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Abstract 

Recursive formulation of the equations of motion for multibody systems is promising as 
for the reduction of computer time needed for dynamic simulations. A literature review is 
presented in which the state of the art of recursive techniques is discussed for systems of 
rigid bodies with a tree structure. Formalisms to set up the system equations of motion are 
reviewed and a choice for one formalism is made. Topology, kinematics and dynamics of 
systems with a tree structure are dealt with, and a recursive solution process is described 
in which the equations of motion are solved for the accelerations of bodies in the system. 
The case of kinematic driving constraints is also considered. Subsequently, modifications 
of the recursive technique, needed for the application to systems with closed loops and 
deformable bodies are briefly discussed. The described recursive formulation is not only 
applied to the kinematical part of the analysis, but is used all along the solution process 
of the multibody dynamics system. 

.. 
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Nomenclature 

a 
a T 
%J 
A 

óa 
I 
d 

ii 

vector 

second order tensor 
conjugate of tensor A 
inverse of tensor A 
trace of tensor A 
scalar product of vectors a and b 
vector product of vectors ï i  and b 
scalar product of tensor A and vector 2, resulting in a vector (mapping of 2) 
column containing scalars 
transposed column 
representation of vector ii with respect to  base vectors ei (a = ( ? ) T i g )  
matrix containing scalars 
time derivative of scalar Q 

variation of scalar a 
unit tensor 
unit matrix 
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Jacobian of with respect to  b (+ = [z . . . 21) @-IT 
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Symbols 

ái Modal coordinate vector 
bik 
Bik 

Bik - 

gk 

Ck 

Qk 
S i i i  
ST' 
S a i  
ei 

gik 
ij" 
F i  
Ji 

mi Mass of body i 
M Mass matrix 
M? Recursive mass matrix 
Oi 
Oik 
O' 
qk 
Q 
Q 
?' 
?i j  

Ri 

T Kinetic energy 
f i  

U Potential energy 
v'i - 
;i 

; i j  

Vector from centroid of body i to  origin of k-th joint attachment frame in body i 
Rotation tensor representing the mapping of i-th centroidal to k-th joint 

Matrix representation of Bik (with respect to  either 2 or pk) 
Body connection array 
Vector from origin of k-th joint attachment frame in body i to  
origin of k-th joint attachment frame in body j 
Rotation tensor representing the mapping of k-th joint attachment frame 
of body i to  k-th joint attachment frame of body j 
Matrix representation of C k  (with respect to  either 2' or g j k )  

Virtual rotation vector of body i 
Virtual translation vector of body i 
Column with virtual displacement vectors of body i 
Base vectors of body-fixed centroidal frame of body i 
Base vectors of body-fixed joint attachment frame of joint k in body i 
Base vectors of inertial reference frame 
Resultant force vector acting on body i (including applied and constraint forces) 
Inertia tensor of body i with respect to its centroid 
Column containing Lagrange multipliers 

- A A -  -t- --A 1 all lla~lllllt!ll~ 11 CLlllt; 

Origin of body-fixed centroidal frame of body i 
Origin of body-fixed joint attachment frame of joint k in body i 
Origin of global (inertial) reference frame 
Column with relative generalized coordinates of joint k 
Column with generalized force vectors 
Column with recursive generalized force vectors 
Absolute position vector of centroid of body i 
Position vector of centroid of body j relative to centroid of body i 
Rotation tensor representing the mapping of global reference frame to i-th 
centroidal frame 

Resultant torque vector acting on body i (including applied and 
constraint torques) 

Column with absolute linear and angular velocity vectors of body i 
Absolute angular velocity vector of body i 
Angular velocity vector of body j relative to  body i 
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Preface 

This report is the result of a literature study on recursive formulations in multibody dynam- 
ics. The term "recursiveii is encountered more and more in muiti'bo6y dynamics literature, 
forming a reason to find out what it is all about. Furthermore, multibody dynamics soft- 
ware programmers tend to implement a recursive algorithm in their codes, claiming that 
the recursive aspect reduces computation time. At the Division of Fundamental Mechanics 
(WFW) in Eindhoven, an earlier contribution to this field of work has been supplied in the 
form of a report by Stephan van den Akker (WFW-report 1990-004). At the T.N.O. Road 
Vehicles Institute (TNO-IW) in Delft, the multibody code MADYMO has been developed 
and a new version will come along, based on a recursive algorithm. 

This literature report has been realized by the supervision of Prof. dr. ir. D.H. van 
Campen and Prof. dr. ir. J.S.H.M. Wismans (TNO-IW). I gratefully acknowledge dr. ir. 
Fons Sauren and dr. ir. Willy Koppens (TNO-IW) for thoroughly correcting the first ver- 
sions of this report. 

Eindhoven, 1991 

Paul Slaats. 
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Introduction 

In this introductory chapter, some basic terminology in multibody dynamics related to 
recursive formulation of equations of motion is described in order to  be able to  understand 
the following chapters better. Furthermore, literature references are categorized on the 
basis of their use with respect to  recursive formulation. Finally, a brief description of the 
contents of the following chapters is given. 

Multibody systems are models of mechanical systems, con- 
sisting of bodies, interconnected in such a way that (large) relative motion between the 
bodies can occur. Examples of multibody systems are spacecraft, mechanisms, robots, and 
vehicles. The systems can have a tree structure (also called "open loop" in literature) or 
a structure with closed chains of bodies (a kinematically "closed loop'' structure). One 
speaks of a system with a tree structure if the path from an arbitrary body in the system 
to another arbitrary body in the system is unique. If this is not the case, one speaks of a 
kinematically closed loop system. The bodies in a system can be either rigid or deformable. 

The field of multibody dynamics 
embraces the mathematical description of the dynamic behaviour of multibody systems. 
The advances of computer technology and the development of numerical methods to sup- 
port computational dynamics enable researchers to simulate systems with many degrees 
of freedom. For example, parallel processing enables even real time simulation, which 
is needed in robotics applications and in the support of laboratory testing. Multibody 
dynamics computer programs automatically generate the system equations of motion. 

Multibody Systems. 

Multibody Dynamics and Recursive Formulation. 

The system equations may have the following forms: 

or 
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g 
2 
M(q, t )  

‘T f íu.9.t)  \*’ ‘1 

t represents the time. 

is a column with the second time derivative of the 
system generalized coordinates. 
is an explicit expression of q,cj,and t. 
is the mass matrix with res”pct to the chosen 
generalized coordinates. 
is the right hand side column. 

Equations of type (1.1) can be solved by numerical integration procedures having the 
following general equation form as a starting point (e.g., the explicit Runge Kut ta  method, 
which is conditionally stable): 

!i = c(a:,t) 
Eg. (1.1) is equivalent to Eq. (1.3) if the following transformations 

a:= [ i ]  
(1.3) 

are used: 

Equations of type (1.2) can be integrated numerically by the more common procedures 
that have the following general form as a starting point (e.g., the implicit Newmark-/? 
method), where a includes the (na) second time derivatives of all generalized coordinates 
in the system: 

m 

í4q = b 
I 

with A and 4 known ( A  not necessarily constant). For linear problems, the Newmark-/? 
method is unconditionally stable, but if nonlinearities occur, instability may develop. If A 
(with dimension nq * nq) is not constant, then it has to be inverted at each time step in 
the Newmark-,û method. 

By using a so-called ”recursive formulation”, to  be explained in the following chapters, 
the equations of motion can be written in the form of Eq. (l.l), where q has a small size 
(containing relative coordinates of one body with respect to  a precedingadjacent body in 
the system). In order to arrange the system equations in the form of Eg. (l.l), only small- 
sized matrices need to be inverted. As a result, many small-sized equations of type (1.1) 
have to  be integrated, instead of integrating a large-sized system equation of type (1.2). 
Not the integration procedure itself, but the inversion of large-sized matrices takes a lot of 
computation time. According to literature, the recursive formulation is computationally 
efficient. A statement on a preferable integration method is not supplied, however, but 
might be interesting to explore further. The recursive formulation is the main subject of 
this report. 

A large variety of formalisms €or the generation of the equations of 
motion can be found in literature, e.g., Newton-Euler equations, d’Alembert’s principle 

Formalisms. 
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of virtual work, Kane's equations, and Lagrange's equations of the first and second kind. 
Each one of these formalisms leads to  different forms of the equations of motion of a 
dynamic system and consequently different implementations can be found. Of course the 
equations of motion obtained with different formalisms must be equivalent, independent of 
the formalism. However, the efficiency of implement ations of formalisms differs depending 
on the application. In the next chapter a survey of the five above mentioned formalisms 
will be presented. (Dis-)advantages of these formalisms will be discussed, and a choice for 
the formalism used in the following chapters will be made and motivated. 

Distinction must be made between "inverse" 
and "forward" dynamics. When literature references are discussed later on in this chapter, 
this distinction turns out to  be rather clarifying. In the problem of inverse dynamics, one 
assumes that the motion of the mechanical system is known as a function of time. One 
attempts to  find the driving forces and torques necessary to  realize that motion. In the 
problem of forward dynamics, the driving forces and torques are known as a function of 
time. One attempts to  find the evolution of the motion of the mechanical system as a 
response to the applied loads and initial conditions. This report is focussed on forward 
dynamics. 

The kiïìematies of a, system ûf L;û&e,es may be 
described by either global or relative quantities. In a global description, motion of all 
bodies in the system are represented with respect to  an inertial ("global" or "absolute") 
coordinate frame. In a relative description, on the other hand, the motion of a particular 
body in the multibody system is defined with respect to  an adjacent body, the motion of 
which has previously been defined according to the topological order of all bodies in the 
system. Relative description makes recursive formulation possible. A presumable drawback 
of the relative description is that small errors in relative quantities can cause large errors 
in the global kinematical quantities, especially in the case of large chains of bodies. 

Now, what is a recursive formulation? Within the con- 
text of multibody dynamics, a recursive formulation is a procedure in which elementary 
relationships between an arbitrary pair of contiguous bodies as part of a system of bodies 
can be (se-)used all along the system. Recursive relationships can be used in kinematics to 
generate the total system matrices, but they can as well be applied to  come to a solution 
procedure for the multibody system equations of motion. With "solution" in this context 
is meant the determination of the system unknowns, such as accelerations, and not the 
integration of accelerations to velocities and positions. It is important to  notice the dual 
use of the term "recursive." When consulting literature on this subject, one can easily be 
misled by this ambiguity. 

Application of recursions in an inverse dynamics analysis is only useful when carried 
through as far as the kinematical part of the analysis is concerned, just to come to the 
system of equations. Examples of recursive formulations in inverse dynamics can be found 
in literature, e.g., Walker and Orin (1982), Wang and Ravani (1985), Van Woerkom (1989). 

In forward dynamics, recursions are often carried through merely as far as the kinemat- 
ical part of the analysis is concerned. Examples oÎ the combination of recursive kinematics 
and the usual non-recursive solution procedure can be found in literature, e.g., Van Wo- 

Inverse and Forward Dynamics. 

Global and Relative Description. 

Recursive Formulation. 
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erkom and Guelman (1987), Changizi and Shabana (1988), Wang and Ravani (1985). 
However, the interest in this report is rather focussed on the use of recursions in forward 

dynamics extended all along the solution process. Solving the system recursively requires 
smaller (though more) matrices to  be inverted, which is more efficient (less floating point 
operations) than solving a large system of linear equations for the accelerations. Examples 
of recursive kinematics followed by a recursive soiution procedure can ais0 be found in 
literature, e.g., Bae and Haug (1987; 1987-88), Kim and Haug (1988; 1989), Roberson and 
Schwertassek (1988)) Wehage (1989). 

The use of recursive techniques implies several advantages over the usual composition 
and solution of the system equations. Van Woerkom (1989) analyzed an inverse dynamics 
problem, using recursive kinematics. In this work he states that the advantages of applying 
recursions are threefold: easier derivation of the equations of motion, easier software coding 
and de-bugging, and reduced computational effort. These advantages also hold for the 
forward dynamics case in which recursions are used for kinematics as well as for the solution 
process. 

Publications on recursive techniques appear often in literature but fundamentally they 
all come to the same findings. According to Schwertassek and Rulka (1989))recursive 
solution formülations have independently been developed aïìd pülir!isheci at v ~ i o u s  plaees 
[Armstrong (1979), Brandl et al. (1986; 1987), Rosenthal (1987)], in part without any 
knowledge of earlier contributions in the field. The basic idea of recursive system solution 
formulations proceeds from the works of Vereshchagin (1974) and Featherstone (1983), 
but the different ”schools” have used their own terminology to describe the derivation of 
the algorithms. Bae and Haug (1987) use the ”variational form” of the system equations, 
Brandl et al. (1987) use the Newton/Euler equations as a starting point, and in Rosenthal’s 
derivation (1987) the flavour of Kane’s equations appears. 

When using recursive techniques, several 
aspects can be considered in the formulation. To start with, recursive algorithms are 
often only formulated for systems with a tree structure [see, e.g., Bae and Haug (1987), 
Kim and Haug (1988), Van Woerkom (1987)l and worked out for some specific joints 
connecting the bodies. As examples, Bae and Waug (1987) and also Changiai and Shabana 
(1988) only treat kinematic couplings with one rotational and/or one translational degree of 
freedom, thus including revolute, translational, and cylindrical joints in their formulations. 
Featherstone (1983) presented a recursive algorithm to calculate acceleration of robot arms 
with revolute and translational joints only. 

In literature, kinematically closed loops in multibody systems are also taken into ac- 
count (e.g., Bae and Haug (1987-88)) Kim and Haug (1989), Wehage (1989)). As compared 
with systems with a tree structure, systems with kinematically closed loops have additional 
joints which tie various branches in the tree together. These excess joints are also called 
secondary joints. The number of independent kinematically closed loops equals the number 
of secondary joints. When these joints are cut, all kinematic loops are opened and a tree 
is formed. The basic algorithms developed for kinematically open loop systems can then 
be applied with the introduction of constraint forces at the cut secondary joint surfaces as 
additional unknowns. 

Application of Recursive Formulation. 
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An important feature of the recursive formulation with respect to  modern computer 
technology is its suitability for parallel processing implementation. Today’s applications in 
robotics, and support of laboratory testing require real-time simulation capability. Hard- 
ware developments in the last two decades have enabled fast computations even for large 
systems. Computational dynamics should take advantage of the advances in hardware, 
such as computers with paraiiei processing capability. Tne recursive Îormuiaiion presented 
in Chapter 3 is well suited for implementation on such computers. 

Research on recursive algorithms has even overlapped the aspect of deformable bodies 
in multibody systems. Examples can be found in literature, e.g., see Ho (1977), Hughes 
(1979), Singh et al. (1985), Kim and Haug (1988), Changizi and Shabana (1988), Van 
Woerkom (1989), Kim and Haug (1989). In these works flexibility is restricted to small 
deformations of bodies experiencing large displacements. 

This report has been written with the intention to give a 
survey of the state of the art of the recursive technique in general, and to  briefly men- 
tion modification of the recursive formulation to several aspects such as closed loops and 
deformability. In this report, these aspects are not discussed in detail. 

Various formalisms in dynamics are surveyed in chapter 2. 
!E chapter 3 ,  a ïecwsive fm;i;Ulatiûn fûr ope= lmp systums with rigid bedies is described. 
At first, a method to define the topological order of bodies in a tree structure is discussed. 
Then, the kinematics of an elementary system of two bodies, interconnected by a joint, 
are examined. An example in the form of a universal joint connecting two rigid bodies 
is shown. The recursive technique for setting up and solving the equations of motion is 
described in the dynamics section. In chapter 4, application of the recursive technique to 
particular fields of interest, such as closed loops, flexible bodies, and the case where relative 
generalized coordinates are kinematically driven are discussed. Finally, conclusions are 
collected in chapter 5. 

Scope of this report. 

Following chapters. 
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Formalisms in Multibody Dynamics 

In literature, several ways to derive the equations of motion of mechanical systems can be 
distinguished. In this chapter, five formalisms are discussed: 

o the Newton-Euler equations. 

o d’Alembert’s principle of virtüa! wo&. 

o Lagrange’s equations of the first kind. 

o Lagrange’s equations of the second kind. 

o Kane’s equations. 

These five methods are most widely used. Other formalisms, that will not be discussed 
because they are less often used, are for example: Hamilton’s canonical equations, the 
Boltzmann-Hamel equations, and the Gibbs equations. 

Starting with a formalism based on the Newton-Euler equation, the equations of motion 
for a system of nb bodies are 

in which -. 
F a  
mi 
? i  

T” 
Ji 
W i  

is the resultant of all the forces acting on body Bi. 
is the mass of body Bi. 
is the time derivative of the absolute velocity vector v’ of body Bi. 
is the resultant of all the torques acting on body Bi. 
is the inertia tensor of body B’ with respect to  its centroid. 
is the absolute angular velocity vector of body Bi. 

In order to obtain a complete, solvable system of equations in the unknown accelerations 
and constraint forces, some extra constraint equations need to be added to Eg. (2.1). 
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The above formalism is at the basis of many studies such as spacecraft and manipulator 
dynamics. 

A second formalism is based on d’Alembert’s principle of virtual work. According to 
this formalism, the equations of motion of a multibody system consisting of nb bodies are 
given by 

a9 
[ ( s p y  (Mi - u;’ - Q‘)] = o 

i=l 
‘$ kinematically admissible SGi 

where 
Sufi is a column containing virtual displacement vectors 

(i.e. virtual translations óTi and virtual rotations Mi,  
which will be explained in Section 3.3) 
of body Bi. 
is a matrix with mass and rotational inertia 
terms of body Bi. 
is the time derivative of a column containing 
translational and rotational velocity vectors of body Bi. 
is a column with resultant forces and torques acting on 
body Bi, and with an extra term quadratic in the 
absolute angular velocity of body Bi. 

M 

v;i e 

gi 

Constraint forces and constraint torques cancel each other according to d’alembert’s prin- 
ciple of virtual work. This formalism is also termed ”generalized principle of d’ Alembert” 
in literature. 

Lagrange’s equations form another formalism found quite often in literature. Lagrange’s 
equations of the first kind are: 

where 
T 
4 
U 
Q‘ 

is the kinetic energy of the system. 
is a set of independent system generalized coordinates. 
is the potential energy of the system. 
is the set of generalized forces with respect to  the chosen column q ., 

In literature, also other terminology for this formalism is used, such as ”Lagrange’s modifi- 
cation of d’ Alembert’s principle”, ” Lagrange’s form of d’ Alembert’s principle” ) or simply: 
”Lagrange’s equations”. 

A generalization of the last formalism to the case where the generalized coordinates are 
dependent leads to the so-called ”Lagrange’s equations of the second kind”: 
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where 
R represents the Jacobian of the (non-)holonomic constraints of the system 
A denotes a column with Lagrange multipliers 

Quantities in &TA can be interpreted as the loads to maintain the constraints. In case of 
hoionomic constraints, the matrix B(q, i )  can be obtained Îrom the partial clërivätivë of 
the holonomic constraint equations h with respect to column q I containing the generalized 
coordinates: 

a?? 8 = B(q,t) = - 
I 

In the case of non-holonomic constraints, the so-called 99velocity 
known explicitly in order to obtain matrix R: 

have to be 

&(q, t>s = c(q, t> (2.8) 
I I  

The formalism using Eq. (2.4) as a starting point is also termed ”Euler Lagrange formalism” 
in literature. 

The last formalism to be discussed is based on the so-called Kane’s equations, met 
quite often in literature. The method involves two classes of quantities not employed 
in connection with the earlier formalisms, namely partial angular velocities and partial 
velocities. The dynamical equations of motion are written in terms of generalized active 
forces Ki and generalized inertia forces K: (i = 1, . . . , ngc; ngc is the number of generalized 
coordinates): 

Ki + K: = O 

with the following definitions: 

j= l  

( i  = 1, * . . , ngc) 

(i = 1, .  . . , ngc) 

( i  = 1, .  . . , ngc) 

where 
np 

V;j 

is the number of bodies in the system under 
consideration. 
is the ith partial velocity of body j .  
is the resultant of all applied body and contact forces 
acting on the body, with respect to point j .  
is the mass of the body with point j 
is the inertial acceleration at point j in the body. 

mj 

Û j  

(2.10) 

(2.11) 
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For a more extensive consideration of Kane’s equations, the reader is referred to appendix 
A. The formalism based on these equations is used, among others, in works of Kane & 
Levinson (1980) and Singh et a1.(1985). 

After this short survey of some formalisms, one formalism has to  be chosen to describe 
the motion of the mechanical system. Merits and demerits of the considered formalisms 
need to be discussed in order to  reach a proper decision. D’Aiembert’s principle of virtual 
work avoids the problem of elimination of constraint forces and torques. Deformability 
can also be taken into account. The Newton-Euler equations are the most straightforward, 
but have the disadvantage that they are restricted to rigid bodies. Furthermore, the 
main problem with the Newton-Euler equations is the elimination of the constraint forces 
and torques, arising from the kinematic relations between adjacent bodies. In Lagrange’s 
equations of the first and second kind, constraint forces and torques do not appear in the 
equations of motion, but this generally leads to the expense of more efforts in deriving 
the equations of motion. In fact, some superfluous terms in Lagrange’s equations need 
not be elaborated since they cancel each other when they are worked out. Finally, Kane’s 
equations also avoid the problem of elimination of constraint forces. A drawback of this 
last formalism is the quite untransparent way of formulating the unknown quantities of 
interest, yet leading to 8 simple ïesült for the eq-iztioiis of motion (Es. (2.9)). Expcïieuee 
is definitely required to select partial angular velocities and partial velocities such, that 
the algebraic complexity of the resulting equations of motion is minimized. 

The above mentioned merits and demerits of the considered formalisms have led to  the 
decision to use d’Alembert’s principle of virtual work in the following chapters. 
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A recursive formulation for setting 
up dynamic equations for systems of 
rigid bodies with a tree structure 

3.1 Introduction 
In this chapter, kinematics and dynamics of an elementary system of two bodies intercon- 
nected by an arbitrary joint are discussed. A multibody system can be thought of as being 
built up of a number of these elementary systems. In the dynamics section, the recursive 
formulation describes the contributions to  the mass and load matrices of the lower num- 
bered body from mass and load terms of the higher numbered body that it is connected 
to. In case of more than two bodies connected to a lower numbered body in the system, 
no real differences occur: effective mass and load of that lower numbered body will get 
a contribution from the mass and stiffness of all connected bodies then. In the following 
section, a bookkeeping procedure is described that takes care of correct additions of mass 
and load terms. 
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3.2 Topology 

Recursive formulation of multibody dynamics is based on a procedure in which elementary 
relationships between an arbitrary pair of contiguous bodies as part of a system of bodies 
can be (re-)used all along that system. The bodies in such a pair are connected by means 
of a joint. Since a muitibody system can be quite complex and buili up of many bodies 
and many joints, a bookkeeping procedure of the topology of the bodies in the system 
is needed for the computation process. An example of such a bookkeeping procedure for 
multibody systems with a tree structure (i.e. with no closed loops of bodies) is the use 
of body connection arrays, as described by Huston (1985). The best way to clarify this 
procedure is by using an illustrative example. 

Consider the multibody system of Fig. 3.1. The lowest numbered body (B1), unequal 
to inertial space (BO), is called the base body of the multibody system. The numbering of 
the bodies in the system is carried out in such a way that if body Bi is connected to body 
Bi, and if the number of bodies on the path from body Bi to  the base body B1 is smaller 
than the number of bodies from Bj to  B1 , then body Bi is assigned a lower number than 
body Bi. 

Figure 3.1: Body numbering: Bi < Bj if Bi has less links towards B1 

Note that on this condition the numbering of bodies is not unique. For instance, the 
numbers of bodies B’ and BIo in Fig. 3.1 might just as well be interchanged. But once a 
choice is made for the assignment of body numbers, each body (except inertial space Bo) is 
connected to a corresponding lower numbered body. The arranged set of numbers of lower 
numbered bodies is called the ”body connection array.” Let p be a column containing the 
numbers of lower numbered bodies, then by definition j? is th; body connection array. For 
the system of Fig. 3.1, the body connection array ,í3 .., is 
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(@'=[O 1 2  3 3 5 6 4 8 4 1  ( 3 4  

A formal definition of the body connection array can also be provided. Let i be the j t h  
element of column ,L? , then body Bi is connected to body Bi, and body Bi is assigned a 
lower number than body Bj 

i = pj , i < j  p .2 j  
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3.3 Kinematics 
Before describing a recursive formulation for setting up dynamic equations for systems with 
a tree structure, the kinematics of these systems are discussed. An elementary system of 
two bodies i and j ,  with i = ,ûj (see Sect. 3.2), interconnected by an arbitrary joint k is 
described as generally as possible. The motion of a body is expressed in the motion of 
the preceding adjacent body and the relative motion between the bodies due to  the joint. 
By repeatedly (=recursively) using this expression between a pair of bodies, equations 
can be obtained for the complete system. Therefore, consideration may be limited to an 
elementary system of two bodies interconnected by a joint. In Fig. 3.2, this elementary 
system is shown. 

oo 
d e o  - 

/" 

Joint attachment frames pk and c j k  are introduced to describe the joint between the 
bodies in a modular way, such that an arbitrary joint can be substituted in the system. 
The joint description can be kept as simple as possible by a proper choice for the origins 
and orientations of the joint attachment frames. Later on in this section, a joint example 
with such a proper choice is discussed. Degrees of freedom in a joint are gathered in a 
column q with so-called "relative coordinates". For example, a revolute joint has only one 
degree 0"f freedom, so q contains only one relative coordinate of body Bj with respect to  
body Bi. 

In Fig. 3.2, Ri denotes a tensor representing the mapping of the global reference frame 
So to  the centroidal reference frame fixed to body Bi. So physically, Ri corresponds to 
the absolute rotation of body Bi. Mathematically, Ri is defined as follows: 

Figure 3.2: Elementary system of two bodies with arbitrary joint 

- 
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Similarly, tensor Rj is defined for body Bi: 
= Rj.  ( e  +O ) T (e 1 (3.4) 

Tensors Bik and Bjk in Fig. 3.2 represent the mapping of 
to g jk7 respectively: 

to ?k and the mapping of 

(F*k)T = B i k  . ( c * ) T  (3.5) 

For the joint in Fig. 3.2, tensor Ck denotes a tensor representing the mapping of the joint 
attachment frame 2k fixed to body Bi,  to the joint attachment frame ejk fixed to body 
Bi: 

( p ) T  = ck . ( g k ) T  

The following relationship exists between the rotation tensors defined above: 

(3.7) 

The absolute angular velocity vectors of bodies Bi and Bi, denoted by d i  and d j  resp., 
are defined as the axial vectors of tensors ~ (Ri)" and R j  (Rj)", respectively: 

Vii 

Vii 

(3.9) 

(3.10) 

In case of rigid bodies Bi and Bi, the relative angular velocity vector Wij of 
to 

with respect 
equals the axial vector of the skew-symmetric tensor ( e  +ik ) T (C k ) T z i k :  ~ 

va (3.11) 
where Ck in Eq. (3.11) is the matrix representation of Ck (with respect to either pk or 
#'ik), which is not time-independent in general. Relationships of the form of Eq. (3.11) 
between rotation tensors, axial vectors, and angular velocities are evaluated in Appendix 
B. In this appendix, the general case of deformable bodies is considered first, after which 
restrictions to rigid bodies are specified. Since Ck is a function of the relative generalized 
coordinates related to joint k and gathered in column qk - 

k k  Ck = C ( 0  ) 
the angular velocity vector W i j  of body Bi relative to body Bi can be written as 

- k  T - k  .. 
w'" =(y ) 4 

(3.12) 

(3.13) 

where z j k  = Gk(qk) is defined as the column with axial vectors belonging to column 
+ik T a c k  k T z i k :  ( e  1 q d C  - ) - 
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Va" 

The angular velocities Wi and W j  are related as 

(u'j  = w i  + ( ~ k P , i k  - I r _  

(3.14) 

After describing the relationships between the angular velocities in the system of 
Fig. 3.2, the translational velocities are discussed. From Fig. 3.2, it follows that: 

.. = ?i + p 3  (3.16) 

where 

? i j  = b i k  + z k  - b j k  (3.17) 

In order to  set up kinematic velocity equations for the system in Fig. 3.2, the time derivative 
of Eq.( 3.16) combined with Eq. (3.17) is considered: 

with 

and similarly 

(3.18) 

(3.19) 

(3.20) 

Note that i@k and 
obtained in a similar way: 

are constant with respect to time. The time derivative of Zk is 

(3.21) 

However, column 
k and gathered in column qk:  

is a function of the relative generalized coordinates related to joint 

- 
(3.22) 
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With Eg. (3.22), Eq. (3.21) results in: 

Substitution of Eq. (3.15) into Eq. (3.20) results in: 

$ i k  = ; i  * b i k  + ($ * bik (3.24) 

Note that the first term in the right hand side of Eq. (3.24) corresponds to an absolute 
angular velocity term, whereas the second term is expressed in terms of the time deriva- 
tives of the relative generalized coordinates of joint k. Substituting Eqs. (3.19), (3.23), 
and (3.24) into Eq. (3.18), the absolute velocity vector of the centroid of body Bj is: 

= r;i + ; i  * ( b i k  + Z k  - b j k )  + 

(3.25) 

Again, note that the first two terms in Eq. (3.25) correspond to absolute velocity terms, 
whereas the last term is expressed in terms of the relative quantities gathered in column 
ik. I Eqs. (3.15) and (3.25) may be organized in a matrix equation as follows: 

where 

u ' j =  [ ; j ]  

with the following definition for the skew-symmetric tensor Zk in Eq. (3.28): 

Z k  . a = ( p  + 2 - p )  * a V?i 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

16 



In the right hand side of Eg. (3.26), an important separation between absolute velocity 
quantities (first term) and relative velocity quantities (second term) can be observed. This 
separation turns out to be essential in the derivation of the recursive equations later on in 
this chapter. 

Similar to  the derivations of the kinematic velocity equation (Eq. (3.26)), the virtual 
displacement equation (needed In the next section) can be derived: 

6 Û j  = Ak - . Sgi + 8 k6qk (3.32) 
I 

with 

(3.33) 

(3.34) 

where Sr' and ón' (axial vector of SR RC) denote virtual translation and virtual rotation, 
respectively, a d  5q Uemtes v i r t d  rv la t i~v  coordinates. TU2 matrix farm ~f acceleratiso 
relations can be obiained by differentiation of Eg. (3.26): 

(3.35) *k ..k 
$ j = A k . $ i + B  q S o k  

p = A  . i j ' + B q  

where 

(3.36) k Lk .k 

with 

f i k = [ ,  o - i k  0 ] (3.37) 

(3.38) 

(3.39) 

Recursive equations include a r ~ a t i o I t b e t w e e ~ a b s ~ c ~ ~ r d i n ~ ~ ~ ~ ~ ~ ~ b ~ ~ ~ ~ ~ ~ t h ~  
one hand, and absolute coordinates of another body plus the relative coordinates due to 
the joint on the other hand. Eqs. (3.15), (3.16), (3.26), (3.32), and (3.35) are the essential 
recursive equations. 
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Example: universal joint 

Bi 

b 

In the following, the relevant quantities needed to describe a universal joint are dis- 
cussed. An extensive ilustration of the use of the kinematic equations presented so far can 
be found in Appendix C, where a mechanism consisting of two rigid bodies interconnected 
by a universal joint is described. Fig. 3.3 shows a universal joint in between the rigid 
bodies Bi and Bi. The joint is connected to body Bi at joint attachment point Oik and 
connected to body Bj at joint attachment point Ojk. Points Oik and Ojk are chosen to be 
coincident in order to  keep the joint equations as simple as possible. 

Figure 3.3: Universal joint 

From Fig. 3.3, one can see that 

C‘k = 5 (3.40) 

The change of orientation between the joint attachment frames pk  and sik is determined 
by tensor Ck: 

(3.41) (-‘jk)T = Ck * ( e  +ik ) T 
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with 

(3.42) 

where Ck can be written in terms of relative coordinates gathered in column qk, according 
to Eq. (3.12). The imiversal joint allows two degrees of freedom between the  two bodies. 
ûne couid choose for two Eryani angles qt  and q t  to desclitve the chzïìge ûf ûïie~ttatiûu 
between the joint attachment frames gk and #‘ik. In this case, an appropriate choice for 
base vectors Sik and Sik is shown in Fig. 3.3, i.e. parallel to the ”vertical” and ”horizontal” 
rotation axes of the joint, respectively. In Fig. 3.4, the two Bryant angles qf and q; are 
depicted in detail. An intermediate frame Eis  introduced to provide a stepwise transition 
from &ik to Eik.  -+ik + 

e, = e, 

+ik 
e2 

-+ -+jk 
e2- e2 

Figure 3.4: Bryant angles with third angle equal to zero 

With this choice for the relative joint coordinates, Ck can be expressed as (used abbre- 
* l e  - k  k viations: s1 = sin ql, s2 = sin q2, c1 = cos ql , and c2 = cos q t ) :  

(3.43) 

For an extensive evaluation of the universal joint in a multibody system, the reader is 
referred to Appendix C. 
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3.4 Dynamics 
After describing the kinematics of the elementary pair of bodies of Fig. 3.2, the equations 
of motion for a system of rigid bodies are dealt with. Consider the system with nb rigid 
bodies in Fig. 3.5. 

Figure 3.5: Chain of nb rigid bodies 

According to d’Alembert’s principle of virtual work, the equations of motion for a 
system of nb bodies are (see Eq. (2.2)) 

nb 

. (M. * 3i - &i)] = o 
i=l 

V kinematically admissible Sci (i = 1,. . . , nb) (3.44) 

with 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

where and f i  in Eq. (3.48) are vectors representing the resultant force and torque 
acting on body Bi, respectively, and where mi and Ji in Eq. (3.46) are the mass of body 
Bi and the inertia tensor of body Bi with respect to  its mass center, respectively. 

It is remarked that before using d’alembert’s principle of virtual work, vectors and 
include forces and torques that are due to the connection constraints of body Bi. These 
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constraint forces and constraint torques cancel out when d' Alembert's principle of virtual 
work is used to set up the equations of motion for the whole multibody system. Further- 
more, the virtual displacements Jij' must be kinematically admissible, which means that 
they may not violate the kinematic constraints that apply to  bodies B1 to  El". In partic- 
ular, Sij l  of the base body (see Sect. 3.2) must satisfy not only the kinematic constraints 
between base body B1 and the other directly connected higher numbered bodies, but ais0 
the kinematic constraints between body B1 and inertial space, if body B1 were connected 
to inertial space. Inertial space may be regarded as being a body (in Sect. 3.2 already 
numbered as Bo) with known constant position and zero velocity. The position of body B1 
relative to inertial space can be represented by kinematically admissible joint coordinates 
of B1 relative to Bo just like any other arbitrary couple of bodies Bi and Bi. In this way, 
introduction of Lagrange multipliers as mentioned by Bae & Haug (1987) is not needed. 
This provides the advantage of maintaining a system of ordinary differential equations, 
and avoids having to solve a system of differential/algebraic equations as in Bae & Haug 
(1987). 

In the following, the basic recursive relations derived in Section 3.3 will be used in 
a procedure kind of like successive substitution. The joints in between the bodies are 
numbered in the foliowing way: if joint k connects body a to body 2 + I,  the j&t is 
assigned the same number as the higher numbered body, so k = i + 1. 

Eq. (3.44) can also be written as follows: 

V kinematically admissible SiJ' (i = 1,. . . , nb) (3.49) 

Substitution of Eqs. (3.32) and (3.35), with i = nb- 1, j = nb, and k = nb, into Eq. (3.49) 
results in 

Variation of column qnb containing relative coordinates must be kinematically admissible, 
which means that it &ay not violate the kinematic constraints between bodies B"-' and 
Bd. However, since qnb contains relative joint coordinates that automatically comply with 
the joint constraints; Sqnb is kinematically admissible by definition. And because Sgi, 
(i = 1 , .  . . , nb - 1) and iqnb are independent, the coefficient of Sqd in Eq. (3.50) must be 
equal to a zero column. The second time derivative i" of the relative coordinates of joint 
nb can be written explicitly as 

; i n b =  -((8 nb ) T ~ d ,  - Bnb)- l  - [( gd - ) T ' (Md Ana p 1 +  
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+M". @" - Qi")] (3.51) 

According to Bae  & Haug (1987), the existence of ((a")' M" a")-' can be proved. 
Substituting Eg. (3.51) back into Eq. (3.50) yields 

+(&ply .  [(Mnb-l  + M y  . a"-1 - (&"-I + p-')] = 0 

V kinematically admissible Ji j i  (i = 1 , .  . . , nb - 1) (3.52) 

where 

Note that the superscript of the summation sign has changed from nb - 1 to nb - 2. If this 
procedure is repeated down the chain to body h + 1, it can be shown that in analogy to 
Eg. (3.52) the following expression results: 

h 
[(&j')T ' (M'. ji - p)] = ... 

i=l 

+(SU +h+1 ) T 9 [ (Mh+l  + M,h") - (&h+ l  + gr",] = o 
'V kinematically admissible E a i  (i = 1,. . , , h + 1) (3.55) 

By reason of better insight, the above procedure is repeated once more to show the 
reader that equations similar to Eg. (3.50) and (3.51) lead to an equation form similar to 
Eg. (3.52) or (3.55). 

Substitution of Eqs. (3.32) and (3.35), with i = h, j = h + 1, and IC = h + 1, into 
Eg. (3.55) results in 
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Again, Sqh+' is kinematically admissible by definition. And because b i j i ,  (i = 1, e h) 
and S$(+"l are independent, the coefficient of Sqh+l in Eq. (3.56) must be equal to a zero 
columi. The second time derivative of t h i  relative coordinates of joint h + 1 can be 
written explicitly as 

Qh+l = -((B 'h+l ) T ' ( M h + l  + Mf+1) B - h+l )-1 [@+y ( ( M h + l  + M++1). 
I 

. r;h + ( M h + l  + p-++l) . a h+l - 'h+l ' h+l (Q + Q r  ))] (3.57) 

Again, according to Bae 8z Haug (1987), the existence of ( ( ~ h + l ) T ~ ( ~ h + l + ~ h + l ) ~ ~ h + l ) - l  - ?  

can be proved. Substituting Eg. (3.57) back into Eq. ((2.24) yields 

h- 1 c [(@y * (M' - Bi)] t 
i=l 

+(sp)T ' [(Mh + M+) - (&h + &+)I = o 
V kinematically admissible Jiji (i  = 1,. . . , h) (3.58) 

where 

The bottom line of the above process is reached for the base body B1 (where the 
summation in Eq. (3.58) vanishes and h = 1): 

* [(Ml + M,1) $1 - (&' + &:)I = o 
V kinematically admissible 83' (3.61) 
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where Mf and 
In the aboveprocess, the second time derivatives of the relative coordinates are obtained 

explicitly (see Eqs. (3.51) and (3.57)), in a convenient form for numerical integration (e.g., 
by the Runge Kutta  method). An advantage of the above derivation is the small dimension 
of the matrices that have to be inverted to obtain the relative coordinate accelerations as 

follow from Eqs. (3.59) and (3.60), respectively, by taking h = 1. 

:.. l7,-." IQ K l \  *-a (2 K7\ 
1 U  UYJ. \ U . U I J  41UU \U.Vi/.  
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3.5 The recursive algorithm 
In the dynamics section, a procedure has been described comparable to  a successive substi- 
tution process. The solution and integration of the derived dynamic equations is discussed 
in this section. A brief scheme is presented which shows the characteristics of the recursive 
algorithm. 

1. Initial conditions: relative coordinates and their time derivatives, q and 6, I are given 
at to. 

2. By means of Eqs. (3.8), (3.15), (3.16), (3.17), and (3.18), positions and velocities of 
all rigid bodies in the system can be determined (Fi ,  *, and Wi, for i = i to  nb). 
This step may be called "recursive". 

3. Forces Q' according to Eg. (3.48) can be worked out then, as a consequence of 
possiblfpresent springs, dampers, etc. in the system (also the term W i * (Ji - W ') can 
be calculated), and the mass matrix M of each body B' can be composed. 

4. Then &If and í$i can be o3ti5hed consecdtively per j&t, BE; has been outlined in 
the previous section by Eqs. (3.59) and (3.60) (Mf and sf, for i = nb to i) .  Note 
that calculations are executed from the tree end body (0"r bodies) to  the base body 
in the system. This step may also be considered as a "recursive" step. 

5. By means of Eq. (3.57), second time derivatives of relative coordinates q' can be 
determined (G', for i = i t o  nb). Again, this is a "recursive" step. 

- 
I 

6. Execute a predictor/corrector operation on 5' ( i  = 1,. . . , nb) in order to obtain 3 
and Q', and return to step 2. If the time isincreased by this operation, and if th"e 
end t'ime is reached, the algorithm is stopped here. 

Note that in step 6 only the relative coordinates need to be determined by time in- 
tegration. The time derivatives of the absolute velocities ($', i = i,. . . , nb) need not be 
integrated to obtain position and velocity, since position T' and velocity gi of one body Bi 
can be derived from the position Ti-l and velocity G'-' of a preceding adjacent body Bi-1 
plus the relative coordinates q' and their time derivatives 2 between these two bodies (see 
Eqs. (3.16), (3.17), and (3.18)). 

.., 
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Modification of the recursive 
technique to  more general 
multibody systems 

4.1 Driving constraints 
In Sect. 3.4, Eq. (3.52) has been derived by elimination of the second time derivatives of the 
relative generalized coordinates on the assumption that there are no driving constraints, 
i.e. i is unknown, In the case where the relative generalized coordinates of a joint are 
kinematically driven, the equations in Sect. 3.4 change a little. Suppose q* in Eq. (3.50) 
is known, then 6qnb = 0, and Eq. (3.50) becomes 

I 

;nb- l+ g n b i n b  + @nb) - B."] = 0 +(&p-1)T (Anb)T ' [Mnb (Ad v 
I 

V kinematically admissible Sgi (i = 1 , .  . . , nb - 1) (4.1) 

The term in Eq.  (4.1) with the known relative accelerations i* is added to column Q,.b-' 
of Eq. (3.54), yielding 

nb-2 

( S g y  [M' u;' - Qi] + 
i=1 

(Sgnb-1)T . [(Mnb-1 + M ; b - l )  . a*-1 - (Qnb-1 I + &3] = o 
V kinematically admissible Sg' (i = 1,. . . , nb - 1) (4.2) 
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Eg. (4.2) with Eqs. (4.3) and (4.4) is derived on the assumption that all relative generalized 
coordinates of the joint concerned are prescribed. One might as well think of a situation 
in which only some of the relative generalized coordinates of the joint are kinematically 
driven. In this case, column 4 could be divided into two parts: a prescribed part and an 
unknown part. With this divrsion of 4 ., into two parts, also the system of equations can be 
partit,inned in a part of the form of Eg. (3 .52)  with Eqs. (3.m) ana \a.a+i, and a p a t  ûf 
the form of Eq. (4.2) with Eqs. (4.3) and (4.4), respectively. This possible partitioning is 
not dealt with in this report. Besides, the prescribing of driving constraints mostly applies 
to joints with one degree of freedom in practice. 

r.-.\ 1 fc)  r*\  I -  - _ \  
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Closed loop systems 
In Chapter 3, only systems with a tree structure were described. If a mechanism contains 
one or more closed loops, a mathematical manipulation method described in this section 
enables application of the recursive technique as described in Chapter 3 to a closed loop 
as well. 

/ 

Figure 4.1: Closed loop system 

Consider the closed loop system of Fig. 4.1. The closed loop can be opened and turned 
into a system with a tree structure by an imaginary cut of joint k: in between bodies Bi 
and E*+'. In the following, the joint where the loop is opened is called "cut joint.'' The 
constraint equation of joint k before "cutting" is denoted by hk and is a function of columns 
3j a d  ijj+' with displacement vectors of bodies Bj and Bi+', respectively. According to 
Bae & Haug (1987-88)) the equations of motion for the "opened)' system are 

V kinematically admissible Sgi regardless of cut joint constraints (4.5) 

where 
The mathematical meaning of differentiation with respect to  a vector must be defined 

first. A formal (coordinate-free) definition of differentiation of an arbitrary quantity f = 
f (3, t )  (either a scalar f) a vector or a tensor F) with respect to  vector 3 is the following: 

denotes the introduced Lagrange multipliers. 

VJa' 
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In case of representing 2 with respect to an orthonormal frame of base vectors e 
2 =  (gyz (4.7) 

the derivative of f with respect to i can simply be noted as 

in which - af is a column with components =, 8f Bil, af . . . , etc. 
alt: 

The recursive technique as described in Chapter 3 can be applied from body Bj to 
body Bi+1 via bodies Bi-1, B j m 2 ,  ..., B2, B1, Bd, Bd-l > * * .  9 or (as in Bae & 
Haug (1987-88)) in twofold from body B j  to base body B1 and from body B j + l  to base 
body B1. The number of system equations of motion according to Eq. (4.5) is smaller than 
the number of unknowns due to the introduction of Lagrange multipliers. In order to get 
a complete system with as many equations as unknowns, cut joint constraint acceleration 
equations must be introduced. Let the cut joint constraint equation be 

hk(@, ai+', t )  = g (4.9) 
where $ j  and Ufj+' are columns with displacement vectors of bodies Bi and Bi+%, respec- 
tively. Tnen the f i r s t  time derivative is 

and the second time derivative is 
i k  - - - 

Note that Eg. (4.11) is of the form 

(4.10) 

(4.11) 

(4.12) 

where the right hand side r h s ( i j j ,  $i+', f j j ,  f j j+' ,  t )  can be deduced from Eg. (4.11). 
In essence, all global ingredients for a solvable system of equations are present by 

combining Eqs. (4.5) and (4.12). An extensive and detailed working out of the recursive 
technique as described in Chapter 3 ,  applied to the above equations for closed loops is 
beyond the scope of this report. For literature in which the equations for closed loops have 
been worked out elaborately, the reader is referred to the works of Bae & Haug (1987-88) 
and Kim & Haug (1989). 
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4.3 Systems with flexible bodies 

Flexible bodies are mostly handled with modal approximations in literature. In the case of 
systems with flexible bodies, the equations of motion according to d’alembert’s principle of 
virtual work have the same form, but differ as far as the contents of columns and matrices 
is concerned. 

with 

V kinematically admissible SiJi (4.13) 

(4.14) 

M = M(P, Z i )  (4.15) 

(4.16) 

Extra  unknowns in the form of vector Z i  have entered the system equations (Eq. (4.13)) 
in comparison to the system equations in previous sections. Vector ai’ contains modal 
coordinates of deformable body Bi, and P is a rotation tensor that depends on orientation 
generalized coordinates. For an elaborate development of the recursive technique applied 
to flexible multibody systems, the reader is referred to, e.g., Kim & Haug (1988), Kim 
(1988), and Kim & Haug (1989). These works are limited to small-deformation linear 
elastic structural theory, even when the flexible bodies undergo large translations and 
rotations. 
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Conclusions 

The recursive technique as described in this report has not only been applied to the kine- 
matical part of the analysis, but it is extended to the dynamical part as well, which yields 
several advantages, but also a presumable disadvantage. 

Inherent in the recursive formulation is the use of the relative description in which 
relative generalized coordinates are used. A merit of the use of relative generalized coor- 
dinates is that they automatically keep the kinematic constraints intact between bodies. 
This means that no extra algebraic equations need to be added to the set of ordinary 
differential equations of the multibody system, as is the case when the global description 
is used. 

Furthermore, the most important advantage of the described recursive technique is the 
need to  invert only small mass matrices, combined with backward substitution in order to 
obtain all quantities of interest concerning the configuration of the multibody system. This 
is less computation intensive than the more common inversion of the large mass matrix of 
the total multibody system. 

An advantage not dealt with in this report is the possibility of parallel processing. In 
case of a computer with multiple processors, computations on several bodies in different 
chains in the multibody system can be executed simultaneously. The independent use of 
processors is allowed due to the uncoupled character of the equations of motion of the 
bodies in the multibody system, thanks to the use of the recursive formulation. 

The recursive technique does not only have advantages though. A presumable drawback 
of the recursive technique, already mentioned in the introductary chapter, but not discussed 
in the rest of this report, is the possible accumulation of errors. A small error in the base 
body kinematics could lead to a large error in the kinematics of bodies further up in the 
chain. This might lead to a kind of snowball effect in the case of large chains of bodies. 
It must be remarked that this drawback is only presumed: it has not been demonstrated 
numerically yet. 

The works of Haug C.S. have formed the basis of Chapters 3 and 4. However, some 

In Chapter 3 ,  the use of Lagrange multipliers is avoided in the case where the base 
changes and additions have been made. 
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body is kinematically constrained with respect to inertial space, by considering inertial 
space as a normal body so that relative coordinates between base body and inertial space 
can be used. The avoidance of Lagrange multipliers has the advantage that no extra 
acceleration equations are needed to complete the solvable system. Acceleration equations 
are algebraic and when coupled with ordinary differential equations, numerical methods 
for differential/algebraic equations have to be used which correspond to more complicated 
integration schemes. 

In Sect. 4.1, slight modifications of the system equations in case of kinematically driven 
joint constraints are reported. Equation forms for closed loop systems and systems with 
flexible bodies are considered very briefly. References in literature are provided. 

Throughout most of this report, a so-called coordinate-free way of notation is used. In 
the works of Haug c.s., vectors are represented by columns, where the information about 
representations with respect to what vector bases are used, is omitted. In this report, each 
column representation of a vector is accompanied with the vector base with respect to 
which the vector is represented. This prevents confusion and avoids notation errors. 
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Apoendix A Kanek equations 

Prior to discussing the equations of motion, some terms according to Kane's 
nomenclature have to be explained. Suppose a system has n generalized coordinates 
q1 ,...,qn that are independent. Now, n so-called generalized speeds UI, ..., Un are 
introduced as linear combinations of 41, ...,& by means of equations of the following 
hrm: 

u = v q + w  - 

where 

u - = u(q I 
q t )  is a column with generalized speeds. 

y = y(q,t) - is a square (nxn) coefficient matrix. 

w = -W(q,t) is a column with n components. _- - 
- -  

V - and W are chosen in such a way that Equation (A.1) can'be solved uniquely for 

ql, ...,q,. In this case, the linear velocity Gj of an arbitrary point Pj in a body and the 
angular velocity w of that body can always be expressed uniquely as a linear function of 
the generalized speeds UI,. . . ,Un: 

I 

Vectors that are the coefficients of the ith generalized speed U i  in Equations (A.2) and 
th (A.3) are called the ith partial velocity GI of the chosen point Pj in the body and the i 

partial angular velocity "wi of that body, respectively. 

which is a slight modification of the principle of virtual work: 
Kane's equations can be derived directly from the principle of virtual power, 

t/ virtual velocity fields GJ 
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in which 

Ro is the body volume in the reference configuration. 

pj is the resultant of all applied and constraint forces per unit of body volume, 

with respect to the arbitrary point i+ in the body. 

is the mass density in the reference configuration. po 

$j 

û$ denotes the virtual velocity vector of point Pj in the body. 

is the time derivative of the linear velocity vector of point Pj  in the body. 

Constraint forces will cancel out due to the principle of virtual work. 
Expressions for the time derivative and the variation of the velocity vector will now be 
generated. Suppose ?j is the position vector of an arbitrary point Pj in a body. Then its 
time derivative can be expressed as follows (using the regularity of matrix - V in Equation 

(A. 1)): 

or concisely: 

+. 
+ '  T ?J = (XJ) u + YJ 

where 

(Sj)T 



The time derivative and the variation of the velocity vector are as follows: 

and 

with 

-1. 

In Equation (A.10), (XJ)T includes the partial velocities: 

-ti + 

(A.lO) 

(A.l l )  

(A.12) 

Back to the principle of virtual power in Equation (A.4), and substituting Equation 
(A.lO) into it: 

(A.13) 

b' virtual generalized speeds SU I 

Because of the uniqEe relaticnship between the n independent time derivatives of the 
generalized coordinates (41, ...,an) on the one hand, and the n generalized speeds UI, ..., Un 

on the other hand (see Equation (A.l) with the regular matrix - V), the generalized speeds 

(and their variations) must also be independent. With this in mind, Equation (A.13) 
results in Kane's equations: 

* 
1 1 K . + K .  = O  

with "generalized active forces'' : 

(i=í, ..., n) (A.14) 

(A.15) 

O 0  
J O  



and It generalized inertia for ces I' : 

or in case of a discrete number of mass points np: 

nP 'j +j  
Ki = C F *vi 

j= l  

(A.16) 

(A.17) 

(A.18) 

In the case of a rigid body in the system, Equation (A.17) can be modified as follows. If 
a set of contact and/or body forces acting on a rigid body of the system is replaced with 
a combination of torque iifi together with a force $ applied at a given point of the body, 
then the contribution of this set of forces to Ki is given by ui* 1 tv i .3 ,  where wi is now 
the i partial angular velocity of the rigid body, and $i is the ith partial velocity of the 
point of application of 71. 

' A . '  A ' 
th  
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Relations between rotation tensors, 
axial vectors and angular velocities 
in the flexible and the rigid case 

Consider the system in Fig. B.1 with deformable bodies Bi and Bj, interconnected by an 
arbitrary joint. 

O0 

/ Figure B.l: Arbitrary joint between two deformable bodies éu 

Let R', Bik, Ck, Bik, Rj, and their corresponding matrix representations @, Bik, Ck, 
Bik, and Bi be defined as follows 

= Rim (g ) (B.1) 
4 T -  +Q T * - (g ) 
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and let W i  and W j  be defined as 

Vli 

va' 

With the definition in Eg. (B.6), the time derivative of can be written as follows: 

(B.8) 

In the first term R;.(R")', the absolute angular velocity vector Wi of body Bi is recognized. 
Physically, the remaining terms represent the angular velocity of pk relative to  2. It can 
be shown that these remaining terms can be formulated in a more compact form: 

Proof of Eq. (B.lO): 

(B.lO) 

(B.ll) 
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(Bik)c  = ( p ) T ( @ k ) T p  (B.12) 

+ p($)Tp) - -  - -  ;i (B.13) 

Substitution of Eqs. (B.ll) through (B.13) into the left hand side of Eq. (B.lO) and omitting 
p A & g & ~ ~ Q ~  by ( 2 i V  ( X  ---- nnl4 ;i - f9r c^nvpnipccp: 

i T * i  (R) R + P ( B ' k ) T +  

L .I 

(B.14) e ik ik T B (B ) 

Q.E.D. 

With this result, the angular velocity vector W i k  of pk relative to is defined as: 

Vä (B.15) +i T * ik  i k  -+ + i k  ( e )  B (B ) - . a = w  

which turns Eg. (B.9) into the following compact equation form: 

( e  Lik 1 T = ( W à  + Wik) * (zik)T (B.16) 

(of eik relative to gk) and W i k  (of Similar to Eq. (B.15), the angular velocity vectors W 
gik relative to  ga) are defined as follows: 

Vii (B.17) +ik T ' k T ê i k  + -  + k  + (e ) C ( C )  ~ * a - w  * a  

( e > -  di T È $ k ( B j k ) T g j .  - 2 = W i k  * a vä (B.18) 

With these definitions, an expression for the angular velocity vector Wij  of zi relative to 
z', defined as 

.. 
w v  = ;i - w i  (B.19) 

can be found rather easily by considering the time derivatives of the following two alter- 
native descriptions of z j k :  

(B.20) ( p ) T  = (e +ik ) T C k 
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(B.21) 

Looking at Eq. (B.20), the time derivative of g j k  results as follows: 

(B.22) 

(B.23) 

Combining Eqs. (B.22) and (B.23), and substitution in Eq. (B.19) results in the following 
expression for G i j :  

(B.24) 

In the case that bodies Bi and Bi are rigid, the matrix representation of Bik (with respect 
to either 2 or eik) and the matrix representation of Bjk (with respect to either or eik) 
are t ime-indep endent 

(B.25) 

(B .26) 

and according to Eqs. (B.15) and (B.18) the angular velocity vectors W i k  and W i k  are zero, 
as already expected physically: 

(€3.27) 

(B.28) 

And thus, in case of two rigid bodies Bi and Bi, the angular velocity vector Wij of 
relative to gi results as follows: 
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Kinematics example: two rigid 
bodies interconnected by a universal 
joint 

T, order t û  i!!~strate iise of the ecpations presented an Section 3.3? a universal joint in the 
two body mechanism of Fig. C.l is used. The equations derived in Section 3.3 with the 
indices i?j, and k will be used in the following with the values 1,2, and 1, respectively. 
Each joint reference frame in a body stays parallel to  the centroidal reference frame in that 
body, so tensors B1l and B21 are identities (I). Joint attachment points are unit distances 
from the centroidal reference frames for each body, to  simplify vectors 8l and b21. Initially, 
all frames are parallel, for simplicity. 

w 
Figure C.l: Universal joint 
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The position and orientation of body B2 can be expressed in terms of the position and 
orientation of body B1 and relative coordinates qi and q i ,  gathered in column q'. The 
position of the centroid of body B' is represented by the absolute position vector "r. The 
orientation of body B' is determined by rotation tensor R': 

/*i\T ~ pxl . /2O\T (C.1) \E I \E I 

with 

R' = = (ij0)'&'ijo (C.2) 

where &' can be written in terms of Bryant angles ai, al, and ai, respectively (used 
abbreviations: sa1 = sin a:, s a 2  = sin al,, sa3 = sin ai, ca1 = cos at, c a 2  = cos al,, and 
ca3 = cosai): 

(@4 
sa2 1 CCY2CUr3 -C(Y2SCY3 

C C Y ~ S Q ~  + S C Y ~ S Q ~ C C Y ~  C C X ~ C Q ~  - S C Y ~ S Q ~ S C Y ~  - S ( Y ~ C C Y ~  

S C Y ~ S Q ~  - C Q ~ S C Y ~ C C Y ~  S C Y ~ C C X ~  + C C Y ~ S C Y ~ S C Y ~  C C Y ~ C C Y ~  

it is noted that singularity problems, inherently encountered when using Tait-Bryan angles 
(i.e. when a 2  = $ f nn (n = O, 1,. . .)), are not taken into consideration in this example. 

The change of orientation between the joint attachment frames in bodies B1 and B2 is 
determined by tensor C': 

411 T 
(C.4) (2")T = c' ' (e  ) 

with 

where c' can be written in terms of the rotational generalized coordinates between bod- 
ies B' and B2, qt and qi (used abbreviations: s1 = sinq,, s 2  = sinqi, c1 = cosqi, and 1 

c 2  = cos&): 

The absolute angular velocity vector W' of body B' and the angular velocity vector W 1 2  

of body B2 relative to body B' are defined as the axial vectors of tensors R' (R')" and 
(g 411 ) T ' (c')Tij'", respectively: 

R'. (RI)". a= W 1 *  a' Va' (C.7) 
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where 
R1 *(R')' = (g0)'&'go ( e  +O ) T (& 1 ) T e 0  I 

+O T '  1 Tê0  = ( e )  R ( R )  w 

and where 

(C.11) 

The components in column of an arbitrary axial vector U with respect to the base 
vectors do can be recognized in the matrix representation of the corresponding skew- 
sym-metrica! tensor U with respect to the base vectors go in the fofsllowing way (see e.g. 
Roberson & Schwertassek, 1988, page 49): 

O O o - u 3  u2 

O - u2 u1 o 
u = ( g o y  

Therefore, the angular velocity vectors W'l and W12 can be written as follows: 

1 &i + &;sa2 
&;cal - a3sa1ca2 
&;sal + &3ccY1ca2 

* 1  

with 

(C.12) 

(C.13) 

(C.14) 

(C.15) 
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(C.16) 

In order to look at translational velocities, the position vectors are considered first: 

$2 - - $1 + F 1 2  (C.17) 

where 
$12 = $11 + c1 - g 1 2  (C.18) 

Since the origins of the vector bases ,11 and f21 coincide, vector Z1 equals the zero vector: 

c'l = 0 (C.19) 

Combining Eqs. (C.16) through (C.18), and taking the time derivative results in the fol- 
lowing velocity equation: 

where 

(i = 1,2) 

- 
- 1 Q2 q! 1 

(C.20) 

(C.21) 

(C.22) 

(C.23) 

(C.24) 

(C.25) 

Tensor Z1 in matrix Al in Eq. (C.23) can be derived from the second term in the right hand 
side of Eq. (C.20). But first, vectors bi' and b 2 1  are evaluated. From now on, all vectors 
and tensors in this example will be worked out in matrix representation with respect to 
the inertial frame co. In Fig. C.l, vector bases 8' and g2 are chosen in such a way that 
their third base vectors are parallel to bi' and Z2l, respectively: 

47 



(C.26) 

These relations are substituted in the second term in the right hand side of Eq. (C.20) in 
order to obtain tensor Z1: 

- pi )  * w' = (("11)T - ("21)T)gO * w'l  

ö e"30 4 2 0  

= ([ o o 1 ] (&y - [ o o -1 ] (C')T(R')T)g"*31 
= g T p O * ( g  + o T O  ) g 1 

o -%3 22 

o -%3 22 

= z 1 . w 1  (C.28) 

where 

Matrix a1 can also be worked out: 

where in the lower part of 

+ 1 =  OWlêO 

(by using Eg. (C.15)): 

x - I  

(C.32) 

(C.33) 

with 
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(C.35) 

Virtual displacement relations follow from Eq. (3.32), as 

6-2 = Al b i j l  + p 6 q l  I 

with 

Sgl = [ ] 

(C.39) 

(C.40) 

(C.41) 

Accelerations of body B2 can be obtained by taking the time derivative of Eq. (C.21): 

((2.42) -+I ..1 $2=Al*$l+B g + o 1  

(C.43) 

(C.44) 

o -23 22 
(C.45) 

-22 21 
in which 21, 22, and 23 can be obtained from Eqs. (C.29) through (C.31), and finally 

(C.46) 

where Ob2' and Oe1 are obtained by taking the time derivatives of the right hand sides of 
Eqs. (C.36), (C.37), (C.38), and (C.34). 
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