

A real-time networked camera system

Citation for published version (APA):
Karatoy, H., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2012). A real-time networked camera system: a scheduled distributed camera system reduces the latency.
[EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/7cb5cd13-1436-4487-bb4a-b5052c231eb1

A Real-Time Networked Camera

System

Hilal Karatoy

March 2012

A Real-Time Networked Camera

System

Hilal Karatoy

March 2012

A Real-Time Networked Camera System

A scheduled distributed camera system reduces the latency

H. Karatoy

Eindhoven University of Technology

Stan Ackermans Institute/ Software Technology

Partners

System Architecture
and Networking Group

Eindhoven University of Technology

Steering

Group

Prof. Antonio Liotta

Prof. J. Johan Lukkien

Date March 2012

Contact
Address

Eindhoven University of Technology Department of Mathematics
and Computer Science

HG 6.57, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published
by

Eindhoven University of Technology Stan Ackermans Institute

Printed by Eindhoven University of Technology Universiteits Drukkerij

ISBN 978-90-444-1102-7

Abstract Modern video surveillance systems tend to use several networked
cameras to observe different parts of a global scene. This induces a
large data flow, which may lead to network congestion when
transporting images to the servers. SAN Group provided a system,
which is composed of multiple cameras and a PC running the
distributed video processing application in order to prevent network
congestion, while it satisfies the timing constraints of the video
processing application. This report describes the design and
implementation of a distributed real-time system that deals with
both the resource reservation for the distributed video processing
application running on the cameras and the real-time scheduling for
the tasks comprising the distributed video processing applications.

Keywords Distributed System, Video Processing, Real-time, Scheduling,
Admission Control, Network

Preferred

Reference

Hilal Karatoy, A Real Time Networked Camera System
Eindhoven University of Technology, SAI Technical Report,
March, 2012, ISBN 978-90-444-1102-7 (Eindverslagen Stan
Ackermans Instituut; 2011/064).

A catalogue record is available from the Eindhoven University of
Technology Library.

Partnership This project was supported by Eindhoven University of
Technology and SAN Group.

Disclaimer
Endorsement

Reference herein to any specific commercial products, process,
or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the Eindhoven
University of Technology or SAN Group. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the Eindhoven University of Technology or
SAN Group, and shall not be used for advertising or product
endorsement purposes.

Disclaimer
Liability

While every effort will be made to ensure that the information
contained within this report is accurate and up to date, makes
no warranty, representation or undertaking whether expressed
or implied, nor does it assume any legal liability, whether direct
or indirect, or responsibility for the accuracy, completeness, or
usefulness of any information.

Trademarks Product and company names mentioned herein may be
trademarks and/or service marks of their respective owners. We
use these names without any particular endorsement or with the
intent to infringe the copyright of the respective owners.

Copyright Copyright © 2011. . All rights reserved.

 No part of the material protected by this copyright notice may
be reproduced, modified, or redistributed in any form or by any
means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system,
without the prior written permission of the and SAN Group.

vii

Foreword

From January 1 to November 2011, Hilal has been a member of the SAN group
working on the demonstration of a camera system as described in this report. I am
convinced that it has been an interesting period for everyone involved. Getting a
good understanding of the problem, finding relevant information and getting the
equipment to work, they all proved to be challenging. I have come to admire her
perseverance, her absolute commitment to achieve her goals which I think is a
very strong asset. The result now lies in the report before us which clearly shows
that she has moved forward during the project.

Prof. Dr. Johan Lukkien

(Project Manager)

viii

Preface

This report is the result of the “A Real-time Networked Camera System” project

which was carried out by the author as part of her Industrial Design and

Development project of the two-year post-master level Software Technology

program (also known as OOTI1) of the Stan Ackermans Institute (SAI).

The target audience of this report is a technical audience with a basic notion of

modern software design and an interest in distributed real-time systems with

video processing.

Readers who are interested in the distributed real-time system with video

processing application and the original system and the problems with this system

context can read Chapters 1 to 3. Readers that are interested in the technical

design and implementation or those who wish to continue this project should go

through Chapters 4 to 7. Chapter 8 lists the conclusions and recommendations of

this project, while Chapter 9 contains details regarding the project’s management.

H. Karatoy

1 Officially known as 3TU School for Technological Design Stan Ackermans Insti-
tute/ Software Technology, in Dutch: Ontwerpers Opleiding Technische Informatica.

ix

Acknowledgements

Many people contributed in completion of this project. I am highly grateful to all
the people who encouraged me and supported me throughout the project.

First of all, I would like to thank to my university supervisor Prof. Johan Lukkien
for his great guidance and support. I am thankful for his patience in my work
through the nine months of my study. I very much appreciate that he has thought
along with me as much as he could. I have learned a lot from him, not just about
technical matters but also on how to be a better person; being humble, being
patience, being organized and being kind. His comments and remarks have
always been very valuable. It was honor for me to work with him.

I am also truly thankful to Prof. Antonio Liotta who is my second university
supervisor and project owner. I thank him for the fact that he has proposed this
project and provided me with the opportunity to study in Real-Time Systems.
Thanks to him I met and worked with remarkable people. I also thank to him for
his supports, trust and excellent Italian coffee.

During the project, my office mates and the people that I shared the same floor
with helped me a lot. I would like to give their names and express their
importance to me: Norbert Verhagen for his Camera Platform explanations and
all remarks on my English, Richard Verhoeven for his technical conversations
and help, Mike Holenderski for his contribution to this project and also to the
µC/OS-II community, Martijn van de Heuvel and Reinder Bril for their technical
discussions and the publications they provided which I used in my report as a
reference, and Ugur Keskin for being a colleague and friend and I thank Rudolf
Mak for his grammatical help and patience.

At OOTI, I want to thank the people who taught me how to design a system, how
to work with multi cultural environment and how to manage the issues in the
stressful environment. These are the people that I want to thank in specific: Dr.
Ad Aerts, Harold Weffers, Onno van Roosmalen, Maggy de Wert and dutch
instructor Nelleke.

I want to thank my colleagues and first foreign friends, especially Chris, Yogesh
and Firat and my friend Selcuk Sandikci. Thank you for all technical discussions
and personal support.

Also I want to express my gratitude to Ex-OOTIs, especially to Roza Akkus who
gave me supported me tremendously, Lusine Hakobyan, Jorge Crespo, Oanna
Dragomir, and Sunder Rao,Bui Vinh. These people listened and supported me
and gave useful remarks on the project management from the very first day of the
project.

And last but not least I want to thank my family with all my heart, for raising me
with faith and love.

H. Karatoy

October, 2011

xi

Executive Summary

This report presents the results of a Real-time Networked Camera System,
commissioned by the SAN2 Group in TU/e.

Distributed Systems are motivated by two reasons, the first reason is the physical
environment as a requirement and the second reason is to provide a better Quality
of Service (QoS). This project describes the distributed system with a video
processing application. The aim is to deal with the distributed system as one
system thus minimizing delays while keeping the predictability in a real-time
context. Time is the most crucial ingredient for the real-time systems in the sense
that the tasks within the application should meet with the task deadline.

With respect to the distributed system we need to consider a couple of issues. The
first one is to have a distributed system and a modular application that is mapped
to multiple system nodes. The second issue is to schedule the modules
collectively and the third is to propose a solution when shared resource(s) (such
as the network) are required by several nodes at the same time.

In order to provide a distributed system, we connect 2 cameras with 1 PC via a
network switch. Video processing has two parts; the first part consists of creating
a frame, encoding the frame, and streaming it to the network and the second part
deals with receiving the frame, decoding the frame, and displaying the frame. The
first part is running on the cameras and the second part is running on the PC.

In order to give real-time behavior to the system, the system components should
provide the real-time behavior. The camera is installed with the µC/OS-II (Open
Source Real-time Kernel). We investigated the Real-time Operating System and
its installation on the PC.

In order to provide resource management to the shared resources, we designed
and implemented Admission control which controls access to the required
connection to the PC. We designed and implemented a component to delay the
start of any of the cameras in order to synchronize the network utilization. We
also designed an enforcement component to allow the tasks to run as much as
they should and monitor the frames streamed to the network.

The results show that with the Admission Control, cameras only send as many
frames as the network can transport. The given start delay to the system shows
that overlap can be prevented, but we could not evaluate it because of the semi-
tested/unreleased code which is provided by the camera providers. The source
code we used is the test source code which was not mature.

2
 Software Architecture and Networking

xii

TABLE OF CONTENT

FOREWORD .. VII

PREFACE .. VIII

ACKNOWLEDGEMENTS .. IX

EXECUTIVE SUMMARY ... XI

LIST OF FIGURES .. XIV

LIST OF TABLES .. 17

GLOSSARY ... 18

1. INTRODUCTION.. 19

1.1 CONTEXT ... 19

1.2 PROJECT SCOPE AND GOALS .. 19

1.3 STAKEHOLDERS ... 20

1.4 DELIVERABLES .. 20

1.5 REPORT OVERVIEW ... 20

2. DOMAIN ANALYSIS .. 22

2.1 REAL-TIME SYSTEMS .. 22

2.2 REAL-TIME OPERATING SYSTEM (RTOS) ... 23

2.3 REAL-TIME DISTRIBUTED SYSTEMS ... 27

2.4 REAL-TIME STREAMING PROTOCOLS ... 30

3. PROBLEM ANALYSIS ... 33

3.1 INTRODUCTION ... 33

3.2 1-CAMERA SYSTEM ... 33

3.3 2-CAMERA SYSTEM ... 41

3.4 SUMMARY POSSIBLE PROBLEMS ... 41

4. SYSTEM REQUIREMENTS AND WORK PLAN ... 43

4.1 FUNCTIONAL REQUIREMENTS .. 43

4.2 EXTRA-FUNCTIONAL REQUIREMENTS .. 45

4.3 WORK PLAN... 46

5. FEASIBILITY ANALYSIS .. 47

5.1 INTRODUCTION ... 47

5.2 REAL-TIME LINUX INVESTIGATION .. 47

5.3 MULTI-MEDIA PLAYER SELECTION (VLC) ... 49

5.4 SYSTEM HARDWARE AND SOFTWARE ORGANIZATION....................................... 50

5.5 INITIAL EXPERIMENT .. 50

5.6 PROBLEMS AND SOLUTIONS .. 62

5.7 SOLUTION SPACE .. 66

6. SYSTEM ARCHITECTURE AND DESIGN .. 67

6.1 INTRODUCTION ... 67

6.2 SYSTEM ARCHITECTURAL .. 67

6.3 SYSTEM DESCRIPTION .. 69

6.4 LOGICAL VIEW .. 71

6.5 PROCESS VIEW ... 83

6.6 DEPLOYMENT VIEW ... 86

7. IMPLEMENTATION AND PROBLEMS ... 90

7.1 TASK DIVISION AND SYNCHRONIZATION ... 90

7.2 SYSTEM INTEGRATION AND INTERFACES ... 93

xiii

7.3 IMPLEMENTED UNITS AND RESULTS .. 95

7.4 MAIN SOFTWARE PROBLEMS .. 99

8. CONCLUSION .. 102

8.1 RESULTS AND CONCLUSIONS ... 102

8.2 RECOMMENDATION AND FUTURE WORK ... 103

9. PROJECT MANAGEMENT .. 105

9.1 PROCESS ... 105

9.2 PLANNING AND TRACKING .. 105

9.3 RISK MANAGEMENT .. 106

9.4 RETROSPECTIVE .. 107

BIBLIOGRAPHY... 109

APPENDIX-A ... 112

DEBUGGING .. 115

ABOUT THE AUTHOR ... 118

xiv

List of Figures

Figure 1-Simple View of Real-Time Systems ... 22

Figure 2-Throughput-Latency Relation ... 23

Figure 3-Model of Periodic Task ... 24

Figure 4-VDG Camera ... 25

Figure 5-µC/OS-II Task States .. 25

Figure 6-Low Quality Image (a), High Quality Image (b) 26

Figure 7-Schematic View of Distributed System ... 27

Figure 8-Real-Time Distributed System End-To-End Timing 27

Figure 9-FPPS Illustration ... 29

Figure 10-FPNS Illustration, Legend is Same as Figure 9 29

Figure 11-Hierarchical Scheduling .. 30

Figure 12-Real-Time Protocols Network Layer Structure 30

Figure 13-RTSP Operations ... 31

Figure 14-Overview RTSP Request via Browser... 31

Figure 15-Overview of Original System Setup with 2-Camera 33

Figure 16-Single Camera ... 34

Figure 17-Conceptual View of Distributed Video Processing 35

Figure 18-Application High-Level Overview of Camera 36

Figure 19-(A) Abstract Hardware View of Camera, (B) Data Flow on Camera .. 36

Figure 20-How Encoded Buffer is filled .. 37

Figure 21-Encoded JPEG Packet with Network Protocol Headers 38

Figure 22-Conceptual View of Video Processing without Streaming 38

Figure 23-Conceptual View of Video Processing with Streaming....................... 38

Figure 24-Packetizing Illustration .. 39

Figure 25-Two Cameras are Connected to PC ... 41

Figure 26-2-Camera System Network Problem ... 41

Figure 27-Standard 2.6 Linux Kernel With Preemption 48

Figure 28-Command to check whether RTOS is correctly Patched or Not 49

Figure 29-General Format of Command that turns Non-Real-Time Task into
Real-Time Task ... 49

Figure 30-Camera System Software Organization ... 50

Figure 31-Caching Experiment: Caching Size = 1000 Milliseconds 52

Figure 32-Caching Experiment: Caching Size = 0 Milliseconds 52

Figure 33-WireShark Output Example .. 53

Figure 34-Frame Rate and Number of Packet per Frame of Image at Different
Quality Levels for Average Case Measurements .. 54

Figure 35-Total Number of Packets per Second in Different Qualities for Average
Case Measurements ... 55

Figure 36-Task Execution Time Period in Worst-Case 55

xv

Figure 37-Worst-Case Image consisting Lots of Strips, Resolution 400x40056

Figure 38-Test Case Setup Ingredients ...56

Figure 39-Frame Rate and Number of Packet per Frame of Image at Different
Quality Levels for Worst-Case Complexity Measurements58

Figure 40-Total Number of Packets per Second in Different Qualities for Worst-
Case Complexity Case Measurements ...58

Figure 41-Number of Frames for Each Quality Level in 1 Second59

Figure 42-Time Measurements for Different Quality Level for Worst-Case
Complexity Measurements (in 1 Second) ..60

Figure 43-Time Difference between Sequential Two Frames at Quality Level 50
 ...60

Figure 44-Arrival Time of Received Packets at Quality Level 5061

Figure 45-Processing and Transfer Time in between (Millisecond)62

Figure 46-1-Camera System, with 1 processor the state of the processor and the
network ..63

Figure 47-Problem-3: Inadequate Bandwidth ...65

Figure 48-2-Camera System: 2 Cameras Stream Frame and Overlap Occurs,
Same Legend in Figure 47 ...65

Figure 49-Overall System Architecture ..67

Figure 50-System Layer Architecture Component View69

Figure 51-Communication between the system nodes ...70

Figure 52-Architectural Reasoning Diagram ..70

Figure 53-Txt File contains Information gathered from Worst Case
Measurements, Explained in Feasibility Analysis Chapter72

Figure 54-Storage Unit contains Information gathered from Worst Case Scenarios
in Advance, See Chapter 5. ..72

Figure 55-Message Sequence that Admission Control Unit accepts Connection
from Camera Application ..73

Figure 56-Admission Control Unit deny Connection ...73

Figure 57-Connection Existence Check for Registered Cameras75

Figure 58-Resource Enforcement Unit applied within Camera Application76

Figure 59- Possible Scenario for Preventing Packet Overlap on Network77

Figure 60-Giving Start Delay is processed within Camera Application81

Figure 61-Time Unit Difference Representation on Cameras and on PC83

Figure 62-Interaction Overview Among VLC, Camera Application and AC85

Figure 63-Components Deployment and Architectural Decision Diagram89

Figure 64-Video Task divided into Two Sub-Tasks ...90

Figure 65-Video Task Functionality divided into Two Sub-Functions91

Figure 66-Original Application Function Parameter Transfer91

Figure 67-Message Synchronization between Tasks ..91

Figure 68-Task Synchronization and Message Synchronization Conceptual View
 ...92

Figure 69-Interface between System Nodes ...93

xvi

Figure 70-Implementations within Camera .. 93

Figure 71-Admission Control and Bandwidth Availability in PC 94

Figure 72-Admission Control .. 94

Figure 73-Bandwidth Availability ... 95

Figure 74-AC-Management Protocol Communication with Camera Application 96

Figure 75-Camera Application Response to AC .. 96

Figure 76-Connection Availability Checking .. 97

Figure 77-Enforcement Units Integration to Camera [18] 97

Figure 78-Overlap Scenario ... 99

Figure 79-Incomplete Received Frame .. 100

Figure 80-Unhandled Exception Error ... 100

Figure 81-Weekly Meeting Presentations .. 105

Figure 82-Microsoft Office Project tool, iterative planning 106

Figure 83-Microsoft Office Excel Milestone Trend Analysis 106

Figure 84-CatapultEJ2-Ethernet –to-JTAG device: Yellow Wires are called
Flying Leads, and Black-Green Head is called JTAG Print Head; JTAG
Print Head is plugged to Camera ... 115

Figure 85-Connection between Nodes: Camera, PC and Catapult 116

Figure 86-Message Sequence among PC-Catapult-Camera: Camera Application
Upload and Streaming ... 117

List of Tables

Table 1-Abbreviations and Descriptions ..18

Table 2-List of Stakeholders and Expectations ..20

Table 3-List of Deliverables ...20

Table 4-Timing Attributes Description...24

Table 5-RTSP Streaming Commands ...30

Table 6-Camera Platform Hardware Specifications ...34

Table 7-Hardware Specifications ...35

Table 8-Physical Restriction System Cause Problems ...41

Table 9-RTOS Functional and Nonfunctional Requirements and Rationalities ...43

Table 10-Multi-Media Player Functional Requirements44

Table 11-List of Initial Experiments and reasoning..51

Table 12-Message Density on Network ..57

Table 13-Problem-1 and Solutions ...62

Table 14-Problem-2 and solutions ..63

Table 15-Problem-3 and Solutions ...64

Table 16-Additional Aspects for Problem_3 ..65

Table 17-Admission Control Scenarios and Actions ..74

Table 18-Bandwidth Availability Unit Scenarios and Actions74

Table 19-Resource Enforcement Unit Design Decision75

Table 20-The Delay Unit Scenarios and Actions ...77

Table 21-Prevent Overlap Design Decision ...78

Table 22-Prevent Overlap Solution Approaches ..78

Table 23-Delay At Once, Tasks State Design Decisions78

Table 24-Video Task Division and Buffering ..79

Table 25-Delay Unit Sequence Diagram Items ..79

Table 26-Components Deployment Design Options ..86

Table 27-Summary of Deployment Design Decision ...87

Table 28-Functionalities and Interfaces within Camera Application93

Table 29-Functionalities within Admission Control ...94

Table 30-Delay At Once Abbreviations ...99

Table 31-Most Important Identified Project Risks ...107

Table 32-Real-time Operating System Criteria ..112

Table 33-Selected RTOS ..114

Glossary
Table 1 shows the abbreviations and descriptions; it is alphabetically ordered.

Table 1-Abbreviations and Descriptions

Name Description

AC Admission Control

BA Bandwidth Availability

CPA Camera Application

CS Camera System

FPPS Fixed Priority Preemptive Scheduling

HSF Hierarchical Scheduling Framework

OMECA Optimization of Modular Embedded Computer-vision

Architectures

OOTI Ontwerpers Opleiding Technische Informatica

RTNCS Real-time Networked Camera System

RTOS Real-time Operating System

SAN Software Architecture and Networking Group

19

1. Introduction
This chapter presents the context and the goals of the current project. This is

followed by a brief analysis of the stakeholders and deliverables. The chapter

concludes with an overview of the structure of this report.

1.1 Context
Point-One is an open association of the high-tech industry and knowledge
institutes in the Netherlands aims at the research & development of nano-
electronics, embedded systems, and mechatronics.(1) The association funds
projects such as the Optimization of Modular Embedded Computer-Vision
Architectures (OMECA) project.

One of the technical objectives of the OMECA project is the invention of new
technologies and tools for automated optimization of the design of adaptive
networked real-time embedded systems with respect to multiple and contradictory
extra-functional properties, e.g., performance, robustness, reliability and power
consumption. (2)

The OMECA consortium consists of three enterprises, i.e., Prodrive, Gatsomer,
and Cyclomedia and two universities, i.e., University of Leiden and Eindhoven
University of Technology.

TU/e has many academic departments and groups, and the System Architecture
and Networking (SAN) group is one of them. The SAN group studies parallel and
distributed systems with an emphasis on resource constrained networked

embedded system and focuses on distributed media systems, wireless sensor
networks, automotive electronics, and more recently on lighting domains. (3)

The SAN group investigates real-time aspects of multi-media processing systems
in the surveillance domain. It has developed and implemented a two-level
Hierarchical Scheduling Framework (HSF) for a single processor using fixed-
priority preemptive scheduling (FPPS), see section 2.3.1.2 for an explanation of
HSF and section 2.3.1.2 for an explanation of FPPS. An HSF allows the
developer of each real-time application to validate the schedulability of the
application, independent of other applications. (4)

Moreover, the SAN group investigates application and system mode changes, in
particular, related to changing memory requirements in streaming applications
running on a single-processor platform. A system mode change is an overall
change in the allocation of resources to applications (tasks). An application mode
change is a change in the requested resources for that application.

The aim of the SAN group is to extend this work to networked devices (such as
cameras) and to provide a predictable networked system for real-time
environments as part of the OMECA project. Furthermore, the goal of this project
is to implement a demonstrator of such a system for the OMECA project.

1.2 Project Scope and Goals

The project addresses a real-time networking setup with video play-out as the
running example. The main focus of the report is on the results of the problem
analysis and the design process, from both a technical as well as managerial point
of view.

In the project proposal report, the goals are given as follows:

• Have a distributed platform, supported by a Real-Time Operating System

(RTOS) on each node; the setup consist of two cameras and a PC. These

cameras transmit streams to a PC.

• Have an example application that shows resource management in a

distributed context, two cameras and a PC.

20

• Have a protocol for communication between the real-time Kernels which

should enable the integration of real-time communication and distributed

control in order to admit system-wide decisions.

1.3 Stakeholders

This is the author’s final project for the Software Technology program of the Stan
Ackerman Institute (SAI). The main stakeholder of this project is the SAN group,
who is a partner in the OMECA project. Prodrive is one of the other partners in
the OMECA project and also provides cameras for the current project.

Table 2 presents the roles of the most important stakeholders and expectations.

Table 2-List of Stakeholders and Expectations

Name Roles Expectations

Ad Aerts

General director of
OOTI SAI program.

To have a technical report which contains
system architecture, system design and
project management written in decent
English.

Johan

Lukkien

Scientific director of
OOTI SAI program.

To have a technical report which contains
the system architecture, system design
explained in decent English.

OMECA project
group leader.

To have proper investigation of
alternatives related to project goals within
the project scope.

Antonio

Liotta

OMECA project
researcher.

To have a prototype that demonstrates the
resource reservation and real-time
scheduling in the distributed network
system.

Other relevant stakeholders include software engineers and software designers
who need an extensible and understandable design in order to implement new
features. Deployment managers are also a relevant stakeholder due to the fact that
they need to deploy the current project and integrate it with the distributed
networked systems’ components. Therefore, the project should be well
documented.

1.4 Deliverables
In this section, a set of deliverables of the current project are defined according to
the SAN group and TU/e needs. This set is presented in Table 3.

Table 3-List of Deliverables

Deliverables Description

Prototype This includes software, which demonstrates the resource
management, and distributed scheduling in the real-
time, distributed video processing application.

Technical Report
(this document)

This document describes the design and implementation
of the software, the feasibility study that includes all the
problems encountered while combining standard and
nonstandard technologies, as well as the results and
conclusions of the current project.

Supporting
Documents

These include project management, analysis and
architecture documents, and a user guide.

1.5 Report Overview

• Chapter 2 Domain Analysis:

This chapter provides information on the terminologies that will be used in

the following chapters. In the first part, real-time systems are explained

21

briefly. The second part explains the related software components: real-time

operating systems and the video processing application. Then real-time co-

coordination in distributed systems is explained and finally appropriate

protocols for the real-time streaming are given.

• Chapter 3 Problem Analysis:

This chapter presents an in-depth analysis of the camera system, its setup

and problems. The camera system setup originally has two cameras and one

PC. This chapter is divided into two main sections: camera system setup

with one camera (1-camera system) and with two cameras (2-camera

system). In the 1-camera system, hardware and software components are

examined and their associated problems are given. Then, additional

problems in the 2-camera system are pointed out.

• Chapter 4 System Requirements and Work Plan:

This chapter presents all the functional and extra-functional requirements

along with the rationale for each of them. Some of the requirements are

given in the project description report. Nevertheless, new requirements are

derived from the given requirements such as the choice of RTOS and multi-

media player.

• Chapter 5 Feasibility Analysis:

This chapter starts with a comprehensive investigation of the real-time

operating system and the multi-media player. Then the initial measurements

of the camera setup are given. Finally, the solution space is described.

• Chapter 6 System Architecture and Design:

This chapter provides a comprehensive architectural overview of the current

project. It presents the architectural of the system; it defines the main

components and the interaction between them by making use of several

scenarios. Two diagram notations are used: a new proposal for architectural

knowledge management (5) and UML.

• Chapter 7 Implementation and Problems:

This chapter gives a detailed explanation of the component implementation.

First of all, the video task division and synchronization are explained. Then

a complete system description is given and the interfaces and components

are explained. This is followed by a description of the Management Protocol

and explanation of the delay component. The chapter is concluded by stating

the software problems on the camera application and the possible resolution

of these problems.

• Chapter 8 Conclusion:

• This chapter presents the overall conclusions of the “A Real-Time

Networked Camera System” project. Section 8.1 states all the conclusions,

section 8.2 provides some recommendations and suggests a possible future

extension of the current project.

• Chapter 9 Project Management:

This chapter introduces the various issues that are relevant to project

management. The process used to manage the project is described in the first

part. Other related subjects such as Breakdown structure, Milestone Trend

Analysis, and Risk management are also presented in this section. A short

retrospective of the project encloses the chapter.

22

2. Domain Analysis
This chapter provides information on the terminologies that will be used in the

following chapters. In the first part, real-time systems are explained briefly. The

second part explains the related software components: real-time operating

systems and the video processing application. Then real-time coordination in

distributed systems is explained and finally appropriate protocols for the real-

time streaming are given.

2.1 Real-time Systems
A Real-time System (RTS) is a system in which the correct operation depends not
only on the functional correctness of computed values but also on the time during
which these results are produced. RTSs cover a broad spectrum from very simple
devices to very complex machines which are involved in the gathering and
processing of data, and providing timely responses. Response time is the
distinguishing factor between real-time and non-real-time systems. The design of
non-real-time systems aims to have maximum throughput whereas the aim of
real-time systems is to guarantee that all the tasks are processed in a given time.
Figure 1 shows a simple view of the real-time systems domain. (6)

Figure 1-Simple View of Real-Time Systems

There are two underlying objectives in RTS design: predictability and low
latency.

• Predictable means that it should be possible to show, demonstrate, or prove

that requirements are met subject to assumptions, such as concerning failures

and workloads. In case of static environments, the overall system behavior

can be predicted. For dynamic environments, however, it is hard to predict.

• Latency means the sojourn time of the packets in the buffer (time spent in the

buffer) that causes a delay between the sending and receiving. Figure shows

the latency.

23

Figure 2-Throughput-Latency Relation

If in the long run the arrival rate θin > θout, the departure rate, the buffer

eventually fills up completely and packets will be overwritten causing the

application to suffer packet loss. If in the long run θin < θout, the θout process

will eventually run out of work and suffer due to starvation. So on average θin = θout is the desired situation: there is balance between the input rate θin and the

output rate θout. For example: When assuming that the average occupancy of the

buffer is 4 and θin = θout = θ, the latency is “4/ θ”.

The tolerance for the latency depends on the system. Real-time systems are

classified in three types: hard, firm, and soft RTSs. The distinction between them
is based on the flexibility with which they handle time constraints.

• A hard real-time system is required to produce its results within certain

predefined time bounds. An example of a hard real-time system is a flight

control system.

• A firm real-time system is associated with some predefined deadlines before

which it is required to produce results. However, unlike a hard real-time task,

even when a firm real-time task does not complete within its deadline, the

system does not fail. An example of a firm real-time system is a video

conferencing system.

• A soft real-time system is a system in which deadlines are important but

which will still function correctly when deadlines are occasionally missed.

An example of a firm real-time system is an online database.(7)

2.2 Real-Time Operating System (RTOS)

One major component in the design of real-time systems is the Operating System
(OS). The OS must provide basic support for guaranteeing real-time constraints,
supporting fault-tolerance and distribution, and for integrating time-constrained
resource allocations and scheduling different resource types: sensor processing,
communications, CPU, memory, and other forms of I/O. (8)

A real-time OS (RTOS) supports real-time applications (RTAs). RTAs have the
requirement to meet task deadlines in addition to the logical correctness of the
results. RTAs can be both embedded applications and desktop applications. In
most cases, RTAs are embedded on customized devices which can be used for
special purposes; in this project Prodrive (OMECA partner) provides two cameras
and these cameras are customized specifically for video capturing and processing
with the installation of the µC/OS-II real-time kernel (Version 2.88).

An RTOS allows RTAs to be designed and expanded easily. The use of an RTOS
simplifies the design process by splitting the application code into separate tasks.

 x x x x

θin

θout

buffer

packet

24

It allows RTA designers to make better use of system resources by providing
valuable services such as semaphores, mailboxes, queues, time delays and time
outs.(9) For better understanding of the report, some RTOS terminology is briefly
explained in Figure 3 and Table 4.

Generally, real-time tasks are categorized as periodic or aperiodic. Periodic tasks

are initiated on regular time intervals and have to be executed within that time
interval. Aperiodic tasks occur randomly, i.e., these tasks have irregular arrival
times. (10) Timing attributes and necessary terms (task, job) are described in
Table 4 and they are visualized in Figure 3. (11)

Table 4-Timing Attributes Description

Attributes Definition

Task Consists of a series of instructions in response to some
event(s).

Job Instance of a task.

Фi Phase (offset) of task i, release time of its first instance.

Relative Deadline Length of time between release time and absolute
deadline.

Absolute Deadline Time by which the execution of a job is required to
complete.

Preemption Task can be interrupted and processor can be assigned to
another job at any time, for more detailed information
please refer to section 2.3.1.1

Response Time Length of time between the release and completion.

Completion Time Time in which the execution of a job is completed.

Execution Time Maximum length of time a task needs to execute.

Period Minimum time between the releases of a job.

Release Time Time at which a job becomes available for execution.

WCET Worst-Case Execution Time of a job.

The visualization of the terms is given in Figure 3.

Figure 3-Model of Periodic Task

The following two sections contain information on the real-time kernel and the
camera application.

2.2.1 Real-Time Kernel µC/OS-II

µC/OS-II is a real-time preemptive OS designed for embedded systems. It is
delivered with a complete ANSI C source code and documentation. It is
developed with portability in mind; so various ports to different CPU

25

architectures are available. For example, the Stretch processor (Figure 4) is the
processor that is used in the camera as used in current project.

Figure 4-VDG Camera

µC/OS-II is composed of several components and each component consists of at
least one module. The most important component is the kernel component. It
provides basic OS functionalities: semaphores, event flags, mutual exclusion,
message boxes and queues for synchronization. Task, time & timer management,
and fixed size memory block management are also provided by the µC/OS-II
real-time kernel. In addition, it provides network modules in order to interact with
networks, e.g. HTTP, TCP/IP and UDP protocols.(12)

µC/OS-II is capable of managing up to 250 application tasks but in this specific
project µC/OS-II only needs to provide 64 tasks. The most important tasks are:
Core Task; Idle Task, and Timer Management Task. The Core Task starts the
other tasks, the Idle Task receives the processor time when there is no task
running and when it is doing nothing, and the Timer Management Task manages
the timer inside the µC/OS-II. It counts down the specified time and when the
time is up, it executes its assigned functions.

Each task has a unique priority. Task priority is inversely correlated with the
scheduling order of the task, i.e., the highest prioritized task has the smallest
priority number and is scheduled first.

Figure 5 shows the life cycle of tasks in µC/OS-II. When a task is in the Ready

state, the scheduler (dispatcher) dispatches the highest prioritized task which is in
the Ready queue. The scheduler in µC/OS-II processes the tasks using the fixed
priority preemptive scheduling (FPPS) algorithm. So, when during execution a
higher priority task becomes ready, the higher priority task will preempt the
running task. If during execution a task is unable to continue, perhaps due to a
semaphore, it will be placed in the waiting group and the next highest priority
task will be selected by the scheduler to run.

Figure 5-µC/OS-II Task States

26

Besides tasks, µC/OS-II also manages Interrupt Service Routines (ISRs). These
are routines that can interrupt any task, at any time, to perform a specific set of
actions. Usually, these are important actions that need to be handled quickly.

2.2.2 Video Processing

Video processing is used as an example RTA in the current project. A video is a
series of images and a substantial part of the video processing is done on an
image by image basis. There are two major motives for the image processing. The
first motive is the improvement of pictorial information for human perception
which leads to enhancing the image quality so that it will have a better look. The
second motive is efficient storage and transmission; for this purpose the
individual images are compressed.

Video communication usually relies on compressed video streams. Transmission
of uncompressed (raw) video streams is impractical when the transmission
capacity is limited. Storage of raw video streams is impractical as well, when the
memory medium capacity is limited. Excessive bandwidth is needed for both the
communication channel and storage devices. Processing speed of the tasks and
memory limitations often impose serious constraints on transmission rates. (13)

Over the last decade, a number of compression methods and video formats have
been released by international organizations. Two major compressions standards
are H.26X and MJPEG which are both used for high quality video applications.
MJPEG is the video format used in this project. MJPEG is simply defined as
encoding each individual image separately in the video sequence using the JPEG
compression. The JPEG standard is given and a good introduction can be found
on. (14)

For image specifications, there are two important metrics; resolution and quality:

• Resolution refers to a number of pixels in an image. It is given generally in

height and width, such as 1920x1080 which means 1920 pixels for width and

1080 pixels for height.

• Quality refers to the perceptible visual quality of an image. By using lossy

coding methods, fewer bits are needed for representing the image at the

expense of a loss in quality.

(a)

(b)

Figure 6-Low Quality Image (a), High Quality Image (b)

Figure 6 displays the result of processing a single captured image with two differ-
ent quality levels: Figure 6-(a) presents low quality; the image is almost unrecog-
nizable, Figure 6-(b) presents high quality; the lines are discernable. The images
are captured from the image given in Figure 37.

27

2.3 Real-Time Distributed Systems

The concept of a distributed system is based on (15): “A Distributed system is the
hard- and software of a collection of independent computers that cooperate to
realize some functionality.” Therefore, the camera system used in this project is a
distributed system because it consists of two or more distinct cooperating ma-
machines to achieve video capturing and playback functions.

Figure 7-Schematic View of Distributed System

Figure 7 shows a schematic view of a possible organization of a distributed sys-
tem. There are multiple machines which are linked to each other via a network.
There is a single application which has multiple tasks that are processed on dif-
ferent machines. Furthermore, there are middleware services on each machine
that provide the coordination for task processing within the distributed system.

There are two main motivations for designing a distributed system:

• The problem statement is inherently distributed.

• It is chosen as part of the solution, in order to achieve certain extra-functional

properties.

Figure 8-Real-Time Distributed System End-To-End Timing

Figure 8 shows an application consisting of cooperating tasks, labeled T (1, 2, and
3), in a distributed environment. Communication is both internal, between tasks
on the same machine, and external, between tasks on different machines.
Communication between the tasks on different machines is provided via
messaging, it also shows the dependency between the tasks, e.g., T3 depends on
T2 and T2 depends on T1.

In distributed RTSs, time constraints are applied to collections of cooperating
tasks, and not only to individual tasks. Current timing must be accomplished
under a single end-to-end timing constraint. The timing on the network should be
considered as well.

28

In RTSs, resource demands often change dynamically over time and are not
known a priori. Also resource availability may change over time. For these rea-
reasons RTAs need a capability to adapt to changing conditions in a way that
does not violate their temporal requirements in an uncontrollable manner.(16)

2.3.1 Resource Reservation

Resource reservation implements the temporal isolation of the resource, which is
the capability of a set of processes running on the same node without
interferences concerning their temporal constraints.(17)

Resources are virtualized by resource reservation so that tasks cannot access a
resource directly. Real-time tasks are guaranteed a requested share of such a
virtualized resource. Various kinds of resources can be virtualized in such a
fashion, such as disks, network (bandwidth), and processor (CPU) time. The
following mechanisms are required in order to guarantee resource
reservation.(18)

• Admission: establishing whether to accept a new request or not.

• Scheduling: scheduling the tasks according to their reservations and the

admission policy.

• Monitoring: keeping track of the execution time used by applications.

• Enforcement: ensuring that tasks do not utilize more resources than they

should.

2.3.1.1 Scheduling

Scheduling is the process of deciding which task is granted access to a shared
resource at a given time. Scheduling of real-time tasks is very different from
general scheduling. Ordinary scheduling algorithms attempt to ensure fairness
among tasks, progress for any individual task, and absence of starvation and
deadlock (19). Two types of scheduling are discerned in this report. The first type
is fixed-priority-scheduling (FPS) and the second type is dynamic-priority-
scheduling (DPS).

There are three types of FPS: fixed priority pre-emptive scheduling (FPPS), fixed
priority non-pre-emptive scheduling (FPNS) and fixed priority scheduling with
deferred preemption (FPDS). In FPS, the priority of a task remains constant
during the execution, while in DPS, as the name suggests, it may change
dynamically during the execution of the task, according to the relative deadlines
of other tasks.

There are two types of DPS: earliest-deadline-first-scheduling (EDF) and least-
slack-time-scheduling (LSTS). There are also two more scheduling methods for
tasks that have the same priority; Round-Robin (RR) and First-In-First-Out
(FIFO).

In preemptive scheduling, the currently executing task may be preempted, i.e.,
interrupted, if a more urgent task requests service.

29

Figure 9-FPPS Illustration

In Figure 9, Task_1 has a higher priority than Task_2. When Task_1 requires
using the resource even though it is used by Task_2 at that moment, Task_1
preempts Task_2 and starts to use the resource till it complete its job or is
preempted by another high priority task.(20)

In non-preemptive scheduling, the currently executing task will not be interrupted
until it decides on its own to release the allocated resources. Non-preemptive
scheduling is reasonable in a task scenario where many short (compared to the
time it takes for a context switch) tasks must be executed. (21)

Figure 10-FPNS Illustration, Legend is Same as Figure 9

In Figure 10, Task_1 has a higher priority than Task_2. While Task_2 is using the
resource, Task_1 requests the same resource. However, Task_1 is not allowed to
use the resource till Task_2 completes its job.

2.3.1.2 Hierarchical Scheduling Framework

In Hierarchical Scheduling Framework (HSF), a system can be recursively
divided into a number of subsystems that are scheduled by a global (system-level)
scheduler. Each subsystem contains a set of tasks that are scheduled by a local
(subsystem-level) scheduler. HSFs are inherently based on virtualization
techniques (i.e. reservations), providing (temporal and spatial) isolation between
applications, and are therefore an essential ingredient for robustness. (22)

time

Task_1

Task_2

idle

busy

Legend

Task arrives

 Task_1 Task_2Priority :

Task_1

Task_2

time

Execution time_1

Execution time_2

Response time_1

 Task_1 >Priority :

30

Virtualization is the methodology of dividing the resources of a computer, e.g.
processor, network, into multiple execution environments. Thus, it isolates the
resources needed by an application from competing applications. Figure 11 de-
picts the Hierarchical Scheduling with an illustration of global-local schedulers,
subsystems, and shared resources.(23)

Figure 11-Hierarchical Scheduling

Tasks, located in arbitrary subsystems, may share logical resources.

2.4 Real-Time Streaming Protocols

In a network, connected machines communicate with each other using a variety
of protocols. Since the project discussed in this report, is concerned with real-time
video applications, we briefly explain the real-time streaming protocols.

A number of real-time protocols exist for the different needs of multimedia
streaming over the network as shown in Figure 12. These protocols are differenti-
ated, based on their application fields. In Figure 12, real-time protocols are illus-
trated in the structure of network layers.(24)

Figure 12-Real-Time Protocols Network Layer Structure

• The Real-time Streaming Protocol (RTSP):

o Allow a media player to control the transmission of a media stream, i.e.
pause/resume, repositioning of playback, fast forward and rewind.

o Retrieve a media object from a server.
o Invite a server to add a media object in an existing session.

Table 5 describes the RTSP streaming commands.

Table 5-RTSP Streaming Commands

Message Description

Options Get available methods, e.g. DESCRIBE, SETUP, TEARDOWN,
PLAY, PAUSE.

31

Describe Get a (low level) description of the media object.

Setup Establish the transport.

Play Start playback, reposition.

Pause Halt delivery, but keep state.

Teardown Remove state, session.

Figure 13 shows the possible RTSP messaging sequence between the media serv-
er and client.

One of the requests from the PC is the RTSP SETUP message. It contains a local
port for receiving RTP data. Hence, the server knows which port it will use to
send RTP packets to the client side.

Figure 13-RTSP Operations

• The Real-time Transport Protocol (RTP) is an internet protocol which

defines a standardized packet format for delivering audio and video over IP

networks. RTP runs on top of the User Datagram Protocol (UDP). If

streamed packets get lost, they are not be retransmitted. It is more important

to transmit the stream in an RT fashion. For this reason, RTP runs on top of

UDP, a connectionless protocol. TCP is less suitable for real-time protocols

because of its retransmission scheme.(25)

• The Real-time Control Protocol (RTCP) provides the periodic transmission

of control packets to all participants in the session using the same

distribution mechanism as the data packets, in this case RTP. It uses a port

number which is related to the RTP port number, e.g. if the RTP port

number is n, the RTCP port number is (n+1). (26)

Figure 14-Overview RTSP Request via Browser

Figure 14 illustrates the real-time streaming protocol usage by a web browser
equipped with a media player plug-in. When a user requests RTSP streaming via
a web browser, the plug-in requests the RTSP streaming from the streaming
server.

32

In summary, this project focuses on the real-time distributed video processing. In
this chapter the domain and the related terms were given. First of all, real-time
systems and their terminology were defined. Then the ingredients for the RTS
were given: RTOS and RTA. Subsequently, the distributed systems and the
additional components were given. Also, the coordination of the distributed
systems and appropriate protocols were explained.

33

3. Problem Analysis
This chapter presents an in-depth analysis of the camera system, its setup and
problems. The camera system setup originally has two cameras and one PC. This
chapter is divided into two main sections: camera system setup with one camera
(1-camera system) and with two cameras (2-camera system). In the 1-camera
system, hardware and software components are examined and their associated
problems are given. Then, additional problems in the 2-camera system are
pointed out.

3.1 Introduction

Recall that the goals of the project are:

• Have a distributed platform, equipped with a Real-Time Operating System

(RTOS) on each node; the setup consists of two cameras and a PC. These

cameras transmit streams to a PC.

• Have an example application that shows resource management in a

distributed context, two cameras and a PC.

• Have a protocol for communication between the real-time Kernels which

should enable integration of real-time communication and distributed control

in order to admit system-wide decisions.

In order to realize the goals, the system shown in Figure 15 is used. The system
setup is limited to two cameras and one PC. Two cameras are connected to the PC
via a network switch and each component is connected to the network switch
with an Ethernet cable as a Local Area Network (LAN). The system provides end
to end communication between the nodes.

Figure 15-Overview of Original System Setup with 2-Camera

The description of the distributed system is divided into two main sections: 1-
camera system and 2-camera system. The 1-camera system is the baseline for the
2-camera system. In the first section, the 1-camera system, the hardware, and
software details are described. The physical constraints and the systems are
examined in the second section; the 2-camera system is described with respect to
the information which is given for the 1-camera system, in order to define the
possible problems on the network.

3.2 1-Camera System

The components used in the 1-camera system are divided into two categories:
hardware and software. First, each hardware component and the software running
on the hardware components are explained. Thereafter, physical restrictions and
possible problems are given.

3.2.1 Hardware

The hardware of the 1-camera system consists of one camera and one PC. They
are connected to each other via a network switch. As shown in Figure 16, the
setup consists of one camera transmitting a stream to a PC over the network.

34

Figure 16-Single Camera

3.2.1.1 Camera Hardware

The camera is a security camera designed by VDG security which is a
commercial vendor from the surveillance domain. There are two dependent
physical components in the camera: the Sensor board and the Video Processor

board which are connected to each other via the data port. The Sensor board is
used to capture raw video images and the Video Processor board is used to
encode the video images and transmits them over the network. Table 6 gives the
main specifications of two main parts of the camera.

Table 6-Camera Platform Hardware Specifications

Camera Platform Hardware

Component
Specifications

Sensor
Board

(P5MSB-A)

5Mega pixel

2592x1944
resolution

Video
Processor

Board
(VPA-PM)

Stretch S6105
Processor

RAM
(333

Ethernet Port

3.2.1.2 PC and Network Switch Hardware

The PC is a common desktop PC; the network switch is used to join multiple
machines together within one Local Area Network (LAN). Table 7 gives the main

Sensor Board

(P5MSB-A)

Video Processor

Board (VPA-PM)

Data Port

35

specifications of the PC, the network switch and the Ethernet Cables that are used
in the current project.

Table 7-Hardware Specifications

Hardware Component Specifications

Desktop PC Core i-5 Intel processor 3.2GHz

X86-64 architecture

RAM 3,87 GB

Network Switch 100 Mbps

Ethernet Cable 100 Mbps full-duplex

The key component for the experimental setup is the network switch. It provides
the communication between the camera and the PC by using an Ethernet cable.
The network bandwidth available is 100Mbps.

The hardware of the 1-camera system is the physical constraint of this project.
The speed of the processors, capacity of the bandwidth and size of the memory
are as given in Table 6 and Table 7.

3.2.2 Software

Figure 17 shows the distributed video processing on the 1-camera system. The
video application runs on the camera, it streams the compress video over the
network to the PC. The processing of the compressed frame is finalized on the PC
and the application on the PC decompresses and displays the frame.

Figure 17-Conceptual View of Distributed Video Processing

3.2.2.1 Camera Software

On the camera, the µC/OS-II real-time kernel is installed, see section 2.2.1. The
video application on the camera is composed of two core applications: the S6SCP
application and the S6AUX application. The S6SCP application is the main
application and uses the S6AUX application to speed up the encoding of video.
Figure 17 shows the application high-level overview: it is divided into three main
layers: Application Layer, Kernel Layer and Hardware Support Layer. In Figure
17, arrows illustrate the communication between the components and modules.
(27) The VPA-PM (Video Processor) board is supported by the VPA-PM library
containing the functionality needed to initialize the components on the board. The
VPA-PM library has a dependency on the Stretch (processor) BIOS (SBIOS)
library.

The P5MSB-A (Sensor) board is accompanied by a library. The P5MSB-A
library contains all the necessary functions and data structures for the operation of
the sensor board. It is dependent on the library of the video processor board. (27)

36

Figure 18-Application High-Level Overview of Camera

The application on the camera provides the following two services to the user:

• Video streams together with the audio and signaling streams, but these latter

are ignored in this project.

• Method for changing the configuration of the camera via a website, such as

quality, resolution, and brightness of the video image.

Figure 19-(A) Abstract Hardware View of Camera, (B) Data Flow on Camera

Figure 19-(A) shows the specific hardware components of the camera and Figure
19-(B) shows the process and data flow on the hardware components of the cam-
era. It shows the data buffering on the hardware as well.

As long as the camera is turned on the Sensor board creates a 5 Mega pixel frame
every 40 millisecond. Each frame is stored in the memory which is located on the

37

Sensor board; see Figure 19-B, Output_1. When a frame is stored in the memory,
an interrupt is raised and the video task, which is part of the application on the
video processor, is triggered to load the frame to the memory which is located on
the Video Processor board.

The following two sections contain detailed information about the video
processing. The video task is basically divided into three subtasks as shown in
Figure 19-B. The purpose of the division is to explicitly explain their processes.
The parts are shown in Figure 19-B: (I) encode, (II) packetize, and (III) send.

I. Frame Encode.

II - III. Frame Packetize and Send, they are explained together.

I- Frame Encode

A Raw Frame (RF) is captured by the Sensor board. In order to encode an RF, the
encoding function needs some input parameters, such as RF (see Figure 19-B
Input_1) quality, brightness, and sharpness. In the original setup these parameters
have default values. However, the user can change these parameters and the
resolution of the frame via the website. Whenever the parameters are changed, the
changes are applied to the next RF.

An RF is not encoded all at once; it is chopped into small pieces. Furthermore,
these are encoded one after another, because the processor cache does not have
enough space to process them all at once. The output of the encoding function is
an Encoded frame (EF); see Figure 19-B Output_2.

The encoding process is applied till a grabbed RF is completely encoded. The size
of the EF depends on two main parameters: the resolution of the RF and the
quality level of the encoding function. Process time is proportional to both the
frame and the quality level of the encoding function. For example; the processing
time for the frame displayed in Figure 6-(b) is higher than that of the one dis-
played in Figure 6-(a), because it has higher quality.

If there is no connection request after encoding the frame, the new RF is grabbed
and starts to be encoded.

II- Frame Packetize and Send

As long as there is a client connected to the camera, frames are packetized and
sent. The EF is stored in the encoded frame buffer which is located in main
memory. The encoded frame buffer is a single dimensional array and the size of
the buffer is by default 1024 KB (this can be increased). Figure 20 represents the
encoded frame buffer and is filled circularly. If the encoded frame buffer is larger
than the remaining (free) buffer size, then the algorithm starts replacing the
frames at the beginning of the buffer.

Figure 20-How Encoded Buffer is filled

In order to transfer the encoded frame over the network it is chopped into small
pieces, i.e. packets (see Figure 19-B Input_2). For each packet a 1400 bytes data
block is grabbed from the encoded frame buffer, and JPEG and RTP headers are
appended to the data block and stored in the send buffer which is located in main
memory as well. Note that the packet, which is not complete yet because the
required network headers still need to be added, is transferred to network buffer,
located in the main memory. The required network headers are prepared and

38

added to this packet (Figure 19-B Input_3) and transferred to the buffer (GMAC,
gigabit media access controller). Then the complete packet (Figure 19-B Out-
put_4) is transferred over the network.

The network headers are UDP, IP and Ethernet protocol headers. This process is
repeated until the end of the frame is reached. The size of the payload (the last
packet is exceptional) and the headers are always the same.

Figure 21-Encoded JPEG Packet with Network Protocol Headers

The number of packets transferred to the network depends on the size of the
encoded frame. If the RF is encoded with high quality, the size of the encoded
frame will be large. If the size of the EF is large, the number of packets
transferred to the network will be high as well.

1. Physical Restriction on Camera Application

The sensor board produces frames at a rate of 25 FPS (frame per second), because
it produces a frame every 40 millisecond, but the video task, part of the video
application, is not as fast as the RF creation process. For this reason the frame
rate of the EF-stream is less than the frame rate of the RF-stream. Moreover, the

ratio FPSEF / FPSRF drops as the quality of encoding improves.

Figure 22-Conceptual View of Video Processing without Streaming

Figure 22 illustrates the video processing: video image capturing and encoding.
Frame 2 is not encoded by the video task, because when the encoding of Frame 1
is completed, Frame 3 is already captured and Frame 2 is overwritten.

Figure 23-Conceptual View of Video Processing with Streaming

Figure 23 illustrates the video processing: video image capturing, encoding and
streaming. Frames 2 and 3 are not encoded by the video task, because encoding
the 1st frame and streaming over the network takes longer than capturing a frame.

39

In the current project, the video task is one complete task which contains
encoding and streaming.

2. Physical Restriction imposed by Network

In order to explain the possible physical restriction imposed by the network, one
simple example is analyzed in theory (this is an example explains the essence of
the packetizing and sending concept).

Analyze:
i. Environment:

1-camera system
ii. Functions:

a. Function_Encode(rawFrame, qualityLevel):
Used to encode the raw frame:
Parameters:
1. rawFrame:

Captured frame, big 2Mp size picture in Figure 22).
2. qualityLevel:

Applied to the rawFrame, to encode the frame with high quality.
Output: encodedFrame:
Result of the Function_Encode

b. Function_Network (encodedFrameSize, payloadSize, headersSize):
Used to chop the encoded frame to blocks and append the network
headers to those blocks.

Parameters
1. encodedFrameSize:

Size of the encoded frame in number of bits.
2. payloadSize:

1400 bytes
3. headersSize:

62 bytes, see Figure 21.
Output: networkPacket

When the raw frame is created it is quite a bit larger than the encoded frame,
despite the variations based on the resolution of a frame. The encoded frame
would be larger than the raw frame because of the addition of extra headings.
Nevertheless, the frame which will be transferred to the network is not the raw
frame but the encoded frame.

Figure 24-Packetizing Illustration

The camera captures an image at the size of 2Mp, hence the size of the raw frame
is 48Mbit (2Mp; pixel is 3 bytes and byte is 8 bits, so 2x3x8Mbits).

The range of the quality level is from 0 to 100. If the quality level is 100, then the
encoded frame size is almost the same as the raw frame size. Based on the
information, the quality level is assumed 100 and the size of the encoded frame
and the raw frame are the same: 48Mbits. In order to find the possible number of
packets that are derived from the encoded frame the following equation is used.

40

��������	
���	 = encodedFrameSize
payloadSize

Equation 1- Compute Number of Packets

��������	
��� = 48Mbits
1400	x	8bits = 4286	packets

Additional headers to individual payload is 62 bytes (62x8bits), see Figure 21.
The total size of the headers for encoded frame is 4286x62x8bits; 2125856bits.

The total size of the encoded frame which is transferred to the network is derived
from the equation as shown below.

	+,-./0.12-/0.+34.			 = 5 6267,.8
9:;<=>?@	ABCD=E

FGH
+ 	.JKL1.12-/0.+34.

 = 2125856 + 48000000			
 = 50125856bits	

The result shows that the size of all the transferred network packets together is
larger than the encoded frame.

The network switch to which the packets are transferred, has a 100Mbitpersecond
capacity. This capacity shows that the switch can transfer 100.000.000bit per
second. In order to find the possible frame bit rate on the network Equation 2 is
used.

N�
��O
�	 = NetworkCapacity
packetizedFrameSize

Equation 2-Compute Frame Bit Rate

N�
��O
�	 = 100000000bps
50125856 < 	2	T-/0.	U.-	8.KLJ1

The computation indicates that in one second the application on the camera can
properly stream only one full frame but not two frames. The result shows that
even if there is no more than one camera streaming, the size of the raw frame, the
applied quality level to the raw frame, and the network capacity affect the
network load too much. The created frame rate by the sensor board is 25FPS but
the streamed rate becomes 1 FPS because of the capacity of the network switch.

3.2.2.2 PC Software

On the PC a general purpose OS, viz., Windows7 is installed. The OS is
commercial and does not provide flexibility to the user and source code is not
available. However, the user has the flexibility to install many applications for
different purposes, e.g., a multi-media player for entertainment.

The multi-media player is the necessary application for completion of the
distributed video processing chain, see Figure 17. Video processing has stringent
timing needs, i.e., processing has to be done under time restrictions. However, a
general purpose OS such as Windows 7 does not consider the timing constraints
of the video application and it can be interrupted any time by other applications.
When a multi-media application is interrupted the video application cannot meet
the time constraints and process the frame.

41

There are lots of applications which are running on the PC that are competing for
the use the processor. Moreover, there is no estimation whatsoever which
application is processed when. The processors are fast enough but there is no
prediction on the utilization of the resources.

3.3 2-Camera System

The 2-camera system is composed of two cameras and one PC, see Figure 25. In
this system the main physical restriction is the bandwidth capacity which is
insufficient to carry out all of the packets, see section II: Frame packetize and

send. The details for the distributed video processing are given in section 3.1.

If the 2-camera system is considered as one complete system, the shared resource
is the network that is utilized by both cameras.

Figure 25-Two Cameras are Connected to PC

The bandwidth capacity is limited, see Table 8. Due to the characteristic of the
network switch and size of the bandwidth, when two cameras are started to
stream, packets are dropped by the network switch, and thus they are lost before
they reach the PC. As shown in Figure 26, two cameras are streaming frames
which overlap on the network switch. If the frame rate in bits is higher than the
available bit rate of the switch, then packets will be dropped by the network
switch.

Figure 26-2-Camera System Network Problem

3.4 Summary Possible Problems

In the current project, problems are hidden within the project goals. In order to
achieve the goals, problems need to be extracted. Based on this approach, the
problems are divided into five sections:

Table 8-Physical Restriction System Cause Problems

Problem Description Component

42

1

Data Loss Frame creation process on the Sensor
Platform is much faster than Frame
compression and streaming on the Video
Processing platform.

Camera.

2
Network bandwidth capacity is not
enough to handle with burst transmission.

Network

3 High bit rate Burst transmission Camera

4 High latency Caching of the frame PC.

5

Unpredictable
System

• System behavior is not clear.

• It is unknown how much resource is
utilized.

System nodes:
Camera,
Network and
PC.

43

4. System Requirements and Work

Plan
This chapter presents all the functional and extra-functional requirements along

with the rationale for each of them. Some of the requirements are given in the

project description report. Nevertheless, new requirements are derived from the

given requirements such as the choice of RTOS and multi-media player.

4.1 Functional Requirements

The Functional Requirements of this project will cover the functionalities
expected from the project.

Functional requirement-1:
The System setup must contain two real-time kernels that communicate with each
other.

Rationale:
The system setup contains three main components: two cameras and one PC. The
video processing is started on the camera (grabbing) and finished on the PC
(displaying). These separate processes are linked via the communication between
the camera and the PC. The two cameras do not communicate directly with each
other.

The two cameras are identical which means they have both identical hardware
and software. The OS on the cameras are µC/OS-II Real-Time Kernels. The off-
the-shelf PC is pre-installed with Windows7, a general purpose OS.

In order to provide a predictable distributed application, the system components
in which the application tasks are processed have to be equipped with an RTOS.
For this reason, the OS on the PC has to be replaced with an RTOS. Thus, the
RTOS gives a real-time task prioritization to the application over other
applications running on the PC.

In general, the selection of an RTOS is subject to criteria that may vary from
project to project and company to company. Table 9 shows the functional and
nonfunctional requirements used for the selection of the particular RTOS used in
this project.

Table 9-RTOS Functional and Nonfunctional Requirements and Rationalities

Functional Requirements

FR1 Non-commercial, Linux.

FR-1

Rationale
As a project stakeholder, we cannot afford to pay for the RTOS.

FR2 Open source

FR-2

Rationale
As a developer, it should be possible to modify the RTOS code.

FR3 Intel Processor compatibility, x86-64 architecture.

FR-3
Rationale

As a physical requirement, the PC hardware architecture is x86-64.

FR4 Well documented

FR-4

Rationale

Within the restricted time of the project asking a question about the
selected RTOS and waiting for the response takes some time,
especially in different time zones.

Non-Functional Requirements

NFR-1 Soft-real-time support.

NFR-1

Rationale
Video processing is soft-real-time application.

NFR-2 Real-time scheduler support.

44

NFR-2

Rationale
General scheduler does not meet real-time constraints.

NFR-3 Software developer should familiar with the source code of the OS.

NFR-3

Rationale

In restricted time period of the project will not be enough to learn
new programming language.

Functional requirement-2:
The system should support a video processing application that processes the
video stream completely: from frame creation to frame display.

Rationale:
This project aims to demonstrate schedulability between different nodes: the 2
cameras and the PC. Schedulability requires scheduling within all the nodes
including the network. The video processing application consists of several
components and these are processed on different system nodes: on the camera
(frame creation, encoding, and transfer) and on the PC (receive, decoding, and
display). In order to complete the video processing application, the PC needs to
be equipped with an application that can process the received frame.

The application on the PC should be a multi-media player. It is used for two
aspects in connection with the camera(s) and decode the frames and display the
decoded frames.

There are plenty of multi-media players, but there are some functional and
nonfunctional requirements to be considered as shown in Table 10.

Table 10-Multi-Media Player Functional Requirements

FR-1 Non-Commercial

FR-1

rationale

As project stakeholders, we do not want to pay for the multi-media
player.

FR-2 Open source

FR-2

rationale

As a developer, it should be possible to modify the multi-media
player code.

FR-3 Real-Time Linux Compatibility

FR-3

rationale
Not every multi-media player runs on all OSs.

FR-4 RTSP protocol support

FR-4

rationale

The given cameras can only communicate via RTSP protocol. For
this reason the multi-media player must support RTSP protocol.

FR-5 MJPEG decoder support

FR-5

rationale

The frame is compressed on the camera in MJPEG format, so it
should be decompressed with the same algorithm.

FR-6 Well documented

FR-6

rationale

As a software developer, without asking questions it should be
sufficient read the RTOS documentation.

Functional requirement-3:
The application should be distributed but scheduled collectively.

Rationale:
The video processing application is regarded as one application. Because a frame
is created and encoded on the camera, but decoded and displayed on the PC, the
application is a distributed application. Scheduling for the distributed application
as a whole provides the predictability to the entire system which is one of the
requirements in a real-time system that needs to be met. Section 2.1 contains
more about predictability.

See section 2.3.1 for a general explanation of the need for the resource
reservation in order get desired quality of frame for the FR-4 to FR-8. In the
system to be designed, three types of resources can be distinguished for which

45

reservations have to be made in a timely manner: network, processor, memory.
The network is shared in the system between the cameras for streaming the data
(frame or message). Processors are shared among the tasks for execution of the
task inside the components. Memory is used by the task for temporal (RAM) and
spatial (ROM) storage inside the components.

Functional requirement-4:
The system should have network reservation.

Functional requirement-5:
The system should have processor reservation.

Functional requirement-6:
The system should have memory reservation.

Functional requirement-7:
Automatic mode changes.

Rationale:
For the Functional Requirements 4, 5, 6, and 7

Applications running on the system nodes are competing to use the resources
(processor, memory and network). Because of the limited resources during
runtime the system may decide to reallocate the resources between the
components, resulting in a mode change. A system mode change is an overall
change in the allocation of resources to applications (tasks). An application mode
change is a change in the requested resources for that application.

Functional requirement-8:
The frame quality must be adjusted automatically.

Rationale:
The capacity, the speed, and/or the size of the resources (processor, memory and
network) are limited. When the frame quality is increased, it requires using more
resources. One of the most critical resources is the network bandwidth: if the
camera bit rate is higher than the current network bit rate, then the packets are
dropped and the connection is terminated. This is an unpredictable situation that
cannot be accepted in real-time systems.

Automatic adjustment is to change the quality without the user control; the
quality is reduced or increased within the real-time constraints, in such a way that
as the quality is increased this does not cause the connection to be terminated or
as the quality is decreased this does not lead to an unacceptably low quality level
(the frame content is barely discernible at quality level 30).

4.2 Extra-Functional Requirements
“Extra-functional requirements are known as critical success factors in traditional
software engineering. Extra-functional requirements (also known as
nonfunctional requirements or simply “–ilities”) are constraints regarding quality
(e.g. usability, performance, security, maintainability) and economics (e.g. time,
cost) of the process as well as the product components.”(28)

Extra-functional requirement-1:
The system should provide predictable resource sharing based on the assigned
share of bandwidth.

Rationale:
Assigned bandwidth determines the attainable quality level of the frame.
However, bandwidth is not the only resource that is utilized. Its usage should be
in accordance with the other resources. For example, if the bandwidth is not
sufficient to carry a high quality frame, the camera should not produce frames at
high quality. Otherwise, resources are not utilized efficiently and the desired
quality is still not received by the user.

46

Extra-functional requirement-2:
The camera system should be extendable to multiple cameras and PCs.

Rationale:
The experimental environment for the current project contains only two cameras
and one PC. In order to provide a general solution, the new design should be
applicable to systems that have more cameras and/or PCs.

Extra-functional requirement-3:
The system latency should be less than 100 milliseconds.

Rationale:
A frame process is started on the camera and finished on the PC. For this end-to-
end processing the communication time latency should be less than 100
milliseconds. “Studies3 have shown that although observers can understand the
gist of a novel pictured scene in a glimpse as short as 100 ms, the picture is likely
to be quickly forgotten if another picture follows shortly.”

4.3 Work Plan

Based on the gathered requirements the project was structured in a series of
actions. The following list shows the work plan:

• Prepare a PC with real-time Linux:

Investigate options, port and implement (preferably including HSF but not

necessarily).

• Setup a system:

Connect 2 prepared cameras with this PC.

• Design an approach for distributed reservation:

Protocol: interfacing with local OS.

• Add network resource monitoring and subsequent response (mode change)

[use application simulation]

• Investigate options for extending RT Linux with reservation (servers + e.g.

RELTEQ + implement).

3 Intraub, 1979, 1980; Potter, 1976; Potter & Levy, 1969; Potter, Staub, &
O’Connor, 2004; Potter, Staub, Rado, & O’Connor, 2002

47

5. Feasibility Analysis
This chapter starts with a comprehensive investigation of the real-time operating

system and the multi-media player. Then the initial measurements of the camera

setup are given. Finally, the solution space is described.

5.1 Introduction

At the beginning of the project the requirements regarding the real-time operating
system investigation and multi-media player selection were rather vague. For this
reason, FR-1 and FR-2 were elaborated on with additional requirements. Table 9
was derived from FR-1 and Table 10 was derived from FR-2.

For the RTOS investigation, the criteria given in Table 9 are used and additional
criteria are given in Appendix-A Table 32. For the multi-media player investiga-
tion Table 10 is used. After presenting the investigations in detail, the system
behavior is given. The problems and the possible solutions with respect to the
measurements were collected from the setup that contains the investigated soft-
ware installations, see Table 33 and Figure 30.

5.2 Real-Time Linux Investigation

In order to manage real-time system events, while keeping the main hardware the
same, there are many options from which to choose. Real-Time Operating
Systems exhibit a wide diversity of features, and the choice of an RTOS is non-
trivial.

RTOS selection criteria are typically weighted differently from project to project
and company to company. However, there are some criteria, see Table 32, that
are not weighted, so those are used to narrow the possible choices from hundreds
of products to the one eventually installed on the PC. Based on Functional
Requirement-1 and Table 9 only open-source real-time Linux implementations
are considered in this project.

The selection and the investigation are based on the selected open-source real-
time Linux implementation, because if the selected implementation is an
extension of the Linux or the kernel patch, then the project also requires a
selection of the Linux Operating System distribution.

Among all open-source real-time Linux implementation, the most popular ones
are RTLinux, and RTAI. However, they are not suitable for this project for the
following reasons:

• RTLinux is a hard real-time mini operating system and it is not mature

enough as stated by an experienced PhD student in the SAN group.

• RTAI is a comprehensive Real-Time Application Interface. It is not well

documented and the coding is messy as well. (29)

The number of RTOSs available for comparison is not limited to two. For this
reason, Table 33 (Appendix-A) is created based on the RTOS selection criteria
given in Table 32 (Appendix-A) and Table 9 and the other Linux implementa-
tions are compared. RT-Preempt Patched Linux is selected as the most suitable
one.

The selected implementation is a kernel patch, so as explained in the previous
paragraph the Linux Operating System distribution needs to be selected, because
the patch cannot be installed directly to the PC, it has to be patched to one of the
Linux distribution. In the following two paragraphs (1) preempt RT-Preempt
Patched Linux and (2) the selected Linux distribution are explained.

48

(1) From the current stage of development of RT-Preempt Patched Linux and its
support by OSADL 4(30) it can be expected that the RT-Preempt Patched Linux
will be able to cover a majority of the typical industrial real-time demands in the
near future. Besides real-time features, the RT-Preempt Patched Linux is also
accompanied by the familiar Linux/POSIX programming environment, file sys-
systems, networking, and graphics. This will help to expand the application area
and also facilitate the real-time programming considerably.(31) Although the
current RT-Preempt source is patch-aligned with the Linux baseline, the active
development of RT-Preempt (the latest release is 3.0.1- rt11, but 2.6.33-7.2 – rt30
is used in this project) and the success of lots of upstream patches indicate that it
can be expected that the whole RT-Preempt Patched will be incorporated in future
mainstream releases. (31)

(2) There are Linux distributions such as Fedora, Ubuntu, and RedHat. These
distributions added their patches to the Vanilla Kernel, which is a pure Linux
kernel. These patches come in various forms such as packages and drivers. New
distributions of kernels are easy to patch with the new patches. In particular since
the user does not have to compile the kernel from scratch. When the preemptive
patch is patched to the Vanilla Kernel, it gives soft real-time features to the Linux
Kernel.

5.2.1 Configuration of RT-Preempt Patched Linux Kernel

In order to get soft-real-time performance from the 2.6 Linux Kernel, it is enough
to change its configuration to the fully preempted kernel. In the standard 2.6
Linux Kernel, when a user space process makes a call into the kernel (through a
system call) it cannot be preempted. The configuration option
CONFIG_PREEMPT changes this behavior of the kernel by allowing processes
to be preempted if a high-priority task is ready. This feature, however, has some
drawbacks. There is a slightly lower throughput and a small reduction in kernel
performance, because of the added overhead of the CONFIG_PREEMPT
option. Figure 27 shows the 2.6 Linux Kernel Layered Architecture with the RT-
Preempt Patch. As can be seen from Figure 27, real-time processes and tasks are
differentiated both in the user space and in the kernel space from non-real-time
processes and tasks. (32)

Figure 27-Standard 2.6 Linux Kernel With Preemption

4 OSADL is the abbreviation for the Open Source Automation Development Lab.

49

Finally, the Ubuntu distribution was chosen, because it is known by the project
developer, and has the real-time kernel added. Installation of the RT-Preempt
Patched Linux Kernel is almost the same as the installation of common Linux
distributions. The installation guideline is provided on the Linux webpage. (33)
After installing the RTOS, it is possible to check, by using the following com-
command, whether the RTOS is properly installed or not.

$ uname -a

Figure 28-Command to check whether RTOS is correctly Patched or Not

5.3 Multi-Media Player Selection (VLC)

A multi-media player is a software package that handles media on a computer and
from a network. In order to find the proper multi-media player a lot of players
have been reviewed, such as SnowPlayer, KMPlayer, VLC, and QuickTime
Player. Of these VideoLAN (VLC) is considered the most suitable media player
for this project. It meets all the requirements mentioned in Table 10. Furthermore,
VLC has the best performance in the sense of CPU and RAM utilization based on
the examination in (34).

VLC player offers an intuitive API and a modular architecture that supports easy
addition of new codecs, container formats and transmission protocols. VLC is
commonly used in Windows, Linux and Mac OSX. (35) It is processed by the
kernel as a user processes as a standard a non-real-time task. However, with a
priority setting it becomes a real-time task. With the command (chrt5) presented
in Figure 29, the user can change the priority of the thread with the Process ID
(PID) $PID_OF_THE_KTHREAD to $PRIO in a policy such as FIFO.

$ chrt -f -p $PRIO $PID_OF_THE_KTHREAD

Figure 29-General Format of Command that turns Non-Real-Time Task into
Real-Time Task

For example:

the process (1024) at priority 50 in FIFO scheduling (-f)
$ chrt –f –p 50 1024

In Linux, priority levels range from 0-140. The range 0-99 is reserved for real-
time tasks and priority levels in the range 100-140 non-real-time task priority
levels.

Another way to turn a non-real-time task into a real-time task is to change the
source code of the task. For this, three changes have to be made to the source
code (33):

1. Setting a real-time scheduling policy and priority:

���� #define MY_PRIORITY (49)

���� param.sched_priority = MY_PRIORITY;

���� sched_setscheduler(0, SCHED_FIFO, ¶m)

2. Locking memory in such that page faults caused by virtual memory will not

undermine deterministic behavior:

5 chrt command: Set/Manipulate real-time attributes of a Linux process [69].

50

���� #define MAX_SAFE_STACK (8*1024)//the size is an example

3. Pre-faulting the stack, in such that a future stack fault will not undermine

deterministic behavior:

���� void stack_prefault(void) {
 unsigned char dummy[MAX_SAFE_STACK];
 memset(&dummy, 0, MAX_SAFE_STACK);
return;
}

For more details see the Hello World Example in (36).

5.4 System Hardware and Software Organization

After the RTOS and the multi-media player investigation and selection, we can
depict the system setup, see Figure 30. It shows that the camera system consists
of one PC and multiple cameras connected via an Ethernet switch.

Figure 30-Camera System Software Organization

On the PC, where the RT-Preempt Patched 2.6 Linux Kernel is installed there can
be multiple VLC instances and user applications as well. In the original setup
there is no difference between the user level applications and VLC instances.
Both are the non-real-time task. Note that RT-Preempt Patched Linux Kernel
considers a task a real-time task when it is thus assigned.

On the cameras, the µC/OS-II real-time kernel and the application for video
processing are installed. Initial measurements (Table 11) on this system are dis-
cussed in the next section.

5.5 Initial Experiment

The aim of the initial experiment is to show the limitations of the system. Hence,
it becomes possible to figure out the exact problems and points that have to be
improved. The purpose of these experiments is to show the baseline behavior of
the system and determine the bottlenecks.

The initial experiments are done on the 1-camera system, see section 3.2: the
software organization is as shown in Figure 30. The reason for using the 1-camera
system is to have no interference on the network; the connection is only between
the camera and the PC. The 1-camera system is the baseline for the 2-camera
system.

In this section three main experimental considerations are explained and the
reasoning of each consideration is given in Table 11. These experiments are per-
formed from the system as presented in Figure 30.

51

Table 11-List of Initial Experiments and reasoning

Experiment Description - Reasoning

1
Caching (Buffering)

Configuration

Caching is called buffering in VLC jargon and the
cache is sized in milliseconds. It is mainly used to
provide a frame smooth display.
There are two consequences of buffering:
(1) Latency: the data is stored in the buffer and is
kept waiting to be processed, it is not processed
on time and it causes delay.
(2) Data Loss: if the data is kept waiting in the
buffer for too long, the new data will overwrite
the data inside the buffer.

2 VLC Real-Time Task

VLC is installed as one of the non-real-time user-
level applications on the PC.
Transforming VLC from non-real-time task to
real-time task by changing its priority avoids its
preemption by non-real-time tasks.
It causes VLC predictable behavior.

3
Average/Worst-Case

Measurements

Each task has a different execution time.
Nevertheless, real-time tasks have deadline
constraints that differ from the non-real-time
tasks. In order to estimate the maximum
execution times of the individual tasks, the worst-
case execution time needs to be determined.
Average case is given in order to show the system
behavior difference between the guaranteed
system (worst case complexity applied) and the
average system (average case complexity
applied). The meaning of complexity is explained
in sections 5.5.3 and 5.5.4.

The following sections provide detailed information on the experiments given in
Table 11.

5.5.1 Caching Optimization on VLC

The first initial experiment is to vary the default setting of the Real-time
Streaming Protocol (RTSP) caching size for the received frame on the VideoLAN
(VLC). The received frame is stored one second and after the buffer is filled, the
frame is displayed.

In order to show the changes on the system behavior, after changing the RTSP
caching size, the following two illustrative figures are given.

52

Figure 31-Caching Experiment: Caching Size = 1000 Milliseconds

In the original setting of VLC, the RTSP caching size is set to 1000 milliseconds.
Figure 31 illustrates the caching effect on the PC screen. The camera is rotated
clock-wise. It can be observed that the symbolic clock displays the time
09:13:31:43, i.e., 9 hours 13 minutes 31 second 43 milliseconds, while the PC
screen 09:13:29:13, i.e., 9 hours, 13 minutes, 29 seconds and 13 milliseconds
which was displayed on the PC screen 2 second and 30 milliseconds before being
displayed on the symbolic clock.

Figure 32-Caching Experiment: Caching Size = 0 Milliseconds

After setting the VLC caching size to zero, the latency is reduced to 1000
milliseconds as shown in Figure 32. The PC displays the time as 1 second and 30
milliseconds before being displayed on the symbolic clock. It can be observed
that there is latency between the time on the system clock and the time displayed
on the PC screen. Therefore, VLC caching is not the only reason for the latency.

By initiating a caching optimization on the VLC, the latency automatically
reduces, because the VLC caches the received frame as long as the caching
duration which is automatically reflected on the latency.

53

5.5.2 Real-Time Task VLC

The second experiment, in addition to the first one, is to change the priority of the
VLC and set it as a real-time task. This will make sure that other tasks, which are
non-real-time, cannot preempt VLC process.

The VLC priority was set to the kernel layer priority level 49. No data is
measured in this experiment, however it is observed that there is not much
difference compared to the non-real-time task behavior.

5.5.3 Average Case Complexity Measurements

The third experiment covers the average-case complexity measurements.
Average-case complexity is based on computational complexity which is the
complexity of random image. The main purpose is to show the throughput rate
change, based on the quality of the captured frame.

For this experiment, the camera is rotated to the stable side of the room in which
there is no motion, and no defined specialty (simple or complex) for the captured
frame. The only change in the environment is the light because of the windows
and the sun light coming in.

Unlike the previous two experiments the quality level of frame is changed.
However, the captured image and the resolution remain fixed.

In order to measure the quality level - throughput relation, one-second of video
footage was recorded from this camera by using the third-party tool
WireShark.(37) A one-second recording is enough to show the impact of the
quality level on the frame rate.

While the camera streams frames to the PC, WireShark is sniffing the network
and recording information on received network packets without differentiating
between packet types, such as RTSP, HTTP, and ARP network packets. All
packets on the network, either received by the PC or sent by the PC, are
considered. Figure 33 shows the WireShark tool and the departure and arrival
time of the packets.

Figure 33-WireShark Output Example

In order to gather the data the following three steps need to be executed:

1. Change the Quality Level:

a. User connects to the camera via the website located at

http://192.168.7.96.

b. User changes the quality to the desired level.

2. Receive frame:

a. User should connect to the camera via the VLC located at

rtsp://192.168.7.96/media.

54

b. User presses the PLAY button on VLC interface.

3. Monitor the network traffic:

The WireShark tool should be opened. The information of all the network

packets (transferred-received) is listed in the WireShark interface.

Figure 34-Frame Rate and Number of Packet per Frame of Image at Different
Quality Levels for Average Case Measurements

Figure 34 shows the frame rate in relation to the changes on the quality level of
the frame, from 10 to 90: 10-50-90. The figure depicts that even when the frame
is the same, the quality affects the throughput noticeably as to frame rate and the
number of packets for each frame. When the quality level is increased the frame
rate drops. On the other hand, as shown in Figure 34, the number of packets per
frame increases. In fact, the number of packets per frame increases to such an
extent that also the total number of packets increases as shown in Figure 35.

The quality level difference between 10 to 50 and 50 to 90 is the same: 40.
However, the increase of the number of packets per frame is more than linearly
proportional to the increase in quality level. While the number of packet
difference is 30 between quality level 50 and 10, the number of packet difference
between quality level 90 and 50 is 180.

Along with the observation above, Figure 35 shows the total number of the pack-
ets on the network during the one-second recording as a function of the quality
level. The increase in the total number of the packet is roughly proportional to the
increase in the quality level.

Even as the frame rate is dropped and the number of packet per frame is increased
tremendously with the increase in quality level, the packet load on the network
grows almost linearly.

As a conclusion, in Figure 34it is observed that the system behavior is no-
commensurate. Figure 35 shows that the system behavior is balanced.

30

60

240
21

19

7

0

5

10

15

20

25

0

50

100

150

200

250

300

10 50 90

#
 o

f
p

a
ck

e
t

(p
e

r
fr

a
m

e
)

Quality Level

Packet per frame Frame per second

#
 f

ra
m

e
 (

p
e

r
se

co
n

d
)

55

Figure 35-Total Number of Packets per Second in Different Qualities for Average
Case Measurements

5.5.4 Worst Case Complexity Measurements

The worst-case complexity measures the resources, such as execution time,
memory, bandwidth, which is required in the worst-case. It gives an upper bound
on the resources that are required to be used.

Worst-Case Execution Time (WCET) is a software performance metric that is
defined as the maximum length of time a task requires to complete. In order to set
the deadline of a task, the WCET should be known in advance as it is used for the
task scheduling.

The WCET of a task is the upper bound for the time between the task activation
and the task termination. It contains all possible time consuming processes during
the task processing, such as context switch, interrupts and communication. It is
useful for the schedulability analysis, because it determines the amount of
freedom for scheduling a task within a period. As can be seen in Figure 36, the
task with a WCET of 23 time units will complete before the end of the period as
long as it is started within 7 time units from the begin of the period.

Figure 36-Task Execution Time Period in Worst-Case

There are two important inputs which affect the computation time of the encoding
and packetizing-streaming tasks: the image and the quality level of the image.

630

1140

1680

0

200

400

600

800

1000

1200

1400

1600

1800

10 50 90

#
 p

a
ck

e
t

p
e

r
se

co
n

d

Quality Level

Execution Time

56

The worst case image is defined with respect to the complexity of the image. The
complexity needs to be at a maximum; unequal vertical and/or horizontal pixel
lines, image contains x (horizontal) and y (vertical) coordinates.

If the complexity of the image is high, then the processing of the image takes a
long time, i.e. much more than the average image. Figure 37 shows the worst case
image which has lots of vertical strips which contributes to the complexity. For
this reason, the encoding process of such an image takes more time (for more
information see [38]).

Figure 37-Worst-Case Image consisting Lots of Strips, Resolution 400x400

In order to measure the worst case execution time of the tasks within the one-
camera system and demonstrate the behavior of a distributed real-time network
system a test environment needs to be created. For accurate results, the test
environment needs to be stable. External effects, such as fluctuating light
conditions, complexity of the image, and the interruption by unknown tasks on
the PC side impact the accuracy.

The test environment is composed of the ingredients as shown in Figure 38: the
image (the worst case image in Figure 37) was printed out and pasted inside the
box, the camera was covered with the box and it was rotated to the image that
was lighted inside the box.

Figure 38-Test Case Setup Ingredients

The experiment in the test environment is the recording of the same image at
different quality levels. The aim is to determine the execution time of the tasks
and the throughput, while the worst case image is captured at different quality
levels.

During the experiments, input parameters of the encoder function were changed
by setting different quality levels, but the other settings such as resolution, the
image itself, and brightness were kept fixed. After the quality level of the frame is
changed, streamed frames are recorded on the PC side by using the WireShark
tool. However, it is observed that on the PC side frames are not the only packets
received from the network. Table 12 shows all the network traffic and the bit rate
while the connection is published between camera and the PC and during the
streaming. The measurements are gathered when the frame is at quality level 50.
There are two parts shown in the table: the bit rate during the connection
publishing and during the frame streaming

57

• Connection Phase:

Incoming/ outgoing network packets while the connection is published with

the camera.

• Streaming:

Incoming/ outgoing network packets while the streaming process is going on.

For the bit rate measurements 100Mbitps bit rate is considered.

Table 12-Message Density on Network

During the connection: the bit rate (100Mbps)

0.001836959

During the one-second streaming:

Packet Type Size(byte) Bit rate

UDP 60 0.0001808

RTP 854(AUDIO packet) 0.004107

RTCP 68, 70 0.00002208

JPEG 1462 0.151262

As presented in Table 12, the type and size of the packets can vary, but among all
the network packets, only the JPEG packets are considered in this project. While
the worst case execution time of the tasks and the throughput was examined, the
software on the camera was not flashed; it is uploaded to the camera via the
catapult. For more information please refer to Appendix-A section Debugging.

In order to examine the received network packets, a ten-second video footage was
recorded using the WireShark tool.

In order to analyze the gathered data, the following process was followed:

1. Change the quality level:

The quality level settings were executed manually by re-programming the

source code, because the web interface did not work; see section 7.4: Main

Software Problems.

2. Choose time interval up to 10 second:

The received frames were recorded during ten-second periods. If it was not

possible to record ten-second periods, the maximum recorded data was

considered.

3. Choose 1 second interval:

The maximum recorded data is divided into 1 second intervals and among

them, choose the one with the maximum number of recorded data.

Quality Level Measurements

In this section, the numerical relation between the frames, packets and quality
levels is elaborated and the observations and the results are discussed. The
purpose of this measurement is to show the relation between the quality level and
the frame rate. The quality level affects the processing time of the encoding
function and packetizing and throughput rate as well.

58

Figure 39-Frame Rate and Number of Packet per Frame of Image at
Different Quality Levels for Worst-Case Complexity Measurements

Figure 39 shows the measurement, where the blue circle shows the observation
which needs attention because, during the measurements the number of frame
rates does not decrease significantly for the low quality levels. However, it
decreases enormously when the quality level is over 80. Above quality level 90
the received number of packets is not enough to complete even 2 frames, due to
the fact that the capacity of the network bandwidth is not enough. The reason is
that the camera terminates the connection because the network is busy.
Essentially, this result is confirmed by the analyses of the relation between the
bit-rate and the quality in section 3.2.2.1 in the part on Physical Restriction on the
Network.

The purpose of this measurement is to observe the system boundaries. For
instance, a quality level above 80 will never be allowed for the frame to set, since
the frame cannot be carried on the network because the frame size is to large at
high qualities to carry it on the network.

Figure 40-Total Number of Packets per Second in Different Qualities for Worst-
Case Complexity Case Measurements

Figure 40 is derived from Figure 39; it shows the packet load on the network for
different quality levels. It can be observed that on the PC side, the received
number of packets drops tremendously.

15

12

3

47

102

279

0

50

100

150

200

250

300

350

400

450

500

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 95

#
 o

f
p

a
ck

e
t

(p
e

r
fr

a
m

e
)

Axis Title
Frame per second

Packet per frame

#
 f

ra
m

e
 (

p
e

r
se

co
n

d
)

656

1206

824

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90 95

#
 p

a
ck

e
t

p
e

r
se

co
n

d

Quality Level Packet per frame

59

Figure 41-Number of Frames for Each Quality Level in 1 Second

In Figure 41, the y-axis presents the quality level and the x-axis presents the time.
The blocks, on the horizontal line, represent the frames received by the PC: it is
the measurement of the one second recording: not all the blocks at horizontal
lines reach to the red vertical line, because it only considers the maximum
sequential frames in one second. Each color represents the received frames at
different quality levels. The received frames also present the duration of the

streaming process and the white parts between the frames present the encoding

process on the camera side. The PacketReceive label in the figure presents the
time difference between the first packet received time of the frame and the last
packet received time of the frame to the PC. A receive time is the time when the
packet is recorded by the WireShark tool.

The purpose of Figure 41 is to visualize which quality level is proper to set when
the second camera is connected to the system. As visualized in Figure 41 from
top to bottom, the frame size increases due to the fact that the received number of
packets increases. Conversely, the time differences between two frames stays
almost the same (white parts between the two frames), regardless of the quality
level.

The white parts stay almost the same, even if the quality level is low; the
complexity of the image affects the execution time of encoding process. The
frame size is increased due to the high quality encoded frame size. This
observation helps us to decide which quality level is proper for both cameras
when the second camera is connected to the system. If the frame quality level is
set to 80, it is impossible to carry the frame on the network which is at quality

PacketReceive

60

level 80 as well. The white space at quality level 80 shows that it is impossible to
squeeze another frame which is also set at quality level 80.

The size of the encoded frame affects two things: (1) the processing time of the
packetizing and sending, (2) the bit-rate on the network. Figure 42 shows the
received time of the frame recorded by the WireShark tool.

Legend:
WC-AC-BC stands for Worst-Average-Best Case and PRT for PacketReceive
Time: the time difference between the first recorded packet of the frame and
the last recorded packet of the frame by the WireShark tool.

Figure 42-Time Measurements for Different Quality Level for Worst-Case
Complexity Measurements (in 1 Second)

In Figure 42 from low to high, the PacketReceive time of the frames for each
quality level are shown. The PacketReceive time of the frame (at different quality
levels) is proportionally increased by the fact that the number of the packets
increases with small amounts, except in case of a quality level above 80.

To get a better indication of the processing time in the camera we zoom in on
individual frames and the individual packets within these frames: quality level 10
to 95. For this example, we select quality level 50 the 1-camera case (Figure 43)
since this is also attainable in the 2-camera case.

Figure 43-Time Difference between Sequential Two Frames at Quality Level 50

Figure 43 shows the time difference (slack time) between the first frame-last
packet and second frame-first packet received times at quality level 50; see Equa-
tion 3. The arrival of each frame varies despite of the fact that all the parameters

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

10 20 30 40 50 60 70 80 90 95

R
e

ce
iv

e
d

 T
im

e
 (

in
 s

e
co

n
d

)

Quality Level

WC-PRT

AC-PRT

BC-PRT

0,031

0,0311

0,0312

0,0313

0,0314

0,0315

0,0316

0,0317

0,0318

1 2 3 4 5 6 7 8 9 10 11 12

sl
a

ck
ti

m
e

 (
se

c)

Frame number

61

are kept the same. These parameters include the resolution, the image, the length
of the Ethernet cable, and the quality level. Note that the different length of the
Ethernet cable affects the travel time of the packet from the camera to the PC.

+2FVH 	= /2FVH − 	/2F
Equation 3-Slack time is Subtraction of Sequential Arrival Times; SF: Slack
Time of Frame (i+1), aF: Arrival Time of Frame

The frames are composed of packets, so the slack time of the packets affects the
received time (total receiving time) of the frame, see Equation 4. For this reason,
the frames need to be examined with respect to the slack time of the packets.

X2F 	 =5YSPF[\
]

[GH

Equation 4-Total Slack Time of Packets gives Slack Time of Frame; RF: Receive
time of Frame i, SP: Slack time of Packet j of Frame i

Figure 44 shows the slack time of the packets from a randomly chosen frame at
quality level 50. Two conclusions can be derived from the figure: (1) the packet
slack time vary, (2) two packets have the largest slack time (red circles) which
affect the slack time of the frame more than the slack time of the packets in the
blue circle.

Figure 44-Arrival Time of Received Packets at Quality Level 50

There can be two reasons for the fluctuation of the slack time of the packets: (1)
the packetizing and sending packet process on the camera and (2) the travel time
of the packets from the camera to the PC. Nevertheless, the round-trip-time6 of
the packet is not considered, because the length of the Ethernet cable is the same
and the JPEG packet sizes are the same as well. Hence the second reason can be
ignored.

6 Round-trip time (RTT), also called round-trip delay, is the time required for a
signal pulse or packet to travel from a specific source to a specific destination and
back again [71].

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

1 5 9 13172125293337414549535761656973778185899397

sl
a

ck

ti
m

e
(s

e
c)

packet number

Series1 Series2

62

The first cause shows that the application on the camera is not processing the

packet sending task deterministically. Hence, it causes a burst transmission7, and
this in return causes data loss on the network.

Figure 45-Processing and Transfer Time in between (Millisecond)

Figure 45 shows the symbolic representation of the time delay between the pro-
cesses within the components (camera and PC). Within the camera, the frame
creation process time is fixed to 40 milliseconds, and it is continuously capturing
a frame, because of the hardware specifications. It is labeled as CP1_Sensor
(Camera 1, Sensor Platform Task). In this task of the camera, 4 frames are created
(4 blue blocks). When the frame is created, Video Task (CP1_Video) and
afterwards network task (CP1_Network) is started. When the packets reach to the
PC, they are processed on the PC. While the received frame is processed on the
PC (red block) the other tasks continue to do their tasks. PC has to wait
approximately 85 time units in order to process the first frame, however the delay
between the other frames is not as much as the first frame, see the time difference
from the 0 time unit to the first frame processed on the PC and time interval
(delay) between the other frames on the PC (red blocks).

5.6 Problems and Solutions

Even though RTOSs are installed on the system components and tasks are real-
time, the system is still not predictable. Table 13 provides the identified problems
and proposes several solutions to these problems. It also indicates the feasibility
of the proposed solution regarding the implementation and system restrictions.

Table 13-Problem-1 and Solutions

Problem -1:
Data loss on the camera.

Description:
The camera is equipped to produce a frame rate of 25FPS, but it is not possible

to get that frame rate from the camera. Although, Sensor board captures a

frame every 40msec, the encoding and packetizing algorithm is not fast enough

to process the created frame.

Solution Description Possible?

1
Increase the
capacity of
the resource.

Add more resources and/or
increase capacity of the
resources (processor and/or
memory).

No, the project scope
states that the existing
hardware cannot be
changed.

2

Enhance the
encoding
algorithm.

Optimize the encoding
algorithm running on the
camera, so that it can
process the data encoding
and streaming

No, we do not have the
encoding source code
available.

7 Burst transmission is any relatively high-bandwidth transmission over a short
period of time. For example, a download might use 2 Mbps on average, while
having "peaks" bursting up to, say, 2.4 Mbps.

63

synchronously with the
frame creation.

3

Increase the
network
packet size.

If network packet size is
increased, the number of
packets will be reduced and
the packetizing process will
take less time.

No, since the size of the
network packet is fixed it
is not possible to change
the size of the RTP
packets.

As shown in Table 13, data loss cannot be avoided, because of the physical re-
strictions of the camera.

Figure 46-1-Camera System, with 1 processor the state of the processor and the
network

Figure 46 depicts the 1-camera system. It shows the video task and the network
task performing their respective workloads. The network tasks stream the frame
through the network. When there is no streaming to the network, it is available.
The network tasks are unavailable when the network task runs.

Table 14 gives Problem-2 and several solutions to Problem-2; it also gives the
feasibility of the proposed solution regarding the implementation and system
restrictions.

Table 14-Problem-2 and solutions

Problem-2:
Data loss on the network (1-camera system).

Description:
High quality frames cannot be carried on the network because of the limited

bandwidth capacity.

Solution Description Possible?

1

Increase the
capacity of the
bandwidth.

Increase the bandwidth
to 100 Mbps.

No, the project scope
states that the existing
hardware cannot be
changed.

2

Reduce the quality
of the frame.

Reducing the quality of
the frame will reduce
the number of packets
on the network.

Yes, although the system
forbids specifying quality
levels 0 and 100.

3

Access control on
the resource
(network), see 2.3.1
 Resource

Reservation.

Check whether the
resource capacity is
sufficient for the
required level of the
utilization.

Yes, if the initial capacity
(the maximum capacity
available as the network
is not used), the current
capacity (the capacity
available at the moment
in time during network
utilization of the

64

resource) and the
required utilization are
known.

The problem on the 1-camera system can be solved either by the quality
adjustment or by allowing/ rejecting the connection based on the current capacity
of the bandwidth. It is assumed that apart from the quality, the other parameters
remain the same.

Table 15 states Problem-3 and several solutions to Problem-3; it also gives the
feasibility of the proposed solution regarding the implementation and system
restrictions.

Table 15-Problem-3 and Solutions

Problem 3:
Data loss on the network (2-camera systems).

Description:
Because the camera streams the frames in a bursty manner, packets overlap

and are subsequently dropped by the network, even if it is assumed that the

capacity of the bandwidth is sufficient for two cameras to stream.

Solution Description Possible?

1

Increase the
capacity of the
bandwidth.

Increase the size of the
bandwidth to 100 Mbps.

No, the project scope states
that the existing hardware
cannot be changed.

2
Resource
Management.

Manage the utilization
of the resources.

Yes, if the initial capacity,
the current capacity of the
resource, and the required
utilization are known in
advance.

3
Prevent frame
overlap.

Packets are transmitted
over the network and at
certain instances they
overlap.

Yes, if scheduling is applied
to the cameras, then overlap
can be avoided.

Figure 47 depicts Problem-3 where the requirement of Camera2 is 80Mbps, the
network capacity is 100Mbps, but 70Mbps is already in use by the Camera1.
Camera2 starts to stream 80Mbps which is above the remaining bandwidth
capacity (100-70 < 80). This causes data loss on the network. In order to prevent
an overload condition on the network, it is possible to control the access to the
network (Problem 3- Solution#2).

65

Figure 47-Problem-3: Inadequate Bandwidth

Figure 48 depicts the frame overlap: after Camera1 has encoded the frame (CP_1
Video Task), it packetizes and streams the packets (CP_1 Network Task) over the
network. During the streaming period, the second camera starts to stream (CP_2
Network Task). The red block in the figure represents the overlap between the
packets. If the sum of the bits streamed by the cameras exceeds the bandwidth
then the packet(s) are dropped by the network switch, resulting in data loss.

Figure 48-2-Camera System: 2 Cameras Stream Frame and Overlap Occurs,
Same Legend in Figure 47

The access control to the network and prevention of the overlap between the
packets are the taken decisions (Problem 3- Solution #2 and #3).

In order to prevent the overlap, the following sequence of activities has to be
performed. Table 16 gives the additional aspect for Problem-3; description of the
aspects and the possibility of the proposed aspects regarding the implementation
and system restrictions.

Table 16-Additional Aspects for Problem_3

Step Description Possibility

1

S
ch

e
d

u
li

n
g

• 1-camera system: the streaming
process needs to be controlled and
scheduled, because streaming
causes packet overlap on the
network.

• 2-camera system: is considered as
one system therefore the cameras
within the system can be scheduled
like the tasks within the camera and
the PC.

Yes, in µC/OS-II new
tasks can be created,
existing tasks can be re-
designed, and
dependencies between
tasks can be synchronized
with semaphores,
mutexes, and message
queues.

2

S
yn

c
h
ro

n
iz

a
ti

o

n

2-camera system: to apply scheduling
between the cameras time
synchronization method should be
provided.

Yes, if it is known when
the cameras stream and in
which time period, then
the nodes can be
synchronized.

3

E
n

fo
rc

e
m

e
n

t It ensures that tasks do not utilize more
resources than they should. Then the
system become predictable because it
is clear how much bandwidth a task
will maximally consume and when it
will consume it.

Yes, counting the number
of packets and/or defining
time for the processing
time of the task.

In real-time systems, the process time of the task is the most critical value to be
measured. As shown in Table 18, there are three steps that need to be taken to
prevent the overlap of packets and to provide a predictable system. In order to

66

apply the three steps, process time of the tasks should be known in advance and
the deadline of the tasks should be defined.

The following section describes the given hardware and the software for the
solution space.

5.7 Solution Space

The problems and the solutions have been given in the previous section. In order
to apply the proposed solutions the environment that we work on is explained in
this section. There are two main aspects: hardware and software.

5.7.1 Hardware

The hardware, see section 3.2.1, consists of the physical components:

1. 2 –Cameras,

2. 1 –PC,

3. 1 -Network Switch,

4. 1 –Catapult, see Appendix –A section Debugging

5.7.2 Software

The software description is divided into three main sections: the Operating

System level, the Application Level, and finally the decision of the
implementation programming language are given.

1. Operating System level:

a. Source code is written in the “C” programming language for both RT-
Preempt Patched Linux and µC/OS-II. For the development of these two
OSs, C is used.

b. Compilers for OS:

i. For Linux: GNU Compiler Collection (GCC),
ii. For µC/OS-II: Stretch IDE, it is targeted to the camera (embedded

platform).
2. Application level:

a. VLC player: source code is in C, so it is developed in C
b. Compiler for the Application level:

i. In Linux; it is GNU Compiler Collection (GCC),

ii. In Windows, cygwin8(39) tool is used and it provides GCC.

3. Implementation Decision:

a. Two programming languages are proposed: C and Python. Python is

very popular in the Network Programming Community, because it is

easy to use and requires less lines of code (LOC), when compared with

C. Threads in C are easy to manage; it compiles its code in machine

language and it makes it 10 times to 100 times faster than Python. C also

utilizes less memory than Python does.

The solution space provides the boundaries of the project within which the
architecture is developed and improved.

8 Cygwin is a collection of tools which provide a Linux look and feel environment for

Windows.

67

6. System Architecture and Design
This chapter provides a comprehensive architectural overview of the current

project. It presents the architectural of the system; it defines the main components

and the interaction between them by making use of several scenarios. Two

diagram notations are used: a new proposal for architectural knowledge

management (5) and UML.

6.1 Introduction
According to the problem analyses given in Chapter 3, the requirements defined
in Chapter 4, and the feasibility study presented in Chapter 5, it was decided to
use the RT-Preempt Linux Kernel with the Ubuntu distribution and VLC media
player as fundamental components. The result of the worst-case analysis is to
define the constraints of the current project. The decisions taken in Feasibility
Analysis are strongly supported by the analysis with the constructed test bed. The
amount of the details considered was limited by time available for the project.

First of all an overview of the distributed system is given, then the system is
described in detail. Thereafter, the proposed components are explained, and the
relationships between these components are given. Finally, deployment of the
components is given at the end of the chapter.

6.2 System Architectural

The overall system Architecture of the current project is shown in Figure 49.

Figure 49-Overall System Architecture

• Client (Distributed System):

The PC, it must connect to the Server and it is responsible for processing the

frames and displaying them to the user.

• Server (Distributed System):

The Camera, it is responsible for acceptance of the connection from the client

and stream the frames to the client.

• Server (Resource Management):

It is the component that controls the distributed system and is responsible for

managing all the resources which comprise the distributed system, such as

bandwidth, memory, and processor.

Architectural Decision

Systems are seldom built following a single style and often combine a number of
styles leading to hybrid designs. Two main architectural styles are applied to the
system: client-server architecture and layered architecture.

68

Decision:
The client-server architecture style is applied.

Rationale:
The client-server architecture style is a good fit for message passing.
Decoupling between the components provides maintainability and
modifiability.

Figure 49 represents the high level architecture of the client-server. In the system
the Client is the only entry point for the User. Resource Management is the main
controller of resources of the entire system. It takes responsibility for the
connection establishment between the client and the server and detects
unexpected situations such as use of more resources or streaming more packets
than allowed.

Decision:
The layered architecture style is used for the system.

Rationale:
The layered architecture facilitates the separation of concerns between the
components. This separation of concern makes the system robust and easier to
develop and maintain.

Figure 50 shows the Distributed System and the Resource Management Compo-
nent. Within the Distributed System, there are two main nodes: the PC, and the
camera. The camera and the PC have three layers from top to bottom: Applica-
tion-Kernel-Hardware Layers. Resource Management Component has three lay-
ers, unlike the distributed system nodes layers, from top to bottom: Decision
Maker Layer, Communication Layer and Storage Layer.

The network interface between the nodes is TCP/IP network interface.

69

Figure 50-System Layer Architecture Component View

Within the Resource Management: the components on the Decision Maker Layer
(Bandwidth Availability, Enforcement, and Delay) evaluates the resource
utilization and synchronization before a resource is used; the component on the
Communication Layer (Admission Control, Management Protocol) is the
interface between the Decision Maker components and the other nodes (camera -
PC), and the Storage Layer (Storage) is responsible for maintaining the values
which are used by the components on the Decision Maker Layer.

6.3 System Description

Figure 51 shows communication between the Resource Management component
and the original system nodes. Within the distributed system, the PC
communicates with the cameras using the RTSP protocol, and streaming is
performed using the RTP protocol. The Resource Management is a server and
communicates with the system components with a protocol, henceforward called
the ManagementProtocol that is specifically designed for the current project.

Recall from section 2.4 Real-Time Streaming Protocols, RTSP runs on top of
TCP, because its responsibility is to establish the connection. RTP runs on top of
UDP, because RTP does not exclusively guarantee the real-time delivery of data.
ManagementProtocol runs on top of TCP, because in order to obtain coherent
behavior between the reserved resource and the current resource, the given
decision should be connection oriented.

70

Figure 51-Communication between the system nodes

In order to control the system, the Resource Management unit typically demands
commands such as frame quality information, and resource availability from the
Distributed System.

The following section gives the architectural reasoning for the components of the
Resource Management and later on the components is described within the
Resource Management unit.

Architectural Reasoning

In the Feasibility Analysis of the system decisions have been made that lead to
the introduction of a number of components and the protocol, see section 5.6. In
Figure 52 these decisions are documented by means of an architectural reasoning
diagram.

Architectural reasoning diagrams have three layers. From bottom to top these
layers are: the Requirements layer; the Decision layer and the Logical System

Entities layer. For each decision incoming arrows indicate the requirements (and
other decisions) that gives rise to that decision and outgoing arrows indicate the
entities that allow from that decision.

Figure 52-Architectural Reasoning Diagram

Depending on Figure 52 each block is explained as follows:

The decision Resource Management (D1) is based on two requirements:
Predictable Usage of Resources (R1) and Central Unit with restricted Bandwidth
(R2). Decision D1 is detailed into Bandwidth Reservation (D3) and Bandwidth

71

Monitoring (D4) which lead to Admission Control Unit and Bandwidth Availabil-
Availability Unit respectively.

The decision Prevent Frame Overlap (D2) is based on three requirements:
Multiple Cameras (R3), Distributed Video Processing (R4) and Low Latency
(R5). Decision D2 depends on decision D1 and Give Delay (D6) is a particular
choice to affect overlap prevention. Decision D6 depends on Explicit Scheduling
(D7) and decision D6 leads to Delay Unit.

The decision Bandwidth Monitoring (D4) is based on requirement Multiple
Cameras (R3) and it is decision D1 in detail which leads to Bandwidth
Availability Unit.

The decision Guarantee the Resource Utilization (D5) is based on requirement
Multiple Cameras (R3) and it is decision D1 in detail which leads to Resource
Enforcement Unit.

The decision Explicit Scheduling (D7) is based on requirement Low Latency (R5)
and Distributed Video Processing (R4) which leads to RT Kernels.

The units on the Logical System Entities Layer apart from the RT Kernels depend
on the Admission Control Unit, and the Admission Control Unit has a
dependency on RT Kernels, in the sense of communication (TCP/IP network
protocol interface).

The following list gives a very brief introduction to the units on the Logical
System Entities layer. They are discussed from left to right, starting with the
Admission Control Unit which is the most important of all:

1. Admission Control Unit:

It is the main component of the proposed system. There are two main

responsibilities of the Admission Control Unit: (1) determination:

establishing whether to accept a new connection request or not, (2)

configuration: adjust the system configuration in order to accept the

connection request, if it is possible.

2. Bandwidth Availability Unit:

It checks whether the reserved bandwidth is still used or not. It is necessary

to make an accurate decision while the bandwidth is checked whether it is

enough for the new request or not.

3. Resource Enforcement Unit:

It is used to ensure that tasks do not utilize more resources than they should.

4. Delay Unit: It is used to schedule the task and the nodes in order to prevent

packet overlap on the network.

5. RT Kernels:

They are used to enforce the scheduling of the tasks. RT Kernels are

explained in detail see section 2.2 and 5.2. In this chapter this unit is not

explained any longer.

6.4 Logical View

In this section the functionality of the Logical System Entities and the relations
between them are explained. Admission Control is the main component that the
other components build on after the Admission Control, because if Admission
Control does not admit a camera for streaming and terminates the connection,
then the other components are not used.

The following sections present the components in detail. The explanation is as
follows: functionality, relation among the other components and design decision.

The components are explained in the following order and all of them are called
Resource Management Units:

72

1. The Admission Control Unit.

2. The Bandwidth Availability Unit.

3. The Resource Enforcement Unit.

4. The Delay Unit.

6.4.1 Admission Control Unit

The Admission Control (AC) is created for the management of the network as a
resource. The AC process decides about admittance of a new stream request.
When the AC grants a new streaming request, registration and servicing phases
follow.

The AC needs to understand the requested message and to provide the client with
a reply that it can understand. These messages (request and reply) are parsed by
the ManagementProtocol network protocol.

ManagementProtocol is proposed within the AC and adhered to by the AC. It is
used for the communication between the Resource Management units and the
system nodes (camera, PC). Originally, the camera application’s response
consisted of streaming frames but now the AC is plugged into the streaming
process. ManagementProtocol is inserted to the streaming session that is provided
by RTSP.

The content of the messages between the client and the AC are (1) requested
frame quality, (2) the response message to the request.

The AC needs to have some criteria to give its decision to the new request. These
criteria are recorded in a table (LookUpTable). It contains the data that is
gathered from the worst case scenario measurements, see section 5.5.5. The
content of the Look up Table is given in Figure 53.

Figure 53-Txt File contains Information gathered from Worst Case
Measurements, Explained in Feasibility Analysis Chapter

When the evaluation is completed by the AC and the streaming request is
accepted, then the camera is registered and listed by the AC. Hence, the AC
knows which camera utilizes how much bandwidth. Figure 54 shows the Stor-
age_Unit which contains the Registration List and the content of the list.

Figure 54-Storage Unit contains Information gathered from Worst Case Scenarios
in Advance, See Chapter 5.

73

Figure 55 shows message sequence of the AC with the other components (VLC,
Camera Application, LookUpTable and Registration List) via the
ManagementProtocol. In this figure, the AC grants the connection. The sequence
of the message is started with the User. He/she wants to connect to a specific
camera in order to watch the frames on VLC. The session request is sent by VLC
to the Camera Application which asks the AC to be admitted before it streams the
frame to VLC. The AC evaluates the session request by comparing it with the
criteria (current bandwidth and criteria listed in the LookUpTable). If the session
request passes the criteria, then the AC accepts the connection and registers the
camera to the Registration List.

Figure 55-Message Sequence that Admission Control Unit accepts Connection
from Camera Application

Figure 56 shows message sequence of the AC with the other components (VLC,
CamApp (camera application), and LookUpTable). In this figure, the AC denies
the connection. The sequence of the message is the same till the evaluation of the
session request. The session request is denied and the AC informs the camera
application about its decision. Thereafter, the camera application informs VLC
that is session request is denied.

Figure 56-Admission Control Unit deny Connection

74

The AC gives its decision based on the scenarios given in Table 17. The table
describes the scenarios and the possible reaction to the scenarios. The main idea
is to grant the session request based on the availability of bandwidth.

Table 17-Admission Control Scenarios and Actions

Scenario Description

1

^_`ab.> efKg-. If required bandwidth is higher than the current
bandwidth.

Possible Action

1. Reject the request:
Terminate the connection, because it is not possible to provide proper
bandwidth that means the capacity of the network is not enough to
carry the requested frame.

2. Adjust the quality:
Reduce the quality to the available bandwidth.

2

^_`ab.< efKg-. If required bandwidth is lower than the currently
available bandwidth.

Possible Action

1. Accept the request:
The request can be accepted directly, the bandwidth is already
available, but it is not known whether perceptible visual quality is good
or not.

2. Adjust the quality:
Based on the information above the quality could be increased based to
the current bandwidth. However, the quality should be augmented only
up to average level (50). Otherwise, for the new requests there cannot
be enough bandwidth.

3

^_`ab.= ^_hi`. If required bandwidth is equal to the current
bandwidth.

Possible Action

1. Accept the request:
The request can be accepted directly, the bandwidth is already available,
but it is not known that perceptible visual quality is good or not.

2. Adjust the quality:
The request can be reduced by decreasing the quality “5” levels. If all
the bandwidth has been allocated, then there will not be any bandwidth
for the unexpected situations, such as extra message streaming.

In the default setting of the camera, the quality level is set to 50. Before, the AC
is added to the system it is possible to change the quality of the frame manually
via the web interface. Immediately upon receipt of a quality level change
command, encoding of the current frame is abandoned and encoding of a new
frame starts using the new quality level.

6.4.2 Bandwidth Availability Unit

The Bandwidth Availability (BA) unit is created to keep decisions coherent. In
order to reserve bandwidth for a particular camera the current bandwidth
availability should be updated. For this reason, the BA checks whether the
registered camera is still connected and whether the reserved bandwidth still is in
use.

Table 18 gives the possible action of the BA regarding to the response to the ping.

Table 18-Bandwidth Availability Unit Scenarios and Actions

Scenario Description

1
jklm	naopqloa = rs Client gives response to the pinging.

75

Possible Action

Nothing

2

jklm	naopqloa = tkua	qit Client does not respond on time.

Possible Action
Delete the client IP address and the related data from the Storage Unit-2.

Figure 57 shows the message sequence of the BA with the other components
(camera and RegistrationList). In the figure µC/OS-II_1 and µC/OS-II_2
represent the cameras. In this particular diagram, the BA gets the IP address of
the registered camera and pings to it. If the client does not answer within a certain
time, then the registered camera is removed from the Registration List and the
current bandwidth is updated. The BA continues to the do this process till all
items in the list have been checked.

Figure 57-Connection Existence Check for Registered Cameras

6.4.3 Resource Enforcement Unit

The Resource Enforcement (RE) unit is designed primarily to enforce that system
tasks do not utilize more resources than they should. The time period of the tasks
and the number of packets that are streamed to the network are the most
important ingredients for the RE unit, see Table 19. These two ingredients: how
long process the task and how many packets streamed to the network are decided
by the AC with respect to the data gathered stored in the LookUpTable based on
the worst-case measurements.

Table 19-Resource Enforcement Unit Design Decision

Decision Description

1
Count

packets

Camera should not stream more packets than it has been
granted. The assignment is based on the worst-case scenario at
certain qualities.

2
Keep

time

Tasks should not utilize more resources than it has been
assigned. Time period for the task should be enough to finish
its task.

Figure 58 represents the enforcement on the tasks. After a connection is granted
by the AC, the AC sends the information about the time period for each task
within the camera application (encoding and packetizing-streaming), and number
of streamed packet as well as the quality level of the frame to the camera.

76

The RE gives commands to the scheduler which tells it when it should start a
task. Hence, each task is only executed during the period which is defined by the
AC and which is controlled by the scheduler.

Before grabbing another block from the encoded frame for packetizing and
subsequent sending to the PC, it should be checked whether this would bring the
number of packets sent above the number allowed by the AC. Note that, tasks
period and the number of streamed packet is defined by the AC based on the data
gathered from the worst-case measurements.

Figure 58-Resource Enforcement Unit applied within Camera Application

6.4.4 Delay Unit

The Delay unit is created primarily for the prevention of packet overlap, when the
second camera connection is requested. Mainly it is an algorithm that decides
how much the second camera needs to wait before starting to stream frames over
the network to the PC.

Figure 59 shows the possible scenario for the packet overlap on the network when
the second camera is connected. The only way is to prevent the overlap is to
allow the second camera to stream while the first camera is not streaming, in the

77

figure blue arrow represent that the second camera streaming period filling the
gap while the first camera is not streaming.

v1 represents the first connection start time of the streaming, E1 represents the
execution time of the streaming, and T1 represents the period of the streaming
process. The streaming process is running during the interval of v1 to (v1 + x1)
and the execution does not exceed the (v1 + f1) .We assume there is no jitter
and drift, and the streaming process is exactly starts when the period starts.

Figure 59- Possible Scenario for Preventing Packet Overlap on Network

The second camera should stream when the first camera is silent. Given periodic
streaming behavior of the camera this can be achieved by a phase shift v2 Dis-

cussion 1 indicates how to choose v2 in order to prevent overlap.

∃{, (v1 + {f1 + x1) < 	v2	 ∧		 (v2 + x2) < 	 (v1 + ({ + 1)f1)
Discussion 1-Criteria for Increasing Phase; Item “k“ is for All Positive Natural
Numbers

Table 20 gives the possible action of the Delay unit, while the packets are over-
lapped on the network switch.

Table 20-The Delay Unit Scenarios and Actions

Scenario Description

1

2
nd

 camera

streaming

overlap

When the second camera is connected choosing the right
phase for starting to stream will prevent packet overlap
on the network, see Discussion 1. Relies on the
assumption that packets from a camera streamed in a
periodic fashion; the Resource Enforcement unit provides
this.

Possible Action

Provide the delay value to the camera application.

In order to give delay to the second camera, the design decisions are given in
Table 21. It contains the information who will give the decision and what the
duration of the delay is.

[) Θ1+E1 Θ1
[) Θ1 +T1 +E1 Θ1 + T1

[Θ1 + 2T1

[) Θ2 +E2 Θ2

LEGENDΘ : PhaseE : Execution TimeT : Period

78

Table 21-Prevent Overlap Design Decision

Decision Description

1 Central Unit
Delay decision has to be given by a component which
knows all the connections in the system.

2 Decision time
The delay decision algorithm has to be fast enough to not
exceed the expiration time of the RTSP connection.

3 Enough delay
The decided delay has to be sufficient to prevent the
overlap completely.

Based on the design decision in Table 21, it is needed to decide how often the
overlap is prevented. For this decision two approaches are proposed in Table 22.

Table 22-Prevent Overlap Solution Approaches

Approach Description

1 Delay once

After connected to the second camera, the
streaming from the second camera is delayed only
once.

2
Delay on a frame

basis

After connected to the second camera, the
streaming from the second camera is delayed every
possible overlap moment.

Based on the design decisions above the last decision for the Delay unit as
follows:

Design Decision : Delay once

Delay on a frame basis solution can be extension of the Start Delay solution.
However, because of the limited time of the project Start Delay solution is
decided to be applied. In order to give a delay, first connection information
should be known.

While the second camera is not streaming, the question pops up: which task does
the camera perform or not when it is not allowed to access to the network? There
are two answers for that question: (1) none of the tasks are running or (2) with the
exception of its streaming task the camera continues its routine processes. Table
23 gives the explanation of these two approaches and their advantages and disad-
vantages.

Table 23-Delay At Once, Tasks State Design Decisions

Approach Description

Task state = Waiting

Streaming does nothing, hence it does not
stream and the camera is in waiting mode,
except Sensor Board part (frame creation
continues). Video Task contains the encoding
and the streaming functions together. If
streaming has to wait it means also the
encoding has to wait, because the streaming
only runs whenever the encoded frame is ready.

1 Pros Cons

No need to re-design the
Video Task, the approach
will not take time from
the design perspective

Frame loss, while the sensor board continues to
produce frames, these are not processed and the
next frame overwrites the previous frame, and
the frame loss will be more than the current one
(3.2.2.1 Camera Software, section Physical
Restriction on the Camera Application, Figure
23).

Task state = Running

While the streaming process does nothing, the
encoding process continues.

2 Pros Cons

Frame loss is reduced
Resource (processor) on

Video Task has to be re-designed. It needs
time.

79

the camera is not idle.

Based on the approaches and the considering the advantages and disadvantages,
the following decision is taken:

Design Decision : task state is running

The second approach is wiser than the first one with respect to the efficient
resource utilization rather than leaving the system idle.

With respect to the decision (task state = running), two questions have to be
answered, in order to apply the decision to the system, see Table 24.

Table 24-Video Task Division and Buffering

Question #1

Which criteria should be used to split up the Video Task How will the
subtasks be synchronized? Note that the input parameter for the streaming
function is provided by the encoding function.

Answer #1

The main idea of dividing the video task into two main tasks (encoding and
streaming) is to continue with the encoding, while the camera does not stream
to the network. In order to divide the video task: first of all, the function where
the streaming starts has to be considered, and the second consideration is to
synchronize the dependency between the functions. Video task has two main
functions: encoding (app_video_in), and sending (STREAM_send). After
encoding function, the EF information (size of the EF and location of the EF
in the encoded frame buffer) has to be given to the sending function as an
input parameter. The division is made from the streaming function and the
data dependency is handled by the semaphores.

Question #2

In case the streaming process is delayed, and the encoding process is applied
to a new frame, where will the newly encoded frame be stored?

Answer#2

An encoded frame is stored in the encoded frame buffer, and the size of the
encoded buffer is defined when the system starts up. In the original system its
size is enough for one encoded frame. In case the streaming function is in the
waiting state, the encoding function will be executed and the newly encoded
frame will fill the encoded frame buffer. In order to store the new encoded
frame and not to lose the previous encoded frame, the buffer size of the
encoded frame buffer has to be increased.

The answers are given in Table 24 is indicated in Figure 60. The figure shows the
message sequence while the streaming processed is delayed by the system. In
order to give delay to the streaming function, first of all the connection request
should be accepted by the Admission Control Unit and the central unit should
give the delay to the second camera.

Before explaining the message sequence, the items used in Figure 60 are ex-
plained in Table 25:

Table 25-Delay Unit Sequence Diagram Items

Component Responsibility

Capture Frame Produce a raw frame

VideoTask Encode a raw frame

NetworkTask Packetize an encoded frame and stream

µC/OS-II Synchronize the tasks and provide timing

AC Central unit send the delay information

VLC Request connection and display the encoded frame

Communication Accept the connection request from VLC and
request connection to the AC

Buffer Responsibility

RawFrameBuffer Raw frame is stored

EncodedFrameBuffer_1 First encoded frame is stored

80

EncodedFrameBuffer_2 While the streaming function is delayed the second
raw frame is stored

81

Figure 60-Giving Start Delay is processed within Camera Application

82

The loops within Figure 60 are explained as follows:

• Loop_1:

Raw frame is captured and stored in the RawFrameBuffer. This loop is

processed on the Sensor Board and repeated every 40 millisecond.

• Loop_2:

When the raw frame is ready, Video Task gets the raw frame from the Raw

Frame Buffer. Because of the limited cache size, not the entire frame but

small pieces are grabbed and encoded. Each encoded packet is stored within

the EncodedFrameBuffer_1. This process continues until no piece left from

the raw frame.

When the connection request comes from VLC, RTSP (Communication item)
steps in and creates a session request to the AC for streaming a frame. After the
AC allows the camera to stream it also provides delay duration to the camera.
Delay is a function that is provided by µC/OS-II (OSTimeDelay (RTOS clock
tick)).

• Loop_3:

When the sleep function starts for the Network Task, Video Task grabs a

new raw frame from the RawFrameBuffer and encodes it till the network

task wakes up and it stores the new encoded frame to the

EncodedFrameBuffer_2, because the first one is already filled with the

previous encoded frame. It can be observed that the sleep time cannot be

larger than the streaming period of the first camera and the size of

EncodeFrameBuffer is large enough to store the encoded frame at any quality

level.

• Loop_4:

When Network Task wakes up, it starts to read the encoded frame blocks and

process the packetizing and streaming until no block left inside the

EncodedFrameBuffer_1. Then original routine goes and the Video Task is

started again.

• Loop_5:

Video Task continues where it stopped to read the raw frame from the

RawFrameBuffer. It encodes the rest of the raw frame and filled the

EncodedFrameBuffer_2 until no block left inside the buffer.

When Video Task finished its process, Network Task needs to be started, but it
has to go to sleep again and Video Task starts for the Loop_6. The main idea is to
synchronize the filling buffers and depleting them. Note that the Network Task
cannot be activated if the encoded frame information (encoded frame address and
the size of the encoded frame) is not provided.

In order to give a delay to the second camera, the time needs to be synchronized
between the central unit and the camera. If the time is not synchronized, then the
delay decision will not be interpreted as same as the central unit and the camera.
The following section gives brief information how the time is synchronized
between the central unit and the camera.

6.4.5 Time Synchronization

This section is given in order to emphasize the importance of the time
synchronization in real-time distributed systems. Based on the real-time type
(hard-soft real-time) importance of the time synchronization fault-tolerance is
changing as well.

In the distributed system it is difficult to synchronize the time between the nodes;
this is however trivial in the centralized systems. In the camera system even

83

though the cameras have the same hardware and time set, it is possible that their
clock times are not the same (synchronized) due to the clock drift. For this reason,
the PC has to dictate the system time.

Figure 61 gives the symbolic time message passing from PC to cameras and the
other way around.

Figure 61-Time Unit Difference Representation on Cameras and on PC

In the camera system, the cameras are the same (hardware), as is the installed
software on them. The only different node is the PC, regarding hardware and
software. For this reason, time units on the PC and the cameras are different.

The importance of the time synchronization could be explained as follows: on the
PC side the Delay unit takes a decision that the second camera has to wait 3y time
units, in order to prevent packet overlap on the network. This period has to have
the same meaning on the PC as on the camera side. If the camera waits more (or
less) than what the PC expects, then the overlap cannot be prevented, and the
Delay unit decision is taken wrongly.

In order to solve the time synchronization problem, the following has to be
considered: in the camera system the nodes are interconnected by a LAN and
communicate via message passing only, the system is real-time and the PC is the
central unit.

Based on these considerations a lot of alternatives (protocols (NTP), algorithms
(Hardware Synchronization, software synchronization) [40]) have been proposed
for the time synchronization for the distributed systems. One of them is the
sending a message that contains the time stamp that is stamped on the node to the
message before it is streamed over the network.

The main idea is that the central unit has to inform the cameras of the correct
clock time and the cameras inform the PC as well. The time unit ratio of the
cameras has to be known by the PC. It can be found by comparing the speed of
the processors. The speed of the processor on the PC is 3.2 GHz and on the
camera is 333MHz. It means: 1 PC tick is equal to (3.2*10

9
) / (333*10

6
) camera

tick.

6.5 Process View

In this section, the interactions between the various components of the system are
described, in particular the interactions between original components and the
components added for resource management. For this purpose an Activity
Diagram is used.

In Figure 62, red arrows are used to show external communication among the
nodes and black arrows are used to show the internal communications within the
nodes. In the figure, the most salient features are extension of the RTSP_play
command and the AC unit.

The AC is triggered whenever the session request comes to the camera from
VLC, because before the camera starts to stream, the streamed frame has to be
controlled with respect to its quality level. RTSP protocols on the camera and the
PC sending command to each other based on the RTSP protocol routine until the
RTSP_play command is called by VLC. The RTSP_play command on the camera

84

does not send an acknowledgment message that it receives the command from
VLC; it sends a request to the AC unit. The session request follows by the per-
permission request that contains the frame quality information. The AC unit
receives the frame quality information and based on the decision criteria either it
is allowed the camera to stream to VLC or send a command to the camera
application to terminate the connection with VLC.

Figure 62-Interaction Overview Among VLC, Camera Application and AC

6.6 Deployment View

In this section the physical deployment of the logical system entities are explained.
Figure 63 shows the deployment of the components is given together with the architec-
tural decision diagram (5). Note that the deployment platform is constrained by the
following assumption made in the original project description.

Assumptions

The camera system is composed of two cameras, one PC, and one network
switch; there is no additional node.

In order to decide where to deploy the components, their features have to be evaluated
based on their functionalities. Table 26 gives the components, their functionalities, and
the possibilities for the deployment on the system nodes (camera and PC) along with
characteristics of the nodes in the system.

There are three main rows on Table 26: Component, Hardware and Software.

• Component:

It is explained in order to give the characteristic of the component and find the

match point with the system nodes.

• Hardware:

It is explained in order to decide whether the functionality of the hardware is

proper for the specific component installation or not.

• Software:

It is examined as layers: kernel and application layer. The main idea is to focus on

the implementation level whether it is possible to implement or not.

Resource Management units (Admission Control, Bandwidth Availability, Delay at
once decision, Enforcement decision) are installed on the PC, because it is the central
unit of the camera system. Nevertheless, they are developed as application layer
software. Note that, there is communication between the nodes. Accordingly the
messages coming from the components on the PC side can be interpreted by the
extension of the original components on the camera side.

Table 26-Components Deployment Design Options

Component Description

1

Admission Control

• Management Protocol:
The other nodes (cameras) have to
communicate with the central unit.
The decision must be known by the decision
maker and the related node (camera), so the
protocol has to be connection oriented.

• Decision Maker:
Must be central decision maker.

Hardware reasoning

The PC is the central unit of the camera system, all the cameras are connected
to the PC and the PC knows all the nodes within the system.

Software reasoning

RTSP is the application layer protocol and the Management protocol
communicates with this protocol, so they have to be at the same layer.

2

Component Description

Bandwidth Availability

It has to ping the registered cameras. It must
update the registration list, if one of the registered
cameras is disconnected.

Hardware reasoning

87

It depends where the registration list is stored, otherwise it has to
communicate with the node where registration list is located, and it is time
consuming and extra message load on the network. The registration List is
created by the Admission Control, so it has to be installed on the PC.

Software reasoning

It is developed on the application layer. The only reason is the same place
where the AC unit is developed, this is the design decision.

3

Component Features

Delay at once It has to decide how long the second camera has to
wait before it starts to stream

Hardware reasoning

Delay period is applied on the camera side, but the decision is send by the
provided by the central unit and transferred by Management Protocol. So, the
location belongs where the AC and Management Protocol is located.

Software reasoning

It is developed on the application layer. The only reason is the same place
where the AC unit is developed, this is the design decision.

4

Component Features

Enforcement It gives decision about the maximum number of
the packet on the network and execution time of
the tasks on the camera.

Hardware reasoning

Enforcement decision has to be given by the central unit, because the main
idea is to schedule the entire system and not exceed the limitations of the
resource utilization (processor time and the bandwidth).

Software reasoning

It is developed on the application layer. The only reason is the same place
where the AC unit is developed, this is the design decision.

Based on the given design decisions in Table 26, Table 27 gives the summary of the
design decisions and the time when the components step in during the end-to-end video
processing. There are three main columns: Component, Giving Decision and
Application. Decision is the column explains the start of the component; Application is
the column explains the reaction to the component. Application part is the
supplementary of the components are given in the Decision column.

Table 27-Summary of Deployment Design Decision

Component Decision Application

Admission
Control

hw layer when hw layer when

PC Applica
tion

Before the
streaming is
approved on the
PC.

Came
ra

Applica
tion

Before the
streaming
start.

Component Decision Application

Bandwidth
Availability

hw layer when hw layer when

PC Applica
tion

Registration list is
started to fill.

PC Applica
tion

Registration
list is started
to fill.

Component Decision Application

Giving Start
Delay

hw layer when hw layer when

PC Applica
tion

Same time AC
gave decision.

Ca
mer
a

Applicati
on

Initial
network task.

Component Decision Application

Enforcement

hw layer when hw layer when

PC Applica
tion

Same time AC
gave decision.

Came
ra

kernel Task start.

88

Figure 63 is much more than just a deployment view; it also shows the decision that has
led to the particular deployment.

There are three layers on the diagram: requirements, decisions and the deployment of
the components. In the figure: X represents the decision that is not taken and cloud

represents the idea.

D
e
c
is

io
n

R
eq

u
ir

e
m

en
t

Admission Control

Location of the AC

PC
CP

OR

Location for AC

App.

Indepen.

App.

Depend.
OR

Resource EnforcementDelayBandwidth Availability

X

Network is controlled

by the Central Unit.

PC is the central Unit

X

All components

except the

Central one has

to communicate

with the AC

Central Unit with

Restricted Bandwidth

Reuse the solution for

all application

Central Unit has

system-wide insight

Deploy on CP

Phase amount

should be given

by Central Unit

No Generic Solution

needed at the moment for

Enforcement and

Phasing

Insert in existing

code of

Application

Central Solution is

needed for AC
Resource

Management

D
e
p

lo
y

m
e
n

t

Figure 63-Components Deployment and Architectural Decision Diagram

7. Implementation and Problems
This chapter gives a detailed explanation of the component implementation. First

of all, the video task division and synchronization are explained. Then a complete

system description is given and the interfaces and components are explained. This

is followed by a description of the Management Protocol and explanation of the

delay component. The chapter is concluded by stating the software problems on

the camera application and the possible resolution of these problems.

7.1 Task Division and Synchronization

In the camera application, two main applications are considered: Video Task and
Real Time Streaming Protocol (RTSP) Task. The Video Task is a huge and
complex task in which a lot of functions need to be executed one after another. In
the original implementation, the Video Task is responsible for the encoding and,
whenever a connection is established with the client via the RTSP task, for
streaming.

In order to control the streaming, it is decided to divide the Video Task into two
subtasks namely the Video Task and Network Task, as shown in Figure 64.

Figure 64-Video Task divided into Two Sub-Tasks

In order to divide the video task:

1. The Network Task has to be defined as a task.
2. The role of the Network Task has to be defined.
3. The priority level of the Network Task has to be defined.

First of all, the Network Task has to be defined as a task in the main function of
the camera application.

Secondly, the responsibility of the Network Task has to be defined. Recall that the
original Video Task has two responsibilities: encoding and streaming; of these
two the streaming functionality is given to the Network Task, as shown in Figure
65.

Video Task

Video Task Network Task

91

Figure 65-Video Task Functionality divided into Two Sub-Functions

In order to stream the frames, the streaming function needs two input parameters:
the initial address of the encoded frame in the encoded frame buffer, and the size
of the encoded frame. Figure 66 shows the message dependency between these
functions.

Figure 66-Original Application Function Parameter Transfer

In order to decouple the tasks, the external message transfer is provided by using a
message queue and the routines OSQPost () and OSQPend (), see Figure 67.

Figure 67-Message Synchronization between Tasks

Video Task

• Encoding

• Streaming

Video Task

• Encod-

ing

Network Task

• Streaming

Video Task

• Ad-

dress

• Size

Video Task

Message Queue

POST

• Ad-

dress

• Size

PEND

•

•

92

Thirdly, the priority of the Network Task has to be defined based on the
responsibility of the task. The Video Task is fed by the Sensor Board which
captures the new frame, and the Network Task is fed by the Video Task.

Since capturing new frames is faster than encoding frames, the input data for the
Video Task is ready earlier than the Network Task input data. Based on this
constraint, the Network Task has a higher priority than the Video Task. Hence,
whenever the encoded frame is ready, even the Sensor Board interrupted Video
Task will be executed because of the new captured frame Network Task.

Originally, the Video Task priority was set to 44. After the Video Task is divided
into the Video Task and the Network Task, the task priorities are assigned as
follows: Video Task Priority: 45 and The Network Task priority: 44. Note that in
µC/OS-II the priority is reduced when the priority level number is increased.

The synchronization between the Network Task and Video Task is provided by
using semaphores. Figure 68 represents the task synchronization and message
synchronization of the tasks (before the Video Task posts the Network Task
semaphore and after the Network Task pends the semaphore).

Figure 68-Task Synchronization and Message Synchronization Conceptual View

In order to start the Video Task, first set its semaphore to 1 and the Network Task
semaphore to 0, because the Video Task is of lower priority than the Network
Task and needs to be started first.

After the Video Task finishes the frame encoding process, it posts the encoded
frame information to the message queue and posts the Network Task semaphore
which becomes 1.

At the beginning of the Network Task, the semaphore is pended and the task is
started. Then the Network Task pends the posted frame information of the Video
Task and starts the streaming process. At the end of the streaming it posts the
Video Task semaphore. Hence, the tasks will be synchronized.

1 2

93

7.2 System Integration and Interfaces

This section provides an explanation of the interaction of the system components.
Moreover, the interfaces between the components are explained.

Figure 69 depicts the system nodes and the hardware interface situated between
them.

Figure 69-Interface between System Nodes

The following figures provide detailed information on the system nodes
implementation.

Figure 70 shows the camera implementation. The camera application contains
three main files: App_video_in, app_network and RTSP_play of which
App_video_in and app_network are redesigned and RTSP_play is extended. The
interaction among the components is provided via the interfaces.

Figure 70-Implementations within Camera

Table 28 gives the content of the files within the camera application.

Table 28-Functionalities and Interfaces within Camera Application

Functionalities

app_video_in
This file is responsible for the encoding of the raw frame, and
for storing the encoded frame information.

app_network
This file retrieves the encoded frame information and transfers
it over the network.

RTSP_play
This file is responsible for performing the PLAY command
which is sent by the client and extended to parse the messages
which are transferred by the Admission Control.

Interfaces

Message
Queues

The Message Queues allow processes to exchange data in the
form of messages.

Semaphores Semaphores synchronize tasks.

m_stream The m_stream contains all the real-time streaming protocol

94

libraries, and is used for streaming a frame to the network.

Figure 71 shows the two main components within the PC: Admission Control and
Bandwidth Availability. These two components are separated from each other.
The Bandwidth Availability depends on the information stored within the
address.txt file which is derived from the AC component. The address.txt file
contains the information on the registered cameras.

Figure 71-Admission Control and Bandwidth Availability in PC

Figure 72 presents the details of the Admission Control along with the interfaces.
The artifacts (.txt files) are also given.

Figure 72-Admission Control

Table 29 provides the content of the files within the Admission Control.

Table 29-Functionalities within Admission Control

LUT.txt
This file contains the information which is recorded during the
Feasibility Analysis, see Figure 53.

Registration
List

The Registration List is used by the Admission Control and the
Bandwidth Availability units. For this reason, this list is stored in
a shared memory. It is a table that contains the information of
the registered camera and the processing time of the tasks
(video-network).

Current
Bandwidth

The Current Bandwidth is used by Admission Control and
Bandwidth Availability units. For this reason, it is stored in a
shared memory. It contains the current bandwidth information.

Admission
Control

The Admission Control is a server and collaborates with the
Socket Handler which evaluates the connection requests. It

95

allows up to ten connections.

Socket
Handler

The Socket Handler is responsible for receiving the data in order
to parse and evaluate it. It contains the functions findFQI, delay
and enforcement:

• Function findFQI is used to get the bandwidth utilization

with respect to the received quality information from the

camera application.

• Function delay is used to calculate the phasing for the

second connection.

• Function enforcement gets the processing time of the tasks

within the camera and number of packets for a certain

quality level for the new frame.

InsertItem
This is used to update the current bandwidth. If it is updated, it
records the accepted connection in the Registration List.

Bandwidth
Availability

The Bandwidth Availability is used to diagnose the connection
persistence. It pings the registered cameras. If a camera
application does not answer within 1 second, the camera is
deleted from the Registration List and the bandwidth is updated
(increased by as much as what was used by the deleted camera).

Figure 72 shows the second main component called Bandwidth Availability. It
only pings to the camera(s) which is (are) recorded within the Registration List. In
order to ping to the camera, the ICMP protocol is used. If the pinged camera does
not respond on time, the registered camera is deleted from the Registration List
which is kept in shared memory.

Figure 73-Bandwidth Availability

7.3 Implemented Units and Results

In this section the implemented units are described. In addition, some designed
units that were not implemented are stated and the reason for this is given.

Due to the fact that the camera software was unstable, not all of the implemented
components are accurately tested. The software development was performed while
the camera application was in debug mode, see 5.5.4: Debugging section. Since
there was only one catapult available, the units could not be tested with two
cameras; while one camera was in debug mode, the other camera could not be
used.

7.3.1 Admission Control Unit and Management Protocol

The original camera application functions as a server. However, during the AC
connection, the camera behaves as a client and therefore the AC will function as
the server. When the AC approves the connection request, the camera becomes a
server again streaming frames to the PC.

There are two crucial data items that the camera application needs: (1) IP address
of the AC and (2) the port number of the protocol.

96

While a client requests to connect to the camera, the camera application requests
AC for permission. On the camera application, it is not necessary to set the IP
address of the PC which has the AC deployed, because the camera application
recognizes from where, VLC sends stream request. Note that if there is another
server specified for the AC (not located on the PC), the IP address of the server
has to be set manually to the camera application.

The camera application needs a port number. It is decided to use “7111” as a port
number for the AC connection; because 7111 is out of a standard port number
range.

The communication between the AC and Management Protocol on the camera
application is tested using a Windows implementation (debug mode). However,
the AC and the Management protocol are both developed in Linux. Even though
the camera software was unstable, the system is designed based on the Linux
environment.

In order to develop the AC and the ManagementProtocol, one client is
implemented that communicates with the AC. Hence the parsing and the
evaluating processes are tested.

Figure 74 shows the Admission Control process and the decision transfer to the
implemented client (on behalf of camera) through the Management protocol.

Figure 74-AC-Management Protocol Communication with Camera Application

Figure 75 shows the message sequence from the implemented client (on behalf of
camera) to the AC.

Figure 75-Camera Application Response to AC

7.3.2 Bandwidth Availability Unit

97

The cameras registered on the Registration List created by the AC are controlled
by the Bandwidth Availability (BA) application. For this reason, the BA is also
implemented in Linux. Figure 76 shows the pinging to the registered camera IPs.
If the ping is not responded, then the registered camera IP is deleted from the
Registration List and the current bandwidth is updated.

Figure 76-Connection Availability Checking

7.3.3 Resource Enforcement Unit

The Resource Enforcement (RE) Unit is designed to enforce that tasks do not
utilize more resources than necessary. In addition, the counting packets unit has to
be added as an auxiliary unit that counts the packets before they get streamed to
the network.

Figure 77-Enforcement Units Integration to Camera [18]

Figure 77 the Enforcement Units’ integration on the camera is given. There are
three main units in order to make the tasks (Video Task and Network Task)
periodic: Periodic Task, Server and Relteq.

The system works as follows:

The period of a task is set (it did not have a period before). The period of the tasks
can be changed later on. When the connection is published and the period of the
task is sent by the AC. The period of the tasks are set within the RTSP_play
(where the messages are received from the AC) by using the OSTaskSetPeriod()
function. In addition, any task can set the period of any other task.

98

The role of the Relteq is to release the tasks, i.e. it marks them as a Ready task.
Then the scheduler makes sure that at any moment the highest priority Ready task
runs.

RE is based on the depletion event, which is inserted into server's virtual queue at
every replenishment. When the event expires, the state of the server is changed to
"depleted" and the server is switched off. The depletion event can be considered
as part of monitoring which is the ability for tasks to check the remaining budget
of a server. Then there is a method called RelteqServerRemainingBudget() which
handles a server as a parameter and returns its remaining budget.

During the test, the results of the worst-case measurements of the task time period
and the number of packets are manually recorded in the LookUpTable. The time
period of the tasks are read from the LookUpTable and send along with the other
unit messages (AC acceptance, delay and the number of packets).

However, after the RE was implemented; it did not function correctly on the
camera. We assume that the reason is due to unstable camera software.

7.3.4 Delay Unit

The Delay unit needs an auxiliary component which is called the network packet
sniffer to record the first JPEG packet that is received from the first camera and to
record its arrival time should be recorded into the Registration List. While the
second connection is requested, it is checked whether the overlap occurs in the
first connection streaming period or not.

The sniffer is not implemented, because it is not used in the system and there are a
lot of sniffer software applications to be found on the internet. Note that in order
to give delay to the second camera, the streaming time of the first camera has to
be known and two cameras have to be connected to the PC. For this reason,
without using the sniffer, we assume that we have the connection time of the first
camera and record it to the Registration List manually.

There are two changes that need to be made by the software developer: (1)
semaphores (2) size of the buffer.

The first change is that, when the Video Task is divided into the two tasks (Video
and Network tasks), the system starts to run the Video Task first, without an
interruption of the Network Tasks (its semaphore flag is 0 at that moment). After
this, the Network Task starts to run until it sets the Video Task semaphore flag to
1. In order to continue running the Video Task while the Network Task is
sleeping, its semaphore flag needs to be set to 2 unlike the previous one which
was 1.

The second change takes place in the original software; the size of the encoded
frame buffer was set to 1and is suitable for only one frame. Because of the added
feature delay however, it is set to 2. The new size of the buffer is enough for the
second frame while the first encoded frame is still within the buffer. Since
increasing the second camera phase should not exceed the time interval between
the two streamed frames from the first camera, new allocation should be enough
for the second frame during that period of time, see Figure 59.

The synchronization between the buffers is provided by Message Queues. The
input parameters of the Network Task: initial address of the frame and the size of
the frame also take away the disorder between the streamed frames. Note that,
frames are sent in a specific order and that the Network Task can only start when
the input parameters are ready.

Figure 78 illustrates the terms, in order to explain the delay algorithm.

99

Figure 78-Overlap Scenario

The terms are explained in Table 30.

Table 30-Delay At Once Abbreviations

t1 This is the time when the first registered camera JPEG packet is
received. Note that there is only one camera that is why it is called
“first camera” system.

T This is the total streaming period of the first camera.

TNT This is the time period of the Network Task for the first camera.

tn This is the expected time when the second camera starts

TNT2 This is the time period of the Network Task for the second camera
system. Note that there are two cameras that is why it is called “second
camera” system.

delay This is the calculated time period the second camera has, see the
equation below.

Equation 5 is given in order to show how the delay algorithm works. The “delay”
variable is used in the decision of how long the second connection should wait
before the frames start the streaming to the network.

If (,J − ,1)%	f < f�f

1.�/7	 = f�f − �(,J − ,1)%f�
Equation 5-Compute Frame Bit Rate

The phasing of the second connection depends on the first connected camera, and
its initial streaming time.

The delay information is sent by the Socket Handler along with the AC request
acceptance message. On the camera side OSTaskSetPeriodEx() function is used to
set the initial offset. [18]

7.3.5 Scheduling

The scheduling is used to decide the resource assignments between possible tasks.
In order to achieve scheduling, we first attempted to install the Real-time
Operating System (RTOS) on the system nodes.

On the PC side RTOS is the RT-Preemption Patched in Linux which provides the
priority preemptions feature to the tasks. The tasks can have the same priority
level conversely in µC/OS-II. In this project, a number of VideoLAN (VLCs) are
directly proportional with the number of the connected cameras. For this reason,
each VLC has the same priority level, except for the non-real-time VLC. VLC can
be scheduled either as Round-Robin (RR) or as First-In-First-Out (FIFO).

A real-time task priority is given to VLC and the FIFO scheduling method is
chosen. However, it could not be tested, because the camera software only runs in
debug mode, and the debug mode only runs in Windows (VMware).

7.4 Main Software Problems

In this section, the unstable software is explained along with the error messages.
The main problem is concerned with flashing the software meaning that the
compiled software is not uploaded. The original software developers initiated a

100

project, in order to erase the flashed firmware on the camera. However, even
though the firmware was erased from the camera and the newly compiled software
was uploaded, the camera did not process and received an IP “169.254.7.151”.
This IP address indicates that the camera cannot get an automatic IP address, and
that it is not possible to provide a static IP to the camera.

The following list gives the other problems we faced with the camera software:

1. Immature software: The semi-tested/unreleased code on the camera is
immature. The streamed frames are received on the PC as shown in Figure 79.
o Reason:

When not all the packets were received, the JPEG algorithm filled the
frame with a green block. The frame depicted in the figure is received from
1-camera system; meaning that there is no interference in the network.
Nevertheless, the frame quality is low indicating that there is no packet loss
on the network either. The only explanation could be that the packets are
lost inside the camera.

Figure 79-Incomplete Received Frame

2. Error Message: When we run the software on the camera up to a minute, we
received an error as shown in Figure 80.

Figure 80-Unhandled Exception Error

3. Development Environment: The software development environment, Stretch
IDE, requires a machine-dependent license. For this reason, we tested the
entire implementation on Windows XP which was installed on Virtual
Machine (VMware).

4. Temperature: The increased temperature of the camera is another observation
we made. This increase could be caused by the fact that the top of the camera
was removed in order to plug-in the JTAG print head. This can explain the
packet loss as well because the software can very well be affected by the
temperature.

5. Color: In high quality images, pink and blue strips are observed in the
received frames, even though there are no pink or blue colors displayed on the
captured frame.

6. Calibration: When the software is running in debug mode, the camera stops
streaming when the calibration of the lens is changed.

7. Web Interface: Before we started to work with the camera software, we
changed the IP address of the camera and the frame settings by using the
camera web interface. However, after we started working with the new
software, either the web interface just appeared for a couple of seconds, or the
changes we made to the camera system, such as changes to the IP of the
camera, were not reflected.

8. Backup Software: This software is used in order to recover the camera settings
or changes to the IP address of the camera. In order to upload the software, the

101

catapult, camera and PC have to be in the same network subnet mask. Howev-
However, the backup software did not work either. We were able to open the
web interface by using the backup software, but we were not able to set a new
IP, even when the IP seemed changed.

9. Development Environment: Compilation time of the camera firmware,
uploading and the firmware takes too much time. The upload speed of the new
ordered Catapult was slower than the broken one. However its speed was
varies on different computers. The speed of the catapult made the test cases
difficult. The speed problem was not solved; even we contact and give all the
details about the Catapult provider.(41)

102

8.Conclusion
This chapter presents the overall conclusions of the “A Real-Time Networked

Camera System” project. Section 8.1 states all the conclusions, section 8.2

provides some recommendations and suggests a possible future extension of the

current project.

8.1 Results and Conclusions

Three main goals of the current project have been defined:

• Have a distributed platform supported by a Real-Time Operating System

(RTOS) on each node; the setup should consist of two cameras and a PC. The

cameras should transmit streams to a PC.

• Have an example application that shows the resource management in a

distributed context, two cameras and the PC.

• Have a protocol for communication between the real-time Kernels, this

protocol should enable the integration of real-time communication and

distributed control in order to admit system-wide decisions.

The first two goals have been achieved and the last goal has been partially
achieved by providing Resource Management units: the Admission Control, the
Bandwidth Availability, the Resource Enforcement and the Delay units.

The distributed system setup is constructed from a set of relatively independent
components: two security cameras, a PC, and the network switch; the two cameras
and PC are connected to each other via a network switch.

The video processing application is distributed to the system nodes. When the
camera is turned on, it captures a raw frame, and encodes this frame. Whenever it
is connected to the PC via the media player, it packetizes the encoded frame with
the network protocol headers and streams it over the network to the PC. The PC
receives the packets, removes the network protocol headers and reassembles the
encoded frames, after which the frame is decoded and displayed on the screen.

The connection between the camera and PC is provided via the RTSP streaming
protocol and the frames are streamed via the RTP protocol. The frames are
encoded and decoded, based on the MJPEG algorithm.

In order to have a real-time distributed system, the PC is equipped with the RT-
Preempt Patched Linux Kernel and is patched to the Ubuntu Linux distribution;
the camera was already equipped with the µc-OS/II real-time kernel. So, to
complete the video processing chain which starts on the camera (capture-encode-
stream), the PC is equipped with the VLC media player.

In order to manage the resources (processor/ bandwidth) and come to a system-
wide decision, the Resource Management units (the central unit of the distributed
system) are deployed to the PC. The communication between the Resource
Management units and the camera is provided via a new proposed protocol called
Management Protocol. This protocol is run on top of the connection-oriented
(TCP) protocol, because in order to give a coherent behavior between the reserved
resource and the current resource, the given decision should be connection
oriented.

So, as to make a decision, there should be a decision criteria defined. For this
reason, worst-case measurements are made. The purpose of the worst-case
measurements is to create a real-time behavior with respect to the deadline of the
tasks.

103

Due to the encountered software problems, the Resource Management unit is
partially applied to the system. So, based on the Resource Management unit, the
following results are provided:

• The Admission Control unit:

The bandwidth mainly utilized because of the packet streaming from the
camera to the PC, and the number of the streamed packets depends on the
quality of the frame. Quality refers to the perceptible visual quality of an
image. The Admission Control unit adjusts the quality level of the frame
based on the current bandwidth capacity.

• The Bandwidth Availability unit:

When the Admission Control unit allows the camera to stream a frame over
the network to the PC, the system should check if the allowed connection
still exist or not. The purpose is to keep the current utilized bandwidth up-to-
date.

• The Resource Enforcement unit:

This unit is used to ensure that the tasks within the camera application do not
utilize more resources than necessary. In contrast to the first two units, the
Resource Management unit could not be tested on the camera because of the
software problems. However, it was tested on the Stretch IDE simulator and
it appeared to work. Based on the given period of time for the tasks they run
as long as they are allowed to run. In order to provide this feature to the
system, the RELTEQ and HSF methods are used.

• The Delay unit:

This unit is used in order to prevent the possible packet overlap on the
network, whenever the second camera is connected to the PC. Based on a
possible overlap, the second camera streaming time is delayed and the
packets are streamed while the first camera does not stream over the
network. Just as the previous unit, the Delay unit could not be tested as well.
The reason is the same: because of the software problems the second camera
could not be connected to the PC and therefore the delay unit test could not
be carried out.

In summary, time synchronization is a crucial component in providing
synchronization between the distributed system nodes. The possibilities for time
synchronization are stated. However, none of them is neither designed nor
implemented.

8.2 Recommendation and Future Work

The main goal of this project was to distribute the video processing application on
the camera and PC, and schedule the video processing application collectively in
real-time manner. However, due to an immature camera application and the lack
of time, we only focused on the camera application.

If the software providers involved in this project could have done more than they
actually did, this project could have reached a different level, in such that all the
proposed units could have be applied, and even more design could have been
proposed.

Based on the research we provided on the system the following recommendations
are made for future work:

• Since the main camera system is defined in this project future developers do
not need to spend as much time in understanding the system en in
understanding on how the camera works.

• Since this project has provided the possible problems and proposed
solutions, future developers can invest in solution improvements and
unexecuted unit tests using the Resource Enforcement and Delay units.

• Since this project has enabled the task tracking system, it is possible to port
to the µc-OS/II real-time kernel and the RT-Preempt patched Linux. The

104

project has provided software for the µc-OS/II and documentation and refer-
references for the RT-Preempt patched Linux. The advantage of task
tracking is to see whether the re-designed system behaves as expected. This
advantage can be used in future projects.

• This project has enabled the optimization of the camera application with
respect to the speed (memcopy to DMA); this can be an advantage for future
projects in continuing to develop the current system based on the optimized
camera system. Hence, the latency can be reduced.

• Since this project has determined time synchronization as a crucial
component in providing synchronization between the distributed system
nodes, future projects could focus more elaborately on the time-
synchronization as such.

105

9.Project Management
This chapter introduces the various issues that are relevant to project

management. The process used to manage the project is described in the first part.

Other related subjects such as Breakdown structure, Milestone Trend Analysis,

and Risk management are also presented in this section. A short retrospective of

the project closes the chapter.

9.1 Process

This project can be characterized as a fixed-time and fixed-resource project. The
project duration was 9 months, in which one project member had the full
responsibility of the system design and development.

The project steering group consisted of two members, who had the primary
responsibility of supervising, mentoring and advising the project member during
the software design and development of the project.

The project had a frequent communication pattern established from the beginning.
Three different meetings were scheduled: one with the project steering group, one
with the project group leader and one with the project owner.

• In the first two months (January and February), a weekly plenary meeting

involving the project steering group took place in order to check the progress

of the project and the processes involved.

• During the project, a weekly meeting involving the project group leader from

the SAN group was scheduled in order to brainstorm, take decisions, show

the progress of the project and receive feedback and come to an agreement.

• During the project, a weekly planned but monthly executed meeting involving

the project owner from TU/e was scheduled in order to brainstorm, take

decisions, show the progress of the project and receive feedback and come to

an agreement.

9.2 Planning and Tracking

During the project some tools were used: the Microsoft PowerPoint tool for the
weekly presentations, the Microsoft Office Excel tool to create the milestone trend
analysis and the Microsoft Office Project tool for arranging the project planning.

During the project, the Microsoft PowerPoint tool (Figure 81) was used in order to
show the status of the tasks: DONE, IN PROGRESS, STARTED.

Figure 81-Weekly Meeting Presentations

The Microsoft Office Project tool (Figure 82) was used as a project management
tool. The project is divided into two main parts: global and short iteration. The
short iteration plan contains a description of the tasks needed to tackle the
requirements assigned to the iteration. The global design is divided into four main
parts: after the first part (background information, project management and
feasibility analysis), the following three parts have been divided to contain the
same structure as in design, implementation, test and documentation. However,
the planning parts were not as easy as making the plan. A lot of drawbacks
obstructed the plan to develop and test the proposed design.

106

Figure 82-Microsoft Office Project tool, iterative planning

The Microsoft Office Excel tool (Figure 83) was used as a Milestone Trend
Analysis (MTA). First three months of the project MTA was used and short term
plans were followed:

Figure 83-Microsoft Office Excel Milestone Trend Analysis

9.3 Risk Management

The benefits of risk management in projects are huge and like all software

development projects, also this project involved risks. These risks were identified

at the beginning of this project and during the project. In Table 31 the most im-

portant risks are described.

107

Table 31-Most Important Identified Project Risks

Risk Description and Mitigation

Learning
Curve

The lack of experience in the embedded system and the
specific camera platform were quite a challenge Regardless of
this, there is always the risk of going into the wrong direction.
That is why it is essential to regularly summarize the findings
to the supervisors.

Project
Planning

Unexpected situations altered the planning. The project
planning needed to be adjusted based on the new situation.

Communicati
on Problem

Language and background differences may have caused
misunderstandings between the author and stakeholders. This
was avoided by having the author provide a progress report
during the meetings on the actions taken.

Summer
Holiday

People involved in the project are unavailable during holidays.
In order to anticipate, the project planning included the agenda
of the supervisors.

Imported
Device

Next to the camera, also the catapult, which was ordered from
the USA, was used in this project. The catapult was broken
and before ordering a new one, an attempt was made to fix it
with the help of the company it was ordered from. However,
because of the different time zone, working hours and
sleeping hours are not the same. The only way to solve this
was when one of the partners sacrificed some sleeping time.
Eventually we were not able to fix it and ordered a new
catapult, so a lot of time was lost during the attempt to fix it
and receive a new one.

9.4 Retrospective

In retrospect, a lot of lessons can be learned from this project. Therefore, an
overview of the positive experiences and these lessons are presented in the
following list so that future projects may benefit:

• Finding experts in the organizational environment is very important. They
can help to find potential problems earlier and not during the technical
implementation. In this project they proved to be extremely supportive and
helpful.

• Working with the third parties has to be considered as a big risk. They have
their own businesses and may not have enough time to provide support to
external projects. This was experienced in this project.

• Using imported tools is a big risk when they are broken, because trying to fix
the tool before ordering a new one and the transportation time after ordering
waists a lot of time as experienced in this project.

• Even if the prototype is simple, it is better to demonstrate it to the
stakeholders, in order to avoid unexpected situations.

• Working in a structured way can highly improve the productivity.

• When the project is in an early stage and many things are not yet clear, it is
very important to involve as many experts as possible to have technical
discussions.

• Writing the final report should be a continuous process during the entire
project. It should be taken into account that during the summer, most of the
supervisors are on holiday so the reviewing time is very limited.

• Be conscious of possible misunderstandings between parties; keep asking
questions and report on a regular basis on the progress of the project.

• Be aware of the development environment. For the embedded systems,
software uploading and compiling processes can take more time than
estimated. For this reason, without being sure, these processes should not be
started.

108

While designing a project, there are ten technological design criteria that can be
taken into account: functionality, impact, possibility of realization, inventiveness,
complexity, elegance, genericity, methodical approach, and documentation. Not
all these criteria are applicable for all projects since their level of importance
varies. In this project, three criteria have been chosen as the most important for
this project. A brief description of how they were achieved is presented below:

• Functionality:

This project started as an idea and a fixed goal. It was very important to

determine how that idea could adhere to the system and what could be

achieved. A set of functionalities that would be desirable were defined before

we started the project. However, the functionalities for the resource

management and scheduling were only based on terminology not practiced.

The research focused on how the functionalities could be achieved and could

be designed trying to accommodate all of them. At the end of the project

possibilities were provided and the requirements were achieved as much as

possible.

• Possibility of Realization:

The project was design-oriented and started with some vague requirements.

The feasibility study was the most important phase of the project and it tried

to discover if and how it is possible to define the functionality. The design

focused on the possibility to combine the findings from the feasibility study

in order to provide the required functionality. This project is based on State-

of-the-Art technologies. All the technologies and building blocks already

exist. Therefore, it was possible to implement the design commercially at low

cost.

• Genericity:

The re-designed system combines as many as possible standard technologies

and tools that prove to be reliable and efficient. The purpose of the

implemented solution is to provide something simple, easy to maintain and

effective without “reinventing the wheel”. It also provides components that

can easily be reused in further developments. During the feasibility study and

the design elaboration, a set of practiced solutions and several already

existing similar solutions were identified. Resource management units can be

used not only for the bandwidth but also for the other resources: memory and

processor.

The two out of the ten design criteria that are less important are:

• Inventiveness:

The project tried not to reinvent the wheel and many standard tools and

technologies are used. The design is inspired by different success-proof

content delivery designs, thus the inventiveness of the implemented solution

and its design is rather low.

• Elegance:

The project aimed to be a proof-of-concept. For this reason, the elegance of

the design was not considered as an important criterion. However, the re-

design of the implemented part of the solution is extensible with well-defined

layers and components.

109

Bibliography
[1]point.onehttp://www.point-one.nl/Service_menu/English

[2]Omeca: Optimization of Modular EmbeddedOnderdeel van
Subsidieaanvraag Point One2009

[3]System Architecture and Networkinghttp://www.win.tue.nl/san/

[4]. Z. Deng, J. W.-S. Liu, J . Sun. A Scheme for Scheduling Hard Real-
Time Applications in Open System Environment.

[5]Concepts and diagram elements for architectural2011

[6]. Rajarajan, D. Porting of Micro C/OS-II kernel in ARM powered
microcontroller.

[7]. Alan Burns, Andy Wellings, Stephem A. Edward, Kang G. Shin.
RTOS – Real-Time Operating System.

[8]. Stankovic, John A. A Series Problem for Next-Generation Systems.

[9]Embedded Operating Systems for Real-Time ApplicationsIIT
BombayNovember 2002

[10]. Baker, T. P. Introduction to Periodic Tasks.
http://www.cs.fsu.edu/~baker/realtime/restricted/notes/periodics.html.
[Online]

[11]. Thiele, Lothar. Embedded Systems, Aperiodic and Periodic Tasks.

[12]Micriµmhttp://micrium.com/page/home

[13]Handbook of Image and Video Processing1033

[14]. JPEG. http://www.jpeg.org/jpeg/index.html. [Online]

[15]Architecture of Distributed Systems/ Lecture Notes2011-2012

[16]. Sojka, Michal. Resource Reservation and Analysis in
Heterogeneous and Distributed Real-Time Systems. 2010.

[17]. http://en.wikipedia.org/wiki/Temporal_isolation. Wikipedia. [Online]

[18]Extending an Open-source Real-time Operating System with
Hierarchical SchedulingTechnical Report, Eindhoven University of
TechnologyOctober 2010CS-10-10

[19]. Rashid, Alex Gantman Pei-Ning Guo James Lewis Fakhruddin.
Scheduling Real-Time Tasks in Distributed Systems: A Survey .

[20]. http://www.artist-
embedded.org/docs/Events/2009/OSPERT/OSPERT09_Holenderski.pdf.
[Online]

[21]. Kopetz, Hermann. Real-Time Systems: Design Principles for
Distributed Embedded Applications .

[22]Hierarchical Scheduling of Complex Embedded Real-Time Systems

[23]Extending a HSF-enabled Open-Source Real-Time Operating System
with Resource Sharing

[24]Internet Technical
Resourceshttp://www.cs.columbia.edu/~hgs/internet/

[25]About the Real Time
Protocolhttp://toncar.cz/Tutorials/VoIP/VoIP_Protocols_Real_Time_Protoc
ol.html

110

[26]Javvin Network Management and
Securityhttp://www.javvin.com/protocolRTCP.html

[27]Identifying bottlenecks in the performance of an existing surveillance
applicationAugust 4, 2011

[28]. Elke Hochmüller, Michael Dobrovnik. Identifying Types of Extra-
Functional Requirements in the Context of Business Process Support
Systems.

[29]Real-Time and Embedded Guide K.U.Leuven, Mechanical
Engineering2000

[30]OSADL Project: "Latest stable" RT-Preempt realtime Linux
kernelhttps://www.osadl.org/Latest-Stable-Realtime.latest-stable-realtime-
linux.0.html

[31]Porting RT-preempt to Loongson2F Tianshui South Road
222,Lanzhou,P.R.China

[32]. Jones, M. Tim. Anatomy of real-time Linux architectures.
http://www.ibm.com/developerworks/linux/library/l-real-time-linux/. [Online]

[33]. RT PREEMPT HOWTO. http://www.mail-
archive.com/linuxkernelnewbies@googlegroups.com/msg01769.html.
[Online]

[34]. Tech Radar - The best media player for performance 2011.
http://www.techradar.com/news/software/applications/the-best-performing-
media-player-for-2010-683569?artc_pg=2. [Online]

[35]The architecture of VLC media
frameworkhttp://www.enjoythearchitecture.com/vlc-architecture

[36]. linuxkernelnewbies . http://www.mail-
archive.com/linuxkernelnewbies@googlegroups.com/msg01769.html.
[Online]

[37]Wireshark Official Websitehttp://www.wireshark.org/

[38]. http://en.wikipedia.org/wiki/JPEG#JPEG_codec_example. [Online]

[39]. Cygwin. http://www.cygwin.com/. [Online]

[40]. Parameswaren Ramanathan, Kang G. Shin, Ricky W. Butler.
Fault-Tolerant Clock Synchronization in Distributed Systems.

[41]ByteToolhttp://www.byte-tools.com/

[42]. Verhagen, Norbert. Setting up the hard and software. 2010.

[43]. http://www.ndmp.org/wp/wp.shtml. [Online]

[44]. http://www.ndmp.org/info/spec_summary.shtml. [Online]

[45]Image Resolution, Size and Qualityhttp://www.microscope-
microscope.org/imaging/image-resolution.htm

[46]Rowe Bots RTOS Products for DSCs DPS and
Microcontrollershttp://www.rowebots.com/embedded_system_software/rto
s

[47]TIES426 Real-time systems FinlandFI-40014 University of
Jyväskylä2009

[48]Worst-case response time analysis of real-time tasks under fixed-
priority scheduling with deferred preemption revisitedTU/e

[49]UML 2.0 Notation for Modeling Real Time Task
Schedulinghttp://www.uml.org.cn/UMLApplication/200612264.htm

111

[50]Multi-processor Motion JPEG
decoderhttp://www.es.ele.tue.nl/mininoc/doc/mjpeg_mmips.htm

[51]Real Time Communication in Embedded Systems2010

[52]Benjamin Wah.Wiley Encyclopedia of Computer Science and
Engineering

[53]Real-Time Operating SystemKluwer Acadmeic Publisher2004

[54]Holistic Scheduling and Analysis of Mixed Time/Event Triggered
Distributed Embedded SystemsLinköping University, Sweden

[55]Resource Kernels: A Resource-Centric Approach to Real Time and
Multimedia Systems

[56]Swift mode changes in memory constrained real-time systems

[57]Towards Hierarchical Scheduling in VxWorks

[58]. Hideyuki Tokuda, Tatsuo Nakajima, Prithvi Rao. Real-Time Mach:
Towards a Predictable Real-Time System.

[59]. http://en.wikipedia.org/wiki/Distributed_computing. [Online]

[60]. NixCraft. http://www.cyberciti.biz/faq/howto-set-real-time-scheduling-
priority-process/. [Online]

[61]. Chaudhury, Dr.Santanu. Lecture -1 Embedded Systems:
Introduction.
http://www.youtube.com/watch?v=y9RAhEfLfJs&list=FLAdpcuj0HJ1_cYm
dSZtPoSw&index=1. [Online]

[62]. Cisco Unified Fabric.
http://searchnetworking.techtarget.com/definition/round-trip-time. [Online]

[63]. https://svn.win.tue.nl/repos/ucos/apps/example_period_task. [Online]

Appendix-A
Table 32 shows the criteria for the selection of the RTOS selection with the de-
scription, advantages, and disadvantages of each criteria.

Table 32-Real-time Operating System Criteria

Term Definition Advantage Disadvantage

Latency Measure of time
delay experienced
in a system, the
precise definition of
which depends on
the system and the
time being
measured.

Context
Switch

Changing the task
processing on the
CPU.

Dual Mode One part of the
system for high
data load (includes
DSP), another part
supports priority
based handling.

Developer can
optimize the
system without
having to purchase
a specific high data
load system.

App. Power
consumption
restriction

 Interrupt Driven
RTOS saves the
power, and extend
battery life.

Tick for per
time
management

 Processor to be
frequently
activated which
consumes
additional power.

Disable
interrupt

 Protect the internal
structures.

Take hundreds of
cycles and limits
the response time.

Interrupt
Stack and
Fiber support

New generation
architecture
supports for optimal
RAM usage.

Save precious
RAM

Multithread
Thread

Global
pointers

 Lead the
corruption and
requires
management.

External-
Internal
Clocks

Internal keeps track
of RTOS
operations.

 Their
synchronization is
a crucial issue.

SW timer One-shot and
periodic sw timers
can be used by
multiple threads

Protection
Mechanism

Mutual exclusion,
counting,
semaphores, critical
sections.

Source code User can minimize

113

Term Definition Advantage Disadvantage

availability the risk.

Documenta-
tion

 Easy to use

Hardware
Specific

 Interrupt architec-
ture and compilers
to its fullness.

Usage of RTOS is
limited.

Error han-
dling

 Easy to debug.

Processor
Support

 If not existing,
porting the RTOS
to that processor
is necessary.

Scheduling Overhead

Preemption Overhead

Licensing

114

Table 33 shows the Selected RTOSs and their features. RT-Preempt Patched
Linux suits this project the most.

 Table 33-Selected RTOS

Possibilities

N
a
m

e

R
T

P
re

em
p

t P
en

g
u
tr

o
-

n
ix

X
en

o
m

ai

R
T

A
I

R
T

L
in

u
x

L
IT

M
U

S

R
T

R
T

-N
E

T

V
er

si
o
n

L
at

es
t

st
a-

b
le

:2
.6

.3
3

L
as

t
m

o
d
if

ie
d

2
8
-d

ec
-2

0
1
0

2
.5

.5
.2

3
.8

 2
0
1
0
.0

2

D
o
c
u

m
en

ta
ti

o
n

W
eb

-s
it

e

W
eb

-s
it

e
IN

A
D

E
Q

U
A

T
E

W
eb

-s
it

e

W
eb

-s
it

e

W
eb

-s
it

e
IN

A
D

E
Q

U
A

T
E

W
eb

-s
it

e

N
O

T
 S

T
A

B
L

E

W
eb

-s
it

e

S
o

u
r
c
e

O
p
en

P
re

co
m

-
p
il

ed

O
p
en

O
p
en

O
p
en

O
p
en

O
p
en

L
ic

en
se

F
re

e

F
re

e

F
re

e

N
o
t

cl
ea

r

F
re

e
/n

o
t-

F

re
e

G
N

U
-G

P
L

T
y
p

e

P
at

ch
2
.6

.3
3
.7

.2
-

rt
3
0
.b

z2

D
eb

ia
n
 K

er
n

el

P
at

ch

K
er

n
el

K
er

n
el

P
at

ch
 (

 s
o
ft

 r
ea

l-

ti
m

e)

P
at

ch
 (

 n
et

w
o
rk

)
R

T
A

I-
X

en
o
m

ai

co
m

p
at

ib
le

A
rc

h
.

x
8

6

x
8

6

 i3
8
6
,
M

IP
S

,
P

P
C

,
A

R
M

i3
8
6
,

P
P

C
,

A
R

M

In
te

l
x
8

6
-3

2
 a

n
d

x
8

6
-6

4

S
y

n
c.

M
u
te

x

 M
u
te

x
,

se
m

ap
h
o
re

s

M
u
te

x
,

se
m

ap
h
o
re

s

115

Debugging

The debug mode is basically showing the state of the software on the camera
platform. The reason to discuss the debug mode is that the worst case measure-
ments are gathered with the camera application running in the debug mode, be-
cause the camera application software was so unstable that it did not run in the
release mode.

The software on the camera (embedded system) is compiled on the PC and up-
loaded to the camera before execution. For these processes hardware (catapult,
JTAG, and serial cable) and software (Stretch IDE, Xtensa OCD Deamon, and
HyperTerminal) is needed. The next two sections give information how the cam-
era is prepared for the debug mode. For more detailed information about the set-
ting of the software and hardware see [42].

Debugging Hardware Tool

The camera and the PC are connected to each other via a tool: Catapult EJ-2
Ethernet-to-JTAG device (41). The Catapult is used to upload software from PC
to the camera via the JTAG interface. The PC is connected to the Catapult via an
Ethernet cable and the Catapult in turn is connected to the camera via the JTAG
interface. This JTAG interface differs from embedded system to embedded sys-
tem. Figure 84 shows the Catapult and the JTAG connection.

Figure 84-CatapultEJ2-Ethernet –to-JTAG device: Yellow Wires are called Fly-
ing Leads, and Black-Green Head is called JTAG Print Head; JTAG Print Head is
plugged to Camera

The software is uploaded to the camera after it is compiled on the PC and the
state of the camera is monitored on the PC side. During the debugging process the
software is temporarily located on the camera, i.e., if the debugging hardware is
turned off or the debugging software is closed, then the uploaded software will be
removed from the camera. Nevertheless, it is possible to upload the software to
the camera permanently.

There is one more debugging tool which is the Serial Cable connection which
provides a direct connection between the camera and the PC. For debugging pur-
poses the developer annotates the source code with printf statements to get addi-
tional information on the state of the camera. Using the Serial Cable connection
this information is displayed by means of a HyperTerminal which is installed on
the PC.

116

Figure 85-Connection between Nodes: Camera, PC and Catapult

Figure 85 shows the hardware needed for the debugging: CatapultEJ2-Ethernet –
to-JTAG, Ethernet Cable and Serial Cable which has two parts because there is
no direct connection from the RJ45 to the USB port. For this reason first the
Ethernet to the RS232 cable is used and it is connected to the RS232 to the USB
cable and the USB jag is connected to the USB port on the PC.

Debugging Software Tool

Software development for the application on the camera, the Stretch Integrated
Development Environment (Stretch IDE) is provided by the video application
developers of the camera.

117

Figure 86-Message Sequence among PC-Catapult-Camera: Camera Application
Upload and Streaming

Figure 86 shows the message sequence among the nodes during the software
upload and the streaming. After the nodes are connected physically, see Figure
85, the PC sends a connection request to the Catapult and with Stretch IDE the
software is uploaded from the PC to the camera over the Catapult via the JTAG
cable.

Loop 1 presents the software upload. After the software is uploaded a connection
request is sent directly from the PC to the camera, where after the camera applica-
tion starts to stream the frames to the PC.

During the period of Loop 2, it is observed that the Catapult sends NDMP (net-
work data management protocol) messages to the PC: “NDMP is a network pro-

tocol that specifies the communication between the server and the backup soft-

ware. Communication is defined using a series of defined interfaces. (43)The

purpose of this protocol is to allow a backup of a host without requiring a full

port of the backup software product. The backup and restore solution is parti-

tioned in a way that minimizes the amount of software required on the host.”(44)

118

About the Author

Hilal Karatoy studied Information Tech-
nologies as a major study and Computer
Science and Engineering as a minor study at
the Isik University in Istanbul (Turkey). She
got a full scholarship for Bachelor’s Degree
program (5 years) and Master’s Degree
program (2 years) studies. She received her
Master’s Degree in Computer Science and
Engineering at the Isik University in Istan-
bul (Turkey) in December 2009. During the
master studies she worked as a Teaching
Assistant and 2009 she decided to join Stan
Ackermans Institute (SAI). Her research
interests include computer networks, com-
puter security, real-time embedded systems,
and bioinformatics.

	Cover SAI reports Karatoy
	2012-04-05_ST_Karatoy_H
	Back cover SAI report

