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IDENTIFICATION OF A TUBE GLASS PRODUCTION PROCESS :
POINT vs. SET ESTIMATION
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P.O. Box 513, 5600 MB Eindhoven, The Netherlands
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Waalstaete Building, Breeven
De Waal 32, 5684 PH Best, The Netherlands
Tel : +31 4998 64444, Fax : +31 4998 97820

Abstract : The identification of a tube glass production process is considered applying point as well
as set estimation techniques. Classical identification methods, resulting in point estimates, are based
on a stochastic description of the noise while set estimation methods use a bounded-error
characterization. This paper is focused on the application of these identification techniques to a
practical multiple-input multiple-output manufacturing process. Obtaining the required a priori
information from the input-output data is described in detail together with several choices during the
identification process resulting in a final point and set-model. It is shown that fhe application of
bounded-error techniques in practice is limited due to the conservatism inherent in the method as well
as the tendency towards lower order models for low signal-to-noise ratios.

Keywords : System identification; set theory; robustness; manufacturing process.

1 INTRODUCTION

The identification of an industrial MIMO (multiple-
input multiple-output) manufacturing process is
considered which can be approximated around a
working point as being linear and time-invariant. The
bounded-error characterization is an alternative to
classical identification methods which are based on the
assumption that the noise can be statistically modeled.
The problem of parameter set estimation when the
data points are corrupted by unknown-but-bounded
noise mainly consists in characterizing the minimal
parameter set consistent with the measurements, the
model and the error description. .
Obviously, certain a priori knowledge, like model
structure and error bounds is required. A detailed
noise analysis together with classical identification
techniques can provide the required a priori
information. To compare both classical and bounded-
error estimation methods, an initial (point) estimate
has been derived first using classical identification
techniques. The initial model is supposed to be a
representative candidate of the admissable modelset
and it can be checked whether all process data in the
bounded- error context is consistent with the assumed
model structure and error bounds or not.

However, set estimators are not robust against
outliers, i.e. data points which are not consistent with
the specified assumptions. Such outliers may result
from mistakes made during the acquisition and
preprocessing of the data, but also from
"overoptimistic" error bounds or unmodeled
dynamics. Proper precautions, like data correction [6]
or elimenating violating constraints [8], are necessary
to avoid an empty parameter set.

For MIMO systems the main problem is that the
model can be easily over-parametrized especially for
low signal-to-noise ratios which is often the case in
practice. The resulting parameter sets then become
unbounded. So, for low signal-to-noise ratios the
input-output behaviour with unknown-but-bounded
errors has to be described using models of low order.
It is therefore important for parameter set estimation

~to—select those parameters which contribute most to

the input-output behaviour until the difference between
the model and the measured process data becomes
smaller then the specified error bounds : a
complexity-accuracy balance.

For models described by linear differential equations
with the coefficients defined as parameters, the
feasible parameter region is a convex set which might
be very complex particularly for increasing number of
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parameters. It is therefore convenient to use simpler
although approximate descriptions, like ellipsoidal {7]
or orthotopic [10] bounding or combinations [5,6].

In Section 2 a short process description is given. The
identification of the manufacturing process including
poise analysis together with classical and bounded-
error estimation is described in Section 3. Finally,
conclusions are given in Section 4.

27 PROCESS DESCRIPTION—
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Fig. 2.1 : Tube glass production process.

Fig. 2.1 depicts a schematic outline of the most
important part of the tube glass production process.
Shaping of the tube takes place at and just below the
mandril. The shape of the tube is determined by two
output variables : the wall thickness (y;) and the
diameter (y,) as function of time. The two process
parameters that can be influenced most easily and
affect the shape of the tube most directly with the
shortest delay and over the largest frequency range,
are the mandril pressure (u;) and the drawing speed
(uy). Increasing the mandril pressure results in an
increase of the diameter and, simultaneously, in a
decrease of the wall thickness, while increasing the
drawing speed results in a decrease of both the
diameter and the wall thickness.

3 PROCESS IDENTIFICATION

A freerun (u = constant) and PRBNS (u = Pseudo

Random Binary Noise Sequence) experiment have
been carried out to analyze the noise and to obtain an
estimation data set respectively. After peakshaving
and detrending [1], the two output signals, average
wall thickness and diameter, have been constructed
from the several partially delay corrected (4 wall
thickness and 2 diameter) measurements (Fig. 2.1).
The process will be analyzed as two separate MISO
systems. Because of the limited space, we will discuss
here only the average diameter process. The inputs of
the process are the setpoints generated by the control
system and therefore exactly known. The noise in the
process is assumed to be additive to the output.

0.5 T T T T T

0 16 I 20 l 30
Time i.aé (éazipieé)
Fig. 3.1 : Cross-correlations : Mandril pressure (solid) and

drawing speed (dashed) to average diameter (dotted lines
indicate delays).

Fig. 3.1 shows the computed cross-correlations from
the mandril pressure and drawing speed to the average
diameter. The final noise and estimation data sets
have been obtained after delay correction and data
reduction. The realized signal-to-noise ratio for the
average diameter is 20.3 dB.

3.1 Noise Analysis

The average diameter signal obtained from the freerun
experiment after data pre-processing [1] and the
corresponding auto-correlation are depicted in Fig.
3.2. The noise affecting the average diameter is
clearly coloured. For model estimation, however, it is
preferred that white noise affects the data. Therefore,
a noise model has to be included or alternatively the
data can be pre-filtered with the inverse noise model.
In addition for bounded error estimation an accurate
upper bound of the noise is required which will be
very conservative for coloured noise.

For the noise model an ARMA (Auto-Regressive
Moving-Average) structure [9] has been chosen :

A@Y® = C@e(® G-

where y is the output, e the noise residual, A(qQ) = 1
+aql + .. +a,qPand C(@) =1 + ciq! + ...
+ ¢, ™ with q’! the one sample delay operator.

Testing the whiteness of the residuals for several
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orders of the noise model indicated that a second
order (ma=nc=2) is sufficient to model the noise
accurately. The residual of a first order noise model is
still clearly correlated while increasing the order of
the noise model does not improve the whiteness
significantly. The noise filter shows a low-pass
behaviour with a low frequent gain of = 15 dB.

0.5 T T T
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°0 ' a0 ' 80 ' 120
Time Lag (samples)
Fig. 3.2 : a) Scaled freerun experiment average diameter

with 2¢ (dashed) and 3¢ (dash-dot) bounds (6=0.0961). b)
Auto-correlation with 95% confidence intervals (dashed).
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Fig. 3.3 : a) Filtered freerun experiment average diameter
with 20 (dashed) and 3¢ (dash-dot) bounds (6=0.0476). b)
Auto-correlation with 95% confidence intervals (dashed).

The standard deviation of e(t) compared to y(t) for the
average diameter has been reduced with a factor 2,
resulting in a much more accurate bound for set estimation.

3.2 Point Estimation

Because our final goal is to estimate an output-error
model [9] which is suitable for long horizon control
design, the estimation data set has been filtered in a
first approach with the inverse noise model such that :

v = gg u (t) +e(t) (.2

where

A A
¥ = C&g YO . vl = 8 wp (-3

l(q) =bq! + ... + by q™ and F@) = 1 +
fig! + ... + ffq"f. It turned out however, that due
to this high-pass filtering of the estimation data set
with the inverse noise model, most low-frequent
information has been filtered out. A detailed analysis
of this phenomena indicated that the low-pass
behaviour of the noise filter is a basic characteristic of
the whole process with minor modifications in the
several transfers. Therefore, it has been concluded
that the process noise is filtered by the low-pass
behaviour of the production process. For this reason,

A@y(®) = B@u(®) +C(g)e(t) G4

where the parameter vector is defined by T = [a...
a5 by g cebpp g oo by o € oo o 1 in RP. Effectively
a noise model C(q)/A(q) has now been included.

For several orders of the model (Eq. 3.4 with na =
nb; = nc) the standard deviation of the prediction
error has been depicted in Fig. 3.4. Because the final
model will be used for controller design, the output
error of the corresponding models has been included
as well. The prediction and output error have been
derived from :

epel®) = 2Dy - B@

@ T@ 4
ol® = Y0 - 2 D00
15 T T T T T T T T T
1k,
051 \\\\ ______
T

Model Order

Fig. 3.4 : Order selection ; prediction error (solid) and
output error (dashed).
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Fig. 3.5 : a) Prediction error 5th order model with 20
(dashed) and 3¢ (dash-dot) bounds (¢=0.1848), b) Auto-
correlation, ¢) X-corr. (ul,e), d) X-corr. (u2,e) with 95%
conf. intervals.

The order of the model should be selected from Fig.
3.4 in such a way that the standard deviation does not
decrease significantly when increasing the model
order. But in addition, the residual of the model, in
this case the prediction error, should be white. This
can be achieved using a 5% order model (na=nb;=nc
=5). For lower order models the auto-correlation is
still clearly correlated and increasing the model order
does not improve the whiteness of the residuals in the
several correlation functions significantly. Analysis
showed however that nc=2 is sufficient without
affecting the results considerably. Fig. 3.5 depicts the
prediction error ey (t) of the optimal model together
with the corresponding auto- and cross-correlations.

The low frequent peaks above the 95% confidence
intervals in the cross-correlations are probably caused
by non-linear effects in the actuators and the process.
It should be noted however, that the standard
deviation of the prediction error, o,, = 0.1848, is
significantly larger than the filtered error of the
freerun experiment, og = 0.0476. This is probably
due to the fact that during the PRBNS experiment
more noise is introduced from actuators and non-
linear effects of the process itself which do not appear

———1n the freerun experiment.

The validation of this 5 order model has been done
using a second PRBNS experiment. The auto-
correlation of the prediction error for the validation
set is approximately the same as for the estimation set
(Fig. 3.5b). However, the peaks in the cross-
correlations due to non-linearities become larger.

A last remark should be made about the fact that the
prediction error is not significantly smaller than the
output error (Fig. 3.4) although much more
information is used in the form of previous output
samples. However, from Fig. 3.1 it follows that the
inflaenice of the mandril pressure and the drawing
speed to the average diameter can be separated in a
slow (long impulse response) and a fast (short impulse
response) part respectively. Because the fast process
part which can be easily estimated using either
prediction or output error, is clearly dominant and the
influence of the slow process part to the input-output
behaviour which might be difficult to estimate using
output error, is almost negligible, o, is mnot
significantly smaller than o,.

3.3 Set Estimation

Consider the model described by Eq. 3.4 where the
noise bound is defined by :

llellwés?ple(t)l <y (3.6)
Then Eq. 3.4 and 3.6 can be rewritten in the form :
¥ = 6T®8 +e(®) S

subject to the following necessary and almost
sufficient conditions :

H, : (50+840)78 = y0-7 g
H, : (6 -26®)T8 < y(©)+v

where ¢T(t)=[ -y(t-1) ... -y(t-na) u;(t-1) ... u;(t-oby)
uy(t-1) ... uy(t-nby) 0 ... 0 ], AgT=[ 0 ... 0 ysgn(c;)
... ysgn(c,.) ] and @ as defined below Eq. 3.4. This
is similar to the extension of output-error and
bounded-error-in-variables models described in [3,4].
Whenever C=1, the constraints of Eq. 3.8 reduce to
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the well known equation error constraints.
Constructing a constraint set according to Eq. 3.8
with y = Zape (Fig. 3.5a) no violating constraints
have been detected using the point estimate derived in
Section 3.2 as reference. The point estimate also has
been used as centre of an orthotope defining an initial
parameter set and fixing the sign of the parameters.
Applying the orthotopic bounding method [10] (linear
programming), the final parameter set is completely
defined by the initial orthotope indicating a virtually
unbounded set estimation problem and therefore over-
parametrization. However, a 5% order model is
necessary to obtain an almost white prediction error.
Nevertheless, it can be seen from Fig. 3.4 that Ope
decreases hardly for models of order 3 and higher.

So a higher order model is required to make the
residuals white but does not result in a significant
decrease of the standard deviation. A complexity-
accuracy balance has to be found for set estimation.
All parameters which do not contribute significantly to
the input-output behaviour of the process have to be
eliminated. A detailed analysis showed that for set
estimation, it is sufficient to model the tube glass
production process by :

A@Y® = By(@uy®) +e(t) 3.9

where the order has been reduced to 3 (na=nb,=3)
and the mandril pressure has been suppressed as
input. The point estimate model parameters are §1 =
[ -8.3031e-1 3.3740e-1 -2.4116e-1 -8.1158e-2
-4.4093e-1 -1.9560e-1 1. The prediction error and
auto-correlation of this model have been depicted in
Fig. 3.6.

2 o AT R PR el R

0 400 800 1200
Data Samples

0 20 ' 20 ' 60
Time Lag (samples)
Fig. 3.6 : a) Prediction error 3™ order model with 20

(dashed) and 30 (dash-dot) bounds (0=0.2335). b) Auto-
correlation with 95% confidence intervals (dashed).

Comparing Fig. 3.5 and 3.6, we can see that the
standard deviation of the prediction error increases
slightly (0pe,3=0.2335, Ope,5=0.1848) although the
number of parameters has been reduced significantly
(P3=6, p5=I7)'

A new constraint set has been constructed now where
the bound vy of the noise can be determined from Fig.
3.6a, because the freerun experiment does not
represent sufficiently all noise in the process.
Theoretically, fe] ., should be used as bound. This
results however in a very conservative parameter set.
To show the influence of this noise bound, v = 2¢ e,3
as well as y = 30,3 are used. For both bounds, all
violating constraints with respect to the point estimate,
63 (2.28%) and 7 (0:25%) respectively, have been
skipped before applying orthotopic bounding. The
results are given in Table 3.1 and 3.2.

Table 3.1 : Orthotopic bounding (Y=20p,3)-

Par. 9 Af %
ay -8.3031e-1 1.4595e-2 1.76
% 3:3377e-1 1.8877e-2 5.66
a3 2.3857e-1 1.2475e-2 5.23

by -8.0593¢-2 6.9047¢-3 8.57

by s -4.3813e-1 7.7955¢-3 1.78

b3, -1.9540e-1 8.1267¢-3 4.16

Table 3.2 : Orthotopic bounding (y=303).

Par. @ Af %
ay -8.0813e-1 2.4043e-1 29.75
a 3.1927e-1 2.4431e-1 76.52
a3 -2.6478e-1 1.5235e-1 57.54
bl,2 -8.1158e-2 8.1158e-2 100.00
by o -4.6021e-1 9.8931e-2 21.50
b3,2 -2.1305¢-1 1.3207e-1 61.99

A 100% uncertainty of parameter b; » in Table 3.2
indicates that this parameter cannot be estimated using
an upper bound y = 30p.,3 and therefore should be
eliminated. :

These results show clearly the problems and the
conservatism of parameter set estimation when
applying this method to industrial data. This
conservatism is mainly due to the worst case bounded-

error approach. The noise should be approximately
uniformly distributed to ensure that the upper bound vy
is an accurate description and to obtain reasonable
parameter sets. This can be achieved using y = 20’Pe’3
as upper bound and skipping the violating constraints
with respect to the reference model.

To illustrate the problems occurring when the noise is
normal distributed, Fig. 3.7 depicts the results of a

2348



L I

simulation example with the corresponding exact
parameter sets for 2¢ and 3¢ bounds (1000 data
samples, u : uniform white sequence o = 0.58, e :
normal white sequence o = 0.12, SNR =~ 20dB). The
violating constraints, 41 (2%) and 4 (0.2%)
respectively, have been skipped before applying set
estimation. It is obvious that for y = 20 not all
outliers, e(t) > 20, have been detected as
measurement errors resulting in a too small parameter
set (almost a dot in Fig. 3.7b).
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Fig. 3.7 : y1)=0.7y(t-1)+1.5u(t-1) +e(t), a) Normal dist.
noise, b) Parameter space with 2o (solid), 3¢ (dashed) set
estimation and 20, 30 (dash-dot) Cramer-Rao bounds.

A balance has to be found between the chosen upper
bound, the number of violating constraints and the
conservatism of the resulting parameter set. In
addition, for the tube glass production process it is
obvious that the amplitude of the PRBNS signal to the
mandril pressure input has not been designed large
enough resulting only in a 3™ order SISO model for
parameter set estimation.

4 CONCLUSIONS

It has been shown in this paper that the application of
classical identification techniques to industrial data
resulting in point estimates of the parameters gives
good results in spite of the fact that the signal-to-noise
ratio is low and that one input is clearly dominant in
the input-output behaviour.

In contradiction to classical identification, set
estimation techniques tend to low order models’ due to
the conservatism inherent in the method. Only those
parameters which contribute significantly to the input-
output behaviour can be estimated. In addition, it has
been shown that the choice for the upper bound of the
noise is crucial to achieve usefull set estimates.
Theoretically, |e] o < 7 is a guarantee to obtain a
non-empty parameter set under the assumption that the
process is in the model set, the results however are
very conservative and of no use in practice. A more
practical solution is to choose a lower upper bound,
for example vy = 20,, and skipping all violating
constraints with respect to a reference model. The

resulting parameter sets do not define the 100%
uncertainty bounds of the model anymore.
Nevertheless, this is still not feasible in practice
because 1) the number of data samples is limited, 2)
industrial processes (non-linear, time-varying) can
only be approximated around a working point and
therefore the process is never in the model set, and 3)
data outliers disturbing the measurements which have
not been detected during the data pre-processing phase
should not determine the upper bound of the noise.
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