp that are a suffix of z!~}, we will show that the hypothesis (16) holds
by induction. Observe that (16) holds for {(s) = D. To see this note that for s such that

l(sy=D
P;(0) + P;(1) = P.(as +1,b,) + Pe(as, bs +1) = Pe(as,bs) = P5(¢)- (59)

(Notation : P}(0) = Pj(a™, X, = 0lz1_p), P3(1) = P27, Xe = 12} _p), Pi(d) =
Pi(zi 7 el_p), as = as(z1 " [2]_p), bs = bs(ai " |21_p).) '

Next assume that (16) holds for I(s) = d,0 < d < D. Now consider nodes corresponding
to strings s with {(s) = d — 1. Then 1s is a postfix of z¢~}, and 0s not, or vice versa. Let



34 3. THE CONTEXT TREE WEIGHTING METHOD: BASIC PROPERTIES

1s be a postfix of 27}, then
1
PU0)+ Pi1) = 2Pas+10) + 5P2(0) - PE(O) + 5 Pi(as, b+ 1) + 2 PY(1) - PE(D)

1 1 1
= 5Po0+ 1,b) + 3Pulas b+ 1)+ TPE(8) - PRO) + SPY(9) - PL()

2
- ;P(as, )+ 3P() - (P(0) + PE(D)
= 5P.z(as,bs)wt-2—1283«15)-R}f<¢)=Pu§(<zb)- (60)

The induction hypothesis is used to obtain the fourth equahty The second equality follows
from (15). The proof is analogous when 0s is a postfix of z/_}, instead of 1s. a
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CHAPTER 4

Context-Tree Implementation

1. Tree-Implementation in CTW-1

We shall repeat briefly the implementation of the context-tree in the CTW-1 algorithm
and we highlight the most important features. In the next section we then discuss the
considerations that led to the CTW-2 implementation.

1.1. Binary decomposition. The contex tree weighting method is originally de-
scribed for binary (tree) sources. One of the most important applications of noiseless
source coding algorithms is however compaction of computer files and these files can be re-
garded as sequences of bytes, a byte being a symbol that can assume 256 values. In CTW-1
we adapted the context-tree weighting method such that it can be used to compress files of
bytes. This was realized by visualizing a byte as a sequence of 8 binary digits. We should
note that the first binary digit in a byte (the most significant one) has a different statistical
structure than the second binary digit in a byte etc. This difficulty can easily be overcome
if we use a context tree for each binary digit, so there is a context tree for binary digit 1
(the most significant bit), a context tree for digit 2, etc., eight trees in total. The context
for the first bit is of course equal to the most recent, say B bytes, i.e. 8B binary digits,
since we again consider these bytes as sequences of 8 bits. The context for the second bit
in a byte is in addition to the B most recent bytes, the most recent bit which is bit 1 from
the current byte, which is assumed to be processed already. The context for bit 3 in the
current byte is bit 1 and bit 2 from the current byte followed by the 8B bits that form the
B most recent bytes.

1.2. Weighting only at byte-boundaries. In Figure 4.1 we have depicted the de-
composition of the bytes into binary digits and we have shown how the context for each
of these digits looks like. This approach more or less suggests that for each of the eight
binary digits in a byte there exists a binary tree model that describes the statistical struc-
ture of the subsequence formed by only these digits. If we apply the context tree weighting
procedure directly, these models can be arbitrary (complete) binary trees. However this is
a bit strange, it more or less suggests that a certain digit can “depend” on an arbitrary
number of binary digits, instead of on an arbitrary number of bytes. This last alternative
would be more natural. An additional advantage behind this alternative (by which we
make the model-class smaller) is that the number of bits needed to describe a “byte-tree
model” is significantly smaller than the number of bits needed to describe the same model
as a “bit-tree model”. We can achieve this objective by weighting in a binary context tree
only at so called byte-boundaries.

In the Figure 4.1 we have visualized this weighting only at byte-boundaries by depicting
the context tree as a tree in which we only have nodes that correspond to complete-byte
contexts. These nodes have (in principle) 256 children. An exception is formed by almost

37
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all the root nodes. The root node in the context tree for bit 1 has 256 children and in
this node we do a weighting operation since this root node corresponds to a byte-complete
context. However the root node of the context tree for digits d = 2,3,---,8 has only
24-1 children and in such a root note we only multiply the probabilities at the first byte
boundary and we do not weight (this root node is not on a byte-boundary, so it doesn’t
have its own estimator).

1.3. Binary search trees. Each node in the context tree in Figure 4.1 in principle has
256 possible descendants. If we implement such a structure in software we need storage
for 256 pointers to these descendants. Since most of the pointers will be nil (no such
descendant) this is not very efficient. A better way to implement this is to use a binary
tree. Each node in a binary tree corresponds to a 256-ary symbol value and has a left and
a right pointer. The left pointer points at nodes with a smaller symbol value, the right
pointer to the nodes that have higher symbol values, see Figure 4.2. When a new symbol
occurs, a node is added at the correct place in the search tree. The location of this node
is found by comparing the new symbol to a current node symbol and taking the left or
right direction according to the outcome of this comparison until an endpoint is reached.
This implementation has the advantage that the number of pointers is considerably smaller
than for a 256-ary tree. The search complexity however is larger.

Although we implemented the algoritm with binary search trees it is sometimes better
to think of it as were it a 256-ary tree implementation.

1.4. Pruning of unique context paths. Consider the 256-ary context tree struc-
ture. Suppose that the maximum depth is B bytes. At first sight it is reasonable to add

second
last byte

second
last byte

last byte

last byte

bitl
Context tree for bit 1 Context tree for bit 2
second
............ last byte
last byte

bit1,bit2
Context tree for bit 3

F1GURE 4.1. Decomposition of bytes into binary digits and context descriptions.
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256-ary tree binary search tree

FIGURE 4.2. Binary search tree versus 256-ary tree.

P

full tree unique-path pruned tree

FIGURE 4.3. Binary search tree versus 256-ary tree.

all contexts of length B that have occurred to this structure. This would yield a linear
increasing storage complexity. However it is not so useful to continue a path that does
not branch anymore. Since in such a path the weighted probability is equal to the esti-
mated probability it is useless to increase the length of the path if it is clear that it does
not branch anymore. A problem arises however if at a later time a context occurs that
coincides with such a pruned path. Then it is necessary to be able to reconstruct the
full (i.e. up to length B) context corresponding to this pruned path. This full context is
then compared with the new context and both of them are continued as far as needed to
make them unique again. This idea decreases the number of records quite drastically but
also makes the implementation more complex, see Figure 4.3. It is necessary to keep the
complete past source sequence in memory to be able to reconstruct a pruned context. The
amount of memory needed for storage of this sequence is small compared to the decrease
of storage requirements due to the pruning in the context tree.

1.5. Memory requirements for a tree node. Each tree node, internal or leaf, con-
tains structure and CTW information. The required CTW information, needed to perform
the probabilitiy estimation and weighting, is discussed elsewhere in this report. Here we
consider the cost of maintaining the tree structure. The CTW-1 tree is implemented using
binary search trees, so we require a left and a right pointer at each node. Also a pointer
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to the next level, i.e. the context one deeper than the current one, is needed. To facilitate
the unique path pruning we furthermore require an index into the file buffer.

The total memory requirements for these four items is 16 bytes; four byte per pointer
and four bytes for the index.

2. Tree-Implementation in CTW-2

In CTW-2 we use most of the ideas from CTW-1, i.e. binary decomposition, weighting
at byte boundaries, and tree pruning. The main difference between the CTW-1 and the
CTW-2 tree implementation is the use of hashing in stead of pointers.

2.1. Binary decomposition and weighting at byte boundaries. We still employ
eight separate trees, one for each bit in a byte. These trees are now really byte oriented,
i.e. we don’t employ binary search trees anymore.

Also, we do a full weighting at the roots of the eight trees. As argued above, this should
not be done if we really assume byte oriented data, however the implemetation is more
uniform, and thus simpler, while the resulting compression rate and speed is almost the
same. In Appendix 4 we show the results of experiments with and without weighting at
the root nodes.

2.2. Pruning of unique context paths. Pruning of the unique paths is still imple-
mented as it turned out to reduce the storage requirements considerably. The implemen-
tation is the same as in CTW-1. Each node contains an index into the file buffer pointing
to the character that caused this node in the tree.

2.3. Memory requirements for a tree node. The structure information per node
is now almost only determined by the unique path pruning, so we require an index into
the file buffer.

For the hashing implementation we require a hashing table. Since we don’t know the
sizes of the different trees beforehand we decided to combine the eight trees in one hashing
table. This required some extra information in a node; we must know to what tree the
node belongs. Usual hashing methods store the key information in the record (node). As
we shall see, we can do with only the context depth, because with the unique path pointer
we can find the complexe context string.

So, the total memory requirements for this implementation is three bytes for an index
and since the tree number and depth information can be combined in one byte, the total
memory cost is in four bytes, which is one fourth of the requirements of CTW-1.

3. Hashing of Context Trees

The purpose of a context tree is to supply the CTW information for a given context.
So a context tree is actually a data structure that supplies information based on a “context
key”. This type of information retrieval problems can often be solved efficiently using a
hashing table.

In a hashing table, the information (CTW data) is stored and the context is used to
find the correct data. The hashing problem can be separated into two sub-problems; the
collision resolution scheme and the access or hashing function design. The hashing function
assigns to every possible key an index into the hashing table, preferably such that every
key is assigned a unique key. Usually however, the key space is much larger than the index
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space, i.e. the table size. Thus, several keys will be mapped to the same index value. In
order to obtain the correct data we will have to resolve these multiple assignments. This
is known as the collision resolution problem.

In the following subsections we shall describe the solutions we used in the CTW-2
algorithm. Background information on these topics can be found in [14].

3.1. Hashing function. A good hashing function approximates a random assignment
of indexes from key values. The key values used here are byte strings of variable length.
Pearson [22] and Savoy [33] discuss this type of hashing function.

Pearson proposes the following hashing function. Let C[1]},C[2],...,C[n] be the (byte-
string) key and T[] be a pseudo-random permutation of {0,...,255}, then the hashing
function value is determined by the following program.

integer hash(array C) :
h[0] := 0;
for i in 1..n loop
h[i] := T[h[i-1] xor C[il];
end loop;
return h[n];
end proc;

This function results in 256 indices.

To obtain a larger index space Pearson suggest to increase the first byte value of the
string and apply the function to this string too. Then concatenate the two function values
to obtain a 16 bit index.

Savoy applied this function to French texts and concluded that the well known multi-
plicative scheme performs better in the string case too and suggests the following function.

integer hash(array C)
h[0] := 0;
for i in 1..n loop
h{i] := (h[i-1] * 137 + T[C[i]]) mod 256;
end loop;
return hin];
end proc;

3.2. Collision resolution. A well known technique of collision resolution is the open
addressing resolution. We choose this method because it works within the preassigned
hashtable and doesn’t require pointers, as the chaining method would. Because we want
to reduce the memory cost we don’t accept the cost for pointers.

The same method as Pearson suggest for extending the range of the hashing function
can be used to obtain a pseudo random offset value for secondary probes, see Savoy. We
must ensure that the offset value is relative prime to the table size, which is always a power
of 2. So we obtain the next offset function.

integer offset(array C) :
Cl[1] := (C[1]1+1) mod 256;
h := hash(C);
return (h xor 1);

end proc;
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Thus the complete index computation is performed as in the next function.

integer index(array C)
h := hash(C);
if(Table[h] "matches key") then
return h;
end if;

j := offset(C);
do MAXPROBES times loop
h := (h + j) mod TABLESIZE;
if(Table[h] "matches key") then
return h;
end if;
end loop;

" We haven’t found a valid index if we reach this point "
end proc;

3.3. Hashing function and Collision resolution for contexts. In our case hash-
ing probes come in sequences of context strings of increasing length z%, i = 0,... ,d. Here
the index of z0 is the root index of the tree.

Because the index position of z¢ is assumed to be random appearing, we can use this
as our first probe for z*! and thus only compute an offset to probe the table.

integer findindex(array C)
j := offset(C);
h := "previous context index";
do MAXPROBES times loop
h := (h + j) mod TABLESIZE;
if(Table[h] "matches key") then
return h;
end if;
end loop;
return(-1); /* indicates failure */
end proc;

The hash function can be simplified to depend only on the last byte of the context
string. This speeds up the hash function enormously, because it can now be represented
by a 256 entries integer table costing 1024 bytes. No computations are needed, only one
array reference is necessary. The code looks like the following.

integer Tperm[256] = { 175715, 11428377, ... , 27394735 };

integer offset(c)
return (Tperm[c] and INDMASK);
end proc,
These changes increase the speed of the algorithm, while the quality of the hash func-
tion, in terms of number of probes needed and the number of failures, remains almost
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unchanged. In appendix 5 we show the results of the different hashing functions as can be
used in the CTW algorithm.

4. Appendix: Weighting of Root Nodes

In this appendix we consider the effects of applying full weighting at root nodes against
only using the estimators at the symbol boundaries.

uaon

13 ({3 1)

“¢77 rOOt

FIGURE 4.4. The tree for bit one and bit two.

First, consider the case when we weight at the root, see Figure 4.4. At the root, A, we
use the estimator P}(z’) and the weighted probabilities from the nodes “0” and “1” and
obtain the weighted probability that we will use as the coding probability. The nodes “0”
and “1” do not correspond to a symbol, but represent the first bit of the current byte. In
order to have a more uniform program we even implemented this for the first bit, where
the prefix has length zero and is represented by the single value “¢”. Again see Figure 4.4.

Po(a") + Py(z") (")

Piat) = ¢ ) (61)
Without full weighting we would use
P(z') = Pi(a") Py(a") (62)

First, assuming that we are really modeling a symbol source with a 256 symbol alphabet,
(62) is the reasonable choice. Assuming that the true source model does not include the
root node, (62) produces a codeword about one bit shorter than with (61) per tree. So,
the total gain will be about eight bits. On the other hand, if some bits can be modeled
by the root node, the extra cost is determined by an excess of parameters, that cost about
log N bits per parameter.

In Table 4.1 we list the results for the CTW algorithm using the K-T estimator and
a maximum depth of 4 and 8. Per file from the Calgary corpus the codelength in bits is
listed for the CTW with full weighting in the root nodes, together with the codeword length
difference when using the CTW without weighting in the root nodes. Also the encoding
speed, in Kilobytes per second, of the CTW with weighting in the root is given and also
the speed increase in percents resulting from the CTW without rootweighting.

Table 4.2 gives similar results when using the Zero-Redundancy estimator, see 79.

We observe a difference in codelength per file varying from —42 to +120 bits. We
expected differences from —8 up. This is mostly the case. The occasional lower value
(—42) can be explained by the fact that, due to the unique path pruning and the ad-hoc
change in program code to allow non-root weighting, the two versions, with and without
root weighting, can perform differently in the initial part of the data files. The actual
difference strongly depends on these initial parts.
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depth depth 4 depth 8
codelength | length | coding | speed | codelength | length | coding | speed
file root weight. | differ. | speed | diff. | root weight. | differ. | speed | diff.
bytes | bytes| KB/s| A % bytes | bytes| KB/s| A %
bib 220858 -6| 6.51| 6.30 213614 -8| 3.56| 3.09
bookl 1745933 -13| 6.98| 5.59 1691669 -5| 3.92| 3.57
book2 1249714 -7| 7.03| 541 1182291 -7 3.95| 3.29
geo 464445 61 6.54| 6.12 464319 62 4.78 | 4.18
news 948138 -7] 6.85| 6.86 924625 -6 4.14| 3.62
objl 83334 36| 5.25| 2.48 83423 38| 236 2.12
obj2 652185 24| T7.03| 6.54 630041 33| 4.21| 3.33
paperl 130428 -3| 597 6.03 129131 -3 3.13| 2.24
paper2 192986 -8| 6.27| 5.74 190607 -6| 343 2.62
paper3 122127 -6| 5.83| 5.32 121543 -7 3.01| 2.66
paper4 39245 -7 4.05| 3.46 39343 -7 1.64 | 1.22
paper5 36968 -8| 3.89| 3.60 37002 -7 154 1.30
paper6 96840 ST 5.72| 4.90 96239 -5 2.80| 1.43
pic 418396 8| 819| 8.06 411938 20| 4.74| 4.22
progc 100126 9| 577 3.12 98745 -8| 2.84| 3.17
progl 133181 -9 6.48 | 4.78 125177 -5 3.28 | 244
progp 93118 -8 6.10| 5.41 89956 -8 298 235
trans 161033 -8| 6.58| 6.08 151081 6| 343 2.62

The speed increase for the CTW without root weighting, about 5-6 percent for depth
4, is the result of not having to perform about 20 % of the CTW operations. The total
time spend in CTW weighting is about 40 %, so we expected an 8 % speed increase. The

TABLE 4.1. The effect of root weighting with the K-T estimator.

gain should be somewhat less for depth 8, and the experiments confirm this.

From these results we conclude that weighting or not weighting in the root nodes doesn’t
much influence the performance of the algorithm. A slightly simpler implementation results

when we perform weighting at the root nodes, and this was implemented.

5. Appendix: Performance of Hashing Functions in the CTW Algorithm

In order to determine the performance of the hashing function as proposed by Pear-
son [22], Savoy [33], and the CTW hashing function as introduced in section 3.3 we
compared the number of probes needed per index computation and the rate of failures to

find an index for the function index as defined in section 3.2.
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depth depth 4 ' depth 8
codelength | length | coding | speed || codelength | length | coding | speed
file root weight. | differ. | speed | diff. || root weight. | differ. | speed | diff.
bytes | bytes | KB/s| A % bytes | bytes| KB/s| A %
bib 213084 -5 6.88 | 3.20 202811 -13 3.77| 3.98
book1 1733405 -23 7.06| 5.10 1670898 -42 415| 2.89
book2 1225630 -1 7.14| 5.60 1147949 5 421 | 2.85
geo 466110 69 6.67| 3.45 465838 63 4.90| 4.69
news 923471 -33 7.04( 4.40 888626 -40 442 3.39
objl 81266 58 5.38 | 2.79 81273 60 2.44| 2.46
obj2 627289 120 7.22| 5.26 596169 110 4.48| 4.24
paperl 124775 2| 6.33]| 2.53 122309 -11 3.24| 4.63
paper2 187443 -8 6.53 | 4.13 183584 -14 | 3.60| 4.17
paper3 118374 -19 598 | 4.01 116834 -10 3.16 | 2.85
paper4 37694 -6| 4.32| 0.00 37641 -7 1.66 | 4.22
paperd 35515 -10| 4.03| 347 35347 -6 1.58 | 1.27
paper6 92468 -15 591 3.21 91028 -14 295 | 2.7
pic 419631 0 796 | T7.41 412756 11 4.64 | 4.53
progc 95441 -8 6.04( 3.31 93223 -3 3.00| 3.00
progl 126468 -15 6.73| 5.05 116035 -2 3.92 | 2.56
progp 86831 -7 6.43| 5.60 82426 0 3.15| 2.86
trans 145887 -16 1 6.98| 4.87 132252 -33 3.70 | 297

TABLE 4.2. The effect of root weighting with the Zero-Redundancy estimator.

For Pearson’s method (method_0) and Savoy’s method (method-1) we use the permu-
tation table as defined in [22]. This is also listed in Table 4.3. Below we list the code of
Pearson’s method.

byte hash_pearson(array C, integer n) :
hi0] := 0;
for i in 1..n loop
h(i] := Tperm8[h[i-1] xor C[il];
end loop;
return h[n];
end proc;

integer hash_method_O(array C, integer n) :

cl := C[1];

hl := hash_pearson(C, n);

C[1] := (C[1] + 1) and 2565;

h2 = hash_pearson(C, n);

C[1] := (C[1] + 1) and 255;

h3 = hash_pearson(C, n);

Cl1] := ci;

return (h1*2°16 + h2*2°8 + (h3 or 1)) and (TABLESIZE-1);
end proc;
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Tperm8[256] = {

1, 87, 49, 12, 176, 178, 102, 166, 121, 193, 6, 84, 249, 230,
44, 163, 14, 197, 213, 181, 161, 85, 218, 80, 64, 239, 24, 226,
236, 142, 38, 200, 110, 177, 104, 103, 141, 253, 255, 50, 77, 101,
81, 18, 45, 96, 31, 222, 25, 107, 190, 70, 86, 237, 240, 34,
72, 242, 20, 214, 244, 227, 149, 235, 97, 234, 57, 22, 60, 250,
82, 175, 208, 5, 127, 199, 111, 62, 135, 248, 174, 169, 211, B8,
66, 154, 106, 195, 245, 171, 17, 187, 182, 179, 0, 243, 132, 56,
148, 75, 128, 133, 158, 100, 130, 126, 91, 13, 153, 246, 216, 219,
119, 68, 223, 78, 83, 88, 201, 99, 122, 11, 92, 32, 136, 114,
52, 10, 138, 30, 48, 183, 156, 35, 61, 26, 143, 74, 251, 94,
129, 162, 63, 152, 170, 7, 115, 167, 241, 206, 3, 150, 55, 59,
151, 220, 90, 53, 23, 131, 125, 173, 15, 238, 79, 95, 89, 186,
105, 137, 225, 224, 217, 160, 37, 123, 118, 73, 2, 157, 46, 116,
9, 145, 134, 228, 207, 212, 202, 215, 69, 229, 27, 188, 67, 124,
168, 252, 42, 4, 29, 108, 21, 247, 19, 205, 39, 203, 233, 40,
186, 147, 198, 192, 155, 33, 164, 191, 98, 204, 165, 180, 117, 76,
140, 36, 210, 172, 41, 54, 159, 8, 185, 232, 113, 196, 231, 47,
146, 120, 51, 65, 28, 144, 254, 221, 93, 189, 194, 139, 112, 43,

71, 109, 184, 209 };

TABLE 4.3. Pearson’s permutation table.

Savoy’s method uses a multiplicative hashing function. The code is given here.

integer hash_savoy(array C, integer n) :
h(0] := 0;
for i in 1..n loop
h[i] := (h[i-1]1*137+Tperm8[C[i]]) and 255;
end loop;
return hln];
end proc;

integer hash_method_1(array C, integer n)

cl := C[1];

hl := hash_savoy(C, n);

C[1] := (C[1] + 1) and 255;

h2 = hash_savoy(C, n);

C[1] := (C[1] + 1) and 255;

h3 = hash_savoy(C, n);

Cl[1] := ci;

return (hi*2716 + h2*2°8 + (h3 or 1)) and (TABLESIZE-1);
end proc;

For the CTW hashing function (method_2) we can precompute the result of the hashing
function. The hash function is just the permutation Tperm8 of the last symbol in the string
and the complete method uses three consequtive table entries, so we have
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FIGURE 4.5. The performance of hashing for book2.

integer hash_method_2(array C, integer n)

cn := C[n];

hi := Tperm8[C[n]];

Cln] := (C[n] + 1) and 255;

h2 := Tperm8[C[n]l];

Cln] := (C[n] + 1) and 255;

h3 := Tperm8[C[nl];

Cln] := cn;

return (h1*2°17 + h2*271 + h3*2 + 1) and (TABLESIZE-1);
end proc;

Precomputing this function results in the table listed in Table 4.4. Now using this table
the hashing function becomes:

integer hash_method_2(array C, integer n) :
return Tperm[C[n]] and (TABLESIZE-1);
end proc;

Note that the masking of the table entries with the hash table size (TABLESIZE) can also
be incorporated in the table if only one hash table size is needed.

We selected four different files from the Calgary corpus to test the different hash func-
tions. book?2 is a large english text, geo is a file containing a numerical data set, obj2 is a
computer object file, and paper1 is a short english text.

The graphs in Figures 4.5, 4.6, 4.7, and 4.8 display for each file as a function of the
filelength (x-axis in percents of total length)
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FIGURE 4.6. The performance of hashing for geo.
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FIGURE 4.7. The performance of hashing for obj2.
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integer Tperm[256] = {
175715, 11428377, 6429025, 1663333, 23160013, 23383373, 13454579,
21820291, 15958541, 25300137, 829939, 11137997, 32754777, 30169415,
5850653, 21372299, 1936299, 25930603, 28011331, 23806635, 21146549,
11252897, 28614785, 10519007, 8511025, 31338949, 3261913, 29743389,
31005773, 18632081, 5083357, 26271075, 14508753, 23253199, 13684507,
13573115, 18611199, 33291877, 33449115, 6593227, 10144419, 13279781,
10626139, 2382529, 5947455, 12599229, 4176947, 29110999, 3331965,
14122125, 24939693, 9219547, 11394017, 31187013, 31474833, 4493797,
9561129, 31730093, 2731497, 28174791, 32098091, 29830103, 19650243,
30852053, 12833907, 30700077, 7482489, 2914805, 7992485, 32810335,
10837921, 23044107, 27265791, 720783, 16748255, 26140285, 14581007,
8196081, 17822045, 32595283, 22893479, 22259317, 27686021, 7636277,
8729813, 20239751, 13993963, 25684823, 32200227, 22422391, 2324333,
24604007, 23946753, 23462375, 124681, 31918193, 17330473, 7415959,
19437313, 9896203, 16845629, 17513673, 20760837, 13174013, 17104055,
16561691, 11934515, 1782765, 20180401, 32354743, 28423919, 28765833,
15632831, 9027229, 29269159, 10266289, 10924435, 11637447, 26396405,
13038615, 15996601, 1488961, 12075281, 4264165, 17884265, 14968853,
6821141, 1381437, 18103393, 3957103, 6385465, 24066119, 20465275,
4618805, 8008991, 3481237, 18781687, 9828029, 32947459, 12387141,
16991359, 21266225, 8335701, 20009999, 22286055, 976719, 15159267,
22012829, 31693831, 27002669, 470127, 19689079, 7239471, 7811001,
19904693, 28882027, 11823663, 6958855, 3081979, 17234779, 16472607,
22683613, 2088095, 31235775, 10403507, 12497441, 11673811, 2151187,
13833155, 18072513, 29606323, 29471553, 28524619, 20990711, 4912877,
16182419, 15503877, 9569595, 342621, 20602089, 6088723, 15209251,
1254157, 19074505, 17680799, 29990825, 27240853, 27891119, 26586763,
28216267, 9161271, 30029689, 3635335, 24676089, 8845649, 16339449,
22149205, 33051657, 5507131, 539353, 3856427, 14167023, 2879015,
32384923, 2595407, 26890135, 5216211, 26726993, 30560629, 5338407,
24455053, 19369345, 26050871, 25245251, 20333385, 4409727, 21593797,
25085337, 12949835, 26823529, 21719275, 23653017, 15374617, 10033225,
18368933, 4826457, 27613267, 22565485, 5401919, 7159313, 20844915,
1143761, 24367331, 30466953, 14911951, 25808479, 30301989, 6235377,
19198055, 15754883, 6718009, 8534305, 3744253, 19004859, 33405627,
29014907, 12286853, 24872215, 25499361, 18276439, 14702223, 5672667,
9362289, 14381475, 24224259, 27394735 };

TABLE 4.4. The CTW hashing table.

e the hash table fill degree, in percents. The table size is choosen such that the table
will become full for each file. The y-axis displays the fill degree in percents of the
total table size.
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FIGURE 4.8. The performance of hashing for paper1.

e the global average number of probes in the table needed to find an entry, of fail after
50 probes. The y-axis displays the number of probes times 10.
e the local average number of probes in the last 1000 characters. The y-axis displays
the number of probes times 10.
o the fraction of failed searches over the last 1000 characters. The y-axis displays the
fraction in percents.
These four parameters are shown for each hashing function and are indexed as: Pearson’s
method (numbered 0), Savoy’s method (numbered 1) and the CTW method (numbered
2).

We observe that the Pearson and Savoy methods are very similar and the CTW method
requires about 10 percent more probes than the other two methods.

In order to compare the failure rate, which might influence the compression performance
of the total algorithm, we include graphs that plot the failure rate of Pearson’s method
or Savoy’s method and the failure rate difference between these methods and the CTW
method for each of the four Calgary files. The results are shown in Figure 4.9.

From these figures we conclude that there is no real difference in failure rate between
these three hashing functions.

Because the failure rates are almost identical and the CTW method needs about 10 %
more probes than the other two but is much simpler and faster, we conclude that the CTW
method is an appropriate choice.
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CHAPTER 5
Weighting Arithmetic

1. Implementation of Weighting in CTW-1

We have seen in the previous chapter that in CTW-1 we used the idea of “binary
decomposition” to obtain eight context trees having binary estimators in all nodes, one
tree for each bit in a byte (or ASCII symbol). A second idea was to “weight only at
byte-boundaries”. These two ideas together lead to a 256-ary context tree with binary
estimators in each node. Moreover each 256-ary context extension was implemented as a
binary rearch tree (see Figure 5.1).

Each node contains three pointers, one left- and one right-pointer to search in the
current level and in addition to these two inter-level pointers a next-pointer leading to the
next level (intra-level pointer).

Moreover a record contained an a- and a b-count, i.e. the number of zeroes and ones
that occurred together with the context that corresponds to the record.

Finally the record contained four probabilities. The first (P,) is the estimated proba-
bility corresponding to the node. The second probability is the weighted probability (P,)
of the node. Then there is a probability (P,,) corresponding to the missing counts (we will
address this concept in section 7 of this chapter). Finally in each node there is a probability
Pt that is the product of the weighted probabilities of all nodes of the subtree starting
in the node. This total weighted probability makes it possible to manipulate rather easily
with products of “large” numbers of weighted probabilities.

For each pointer 4 bytes were needed. Also each count was allocated in 4 bytes. A
probability consisted of a 2-byte mantissa and a 4-byte exponent. The CTW-information

/N /N
l t
e 0
/r left | next | right
P, P,
h P, prot

FIGURE 5.1. Binary search tree and record structure.

53
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in each record consists of the counts together with the probabilities. Therefore each record
in CTW-1 contained 32 bytes of CTW-information.

While in CTW-1 the probabilities were floating point numbers that corresponded to
block probabilties, in CTW-2 we will use log-likelihoodratios of conditional probabilities.
This change of view will give a considerable decrease of needed storage space as we shall
see. Also the counts are stored more efficiently.

2. An idea: Consider Quotients of Probabilities

Let s be an internal node (not a leaf) in the context tree 7p. Consider the quotient of
the conditional weighted probabilities P2(X, = 0jz™,29_p) and P3(X, = 1|zt 29_p).
For this quotient we obtain

P3(X: = le ,29_p)

Py (X: = 1|$1 >931—D)

Pj(xi_l, X = O|x(1)—1))

Ps(zt, Xy = 1]2%_)

P(zi7, X = 0l2d_p) + PO (x7", X, = 0|z _p) Pas(ai™!, X, = 0|z _p)

Ps(zi7, Xe = 1|2)_p) + P (217", X, = 1z _p) Ple(aT™h, X, = 12)_p)
Pz t_1| VP (X, = 0|z}, ) 4+ PO (et} ) PO (X, = 0|z}, ) P (=i Y])
Ps(zi7 ) Ps( X, = 1|zi” 1, )+ PO (a7 )P (X, = 127, )Pulf(iri ')

s(zt~ 1 _
Felleyp) P (X = le 331 p)+ ngs(Xt = lei l’x?—D)

. m @
e (T z9_ —1
P.S‘(xi—llx?_;)P,};(HZ_ll Ty e Py(X, = 1ab™,2)_p) + PO (X, = 1|1, 2%_p)

Here we use in the second equality the main CTW-definition (see (12) in chapter 3). In
the third equality we have split out all probabilities in a block-part depending on z%™! and
a conditional part for X, = 0 or 1 given z{~!. The condition 29_, is denote by a - to
save space. We also assumed that Os and not 1s is a suffix of the context z3™',29_, of
x;. In the fourth equality we have divided both nominator and enumerator by the product
P (xTMad_p) Py (27 al_p).

Next define

a Py(X, = 0|33§'1,$‘1’-D)

Py (X, = 1t 20 ) (69

n°(zi Mzl p) =

and observe that the conditional weighted probabilities P%*(X; = 0|z{~!,2%_p) and P2*(X, =
1)zt~1,29_5) can be determined as follows:

% (2423 _p)
1+ n%(zi2d_p)
1
PS(X,=1|zt"1 29 ) = . (65)

and

PS;S(Xt = O|xt1-la$(1)—D)
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n™ (21 2] _p) F Bz el p) | | n°(217|29-p)

P)(X; = O|$§_1a$(1)—p) PS(X 1|33 ﬂ'71 D)

FIGURE 5.2. Variables contained in and information flow through node s.

If we furthermore define
P;(xtl"1|x‘1’_D)

/Bs(xt—1|x0— )é — — , (66)
PP PO (i e _p) Pl (et ad_p)
we can rewrite (63) in the following way:
n (I1 lll'l D)= ,Bs(xi llzl p)Pi(Xe = 0|$t ' x(l)—D) + Pzgs(Xt = O|:1:t1—1,.'13(1)_D) (67)

(a1 28 _p)Pe(Xe = 1]a1™, 2} _p) + Po(Xe = 1]a17", 2)_p)’
where both PJ*(X; = Ole}™",29_p) and P*(X, = 1]z}~!,2)_p) can be determined from
0Os -1
n®(zia}_p)-
If we assume (see Figure 5.2) that in node s the counts a,(z{™!|z3_p) and b,(z%~}|29_p)

are stored, as well as the quotient §*(zi™'|z9_,), we obtain the following sequence of
operations:

e The quotient 7% (z{~!|z?_,) enters node s. We assume that node Os emitted this
quotient?.
e Inside the node s, the conditional weighted probabilities Pos(Xt =0|z}1,2%_p) and
P%(X, = 1|zt™,29_,) are determined from the incoming 7% (z{~|z%_p) as in (65).
e The conditional estimated probabilities are determined from the counts a,(z{~!|z9_p)
and b,(zi![z9_,) as suggested by Krichevsky and Trofimov [15], i.e.:
as(zf |29_p) +1/2
as(zh M ad_p) + b(zfHad_p) + 1
b (7" Had_p) +1/2
as(zi23_p) + bs(z 7 [a)_p) + 1

e Now the outgoing quotient n°(zi|29_,) can be computed using (67).

P(X:= O|x1 371 D)

P(X, = 1]zt 29_)) (68)

!When the context 2™, #?_p passes through 1s the node 1s delivers an incoming quotient.
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e The quotient 3°(-) is now updated with the new z;. This is done as described below:
t—1 P3(Xe=0lzt 120 )y
Be(zial_p) - pOa()(tt—Olzt r110 [;) if z; =0,
Bt ot )

if x; = 1.
PO (X,=1|zi"T29_, t

Bt me|l_p) = (69)

e Finaly the counts a,(z} }|z%_p) and by(2%7*|29_,)) are updated. Again z;, determines
how.

(as(:ci_l,a:t|x? D) bs (:ci ! xtlx(lJ D))

{(as(act1 Ze|zd_p) + 1,0,(z 7 2|2l p)) if z: =0, (70)
(as(@iY, 220 _p), bs(2i 7t 2|20 p) +1) ifzp = 1.
We see that inside the node s there is a switch that controls the mixture between the incom-
ing (external) quotient n%(z{™!|z8_p) = P2(X, = 0|zi™,2%_p)/P% (X, = 1|25, 29_})
and the (internal) quotient PS(X; = 0|zt 29_5)/P3(X; = 1|2, 2%_,). The mixture
is determined by the quotient B8%(zi™!|z{_,). If s is a leaf in 7p then the outgoing
(a7 a)_p) is simply P2(X, = Olz17},29_p)/ P2 (X, = LT, 20 _p)-

3. Logarithmic Representations

To make multiplying and dividing easy we represent all n’s and §’s by their logarithm?.
We assume that these logarithms are represented by fixed point numbers with a, say, m-bit
fractional part. The size of the integer part is to be discussed later.

This logarithmic representation leads to several problems. The first problem is that
apart from multiplying and dividing we have to add two quantities regularly. To do this
we use a table containing the Jacobian logarithm log(1 + 2*) for 2 < 0. Now if p’ > p"
then

/!
log(p' +p") = logp'(1+ %)
pll
= logp' +log(l + 57)
= logp' + log(1 + 2Ucsr"~logr")), (71)
with logp” —logp’ < 0. The number of entries in this table is limited as we shall see later.
A second problem is that we need to compute the logarithms of the estimated proba-
bilities PS(X, = 0|z%%, 29_p) and P3(X, = 1]z, 29_p), ie.
log P:(X; = 0]zt %, 2%_))
= log(2a,(zi™!|2_p) + 1) — 1 — log(a,(z{ ™! |29_p) + bs(217"21_p) + 1)
log P5(X, = 1)z, 29_))
= log(2b,(1™!|z1_p) + 1) — 1 — log(a,(2{ a1 p) + bs(ai " led_p) +1).  (72)

To be able to do this we use log-tables. To keep the number of entries in these log-tables
finite however, we have to bound the counts. Therefore we assume that we count the zeros
and ones in registers that are, say, k bit wide. Now suppose that we reach the point where

2Remember that the base of the log is 2.
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a := 2% (while b = b* < 2¥). Since the registers can not contain this value of a, both a and
b are divided by 2, i.e. a := 2¥7! and b := [b*/2], where [g] (|g]) denotes the smallest
(largest) integer not smaller (larger) than g. This leads to a redundancy increase of course.
This is investigated in appendix 8.

Since now both 0 < a,(-) < 28 — 1 and 0 < b,(-) < 2¥ — 1 the arguments of the
logarithms in (72) are bounded and we can form a table.

4. Standard Bit Allocations

4.1. Counts. In the standard configuration we assume that & = 8, i.e. both counts
are stored in a byte, and a,(-) and b,(-) are both upperbounded by 2* — 1 = 255.

4.2. The log-table L[-]. For the log-table this implies that the largest required en-
try in the log-table is 2 - 255 + 1 = 511. Suppose that we form a table with entries
256,257,---,511. We can now find all logarithms of ¢ = 1,2,---,255 in this table by
noting that log g = log(g - 2*) — h for integer h such that 256 < g-2" < 511. This integer
h can always be found. In other words, a table with 2* entries suffices.

What about the accuracy m of the table elements, i.e. the number of fractional bits in
which the logarithms are specified? To see how large m should be, consider the derivative
of n*(zt~|2%_p) with respect to p := PS(X; = 0]z%%,2%_p), i.e.

dlog 15 1,1 1
. ___+_)

dp In2'p 1-p
1 1

In2p(1 -p)

4

> =5.7708. 73
> (73)

The minimum is achieved for p = 1 — p = 1/2. We are now interested in the smallest

possible change in n*(z%"'|z}_p) caused by a change in a or b. The smallest change in

p is roughly Wﬁ ~ 271 = L. Therefore the smallest change in 7°(zi™"|z9_p) is

$2°70 — 222 — 0.0113. To be able to represent this smallest change in n*(zf™}|z2_,) we

need at least m = k — 1 = 7 bits. Therefore we form the log-table L[] as follows:

L[j]) == [2™ - log(j) + 1/2] for j = 2%, 2k +1,-.. 2k — 1, (74)

with m = k — 1. Note that the since k- 2™ < L[] < (k+ 1) - 2™ we need only m + 1 bits
to store each table element.

4.3. The Jacobian table J[-]. How about the table containing the Jacobian loga-
rithm? It is obvious that the accuracy of the table elements should be m again, i.e. table
elements are fixed point numbers having a fractional part of m bits wide. Moreover the en-
tries are also logarithms, i.e. fixed point numbers with an m bit fractional part. Therefore
we define the Jacobian table as

J[i] .= [2™ -log(1 + 2/*") +1/2] fori = --- ,~2,~1,0. (75)
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Values of y = ¢- 2™ such that log(1+2¥) < 2™ will lead to table elements equal to zero
and are not informative. Therefore for

y <log(2®" = 1)~ log(27™ ! 1In2) =logln2 —m — 1 = —m — 1.5288, (76)

we need no table elements. In the standard case m = k — 1 = 7, hence we need elements
only for —k — 0.5288 < y < 0 or, say, for -9 <y < 0. Hence : = —9-128,---,-2,—1,0.
The number of entries in the standard setting is roughly (k + 1)2¢~! = 1152. Note that
since 0 < J[-] < 2™ we need only m + 1 bits to store the table elements.

4.4. The range of n°(-). Since 0 < a,(-) < 2¥—1and 0 < b,(-) < 2% — 1 we can write
for the quotient

2k —1+41/2

1/2 s
< n (l‘i 1ICI:(I)-—D) S 1/2 )

Fo1r1E s ()

or roughly 2%~ < p*(zi29_p) < 2% or —k—1 < logn*(zi!29_p) < k+1. Therefore,
apart from the m fractional bits, [log 2(k + 1)] bits are needed for the integer part of °(-).
In the standard setting (k = 8) this leads to 5 bits for the integer part.

4.5. Bounding the range of °(-). Since 3°(-) has to be stored in node s we must
bound its range. To do this we can argue as follows. We want the [ to have a range that is
large enough to switch to either the (external) quotient P%*(X, = 0|zi™*,z3_p)/P%(X; =
1)zi71,29_p) or the (internal) quotient P:(X, = 0|zi™,29_p)/P3(X; = 1|21, 29_p), no
matter how big the difference between these quotients is. Suppose e.g. that the exter-
nal quotient is small and the internal one is large. Then log PS(X; = O|z{™!,29_p) <
log P%(X; = 0]zt™1,29_,) + (k + 1) by (77). Note that by the definition of the Jacobian
table, the sum of two terms that differ more in log than m 4 2 is completely determined by
the larger term. The smaller term just does not matter. Keeping this in mind it is useless
to make log B smaller than —m — k — 3. Similarly we can argue that it is useless to make
log (3 larger than m + k + 3. The range of 5°(-) would then become

2—m—k—3 _<_ ﬁs(xtl—1|x?—0) S 2m+k+3, (78)

or —2(k + 1) < log B*(z%~|2%_p) < 2(k + 1) if we substitute m = k — 1. For k = 8 this
bound yields 18 in absolute value. Therefore we need, besides the m = 7 fractional bits,
[log 4(k +1)] bits more for the integer part of 8°(-). In the standard setting (k = 8) 6 bits
are required for the integer part of 3.

To achieve the real CTW behaviour 8, should not be bounded at all. However bounding
B decreases the storage space needed for B and also improves the performance quite often
because of non-stationary parts in the data. In a system with bounded S it takes less time
to forget the past. A similar effect results from scaling the counts a; and bs.

4.6. Storage space in each node. The total amount of storage that is needed for
one record is now two times 8 bit for the counts plus 7 fractional and 6 integer part bits for
3, which brings us to 29 bits. This is a lot less than what was used in CTW-1 (32 bytes).
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5. Zero-Redundancy Estimator

The codelength for a sequence containing T zeros or ones, if we use the Krichevsky-
Trofimov estimator (see (10) is roughly equal to 7logT + 1 bit. This is quite large if
we realize that such a sequence does not contain any information. Therefore instead of
the Krichevsky-Trofimov estimator, we can use the so-called “zero-redundancy” estimator.
This estimator is defined as

%Pe(a, b) fora > 0,b> 0,

1

zr AN 4“+ "Pe(a, 0) for a > 0,b=0,

P(ab) = %Pe(O, b) +; fora=0,b>0, and (79)
1 fora=5b=0,

where P,(a,b) is as defined in (8), i.e. the Krichevsky-Trofimov estimator.
In the case where the source sequence contains only zeroes (a = T and b = 0) the
(parameter-) redundancy can be upper bounded as follows :

(1-0)"

1 N 7
8 Pr(a,b)

1
< lOg T~ 2’ (80)
1
no matter how large T is. So we loose 2 bits and that’s it. The same holds for a sequence
that contains only ones.
When the sequence contains both zeroes and ones we get an increased redundancy
(1 - 6)°6° (1-6)9" 1

<1 < LiogT 42, 81
Pr(a,b) = B IRy ~2 80 T (81)

log

so we loose one bit relative to the standard Krichevsky-Trofimov estimator (see 11).

Since in CTW-2 we need instead of block-probabilities conditional probabilities, we
consider e.g. the conditional zero-redundancy estimated probability of a one given a > 1
zeros. Using (79) this probability can be rewritten as

1Pe(a,1)

3P.(a,0) + i
1
%Pe(aa 0)a_.§._1
3P.(a,0) + i
P.(a,0)

= 2(a+1)P.(a,0) + (a+1) (82)

Pr(1)0%) =

Similarly

(2a +1)P.(a,0) + (a +1)

P:r(()‘()a) = 2((1 + l)Pe(a, 0) + (a + 1)'

(83)

1

If we furthermore note that P.(a + 1,0) = P.(a, 0)%%, these two conditional probabilities

can easily be calculated fora = 1,2,---. For a = 0 we simply have that P?"(0) = P?"(1) =
1

5
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Since a (and b) is bounded by 2¥—1 we can tabulate the logarithm of these probabilities.
The accuracy is again m binary digits. More precisely

M_[a] = [2™ log P7"(1]0%) +1/2]

Myla] = |2™-log P"(00%) +1/2| fora=1,2,---,2F -1,
M_[0o] = —-2™ and

If we now encounter counts for which either a or b is zero, we use these two tables to find
the log of the smallest and largest conditional zero-redundancy estimated probability. If
both a and b are positive, we use the log-table L[] to form the log of both probabilities as
described in (72).

There is now one thing left to discuss about this concept. Note that in our argument
to find the necessary range of § we assumed that —(k + 1) < logn < (k + 1). Note that
this does not hold anymore for the zero redundancy estimator. Using the lower bound for
the Krickevsky-Trofimov estimator (10), we can show that

+ _ (2a+1)P(a,0)+ (a+1)
o= P.(a,0)
a+1
P.(a,0)
(2a+1)+2(a+1)va
2k+1 + 23k/2+1. (85)

(2a+ 1)+

<
<
Note that the difference with (77) is not very large and can be neglected.

6. Non-Binary Contexts

Although so far we have assumed that context symbols are binary, we should realize
that in our software we are interested only in 256-ary context symbols®. This implies that
the basic weighting formula (12) should be modified as follows:

ps & 3Pe(as,b) + 5 []oy o Ps* for 0 < 1(s) < D, (6)
w P.(as, bs) for I(s) = D.
Here the context alphabet is assumed to be {1,2,---,C}. This new definition has minor

consequences for the approach that we pursue in this chapter. It turns out that the only
thing that changes is the definition of 3. For the non-binary case the definition of 3 is

P:(zi2)_p)

. 87
oo Po e ) &7)

_ A
5S(x§ 1|115(1)—D) =

3The symbols that are to be coded are binary however. This setup is a result of the “weighting only
at byte-boundaries”-idea and the “binary-decomposition”. Both concepts are applied already in CTW-1.
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The outgoing n° follows from the incoming n® as described by (67) so nothing actually
changes here. We also update § just like before, i.e.

s/ t— P3(Xi=0lz"12%_ ) .
ﬁ (xtl 1|"L'(1)—D) Pgs(X,= 0|:z:1t 1 10 D) lf Tt =D)

=1
s(pt=1[,.0 | Po(Xe=1izy :’-‘1 p) _
'8 (1'1 le—D) P&’(Xt=1|1tl-1,1‘?_D) if Ty = 11

B a2 _p) = (88)

if cs is a suffix of the context z{™%,z9_p,.

7. Missing Contexts and Counts

In CTW-1 the eight context trees were stored as a dynamical structure, with records
containing pointers to other records. When all storage space was reserved, we could not
allocate any more records. In CTW-2 we use hashing to allocate the records that corre-
spond to the treenodes. The more storage space is used, the higher the probability of not
being able to allocate a record becomes. These two examples show that it is very well
possible that we encounter the case where cs is a suffix of the context z{™*, 2%_,, and where
there is no node cs (or this node can not be created) although node s exists. This leads
to a problem. We see that it is very easy in this case to maintain the block estimator
P.(a,, bs) although it is impossible to maintain the product of the weighted probabilities
of the descendants of s which is [],_, - Ps’ since some of these descendant nodes do not
exist. Note that both probabilities are part of 3°(-) and are needed therefore.

In CTW-1 the counts that are missing are treated in a very simple way. For each
missing count we multiply the P,-product by 1/2. Here in CTW-2 we suggest another
approach. Suppose that cs is a missing context. When this context occurs, P, is updated,
i,e. multiplied by some conditional probability, say z. To make life easy we also multiply
the P,-product by this number z. The first effect of this operation is that the outgoing n (4
from node s is simply the internal quotient P$(X, = 0|z, 29_ D)/P’(Xt = 1)zt 29_p)
when cs occurs. The second effect is that §°(-) does not change since it is both multiplied
with and divided by z. This solution is very simple to implement and it is very likely that
z is a better estimate of the conditional probability of the missing symbol than 1/2.

8. Appendix: A Scaled Dirichlet Estimator

(This section is almost identical to a part of [51].)

For memoryless sources with unknown parameter 6 (the probability of generating a
one), it is reasonable to assign the block probability P.(z;:--zr) = Pe(a,b) to a sequence
Ty -+ -2 containing a zeros and b ones where

13, (a-})-1.2.....06-1

|Il>

P.(a,b) for a > 0 and b > 0, etc. (89)
This distribution, which allows sequential updating and therefore arithmetic coding, was
suggested by Krichevsky and Trofimov [15] and is referred to as Dirichlet estimator. It
guarantees uniform convergence of the parameter redundancy, i.e. for any sequence z; - - - T
with actual probability P,(z¥) = (1 - 0)“0b it can be shown that

P, (:cT)

log P(T)

logT +1 for all § € [0,1]. (90)
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We assume that the base of the log is 2. The bound (90) follows from the lemma below
(for a proof see appendix 10 in chapter 3 taken from [57]).

LEMMA 8.1. Fora+b2>1

1 a o, b o \/5 1 a b .,
. < P(a,b) < 4/=- @ :
2 \/a_-}—_b(a-i-b) (a+b) S Plab) < T \/m(a-i-b) (a-i—b)
8.1. First rescaling operation. Next we assume that we count the zeros and ones
in registers that are k bit wide. Suppose that we reach the point where a := 2* (while
b = b* < 2F). Since the registers can not contain this value of a, both a and b are divided
by 2, i.e. a:= 21 and b:= [b*/2], where [g] (lg]) denotes the smallest (largest) integer
not smaller (larger) than g. Now we continue with these values of the counts as before and
the resulting block estimator P,.(a,b) can be decomposed as
P.(2%,b*)P.(a — 2¥71,b —
Fo(26-1, 16*/2])
We are interested now in the scaling redundancy, i.e. the increase in codewordlength
resulting from this rescaling operation. Therefore we bound P.(a,b)/Pe.(a,b) from below.

First assume that 0* is even, then [6*/2] = [b*/2] = b*/2. From (92) and lemma 8.1
we obtain

Piab) | 7 (214 b/ +b)
P = 8 \(@&F+t)a-2-1+0b—b/2)

9k b* _9k-1 _gk-1 __kb_L b—b*/2
2’°+b*) (2"+b*) (7= 1+b—b‘/2)a (z *~14b—6"/2 )eo/

(91)

P.(a,b) = L /2J), for a > 25,6 > b*. (92)

7T (93)
(2k-21k+1:*‘/2)2’c 1(2%-13*/2 )b /2(a+b)a a—-br_b)b
The squareroot-factor can be lowerbounded by 1//2. Next observe that
(2 2R~ )2k (2’“116' )b‘ ( 2k-1 )2"‘1 ( b*/2 )b‘/2 (94)
k- * " * - * )
(2k 21+;‘/2)2k 1(2k bl.,/.g*/z)b /2 2k~1 1} /2 k=1 4 b /2
From the log-sum inequality (see Csiszdr and Korner [5]) we obtain that
k-1 ok—1 a— 2¢1 k=1 a
a— > a’ d
(2’°—1+b*/2) (a—2’“"1+b—b*/2) - (a+b) an
b*/2 b'/? b"‘ b*/2 b—b'/? b b
. 95
(2’°‘1+b*/2) (a—2’°‘1+b—b*/2) - (a+b) (95)
From all this we conclude that for even values of b*
P.(a,b) > 8—35 . P.(a,b). (96)
For odd values of b* the 31tuat1on is slightly more complicated. First observe that
[6*/2] = £ and |b*/2] = £ and rewrite (92) as
« b+1
Pe(aa b) _ Pe(2k7 b* + 1)Pe(a - 2k_1’ b— 92;1) . a++l;+1 (97)

P.(a,b) P,(2k-1,E41)P,(g,b + 1) i blfi _
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Again we expand the factors P.(:, ) using lemma 8.1. The factor 7/8 does not change, and
the squareroot-factor can again be lowerbounded by 1/ V2. As before observe that

k b* * _ *
(_E+tr-+1)2 (2'°+1j;1+1)b i 2k-1 o

— 2k-1 2 L= 3%
oy (e By ER) ) e 9
2k—1+ ‘2 2 —l+ '2
The log-sum inequality yields
k-1 k=1 a — 2k-1 a—2k=1 a a
For the remaining terms we find that
- p+1
( é—ztl' )L;—l( )b—u ﬁl}ﬁ-Ll >
k-1 4 b +1 k-1 b*—l Tl =
S —ET b 2 +1
( L;l— )!’%( b— b‘z—l )b—b*T‘l a-?—t—}-l >
e E) T o) ey S
b*41 p— b=l . b1
S E— 2 R LN
(2k 1+b*+1) ( — 2614 p— b‘—l) a+b+1 =
( - )5 -5 -5t b+1
2k—1 4 041 a—2F—1+b—¥-L a+b+1 =
b b+1 b+1 1, b+1
(a+b+1)ba+b+1 - (b+1)b(a+b+ I)H1 2 ea+b+ 1)b+1'(100)
Combining all this we obtain for odd values of b* that
Ba,b) > —— - P.(a,b). (101)

8ex/§

Together with (96) this implies that (101) holds for all b*.

8.2. More rescaling. If, after the first rescaling operation, again one of the counts
reaches 2%, a second rescaling operation is necessary, etc. After r rescalings, this results in
a coding distribution PJ(-,-) which can be expressed recursively as

P.(a",b")P7Y(a — aT,,b— b))
P.(a" —al,, b — b:n)
where P2(-,-) = P.(,-). Here a” and " are the number of zeros and ones in the counters
just before the r’th rescaling, and a7, and b7, the number of missing zero- and one-counts
after the r'th rescaling. E.g. if we rescale for the first time to prevent the zero-count from
overflowing, then a' = 2% and b = b*, and a!, = 257! and b}, = |b*/2] (compare with (92)
and observe that b* = [b* / 2] +|b*/2]). Note that P7(a,b) actually depends not only on a

and b but also on al, a? ,a” and b, b%,--- ,b". By induction we can now prove that

. P.(a,b). (103)

Pr(a,b) = fora>a’,b> ", (102)

Pl(a,

\/_
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8.3. Memoryless case performance. The question now arises how many rescalings
there occur in a sequence of length 7". Since the number of input symbols between subse-
quent rescaling operations can not be smaller than 25~1, the total number of rescalings is
upperbounded by T/2k-!.

If we use P (-, ) as coding distribution, i.e. P.(---) = Pr(-,) with r increasing properly,
then for the scaling redundancy we obtain

o P.(z¥) < log(Se\/i T 8ev/2

g BGT) S r ) < S -log(T—), for any z7T. (104)

The following equation shows that the total redundancy (forgetting coding redundancy for
a moment) is the sum of the parameter redundancy and the scaling redundancy :

Pa(x{) _ Pa(x{) Pe(x{)
P(aT) ~ 8 B T BTy

8.4. Context tree weighting performance. Now consider a tree model (see [48])
with suffix set S. The contents of the counters corresponding to the leaves in this model
add up to T, i.e. the sequence length. Again the total number of rescalings, in all the
counters corresponding to leaves of S, is upperbounded by T/2F~1. Therefore we conclude
that also for any tree model the total scaling redundancy is upperbounded by

HsESPe(asybs)< T -Iog(8e\/§

PS(zT)y  — 2kt m
where P3(-) is the coding distribution composed out of rescaling distributions, one for each
leaf of S. Note that this amounts to 3.291 bits per 2! symbols. This linear contribution
can be made smaller by increasing the register-size k.

All this holds also for the context tree weighting algorithm, which was introduced at the
1993 ISIT by Willems, Shtarkov and Tjalkens [56]. If we use rescaling Dirichlet estimators
there, we loose, no matter what the model is, not more than 3.291 bits per 2%~ symbols.

8.5. Discussion. We should be aware of the fact that this bound is not tight for
a number of reasons. First we should realize that for large models the actual number
of rescalings can be much smaller than T//2¥~! since there are many counters that can
accommodate all the counts adding up to T. Secondly we should realize that the factor 8 /=
is present only since we use lemma, 8.1, which holds for the whole range a +b > 1, whereas
in our approach there are certain interesting restrictions on and relations between the
parameters in the factors P.(, -) in (92) that are not used yet. Using this extra information
could lead to a vanishing contribution to the scaling redundancy of the factor which is now
8/m. The squareroot factor, which is lowerbounded by 1/+/2, seems unavoidable. The same
holds for the 1/e-factor for odd values of b*, however note that our bound is pessimistic
in the sense that is also assumes the same loss for even values of b*, which appear roughly
half of the time. Combining all this, it is fair to assume that a rescaling operation actually
costs log v/2e = 1.221 bits.

log log (105)

log ), (106)



CHAPTER 6

Arithmetic Encoding and Decoding

1. Arithmetic Encoder and Decoder Implementation in CTW-1

We will start this chapter by giving a short description of the encoder and decoder
implementation in the CTW-1 project. These coders are based on the Rubin[30] imple-
mentation of the Elias algorithm(see appendix 9 of chapter 3).

1.1. The Rubin Encoder. The idea is that an interval I(z{™') is represented by
the integers b(zi™!) and p(zi™'), where b(-) denotes the last digits of the interval’s lower
boundary point and p(-) its size. Both b(-) and p(-) are stored in buffers containing f
binary digits. More significant binary digits that determine the lower boundary point are
assumed to be transmitted already. The encoder task can be subdivided in three different
subtasks. We will shortly describe them here. After that we will give the program.

1.1.1. Initialisation of the encoding process. It will be clear that during the initialisation
we have to achieve that b(¢) := 0 and p(¢) := 2/. Here ¢ is the empty sequence.

1.1.2. Scaling and subdividing. Processing source symbol x, starts with scaling b(z%™!)
and p(zi~!). If it turns out that certain digits of b(z%™') will not change anymore they
will be shifted out (and, they will be stored or transmitted). After scaling, the interval
is such that 0 < b(z{™!) < 2771 < b(zi™?) + p(zf™) < 2f. Now it can be subdivided and
according to the value of the source symbol z; one of the subintervals will be taken for
further processing.

1.1.3. Termination of the encoding process. After all symbols x;, s, -+ , 7 are processed,
we have to transmit or store b(z7) as last part of the codeword.

1.1.4. The encoding program. We now give the encoding program in ‘pseudo-Pascal’.
Note that we do not work with p(z}) but with p(z!) — 1 instead.

b:=0; pmini1=2"f-1; {initialisation}
FOR t:=1 TO T {encoding source symbols}
DO BEGIN REPEAT IF b+pmini<2-~(f-1) {scaling = transmitting}

THEN BEGIN Push(0);b:=b*2;pminl:=pmini*2+1; END;
IF b>=2"(f-1)
THEN BEGIN Push(1);b:=(b-2"(£f-1))*2;pminl:=pminl*2+1; END;
UNTIL ( b<2"(f-1) ) AND ( 2~ (f-1)<=b+pminl );
pO:=(pmini*A_t+B_t) DIV (A_t+B_t); {subdividing}
IF x_t=0 THEN pminl:=p0-1
ELSE BEGIN b:=b+p0;pminl:=pmini-p0O; END;
END;
FOR i:=1 TO £ {terminating}
DO IF b<2~(f-1) THEN BEGIN Push(0);b:=b*2; END

65
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ELSE BEGIN Push(1);b:=(b-2"(£f-1))*2; END.

We assume that A _t and B_t have the same quotlent as the conditional probabilities
P.(X,=0|X*"! = :cl Y and P.(X, = 1]X"1 = x ~1) respectively (or the block probabili-
ties P,(X*! = z71 X, = 0) and P.(X* ! = 2t~ Xt =31). The codeword digits are being
transmitted by the function-calls Push(0) or Push(l).

1.2. The Rubin Decoder. Without comments we give the decoder program.

1.2.1. The decoding program. This program is listed in ‘pseudo-Pascal’. Note that c is
the register containing the relevant code digits. These binary digits are received by the
Pull function. !

c:=0;b:=0;pmin1=2"f-1; {initialisation}
FOR i:=1 TOD f DO c:=2%c+Pull;

FOR t:=1 TO T {decoding source symbols}
DO BEGIN REPEAT IF b+pmini<2~(f-1) {scaling = receiving}

THEN BEGIN c:=c*2+Pull;
b:=b*2;pminl:=pminl*2+1; END;
IF b>=2"(f-1)
THEN BEGIN c:=(c-2"(f-1))*2+Pull;
b:=(b-2"(£f-1))*2;pminl:=pmini*2+1; END;
UNTIL ( b<2°(f-1) ) AND ( 2" (f-1)<=b+pminl );
pO:=(pmini*A_t+B_t) DIV (A_t+B_t); {comparing & subdividing}
IF c<b+p0O THEN BEGIN x_t:=0;pminl:=pO-1; END
ELSE BEGIN x_t:=1;b:=b+p0;pminl:=pmini-p0O; END;
END.

1.3. Comments. It follows from both programs that the Rubin algorithm requires
very little storage (only two or three f-bit registers are needed). On the other hand it is
necessary to multiply and divide for processing a source symbol. This is a disadvantage.
Furthermore a disadvantage is that the interval size p(-) can become very small (even
2 is possible). This makes it difficult to partition this interval into subintervals of the
right relative size. The implementation that we will discuss next, does not have the the
mentioned disadvantages. However we need more storage now.

2. Rissanen-Langdon Arithmetic Coding Approach

2.1. Introduction. In this section the special structure that is formed by a Context-
Tree Weighting modeler combined with an arithmetic encoder or decoder, is investigated.
The interaction between the CTW modeler and the Rubin coder as in CTW1 can be
considered small compared to that of the CTW modeler and the coders that we will develop
next.

Suppose that the CTW modeler produces block probabilities as described in [57] (see
also chapter 3). These block probabilities are delivered to the arithmetic encoder and
decoder. This has the advantage that the arithmetic encoder and decoder do not have
to multiply to subdivide the source interval in a O-interval and a l-interval. This would



2. RISSANEN-LANGDON ARITHMETIC CODING APPROACH 67

delay register accumulator
<—{1]oJo]1]o]1 1[1]1]o]1]o]1]1]0
[ I R
1{1|0(0

O-interval register

FIGURE 6.1. Arithmetic encoding and decoding structure.

have been necessary if the modeler would produce conditional probabilities as usual. The
disadvantage of this method is however that we have to be very careful when we define the
finite accuracy operations done in the context tree (see Willems[54]).

We will use the notation of [57] and chapter 3 to study the arithmetic encoder and
decoder.

2.2. Floating point numbers. The context tree weighting method supplies block
probabilities P, to the arithmetic coder or decoder. These coding probabilities are assumed
to satisfy!

P(¢) = 1,
Pzt > Pz, X, =0)+ Pzt X, = 1),
forall 2}, and t = 1,---,T, and
P.(z]) > 0, for all 2T, (107)

In addition to this, the coding probabilities P.(z!),t = 0,T are assumed to be represented
by f-bit floating point numbers. An f-bit floating point number g can be written asy

g =m(g)- 29 with 27! < m(g) < 27, (108)

where the mantissa m(g) and the exponent e(g) are integer-valued. Note that storing
a floating point number requires f binary positions for the mantissa? and an additional
number of positions for the exponent.

2.3. Encoder structure. Consider an arithmetic encoding and decoding structure as
in Figure 6.1. With this structure we intend to compute B(zT), i.e. the lower boundary
point of the interval I(zT) that corresponds to the sequence z. Note (see e.g. (36)) that
this can be done recursively:

> Pah)

B(z1)
<t

= > PEM+ D Pl E)

Bl <at! Fe<at

= B(zi)+ ) Pai™ &), (109)

Ey <t

il

'Here, in contrast with [57], we do not require these ‘probabilities’ to sum up to 1, and since all source
sequences can occur we want all probabilities to be positive.
2Also f — 1 positions would be enough.
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where we assume that B(¢) = 0. Therefore we are adding, only if X; = 1, the term
P,(z!™!, X; = 0), which is placed in the O-interval register, to B(z%™'), which is stored in
the accumulator.

When we are adding terms to an accumulator, carries resulting from these operations
can work their way up to the most-significant positions. Therefore in principle we have
to keep the complete B(xi’i) in this accumulator. To avoid this, we compute instead of
B(zT) its ‘approximation’ B(zT). We do this by using a delay register as suggested by
Rissanen and Langdon (see [29]). The structure in Figure 6.1 contains a number of binary
digits of B(zt™*) before the source symbol z; is about to be processed.

If P(zt!) = m(zt™)- 227" the most significant position of the accumulator contains
digit 1 — f — e(zi™) + Q(zi!) of B(z!™!). The delay register contains more-significant
digits of B(z%™!), at least one of them is assumed to be zero. The shift number Q(z%™1)
depends on the previously processed source symbols zi™'. This shift number, which is
initially 0, will be incremented occasionally as we will soon see.

In the O-interval register (which is f positions wide), we now store the mantissa of
Pzt X, = 0) = m(at™",0) - 22179, Depending on the actual value z, the O-interval
register is added to the accumulator, i.e. we compute

B(z) = B(zi™) + 27970 3 Pt &), (110)

T1<Tt

If P,(z{™!, X, = 0) is added, the O-interval register is aligned with the accumulator. In the
figure it is assumed that the e(z}™!,0) = e(z!™!) — 1. Note that P.(z{™!,0) = m(z{™,0) -
2¢(=17.0) determines e(z!™!,0).

Because of the restrictions on the coding distribution and the fact that the shift number
will never decrease, the sum of all that can be added to the accumulator from now on, can
not be more than 2~ P,(z171) < 2~ +e(ai™!) = 2f+e(=")=2E1"") The content of
the accumulator corresponds to a value which is also less than 2/ +e(217)=91"") | Therefore
not more than one carry (i.e. 2/+e@™)-2C1") can flow out of the accumulator into the
delay register. Since it was assumed that the delay register contains at least one zero, this
carry can always be accommodated by the delay register such that the delay register does
not have to produce a carry itself.

After having added P.(z%™!, X; = 0) to the accumulator (or not), the contents of the ac-
cumulator and delay register are shifted to the left, if neccessary, until the most-significant
position of the accumulator contains digit 1 — f —e(z™?, z;) + Q(z!™!) of B(z{™, z¢). Now
the delay register is checked. If this register does not contain a zero, we increment the shift
number 2 and shift the contents of the accumulator and delay register over one position
to the left. We keep doing this until the delay register contains at least one zero. Since we
are shifting in zeros at the least-significant end of the accumulator, this will always happen
finally. The value that Q has reached now, is denoted by Q(z%™',z;). Now the next source
symbol can be processed. _

This is how the encoder computes B(zT). In practise this B(zT) will serve as the
codeword. This means that digits (corresponding to exponents —1,-2,--- etc.) that
leave the delay register, can already be transmitted to the decoder during encoding. After
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having processed the last symbol zr no left shifting is necessary® We stop with digit
1—f—e(zF1) + Q(zT71) in the most-significant position of the accumulator. Now these
contents of the delay register and accumulator form the last part of the codeword.

2.4. Decoder structure. How does the decoder operate? Just like the encoder, be-
fore decoding symbol x;, the accumulator of the decoder contains digit 1 — f — e(z{™!) +
Q(zt?) of B(z%™!) on the most-significant position (and the delay register contains at least
one zero). Again in the O-interval register, we store the mantissa of P.(z{™}, X; = 0) =

m(zt™t,0)-2¢#1 ), Now the threshold D(z{™1) is computed by adding this mantissa (after
appropriate aligning) to the accumulator, i.e.

D(@tYy = B(zt™Y) + 279 P (2, X, = 0). (111)
Note that a carry can result from this addition. No left-shifting is done at this moment
however! Unique decodability of source symbol z; is now guaranteed if for the thresh-
old D(zi™!) = B(z{™!, X; = 1) we can show that B(z{™, X, = 0,21,) < D(z™!) <
B(zi™', X, = 1,z%,;) for all 27, € {0,1}7*. The second inequality is obviously true. The
first one holds since

B(ai™, Xi = 0,2y)
S B(.Ti—l,XtXH.l . 'XT =01--- 1)

= B+ Z 2—9(1,‘;—1’XtXt+1.-.Xf—1=01--.1)Pc(x1—1,XtXt+1 o X1 X, =01---10)

T=t+1,T
< B(xi—l) e Z Pzt X, Xp41 - X1 X, = 01+ -10)
T=t+1,T
< Bl + 27PN X, = 0)
= D(:L‘i—l) (112)

First note that the last inequality in (112) is strict since all coding probabilities, and hence
also P,(zt™Y, X; X4 -+ X7 = 01 ---1), are assumed to be positive?. Furthermore note that
the threshold D(z{™!) is finite, i.e. does not have less-significant non-zero digits outside
the accumulator. Therefore and since the codeword falls within the correct range, i.e.’
B(zt™) < B(zt ™, 2T) < B(zt™Y) +27%= ) P(2871) for any 2T € {0,1}7~*+1 it is possible
to compare the codeword to this threshold and to check whether it is greater than or equal
to or alternatively smaller than the threshold, within the delay register and accumulator
only.

2.5. Concluding remarks. The carry blocking procedure that we have described
here occurs in Tjalkens’ Ph.D. thesis [42]). It will be clear that the effect of these shifting
operations is that the codeword-length increases. It is not so easy to find an upperbound
on the number of shifts that can occur, however assuming that B(z%) before checking the
delay register consists of uniformly distributed binary digits, yields a probability of 274

3 An other way of looking at this is that procesing a symbol starts with scaling and checking the delay
register. After that the interval is subdivided.

4 P(287, X, X¢41--- X7 = 01---1) is not positive, replace 01---1 in the argument by the largest
sequence xg;l in lexicographical sense, such that P, (:ci“l, X: =0, xtT_,,l) > 0.

S Again we assume here that Po(z}™!, X, X;py--- X7 =11---1) > 0.
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that a first shift is necessary if the delay register has size C. Each additional shift is now
necessary with probability 1/2, yielding 2 shifts in total on the average, and an expected
number of 2!~ shifts per processed source symbol. Taking d equal to 16 or more then gives
a negligable redundancy increase. These considerations are confirmed by experiments (see
again [42]).

To the delay register we must add a carry occasionally. The accumulator is more
complex than the delay register since it must be possible to add a floating point number to
it. The size of the accumulator should in principle be quite large if the coding probability
P.(z%7!, X; = 0) of the O-extension is considerably smaller than P,(2%~!). However it always
is possible (see [16]) to transform the symbols zero and one into most-probable symbol (o )
and least-probable symbol (a_), and define the ordering o, < a_ for arithmetic coding.
This has the effect that the interval register now contains the a.-probability, which is
not less than half the previous interval size. Consequently if we align the interval register
to the accumulator the most-significant position of the interval register must match with
the most-significant position of the accumulator or with the position to the right of this
most-significant position. Therefore the size of the accumulator need not be more than
f+1 positions. An additional advantage of this approach is that the probability of having
to add (and this adding increases the processing time), is minimized.

Now that we know how to encode and decode with finite accuracy if the CTW-modeler
produces block probabilities P.(z{™',z.) that satisfy (107), we will change this setup a
little bit in the next subsection. We will assume there that the modeler produces instead
of block probabilities, conditional probabilities P.(x,|z}™?).

3. From Block to Conditional Probabilities

Suppose we have a coding situation as described in the previous section where the
modeler supplies the encoder and decoder with block probabilities. More exactly, if the
encoder and decoder have already processed z:~' they know P.(z%™') and for processing
the next symbol x, the block probabilities P.(z{™!, X; = 0) and P.(z{™!, X; = 1) are made
available to the encoder and the decoder.

If the encoder and decoder would get some information from the modeler to compute
Pz, X; = 0) and P.(z%7!, X, = 1) themselves out of P,(z{™!), the situation would be as
before. What information should the modeler give to the coders? The answer to this ques-
tion is simple. The ratios P.(z™!, X, = 0)/P.(zf™!) and P.(zi!, X; = 1)/P.(z%") suffice
to do this. These ratios are conditional probabilities if P.(z}™}, X; = 0) + Pe(z{"}, X, =
1) = P(2t™1).

Now suppose that after having processed z{~! the current interval has size S(z{™!) =
2-%=17) . P,(zt71). With the “conditional probability” P.(X; = 0|zt™!) the encoder and
decoder can compute the size of the O-subinterval S(z!™!, X, = 0). Note that some accuracy
can be lost here and S(z¢™!, X; = 0) can be different from what the modeler had in mind.
Instead of using the “conditional probability” P.(X, = 1|zt™!) to calculate S(z{™', X, =
0), the encoder and decoder can set S(zi™!, X; = 1) equal to the highest possible value
S(zt!) — S(xt™, X, = 0). This assignment gives the lowest possible redundancy (given
S(zt™!, X, = 0) of course).

Now suppose that 0 is the, or a, symbol with highest probability (if not, we have
to relabel) then S(zt™!, X, = 0) > S(z{"!, X, = 1). Remember that both S(z}™') and
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\A[’U] - 2m
Afv0] - 20
" \A[’Ul] . 2m1
U
v v0 vl

FIGURE 6.2. Splitting up Afv] - 2™ in A[v0] - 2™ and Afvl] - 2°%.

S(zt!, X, = 0) are f-bit floating point numbers, i.e. S(zi™!) = s-2™ and S(zi™!, X; =
0) = s0-2™°, where both s and s0 are integers within the range {2/7%,2/"1+1,... |2/ -1}
Now

Sttt X, =1) = s-2m—50-2™
= (s-2™7™ —50)-2™
< s0-2™, (113)

where s - 2™~™0 — 50 is integer also since m > m0. If S(z}™!, X, = 1) = s1-2™! with
s-2m ™0 _ 50 and ml = m0, and we multiply s1 by 2 and decrement ml as long as
sl < 2f-1, the interval S(z%™', X; = 1) can finally be represented as an f-bit floating
number too.

We can assume that the modeler in principle is able to deliver block probabilities
that satisfy (107) as described in Willems [54]. Then this modeler has a guaranteed
performance. However there can be some loss of accuracy by forming the conditional
probability P.(X; = 0|z¢™"). This loss could be bounded if the truncation operation needed
to form the conditional probability is well specified and not to coarse. In practise this is
not very useful however. Moreover it is not necessary to design the modeler such that it
could deliver block probabilities that satisfy (107). We are not interested in a guaranteed
performance if it will increase the complexity a lot.

In the CTW-2 project we only want the modeler to generate conditional probabilities
P.(X; = 0]z%"!) that give good results in our simulations. Only in this way we are able to
achieve a reasonable complexity of our algorithm.

4. Exponential Tables and Stepsizes

Since multiplying is a more complex operation than adding, it is advantageous to use
exp- and log-tables to determine the size S(z{™}, X; = 0) from S(z}™") and the conditional
probability P.(X; = 0|z{™"). This idea can be found already in Rissanen[24] in a LIFO
algorithm. It and was investigated in more detail (and for a FIFO method) in Tjalkens
and Willems[44] and in Tjalkens’ Ph.D. thesis[42].
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4.1. The exp-table A[]. What we mean is the following. Suppose we have an exp-
table

Ald] = 2027 1 1/2) fori =1,2,---, 2, (114)

where |a| is the largest integer not larger than a. First of all we want the numbers A[s]
for i = 1,2/ to be f-bit floating point numbers since they will be used to represent interval
sizes S(z%) for t =0,T. E.g. (see Figure 6.2)

S(zt™') = Afv] - 2™ for some v € {1,2,---,2/} and integer m, (115)
so S(z'™') is represented by the pair (v,m). The table values are not smaller than 2.
They are all f-bit floating numbers if the largest table value A[1] < 2/. Note that

§ . o-1/2f foqpo L
9f .9 < 27-(1- )

= 2/ -1)2. (116)

The (strict) inequality follows from the fact that 27 < 1 —¢/2 for 0 < t < 1. Therefore
we get the strict inequality

All] = |2 - 27V 11y2) < 2f. (117)

Now the interval size S(zi™*, X; = 0) is determined as follows. Suppose that instead of

the conditional probability P.(X; = 0]z%™!) the coders receive a stepsize vp which is defined
as

v = (27 - log +1/2]. (118)

1
Pe(Xe = Dlxinl)
Since 0 is the(a) most probable symbol, which is always the case after relabeling, we may
assume that vy < 27. This stepsize is now used to find S(z{™', X; = 0) by adding this vp
to v. More precisely

Alv +v] - 2™ if v+ vy < 2,

119
Alv 4wy —27]-2m1 ifu+yy > 27 (119)

S(.’L'tl_l,Xt = 0) = {
Note that always v + vo < 2-2f and thus v + vy — 2/ < 2/. So also S(z%™*, X; = 0) can be
represented by a pair (v0,m0) as in (119). See again Figure 6.2.

Next we want the table to be such that the numbers 21,21 +1,-.. ,2f — 1 all exist
as table values. The reason for this is that the subtraction that is needed to compute
S(zi™!, X, = 1) always will result in an f-bit floating point number. This follows from
(113). Note that

S(zt™, X, = 1) = S(zt1) — S(ab1, X, = 0) = Afv] - 2™ — Afv0] - 2™, (120)
We would like to express this interval size S(z%™!, X; = 1) by a pair (v1,m1) such that
S(ziY, X, = 1) = A1) - 2™, (121)

for some integer v1 and some ml. See Figure 6.2. This search can be carried out without
problems if the Af4] for i = 1,2/ together cover all f-bit values 2/71,2/=1 +1,...,2/ — 1.
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All f-bit values are covered if two “adjacent” table values do not differ more than 1. This
is the case if 2f - 2-G-1/2" _2f . 9-i/2" < 1 for all i = 1,2f. Indeed for such 4

of L9=(-1)/2f _ of 9=i/2f _ of (2—<i—1>/2f _ 2—i/2f)

2—(i—1)/2f _ 2—i/2f
1727

d2t

< - = .2t
< o In(2) -2

0<t<1

=In(2) <1. (122)

0<t<1

4.2. The log-table B[|. To make the search that is described at the end of the
previous subsection easy, we construct a log-table B[-] which is the inverse of the table
A[]. From (113) we know that initially

Szt X, =1) = (A[v] - 2™ ™ — A[v0]) - 2™ < Aw0] - 2™. (123)

We now will use Afv] - 2™~™ — A[v0] as entry in the B[] table. Since 0 < A[v0] < 2/ —1,
the table B[j] must have entries for j = 1,2/ — 1. The entries B[j] for j = 2/71,2/ — 1 are
constructed from the exp-table A[]. Suppose that T is the set of ¢’s such that A[j] = j.
Note that Z cannot be empty since all values 2/~1,2/-1 41, ... 2f —1 exist as table values.
Then we choose for the inverse B[j] the i that minimizes the difference

ol log L
|—2 1og2f il. (124)

Note that in this way we obtain that always 1 < Bj] < 2/.

For the entries j = 1,2/~! — 1 we follow a different procedure. First we determine the
exponent k such that 2/-! < 2%.j < 2/ — 1. Then we set B[j] = B[2* - j] + k- 2. Since
1 < B[2F - 5] < 2/ the exponent k can easily be found from B[j]. The number of bits that
are needed to accomodate the table values B[] is f + [log f] since k is at most f —1 (when
j = 1). Here [a] is the smallest integer not smaller than a.

Note that with this table B[] we can now find v1 and m1 such that S(zi™!, X, =1) =
vl - 2™ quite easily. We first set v1 = B[A[v] - 2™ ™0 — A[v0]] and m1 = m0. Then we
subtract 2/ from v1 and decrement m1 as long as v1 > 2/. Finally 1 < v1 = B[2*-j] < 2/.

4.3. The minimum stepsize. Now we are almost finished. There is one thing left to
discuss however. From (118) we see that in principle 0 < v < 2/. However if vy is small
then A[v0] - 2™ can be equal to Av] - 2° and consequently the intervalsize S(z{™!, X, =
1) = 0. If the symbol X; = 1 now occurs we are in trouble. Therefore we do not allow the
stepsize vp to be smaller than 3. Then it is guaranteed that always A[v] - 2™ > A[v0] - 2™°.

To see this first consider the case where v is such that the sum v+wp > 2. In that case
m0 = m—1 and since A[v0] < 2 ~1 we obtain that 2- A[v] > 2-2f71 =2f > 2/ —1 > A[u0]
or Afv]- 2™ > A[v0] - 20,
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In the case where v > 1 is such that v + vy < 2/ we get that m0 = m and
of .9=v/2f _of Lg-(wtw)/2f _ of (2-”/2f — 2‘(U+vo)/2f)

2—0/2f - 2—(v+vo)/2f

’U0/2f
. d2Tt vp In(2)
> —_ = i Lot A
2 Wimh g TR @) =
31n(2
> ———I;( ) o1, (125)

By the definition (114) of A[-] this implies that A[v] > A[v + vo]. Since v + vy = v0 and
m0 = m we get that Afv] - 2™ > A[v0] - 2™0.

5. Program Descriptions

5.1. The encoder program.

5.1.1. Initialization. The delay register dlreg is supposed to be d binary digits wide.
The accumulator accum is assumed to be f + 1 binary digits wide. Both are set equal to
zero. The interval size S(¢) is set equal to A[1] = 27 — 1 by setting v:=1. Note that we do
not set v equal to 0. The exponent m does not matter.

A pseudo-PASCAL program would look like:

dlreg:=0;
accum:=0;
v:i=1; {Initialization}

During the initialization also the tables(arrays) A[ ] and B[ ] are computed.

5.1.2. Processing a symbol. Push is the function that writes a binary digit to the code-
file. Processing a symbol consists of three parts.

First it is checked whether the current interval, determined by v, can be scaled. This
is the case if v>2°f. Each scaling operation results in a left-shift of both the delay register
and the accumulator. The most significant bit of the accumulator is shifted into the delay
register. The most significant bit of the delay register is pushed into the codefile. Then
v is decreased by 2°f and again it is checked whether the interval can be scaled. After
scaling 1<=v<=2"f and the current interval size has its most significant bit aligned with
the most significant bit of the accumulator.

After having finished scaling, the delay register is checked. As long as it contains only
1’s, both the delay register and the accumulator are shifted to the left, just as before, when
we were scaling. The difference is now however that v does not change. The effect of this is
that the current interval size is decreased by a factor of 2, in other words the shift number
is incremented.

Now the encoder is ready to update the accumulator (and the delay register). It
is assumed that v_0 is not smaller than 3. Then the O-interval size is determined by
computing vO=v+v_0. Since v0<=2"f the size of this O-interval can never be less than half
the entire interval. Therefore the most significant bit of the 0-interval is aligned with the
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most significant bit of the accumulator (if v0<=2"f) or with the digit to the right of the
most significant bit (if v0>2~£).

WHILE v>2°f
DO BEGIN

IF dlreg>=2"(d-1) THEN BEGIN Push(1);dlreg:=2*(dlreg-2~(d-1)); END

ELSE BEGIN Push(0);dlreg:=2*dlreg; END;
IF accum>=2"f THEN BEGIN dlreg=delreg+l;accum:=2*(accum-2"f); END
ELSE accum:=2*accum;
v:=v-2"f;
END; {Scaling and pushing}

WHILE dlreg=2-"d-1
DO BEGIN
IF dlreg>=2"(d-1) THEN BEGIN Push(1);dlreg:=2*(dlreg-2-(d-1)); END
ELSE BEGIN Push(0);dlreg:=2*dlreg; END;
IF accum>=2"f THEN BEGIN dlreg=dlreg+1l;accum:=2*(accum-2"f); END
ELSE accum:=2%accum;

END; {Creating zeroes in delay register}
vO=v+v_0;
IF X_t=1
THEN BEGIN IF vO0<=2"f
THEN BEGIN

accum=accum+2*A [v0] ;
IF accum>=2"(f+1)
THEN BEGIN dlreg:=dlreg+l;accum:=accum-2~(f+1); END
v:=B[A[v]-A[v0]];

END

ELSE BEGIN

accum=accum+A [v0-2"f] ;
IF accum>=2"(f+1)
THEN BEGIN dlreg:=dlreg+l;accum:=accum-2~(f+1); END
v:=B[2*A[v]-A[v0-2"f]]+2"f;

END;

END
ELSE v:=v0; {Adding A[v0] to the accumulator (or not) and computing v}

5.1.3. Termination. The encoder terminates the coding process by Pushing the delay
register and the accumulator.

FOR i:=1 TO 4 DO
IF dlreg<2~(d-1) THEN BEGIN Push(0);dlreg:=dlregx2; END

ELSE BEGIN Push(1);dlreg:=(dlreg-2~(d-1))*2; END;
FOR i:=1 TO £+1 DO
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IF accum<2”f THEN BEGIN Push(0);accum:=accum*2; END
ELSE BEGIN Push(1);accum:=(accum-2"f)*2; END; {Termination}

5.2, The decoder program.

5.2.1. Initialization. Both the delay register direg and the accumulator accum are set
equal to zero. The interval size S(¢) is set equal to A[1] = 2/ — 1 by setting v:=1.

In the decoder we use an additional “code-delay register cdlreg and an additional
“code-accumulator” caccum. The code-delay register is set equal to zero. Then, by calling
the function Pull f + 1 times we fill the code-accumulator with code-bits. The code-bits
flow through the code-accumulator and the code-delay register.

A pseudo-PASCAL program would look like:

dlreg:=0;

accum:=0;

v:=1;

cdlreg:=0;

caccum:=0;

FOR i:=1 TO f+1 DO caccum:=caccum*2+Pull; {Initialization}

During the initialization again the tables(arrays) A[ ] and B[ ] are computed.

5.2.2. Decoding and processing a symbol. Processing a symbol consists of four parts in
the decoder, scaling, checking the delay register, decoding and updating the delay register
and accumulator.

Just as in the encoder it is first checked whether the current interval, determined by
v, can be scaled. This is the case if v>2~f. Each scaling operation results in a left-shift
of both the delay register and the accumulator and the code-delay register and the code-
accumulator. The most significant bits of the delay registers are shifted out. The most
significant bits of the accumulators are shifted into the corresponding delay registers. With
a Pull a code bit is recovered. This bit is shifted into the code-accumulator. After scaling
1<=v<=2"f and the current interval size has its most significant bit aligned with the most
significant bit of the accumulator.

After having finished scaling, the delay register is checked. As long as it contains only
1’s, both the delay register and the accumulator and the code-delay register and the code-
accumulator are shifted to the left, just as before, when we were scaling. Note that for
each left-shift we again Pull a code bit. The difference is now however that v does not
change. The effect of this is that the current interval size is decreased by a factor of 2, in
other words the shift number is incremented.

Now the decoder is ready to decode and process the symbol x_t. First the threshold is
computed. This threshold has both a delay register part and an accumulator part. We call
them threshold-delay register(tdlreg) and threshold-accumulator(taccum). Now the code-
delay register, accumulator pair is compared to the threshold-delay register, accumulator
pair. The result determines the output x_t. With this result the decoder updates the
accumulator and the delay register just like the encoder.
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WHILE v>2°f
DO BEGIN
IF dlreg>=2"(d-1) THEN dlreg:=2*(dlreg-2~(d-1));
ELSE dlreg:=2x*dlreg;
IF accum>=2"f THEN BEGIN dlreg=dlreg+l;accum:=2*(accum-2°f); END
ELSE accum:=2*accum;
v:=v-2"f;
IF cdlreg>=2~(d-1) THEN cdlreg:=2*(cdlreg-2-(d-1));
ELSE cdlreg:=2*cdlreg;
IF caccum>=2"f THEN BEGIN cdlreg=cdlreg+l;
caccum:=2*(caccum-2"f)+Pull; END
ELSE caccum:=2*caccum+Pull;
END; {Scaling and pulling}

WHILE dlreg=2"d-1
DO BEGIN
IF dlreg>=2"(d-1) THEN dlreg:=2*(dlreg-2~(d-1));
ELSE dlreg:=2%dlreg;
IF accum>=2"f THEN BEGIN dlreg=dlreg+l;accum:=2*(accum-2"f); END
ELSE accum:=2*accum;
IF cdlreg>=2"(d-1) THEN cdlreg:=2*(cdlreg-2-(d-1));
ELSE cdlreg:=2*cdlreg;
IF caccum>=2"f THEN BEGIN cdlreg=cdlreg+l;
caccum:=2*{caccum-2"f)+Pull; END
ELSE caccum:=2*caccum+Pull;
END; {Creating zeroes in delay register}

v0=v+v_0;
IF v0<=2"f
THEN BEGIN
taccum:=accum+2*A[v0];
tdlreg:=dlreg;
IF taccum>=2"(f+1)
THEN BEGIN tdlreg:=tdlreg+l;taccum:=taccum-2~(f+1); END;
IF ((cdlreg=tdlreg) AND (caccum<taccum))
THEN x_t:=0 ELSE x_t:=1; {Decoding x_t}
IF (x_t=1) THEN BEGIN accum=taccum;dlreg=tdlreg;
v:=B[A[v]-A[v0]]; END
ELSE v:=v0;
END {Adding A[vO] to the accumulator (or not) and computing v}
ELSE BEGIN
taccum:=accum+A[v0-2"f];
tdlreg:=dlreg;
IF taccum>=2"(f+1)
THEN BEGIN tdlreg:=tdlreg+l;taccum:=taccum~2~(f+1); END;
IF ((cdlreg=tdlreg) AND (caccum<taccum))
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THEN x_t:=0 ELSE x_t:=1; {Decoding x_t}
IF (x_t=1) THEN BEGIN accum=taccum;dlreg=tdlreg;
v:=B[2%A[v]-A[v0]] +2°f; END
ELSE v:=v0;
END; {Adding A[v0] to the accumulator (or not) and computing v}

5.2.3. Termination. No operations, except e.g. closing the code file, are necessary to
terminate the decoding process.
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1. The Compression of the CTW-2 Algorithm

bib | 111261 characters
bookl | 768771 characters
book2 | 610856 characters
geo | 102400 bytes
news | 377109 characters
objl| 21504 bytes
obj2 | 246814 bytes
paperl | 53161 characters
paper2 | 82199 characters
paperd | 46526 characters
paper4 | 13286 characters
paperd | 11954 characters
paper6 | 38105 characters
pic | 513216 bytes
progc { 39611 characters
progl | 71646 characters
progp | 49379 characters
trans | 93695 characters

TABLE 7.1. The Calgary corpus

1.1. The data set : Calgary Corpus. To evaluate the practical performance of our
implementation of the CTW algorithm, just like for the CTW-1 project, we use the Calgary
corpus. This corpus is a collection of nine different types of text and to confirm that the
performance of algorithms is consistent for any type, many of the types have more than
one representative. Normal English, both fiction and non-fiction, is represented by two
books and six papers. More unusual styles of English writing are found in a bibliography
(bib) and a batch of unedited news articles (news). Three computer programs represent
artificial languages (progc, progl, progp). Also a transcript of a terminal session (trans)
is included. All the files mentioned so far are ASCII files. Some non-ASCII files are also
included: some geophysical data (geo), two files of executable programs (objl, obj2) and
a bit-map black-and-white picture (pic). All the files and their dimensions are given once
more in Table 7.1.

The file geo is particularly difficult to compress because it contains a wide range of data
values, while the file pic is highly compressible because of large amounts of white space
in the picture, represented by long runs of zeros. The initial part of the file obj2 is not
representative of the remainder of the file.
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1.2. The standard and reference parameter sets. All individual files of the cor-
pus were processed with the standard set of parameters, i.e. tree-depth D = 6 bytes, the
zero-redundancy estimator is used. The a’s and b’s are counted in k£ = 8 bits (this “implies”
that all probabilities are represented in logarithmic form with m = 7 bits fractional part,
the log-table contains 256 entries, the Jacobian table contains 9*128=1152 entries, log 3
is bounded in absolute value by 18 (so, B = 18 % 128 = 2304), and both zero-redundancy
tables contain 256 entries). Each record contains 2 * 8 + [log 36] + 7 = 29 bits (4 bytes).

In the arithmetic encoder and decoder we work with f = 12-bit floating point numbers
(this implies that we have an exp-table with 4096 entries and a log-table with 4095 entries).

There is no bound on the number of nodes that are generated by the CTW method.
i.e. the hash table is so large that all nodes can be allocated.

In Tables 7.2 and 7.3 we see the influence of &, f, and B, the bound on the absolute
value of (3, on the compression rate. From these tables we conclude that for both the
Krichevski-Trofimov estimator and the zero-redundancy estimator a slightly better choice
for B would be B = 1024.

So, we define the reference set of parameters to be: D = 6 bytes, k = 8, B = 1024, and
f=12.
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Krichevski-Trofimov estimator, maximal context depth D = 6 symbols

k=6 k=7 [ k=8
f=10 =10 =10
8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 B = 4096 2304 2048 1024 512 256
book2 | 2.017 2.016 2.016 2.011 2.001 2.021| book2|1.982 1.978 1.977 1.966 1.976 2.320| book2 [ 1.960 1.953 1.951 1.957 2.306 3.184
geo | 4.562 4.559 4.558 4.554 4.543 4.542 geo | 4.550 4.545 4.543 4.531 4.522 4.670 geo | 4.544 4.535 4.532 4.525 4.675 5.076
obj2 | 2.650 2.638 2.635 2.611 2.573 2.556 obj2 | 2.626 2.606 2.601 2.563 2.537 2.886 obj2 | 2.605 2.576 2.568 2.542 2.900 3.910
paperl | 2.491 2.491 2490 2.482 2.467 2470 || paperl | 2.464 2457 2456 2441 2438 2.713 | paperl | 2.445 2433 2.430 2426 2.704 3.458 |
f=12 f=12 f=12
8= 4096 2304 2048 1024 512 256 B = 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 [ 2.016 2.015 2.015 2.010 2.000 2.019 || book2 [ 1.980 1.976 1.975 1.964 1.975 2.319 || book2 | 1.958 1.951 1.949 1.956 2.304 3.183
geo | 4.563 4.560 4.559 4.554 4.543 4.542 geo | 4.550 4.545 4.544 4.531 4.522 4.670 geo | 4.544 4.535 4.532 4.525 4.675 5.076
obj2 | 2.651 2.639 2.636 2.612 2.574 2.556 obj2 | 2.626 2.606 2.601 2.562 2.537 2.886 obj2 | 2.605 2.575 2.568 2.542 2.900 3.910
paperl [ 2.492 2491 2491 2482 2.468 2469 || paperl | 2.463 2.457 2.455 2.440 2.437 2.711 ([ paperl | 2.443 2.432 2.429 2.425 2.703 3.457
f=14 f—=14 f=14
b= 4096 2304 2048 1024 512 256 B = 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 | 2.018 2.017 2.017 2.012 2.002 2.019 || book2 [ 1.981 1.977 1.976 1.965 1.974 2.318 | book2 | 1.958 1.951 1.949 1.956 2.304 3.182
geo | 4.564 4.561 4.560 4.556 4.544 4.542 geo | 4.551 4.546 4.544 4.532 4.522 4.670 geo | 4.545 4.536 4.533 4.525 4.675 5.076
obj2 | 2.654 2.641 2.638 2.614 2.576 2.556 obj2 | 2.627 2.607 2.602 2.563 2.537 2.886 obj2 [ 2.605 2.575 2.568 2.542 2.900 3.910
paperl | 2.495 2.494 2.494 2.485 2.471 2469 || paperl | 2.464 2.458 2.456 2.441 2437 2.711 || paperl | 2.444 2432 2.429 2424 2.702 3.457
f=16 f=16 f=16
B= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 | 2.021 2.020 2.020 2.015 2.004 2.019 || book2 [ 1.982 1.978 1.977 1966 1.974 2.318 | book2 [ 1.959 1.951 1.949 1.955 2.304 3.182
geo | 4.565 4.562 4.561 4.557 4.546 4.542 geo | 4.551 4.546 4.545 4.533 4.522 4.670 geo | 4.545 4.536 4.533 4.525 4.675 5.076
obj2 | 2.657 2.644 2.641 2.617 2.579 2.557 obj2 | 2.628 2.608 2.603 2.564 2.537 2.886 obj2 | 2.605 2.575 2.568 2.542 2.900 3.910
paperl | 2498 2.498 2497 2489 2.474 2470 || paperl | 2.465 2.460 2458 2442 2437 2.711 || paperl | 2.444 2.432 2429 2424 2702 3.457
TABLE 7.2. The influence of the parameters on the compression (KT-estimator).
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Zero-redundancy estimator, maximal context depth D = 6 symbols

k=6 k=7 =8
f=10 =10 =10
8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 [ 1.929 1.928 1.928 1.923 1.913 1.911 | book2|1.919 1916 1.914 1.904 1.908 2.254 | book2 | 1.909 1.902 1.900 1.906 2.250 3.134
geo | 4.568 4.563 4.562 4.555 4.541 4.528 geo | 4.564 4.557 4.555 4.539 4.526 4.668 geo | 4.559 4.549 4.545 4.537 4.674 5.055
obj2 | 2.504 2.493 2.490 2.467 2.429 2.393 obj2 | 2490 2471 2466 2.429 2.399 2.756 obj2 | 2.473 2445 2439 2413 2.773 3.806
paperl | 2.337 2.337 2.337 2.330 2316 2310 || paperl | 2.328 2.323 2.321 2.307 2.303 2.584 || paperl [ 2.317 2.306 2.303 2.301 2.582 3.353
=12 f=12 =12 '
8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 B = 4096 2304 2048 1024 512 256
book2 [ 1.934 1.933 1.933 1.928 1.917 1.909 || book2|[1.920 1.916 1915 1.904 1.904 2.251 || book2 | 1.908 1.900 1.898 1.902 2.248 3.132
geo | 4.574 4.568 4.567 4.561 4.547 4.531 geo | 4.568 4.560 4.558 4.542 4.526 4.668 geo | 4.561 4.550 4.547 4.537 4.674 5.055
obj2 | 2.518 2.507 2.504 2.480 2.441 2.396 obj2 | 2.498 2.478 2473 2435 2.399 2.756 obj2 | 2.476 2.448 2.441 2.412 2.773 3.806
paperl | 2.349 2.348 2.348 2.342 2.328 2.314 || paperl | 2.334 2.328 2.327 2.313 2.302 2.582 || paperl | 2.319 2.308 2.305 2.299 2.580 3.351
f=14 f=14 f=14
8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 | 1.945 1.945 1.944 1.940 1.928 1.913 || book2 | 1.927 1.923 1.922 1.911 1.904 2.251 | book2 | 1.912 1.904 1.902 1901 2.247 3.132
geo | 4.581 4.576 4.574 4.569 4.554 4.536 geo | 4.572 4.564 4.562 4.546 4.527 4.668 geo | 4.564 4.553 4.549 4.537 4.674 5.055
obj2 [ 2.536 2.525 2.522 2.497 2.457 2.403 obj2 | 2.509 2.489 2484 2.444 2.400 2.756 obj2 | 2482 2.453 2.446 2.412 2.773 3.806
paperl | 2.365 2.365 2.365 2.359 2.344 2.323 || paperl | 2.344 2.339 2.337 2.322 2.305 2.582 || paperl | 2.326 2.314 2.311 2.299 2.579 3.351
f=16 f=16 f=16
8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256 8= 4096 2304 2048 1024 512 256
book2 [ 1.958 1.958 1.958 1.953 1.941 1.919 | book2 |1.935 1.932 1.931 1.919 1.906 2.250 || book2|1.917 1.909 1.907 1.902 2.247 3.132
geo | 4.589 4.584 4.582 4.577 4.563 4.541 geo | 4.577 4.569 4.567 4.551 4.529 4.669 geo | 4.566 4.555 4.552 4.537 4.674 5.055
obj2 | 2.556 2.545 2.542 2.516 2.474 2.410 obj2 | 2.521 2.501 2.495 2.454 2.402 2.756 obj2 | 2.489 2459 2452 2412 2.773 3.806
paperl | 2.383 2.383 2.383 2.376 2.362 2.332 || paperl | 2.356 2.350 2.349 2.333 2.308 2.582 || paperl | 2.334 2.321 2.318 2300 2.579 3.351

TABLE 7.3. The influence of the parameters on the compression (Zero-redundancy).




86 7. MEASUREMENTS

1.2.1. COMPRESSION RATE FOR THE STANDARD AND REFERENCE PARA-
METERS. The first set of results contain the performance of the context-tree weighting

method, i.e. the compression rate in bit per byte. These experiments are carried out on
all files in the Calgary corpus.

Performance for standard measurement
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1.2.2. STORAGE COMPLEXITY.
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x 1000000 nodes
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The second set of results contains the number of nodes (in multiples of 1000000 (one
million)), that is produced by the context-tree weighting method for each of the files in the
corpus. Note that there is no bound on this number, the context-tree can grow without
limit. For large files (bookl, book2, news and obj2) we therefore get a large number of
nodes. Pic is also a large file but this does not produce much nodes.

1.2.3. DECODING SPEED. The third set of results is the number of characters that
is decoded per second for each of the files in the corpus. The encoding times are almost
equal (within four percent of the decoding times) and are not shown here.

Decoding speed for reference measurement
x 1024 characters/second
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1.3. Krichevski-Trofimov versus zero-redundancy estimation measurement.
The effect of using the zero-redundancy estimator is studied by comparing the results of the
reference measurement to the results of an identical measurement in which the Krichevski-
Trofimov estimator is used instead of the zero-redundancy estimator. So we take again
depth D = 6 bytes, k = 8, f = 12, B = 1024. Again there is no bound on the number of
nodes that are generated by the CTW method. The results are shown in the bar-charts
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below.
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Performance zero-redundancy estimator (reference measurement)
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1.4. Changing the depth D of the context tree. The effect of changing the depth
D of the context tree in bytes is studied in this subsection. We take as depths D = 2, 4, 6,
8, 10, and 12 bytes. The other parameters are determined by the reference set, i.e. k£ = 8,
B = 1024, f = 12, and using the zero-redundancy estimator. There is no bound on the
number of nodes that are generated by the CTW method. Note that D is the number of
complete bytes. The most recent context part forms a incomplete byte in general and is
not counted in D. The results are shown in the bar-charts below for all files in the corpus.
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Performance for depth D =6 CTW method (reference measurement)
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2. The Complexity of the CTW-2 Algorithm

In order to understand the complexity of the CTW-2 algorithm independent from
the HP-9000 computer architecture we counted the different operations performed by the
algorithm. We decided to categorize and count the following abstractions of operations:

incr: Increments and decrements can be special atomic operations, and so they can
be quite different from ordinary additions/subtractions.

add: Additions and subtractions of 16 and 32 bit integer values.

index: Table indexing operations needed to access the tree structure and to compute
the weighted probabilities.

logop: The logical operations are bitwise and and or functions, however, they im-
plement bit masking and bit setting operations only and so can be implemented
efficiently in special devices.

sft1: Shifting integer valued operands over one position to the left or right.

sftn: Shifting integer valued operands over either more than one position to the left
or right or over a variable number of bit positions. This operation is usually more
complex than sfti.

Floating point operations are only used to initialize the tables used in the weighting
procedure and the arithmetic code. Although in a final implementation these tables are
fixed and can be precomputed, we collected the following counts.

radd: Floating point additions.

rmult: Floating point multiplications.

rdiv: Floating point divisions. They are often more complex than multiplications and
so are counted separately.

rexp: Logarithms and exponentiations on floating point values.

For each of the files in the Calgary corpus we counted the operations for the CTW-2
algorithm, with the reference parameters. In Table 7.4 we list the number of operations
needed per byte for each file when using the Krichevski-Trofimov estimator or the zero-
redundancy estimator, when the CTW context depth was limited to 2.

We observe that the majority of operations are additions, add, and table references,
index. This is as expected, since the CTW algorithm uses simple arithmetic to compute
the probabilities and tables are used to aid in this and the context data is also stored in a
table.

The initialization of the tables required 2561 radd operations, 2561 rmult, 1408 rdiv,
and 1408 rexp operations for the Krichevski-Trofimov estimator. In the case of the zero-
redundancy estimator, initialization took 4601 radd, 4346 rmult, 2683 rdiv, and 1918
rexp operations.

In Table 7.5 we list the same for a maximal context depth of 6 bytes. The number of
operations per symbol increases by a factor of 2.2. This indicates that not all contexts are
continued up to depth 6, since then the amount of work should have been tripled. Namely,
most of the work is done in finding the contexts and computing the weighting probabilities
and this is linear in the length of the context path found in the tree. The reason for this
improvement is the introduction of the unique path condition.

The table initialization is independent from the tree depth so it required the same
number of operations as listed before.
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Krichevski-Trofimov estimator

filename | incr/byte add/byte index/byte logop/byte sftl/byte sftn/byte
bib | 274.244 1972.995 1142.331 173.677 24.573 72.343
bookl | 277.131 1892.757 1147.520 175.976 24.500 72.767
book2 | 278.393 1904.347 1149.159 177.072 24.529 72.790
geo | 268.604 2046.323 1140.162 184.665 25.747 81.971
news | 277.215 1916.902 1147.940 177.281 24.611 74.091
objl| 260.187 2156.715 1119.124 177.737 26.087 80.363
obj2 | 272.267 1951.253 1140.800 177.014 24.961 74.530
paperl | 276.820 2034.593 1146.764 177.340 24.712 73.512
paper2 | 277.580 1986.985 1148.150 177.214 24.582 73.116
paperd | 277.701 2027.791 1148.475 178.218 24.678 73.988
paperd | 272.806 2144.374 1140.873 176.699 25.004 75.244
paperd | 273.927 2169.051 1141.953 178.971 25.177 76.138
paper6 | 274.819 2065.240 1143.925 176.500 24.782 73.898
pic | 267.402 2122.557 1132.499 163.927 24.588 66.107
progc | 274.504 2062.934 1142.981 176.195 24.847 73.949
progl | 273.637 2005.866 1141.133 173.085 24.583 71.676
progp | 272.381 2045.059 1138.933 172.701 24.687 71.778
trans | 272.071 1995.537 1138.485 172.094 24.615 71.771
Zero-redundancy estimator
filename | incr/byte add/byte index/byte logop/byte sftl/byte sftn/byte
bib | 274.248 1582.072 1123.933 173.571 24.573 72.200
bookl | 277.132 1653.303 1131.751 175.933 24.500 72.710
book2 | 278.394 1657.652 1134.074 177.004 24.529 72.699
geo | 268.607 1784.495 1135.214 184.621 25.747 81.912
news | 277.219 1664.543 1135.454 177.213 24.611 73.995
objl | 260.205 1706.196 1111.604 177.287 26.087 79.756
obj2 | 272.273 1721.556 1132.473 176.774 24.961 74.204
paperl | 276.829 1644.553 1131.437 177.130 24.712 73.228
paper2 | 277.586 1661.544 1132.614 177.095 24.582 72.954
paperd | 277.715 1668.934 1133.727 178.092 24.678 73.810
paperd | 272.835 1641.533 1124.973 176.476 25.004 74.932
paperd | 273.957 1649.674 1127.578 178.638 25.177 75.683
paper6 | 274.836 1636.692 1128.553 176.267 24.782 73.972
pic | 267.403 2041.939 1127.178 163.915 24.588 66.091
progc | 274.513 1620.217 1127.534 175.908 24.847 73.562
progl | 273.642 1597.450 1122.563 172.928 24.583 71.465
progp | 272.391 1614.556 1121.612 172.425 24.687 71.403
trans | 272.079 1576.839 1120.903 171.866 24.615 71.459

TABLE 7.4. The number of operations per source byte. D = 2, k = 8§,
B =1024, f = 12. (encoder)
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Krichevski-Trofimov estimator
filename | incr/byte add/byte index/byte logop/byte sftl/byte sftn/byte

bib | 797.259 4830.922  2361.975 355.112 54.273  136.026
bookl | 892.152 4829.892  2519.391 399.069 56.583  137.173
book2 | 877.050 4822.778  2492.036 386.758 55.919  136.075
geo | 462.078 3479.342 1699.624 292.296 43.857  125.804
news | 790.937 4697.203  2352.349 372.439 54.269  137.414
objl| 541.380 3843.581 1827.713 286.833 44.878  125.211
obj2 | T731.750 4573.134  2245.315 349.973 52.321  136.579
paperl | 732.152 4779.705  2255.903 351.139 53.051  137.841
paper2 | 783.150 4832.263  2339.836 363.977 54.424  137.516
paper3d | 720.427 4717.567  2232.057 351.537 52.995  137.447
paperd | 621.240 4512.654  2050.838 326.919 49932  135.699
paperd | 600.539 4446.907  2008.920 321.526 49.046  135.531
paper6 | 7T709.442 4749.405  2214.972 345.905 52.334  137.670
pic | 897.049 4657.454  2511.171 366.381 95.776  128.372
progc | 703.605 4715382  2202.168 341.449 52.064 137.219
progl | 805.505 4902.215 2383.000 356.870 54.401 136.763
progp | 779.356 4874.747  2339.004 349.548 53.652  136.962
trans | 809.646 4963.047  2395.221 355.899 54.276  137.679

Zero-redundancy estimator
filename | incr/byte add/byte index/byte logop/byte sftl/byte sftn/byte

bib | 797.262 2946.374  2317.564 354.716 94.273  135.497
bookl | 892.157 3361.393  2479.120 398.927 56.583  136.979
book2 | 877.055 3254.724  2449.018 386.530 55.919  135.766
geo | 462.079 2492.694 1689.094 292.255 43.857  125.752
news | 790.942 3098.594  2316.746 372.056 54.269  136.897
objl | 541.403 2533.547  1806.718 286.285 44.878  124.465
obj2 | T731.753 2976.889  2215.027 349.456 52.321  135.888
paperl | 732.159 2903.405  2220.921 350.642 53.051  137.176
paper2 | 783.156 3059.984  2303.378 363.628 54.424  137.046
paper3 | 720.435 2927.780  2199.581 351.106 52.995 136.869
paperd | 621.264 2658.549  2020.280 326.396 49.932  134.993
paperd | 600.557 2603.666 1980.191 320.917 49.046 134.724
paper6 | 709.453 2843.925  2180.753 345.375 52.334  136.958
pic | 897.050 4337.939  2498.062 366.362 55.776  128.345
progc | 703.616 2794.442  2167.331 340.885 52.064  136.461
progl | 805.508 2972.760  2336.973 356.424 54.401  136.169
progp [ 779.363 2941.717  2295.770 349.009 53.652  136.242
trans | 809.649 2936.817  2349.289 355.277 54.276  136.850

TABLE 7.5. The number of operations per source byte. D = 6, k = 8§,
B =1024, f = 12. (encoder)




2. THE COMPLEXITY OF THE CTW-2 ALGORITHM 95

Krichevski-Trofimov estimator Zero-redundancy estimator
operation | main tree math ar. code operation | main tree math ar. code
iner (1.2% 91% 7.7% 0.0% iner (1.2% 91% 7.7% 0.0%
add |03% 14% 8% 03% add |06% 23% 6% 05%
index |08% 52% 47% 01% index |08% 53% 47% 01%
logop (4.6 % 94% 00% 1.7% logop |46% 94% 00% 15%
sft1 10.0% 99 % 0.6 % 0.0 % sft1 |0.0% 99% 0.6 % 0.0%
sftn | 5.8 % 83 % 5.8% 5.4 % sftn | 58 % 83 % 5.8 % 4.9 %

TABLE 7.6. The distribution of operations over the various parts of the
CTW algorithm. File=paperl, D =6, k = 8, B = 1024, f = 12. (encoder)

In order to obtain more insight in the complexity of the different parts of the CTW
algorithm, we also counted the operations for the four separate modules. In Table 7.6 we
list the relative number of operations of the different types needed for the compression of
the file paper1 with the CTW algorithm and the reference parameters. We consider the
following four parts.
main: This is the computational overhead that arises from the need to split a symbol
into eight bits, to recombine it again and to store it in the buffer. The contribution
of this overhead is very small as we can see in Table 7.6.

tree: This part represents the processing of the tree structure. Here we obtain and
update the contexts along the current path. Thus we expect to find index operations
along with logop operations in the manipulation of data and addresses.
math: The CTW probability weighting operations are concentrated in this unit. So,
here we expect the majority of arithmetic operations, add, and also, because we use
tables in the computations, we should see a significant amount of index operations.

ar. code: The last unit is the arithmetic code. Here we expect all kinds of operations,
because the arithmetic code computes the codeword with the aid of tables we again
expect add and index operations, but also because the codeword is binary we expect
bit shift operations, sftn.
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3. Comparison of the Performance of CTW-2 versus LZ Methods and CTW-1

3.1. Introduction. In the CTW-1 project we compared the CTW-1 algorithm with
several versions of the Lempel-Ziv (LZ) methods in terms of compression-rate as a function
of the memory requirements. In these comparisons we found that the LZ methods “LZSS”
and “V42-bis” were often the best performers among the LZ methods. Here we compare
the CTW-2 algorithm with these LZ methods and the CTW-1 algorithm.

The (buffer-method) LZSS requires 9n,, + 2** bytes, where n,, is the buffer size and 24
is the amount of bytes used for hashing.

The V42-bis compressor and decompressor was supplied by KPN. V42-bis is an efficient
LZ-77 based scheme. Only for buffer sizes 2048 and 4096 we were able to compress and
decompress correctly. Thus the V42-bis program has modest storage requirements. From
a quick inspection of the KPN algorithm we observe that the cost per buffer position is
one int and one long int variable. With HPUX-C this amounts to 4 bytes for an int
and long int as well. So the total memory requirements are 8n,, bytes, where n,, is the
buffer size (2048 or 4096 characters).

The CTW-1 algorithm ran with depths 2, 4, or 6 bytes and the best result was selected.
The other parameters for CTW-1 were a CTW-mantissa size and Rubin register size of
16 bit each, and the zero-redundancy estimator was used. Each node (record) for the
context-tree weighting method contains 48 bytes. Therefore the number of allocated bytes
is 48 times the number produced nodes.

The CTW-2 algorithm also ran with tree depths 2, 4, and 6 and again the best results
were plotted. We again used the zero-redundancy estimator and used a counter precision
of k = 8 bits, the “beta” parameters were limited to an absolute value of B = 1024, and
the precision of the arithmetic code was f = 12 bits.

Instead of measuring the number of bytes in a linear way, we use the log;, of the number
of allocated bytes as measure in our plots. Therefore 4 stands for 10 Kbyte, 6 for 1 Mbyte
and 8 for 100 Mbyte, etc.

For each of the files book2, geo, obj2, and paperl we have made a plot containing the
trade-off line corresponding to the four variants. These four plots are shown below.

3.2. Book2 measurement. The results for book2 in Figure 7.1 show that the LZSS
curve appears to saturate at a rate of roughly 3 bits/byte, i.e. more available memory does
not lead to much smaller compression-rates for this method.

The V42-bis algorithm only performs at low complexities, but there it outperforms the
LZSS and CTW-1 algorithm.

The saturation rates for the context-tree weighting methods are less than 2 bit/byte.
CTW-2 achieves a slightly lower rate than CTW-1 at maximal complexity, and more
importantly, it does so at a greatly reduced complexity. From Figure 7.1 we observe that
the complexity gain of CTW-2 over CTW-1 is about an 8 times complexity reduction
except at very low rates and CTW-2 even outperforms V42-bis.

3.3. Geo measurement. The results for the file geo in Figure 7.2 show that all
curves saturate, and that it does not pay off to use much memory on this file, especially
for the Lempel-Ziv methods. V42-bis gives a smaller compression-rate than LZSS (about
6 versus 7 bit/symbol). The context-tree weighting methods are significantly better than
the Lempel-Ziv algorithms. They achieve a compression-rate roughly between 4.5 and
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5.5 bit/byte. The CTW-2 algorithm requires much less memory than CTW-1 for a given
compression rate.

3.4. Obj2 measurement. Obj2 is a file that contains a discontinuity. In the first
part it contains several large blocks of repetitive data, while the second part consists of
more random looking data.

It appears from Figure 7.3 that the LZSS buffer-method performs best for this file in
the low complexity range. The reason for this is that the windowing effect in LZSS removes
the old (non valid) statistics quickly, while the other algorithms, especially the CTW al-
gorithms, need more conditioning (context memory depth) to separate the discontinuities.
If the amount of memory is sufficiently large, even for maximum depth 2, the CTW algo-
rithms outperform LZSS. However, this file demonstrates the fact that for repetitive data,
the Lempel-Ziv methods perform very well in terms of compression rate versus storage
complexity.

Again the CTW-2 algorithm reduces the storage requirements by a factor of eight or
more as compared to CTW-1.

3.5. Paperl measurement. The results for the file paperl in Figure 7.4 show just
like for the book?2 file that the Lempel-Ziv curves saturate. LZSS and V42-bis supplement
each other.

For this smaller text file the Lempel-Ziv curves saturate at rates of roughly 3.5 or
4 bit/byte. The saturation rates for the context-tree methods are roughly 2.3 bit/byte.
While CTW-1 required more memory than LZSS and V42-bis in the low complexity range,
CTW-2 performs even somewhat better.

The storage reduction achieved by CTW-2 relative to CTW-1 is again a factor of eight.
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CHAPTER 8

Conclusion

1. Detailed Conclusions

e The (reference) context-tree weighting method achieves compression rates be-
tween 1.9 bit per symbol for large (book2) and 2.9 bits per symbol for small (pa-
perd) text files. The largest rate over the corpus is achieved by the geo file (4.5
bit/symbol), the smallest rate by the file pic (0.8 bit/symbol). This is slightly better
than the compression rates for CTW-1.

e The storage complexity for the (reference) context-tree weighting method is be-
tween 124k! nodes (for paper5) and 2,344k nodes (for bookl). Text files achieve
between 4 and 6 nodes per processed symbol for large files (bib, bookl, book2 and
news) and between 6 and 10 nodes per processed symbol for smaller text files (paper-
files). Note that these values are identical to the results for CTW-1 as was to be
expected, because the trees in CTW-1 and CTW-2 are identical. However, the cost
per node in CTW-1 is 48 bytes, while in CTW-2 a node costs 8 bytes.

e The decoding speed for the (reference) context-tree weighting method is between
3.43K? (for paper5) and 5.78K (for geo) symbols per second. The encoding speed is
roughly the same as the decoding speed. Relative to CTW-1 the speed has increased
by a factor of 2.24 (paper4) to 5.25 (geo).

e The zero-redundancy estimator is to be preferred over the standard Krichevsky-
Trofimov estimator. This holds for most of the files. Exceptions however are the
files geo and pic that achieve a slightly better compression rate with the standard
estimator.

e Changing the depth B of the context tree decreases the compression rate in general
as expected. The gain is however very small for depths B larger than 6. The
compression rate has improved slightly when compared to the corresponding CTW-
1 results. Also, due to the smaller memory requirements, the maximal tree depth
(D) considered here is 12 symbols and this improved the compression rates over the
best compression rates achieved by CTW-1.

e From the tables 7.2 and 7.3 we can conclude that the CTW maximal counter
value (2% — 1) should be chosen 255, i.e. k = 8. The arithmetic coding floating
point size (f) should be 12, and the limit (B) on the absolute value of 3 should
then be 1024.

e Due to the better tracking of variations in the source statistics, the CTW-2 al-
gorithm, with its limited counter range and beta range, give a slightly increased
maximal compression relative to CTW-1. The increase ranges from slightly more
than 1 percent for paperl to 6 percent for obj2.

1k=1000

2K=1024
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e The computational load of CTW-2 is considerable. The reference algorithm needs
about 6000 operations per character.

e For the whole Calgary corpus the encoding and decoding speeds of the Lempel-Ziv
methods are still superior to that of the context-tree weighting algorithm CTW-2
by a factor of 30-50.

e The computational cost of the arithmetic code and the main program overhead is
negligible. The table 7.6 shows that indeed the expected types of operations occur in
the four units. Also, in our implementation the complexity is almost evenly spread
over the tree and math module.

e Increasing the amount of memory for Lempel-Ziv algorithms above 1 Mbyte does not
decrease the compression-rate. Increasing the available memory for CTW-2 decreases
the achievable compression-rate (as expected). If for both classes of algorithms
the amount of memory is the same and in the range from 10 Kbyte to 1 Mbyte,
the compression-rate for CTW-2 is often better than the compression rate of the
Lempel-Ziv algorithms. Only for obj2 the Lempel-Ziv algorithms perform better.

2. General Conclusion

The use of the efficient integer computations, with 8 and the limit on its range and the
count limiting procedure, improves the compression rate, reduces the memory cost, and
increases the coding speed.

Also, the use of a hashing function increases the coding speed and reduces the memory
cost. The CTW hashing function is simple and efficient. It employs the particularities of
the context tree and thus reduces the hashing function complexity relative the the methods
known from literature. This incurs an increase of less than 10 percent in the average number
of probes and due to the high speed of the hashing function the overall effect is a slight
increase of coding speed.

We have developed an arithmetic encoder and decoder that avoids multiplications by
using exp- and log-tables. The “statistics”-input of the arithmetic encoder and decoder
is the log of the conditional coding probability of the most probable symbol. Carries are
avoided using a delay register. This implementation of an arithmetic code matches very
well with the present CTW arithmetic.

The CTW-2 algorithm requires 8 bytes per record, while the CTW-1 algorithm needed
48 bytes. For the files we tested, i.e. book2, geo, obj2, and paperl, we found a storage
reduction of a factor of eight or more. The extra gain can be explained by the improved
compression rate due to the counter and “beta” limits. Thus the algorithm can now
perform well in less than 32 MByte (4 million nodes) which compares favorably with the
120-190 Mbytes for CTW-1.
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