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Abstract. A constitutive model for concrete is presented which is formulated within the framework of
incremental plasticity. The major improvement of the model is the stable and accurate algorithm which
can be derived for tension, compression as well as tension-compression regimes. The analyses of shear-wall
panels show that the composite plasticity model is well capable to describe the behavior of these type of
structures.

Key words: finite element analysis, reinforced concrete

1. Introduction

A well established constitutive model for concrete cracking is the fixed multi-direction-
al crack model which allows for a number of non-orthogonal cracks, [1] [2]. To analyze
structures which are in a state of compression-tension, e.g. shear-wall panels, the crack
model can be combined with a plasticity model to describe crack formation and crushing [1],
but this combination has been reported to result in numerical difficulties, [3]. Because the
major goal of this study is the development of stable numerical tools to analyze reinforced
concrete structures, a different model has been formulated to solve both the problem of
overestimation of the failure load with the fixed smeared crack model [2], and the numerical
problems in the tension-compression region.

2. Constitutive model

In this study we assume that the constitutive behavior of concrete is governed by two yield
functions, fi(o,x;) and f2(o, k2), where the internal variables, x; and ko, represent the
accumulated damage in the material due to cracking and crushing respectively. Comparison
with the experimental data of [4] indicates that a composite yield contour can be defined
such that a Rankine yield criterion is used to model the tension-tension region and a Von
Mises yield function models the compressive stress states, see Figure 1. The formulation of
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Fig. 1. Composite yield surface and experimental data

the composite yield criterion is then given by

fi = (%GTPla)% + -;-WTO' —&1(k1) (1)
fa = (%aTnga)% — 9(K2) (2)

For the Rankine criterion the projection matrix P; and the projection vector m are given
by

P00
-5 500 T
0 00 2

respectively. The Von Mises yield function is determined solely by the projection matrix
P, which is given by

2-1-10
-1 2-10

P2=1 1.1 20 4
0 0 06

f
The &; — &1 relation for the Rankine yield_igi:riterion is assumed to be a linear relationship

according to
K1

o1 = fct,m(]- -

) (3)

in which the tensile strength f. ., is determined from the compressive strength according
to the CEB-FIP model code [6]. The ultimate damage parameter &y, is calculated by

Kiu

_ 267 ;
Fiw = o (6)
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where A denotes the equivalent length. In a finite element calculation this equivalent length
should correspond to a representative dimension of the mesh size, as pointed out by many
authors, see e.g. [2] and [5]. In reinforced concrete usually a number of cracks develop
during the process of loading until the cracking process stabilizes and no further cracks
develop in the structure. The crack spacing at stabilized cracking is determined mainly by
the amount of reinforcement. It is assumed in this study that the total amount of fracture
energy in reinforced concrete, G%°, can b? determined by the tensile fracture energy of a
single crack G; and the average crack spdcing /. Since the tensile fracture energy, Gy, is
assumed to be a material parameter a,cco%ding to [6], only the average crack spacing has to
be determined. The average crack spacing is a function of the bar diameter, the concrete
cover and the reinforcement ratio according to [6], which reads

2 &s
L=3(2%0 + =) (D)

with the effective reinforcement ratio p, .y determined by

As

Poctt = A (8)

The effective tension area, Aqefs = hessb, is estimated according to the CEB-FIP recom-
mendations with the relation

i
hass = min {2.5 (c+ %2y, 5} ()
with ¢ the concrete cover on the reinforcement, ¢., the equivalent bar diameter of the
reinforcement and # the thickness of the structure. The effective tension area is calculated
with the equivalent bar diameter of the reinforcing grid which is determined by

P _¢ppp+¢qpq
eq —

10
bt (10)

with the reinforcement ratios p, and p, in the p- and g-directions of the reinforcing grid,
respectively. The diameter of the reinforcement is given by ¢, and ¢, in the p- and ¢-
direction respectively. The average crack spacing can now be calculated in the two directions
of the reinforcing grid and when the cracks form at inclined angles with the reinforcing
directions, the average crack spacing is calculated with the following expression [6]

- (|cosa| N | sin )‘ (1)

ls P l-s’q

where o denotes the angle between the reinforcement in the p-direction and the direction
of the principal tensile stress at incipient cracking. With this approach, the fracture energy
in reinforced concrete can be assessed on the basis of the fracture energy of concrete, the
reinforcement properties and the angle between reinforcement and the principal stress at
incipient cracking. In this fashion, the tension-softening of reinforced concrete has been
formulated in a rational manner.
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Fig. 2. Panels S1 and S2. Measures in [mm]

The 63 — ko relation for the Von Mises yield criterion is assumed to be given by a
parabolic relationship which reads

1 K2 E% .
§f°m(1+4?e_2&3) tf K9 < Ke
09 = (12)

2
Koa—K .
fonl1 = () o k< <
with the mean compressive strength Jem. The maximum compressive strength will be
reached at an equivalent strain x. which is determined irrespective of element size or com-
pressive fracture energy and reads

4fem
e = 1
K 3E, (13)

The maximum equivalent strain K2, is related to a compressive fracture energy G, and to
the element size through the equivalent length h and reads

Ge
hfem
/

Experimental data of the compressive fracture energy (. have been provided by [7] where
it has been found that G, ranges from 50 to 100 times the tensile fracture energy. Analyses
of deep beams with the composite plasticity model [8] showed that the compressive fracture
energy G for normal strength concrete is about: 50N mm/mm?], which will be used in the
analyses of the shear-wall panels. /

Kou =15 (14)

3. Shear-wall panels

The analysis of shear-wall panels is a good example of the possible application of the
developed model because the stress state in the panels can be considered to be in tension-
compression. The panels which will be analyzed have been tested at the E.T.H. Ziirich
by [9]. The program consisted of a series of panels with flanges and without flanges, with
different reinforcement lay-outs and initial vertical confinement stresses. The panels are
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Fig. 3. Panels S1 and S2. Load - displacement diagram

supported on a base block and loaded through a thick top slab. The panels are initially
loaded by a vertical compressive force and then by a horizontal force.

The material properties have been averaged from the experimental data in order to
simulate the behavior of the panels in a qualitative manner. The compressive strength
Fom = 27.5[N/mm? and the tensile strength fum = 2.2[N/mm?]. The elastic properties
have been assumed to be Young’s modulus E, = 30000[N/mm?] and Poisson’s ratio v =
0.15. The tensile fracture energy is assessed according to [6] as Gy = 0.07[Nmm/ mm?] and
the compressive fracture energy is assumed G, = 50[Nmm/ mm?]. The Young’s modulus
of the steel E, = 210000[N/mm?] and the yield strength f,;, = 574[N/mm?] with linear
hardening. An additional stiffness component has been modeled in the direction of the
reinforcement to account for the bond between the cracks of the stabilized crack pattern.
For details see [10].

The results of the analysis will be presented by plotting the active cracks, the integration
points which are in a compressive plastic state and the principal stresses. The active cracks

are defined as those cracks for which the internal parameter ; is equal or greater than
0-5[{1;&.

4. Shear-wall panels with flanges

Two identical panels with flanges have been analyzed, i.e. panels S1 and 52. The main
objective of these two experiments is to study the influence of the initial vertical compressive
load. The initial vertical load of panel S1 results in a vertical stress of 2.5[N/ mm?] while
the initial vertical stress of panel $2 is equal to 10.0[N/mm?].

The finite element discretization is depicted in Figure 2 with quadratic plane-stress
elements with a nine-point Gaussian integration for both the reinforcement and the matrix
material. The reinforcement is applied by two reinforcing grids in two directions with
reinforcement ratios p; = 0.0103 and p, = 0.0116. The grids have rebars with a diameter
of 8]mm] and a clear cover of 10{mm]. The top slab has been modeled with linear-elastic
elements without reinforcement, whereas the supporting block has been replaced by fixed
supports in the z- and y-direction. The horizontal displacement up, of the top slab has been
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Fig. 4. Results of panels S1 and S2 at ultimate displacement. Active cracks and plastic points: (a) S1; (c)
S2. Principal stresses: (b) S1; (d) S2

monitored and compared with the experimental load-displacement curves.

The load-displacement diagrams of the panels are shown in Figure 3, which shows a rea-
sonable agreement between the experimental and the calculated responses for both panels.
The results for panel S1 at the ultimate displacement of 30[mm] are shown in Figure 4(a)
and 4(b). The panel is heavily cracked with plastic points in the bottom-left corner of the
panel. The results show the failure mechanism which is governed by compressive softening
of the concrete. In the ultimate state, the concrete in the bottom-left corner transfers no
stress anymore, which is in agreement with the experimentally observed failure mechanism
where the concrete was crushed in the bottom-left corner of the panel and in the flange at
the compression side. /

The larger initial vertical stress of panel S2 increasés the ultimate load of the structure
but decreases the ductility of the panel dramatically, gee Figure 3. The agreement between
the ultimate load of the experiment and the calculated maximum load is good. The experi-
mental failure mechanism was rather explosive and ¢aused a complete loss of load-carrying
capacity which can be explained by the brittle behavior of the panel after maximum load.
The results for the ultimate displacement up, of 15[mm] are shown in Figure 4(c) and 4(d)
in which the redistribution of internal forces in the panel can clearly be observed. The com-

plete loss of stiffness in the bottom of the panel can be observed from Figure 4(d) where
the principal stresses are depicted.
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Fig. 5. Panels S4, S9 and S10. Measures in [mm]

5. Shear-wall panels without flanges

Next, three panels without flanges will be presented, panels S4, 510 and S9. The finite
element discretization is depicted in Figure 5 with quadratic plane-stress elements with a
nine-point Gaussian integration for both the reinforcement and the element. The reinforce-
ment is applied by two reinforcing grids in two directions. The grids have rebars with a
diameter of 8{mm) and a clear cover of 10[mm]. The top slab has been modeled with linear-
elastic elements without reinforcement, whereas the supporting block has been replaced by
fixed supports in the z- and y-direction.

The initial vertical load of panel S4 results in a vertical stress that is approximately equal
to that in panel S1. The panel is reinforced with two orthogonal grids with a reinforcement
ratio p; = 0.0103 and p, = 0.0105. The load-displacement diagram, shown in Figure 6,
shows a reasonable agreement with the experimental observed behavior. The panel behaves
in a rather ductile manner which has also been observed for panel S1. The results at the
final displacement of 20 [mm] are shown in Figure 7(a) and 7(b) where the active cracks
and plastic points, and the principal stresses are shown, respectively. It is obvious from
these results that the failure mode is related to concrete crushing in the bottom-left corner
of the panel.

Panel S10 is a panel with a reinforcement ratio p, = 0.0098 and p, = 0.0100 with
additional reinforcement in the tension side of the panel, which can be considered as a
panel with a hidden tensile flange. This results in an increase of the ultimate load, but a
decrease in the ductility, see Figure 6. The results at the final displacement of 20 [mm] are
shown in Figure 7(c) and 7(d), where a remarkable resemblance can be observed with the
failure pattern of panel 52, see Figure 4(c) and 4(d).

The last analysis is the simulation of panel S9 which can be considered as a major
challenge since this panel is only reinforced in the vertical direction. This will result in an
unstable behavior during the formation of the cracks until a stable crack pattern has been
obtained. The finite element discretization is depicted in Figure 5 and is equal to the panels
S4 and S10. The reinforcement in this panel is applied by two unidirectional reinforcing
grids with a reinforcement ratio p, = 0.0001' and p, = 0.00525. The grids have again

1 assures non-zero stiffness in the z-direction for fuily cracked elements
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Fig. 7. Results of panels S4 and S10 at ultimate djspléfcement. Active cracks and plastic points: (a) S4;
(c) S10. Principal stresses: (b) S4; (d) S16 g

rebars with a diameter of 8 [mm] and a clear cover of 10 [mm]. In comparison with the
other panels, the reinforcement ratio of this panel is small which increases the numerical
difficulties.

The load-displacement diagram is shown in Figure 8, which shows the typical behavior
of these type of panels. In the initial part of the load-displacement diagram the cracks

|
|
|
|
|
\
|
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are initiated and the process of crack growth results in a globally horizontal plateau but
many local limit points can be observed. During this phase, small load increments had
to be taken in order to obtain a non-diverging solution. In this stage of the calculation
different non-converging steps have been obtained. During these non-converging steps a
multiple equilibrium state has been triggered which is inherent to these type of structures.
Even in a later stage, non-converging steps have been encountered which resulted in one
case in a spurious unloading/reloading, see Figure 8 at a displacement of approximately
10 [mm]. The agreement with the experiment is quite poor in the initial, uncracked, part of
the load-displacement diagram which might be caused by an overestimation of the Young’s
modulus. The failure load is nevertheless in reasonable accordance with the experimental
failure load and the post-peak behavior shows also the rather ductile behavior of the panel.

The results for panel S9 at the ultimate displacement of 13 [mm] are shown in Figure
9(a) and 9(b). The panel is heavily cracked in almost the entire panel with a small area with
plastic points in the bottom-left corner of the panel. The load-carrying capacity through
a compressive strut can clearly be observed from the principal stresses in Figure 9(b).
The part of the panel which is in a compressive failure state is small in comparison with
the other panels, which can be explained by the relatively small reinforcement ratio. The
reinforcement yields at the maximum load which results in the ductile post-peak behavior.

6. Concluding remarks

Tt has been shown with the analyses of the shear-wall panels that the developed composite
yield model is capable to simulate the experimental load-displacement diagram. The failure
mechanism which has been found is in reasonable agreement with the experimental failure
mechanism. Further research is necessary to develop the concept of compressive fracture
energy.
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