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Abstract. 

A MEASURE THEORETICAL SOBOLEV LEMMA 

by 
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The well-known Sobolev embedding theorem is generalized in terms of geometric 

measure theory and Hilbert-Schmidt operators. 

AMS Subject Classification: 28 A 15, 28 A 51, 46 E 35, 46 GIS. 

The investigations were supported in part (SJLvE) by the Netherlands Foundation 

for Mathematics (SMC) with financial aid from the Netherlands Organization for 

the Advancement of Pure Research (ZWO). 



- 2 -

Let M denote a measure space metrized by the metric d, and let ~ denote a 

regular Borel measure on M so that bounded subsets of M have finite ~-measure. 

In [Fe], Theorem 2.8.18, Federer introduces conditions on the metric space 

(M,d) such that the following important result holds true. 

(1) Theorem. 

Let the function f : M ~ t be integrable on bounded Borel sets. Then there 

exists a null set N such that for all r > ° and all x € M\N the closed ball 
~ ~ 

B(x,r) with radius r and centre x has positive ~-measure. Moreover, the limit 

f(x) = lUn ~(B(x,r))-l 
r-l-O 

I f d~ 
B(x,r) 

exists for all x € M\N . The function f 
~ 

almost everywhere. 

x ~ f(x) is ~-measurable with f 

Examples of such metric spaces (M,d) are the following (cf. [Fe]) 

Finite dUnensional vectorspaces M with d(x,y) = v(x-y) where v is any 

norm on M. 

A Riemannian manifold (of class ~ 2) with its usual metric (cf. [Hi]). 

M, the disjoint un10n of metric spaces (M.,d.), j € Nand d, the metric 
J J 

defined by 

[
d(X~'Yj) = 1 ~ =I j 

d(x~,y~) = d~(x~,y~) 

Here the spaces (M.,d.) are supposed to satisfy Federer's conditions. 
J J 

f 
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Let X denote a Hilbert space and R a positive self-adjoint Hilbert-Schmidt 

operator on X. So in X there ~s an orthonormal basis consisting of eigenvectors 

of R with eigenvalues Pk > 0, k € N. The dense subspace R(X) of X contains 

all f € X satisfying 

Here ( • , • ) denotes the inner product of X. With the sesquilinear form 

R(X) becomes a Hilbert space. Now let the linear operator V be well-defined 

on R(X) and let it map R(X) into L2(M,~). In addition, suppose that the com

position map V 0 R : X + L2(M,~) is Hilbert-Schmidt. This assumption ensures 

that the series 

(2.i) 

converges and hence that 

(2.ii) 

Since bounded subsets of M have finite ~-measure, every member of L2(M,~) is 

integrable on bounded sets. So we can apply Theorem (I) to each element VV
k 

of L2(M,~). It yields null sets N~I) , k € ill, such that the limit 

(3. i) 'Pk (x) lim 
r+O 

(B(x,r))-I I (Vv
k

) d~ 
B (x, r) 
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(] ) 
exists for all x € M\Nk and all k € lli. Each function ~k extends to an 

everywhere defined representant of the equivalence class Vv
k

. 

Since \Vvk \2 € L] (M,Jl), k € :N ~ we get null sets N~2) such that 

(3. i i) 
-] 

lim Jl(B(x,r)) 
r-l-O 

B (x, r) 
J 

X € M\N(2) 
k 

(3) 
and because of relation (2.ii) we get a null set N such that 

(3.iii) 
-] 

lim Jl (B (x, r)) 
r-l-O 

2 1 12) (3) Pk V v
k 

dJl , x € M\N • 

Let N denote the null set (u N~])) u ( U N(2)) u N(3). For convenience 
P k€:N k€:N k 

sake we take ~k(x) = 0 whenever x € Np ' 

In the next lemma we put the measure theory needed for the announced main 

result of the paper. 

(4) Lemma. 
00 

a) Let x € M and set e 
x 

2--I Pk ~k(x) vk · Then e ~s a member of R(X). 
k=l x 

b) Let x € M\N and set e (r) = Jl(B(x,r))-] 
P x 

Then e (r) € R(X) for all r > 0 and x 

lim II e - e. (r) II 0 . 
r-l-O x x p 

00 

L P~ 
k=l 

( f~dJl)vk' 
B(x,r) 
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Proof. 

The proof of part a) is a consequence of the definition of the functions ~k 

and of relation (3.iii). 

In order to prove b) we take x € M\N . Then for each r > 0 the inequality 
P 

~ ( f 
B(x,r) 

is valid. It yields the estimate 

I J 
B(x,r) 

and hence by (2.i), e (r) € R(X). 
x 

\l(B(x,r» ( I P~ IIVVkll~2(M'\l») 
k=l 

Now let s > O. Then kO € ~ can be taken so large that 

and rO > o so small that for all r, 0 < r < r O' both 

(**) I -I ~k(x) - \l(B(x,r» 
J 

(Vvk) d\l I < s 

B(x,r) 
and 

00 

f (***) ~ 
2 -I 2 2 

Pk \l(B(x,r» IVvk l d\l < 2s . 
k=kO+1 B(x,r) 
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The inequalities (*) - (***) lead to the following estimation 

2 
II e - e (r) II 

x x P 
II I P~ [Cj)k(X) - Il(B(x,r»-1 

k=1 
J (V vk ) dll ] Vk II : 

B(x,r) 

kO 

- ( I + I ) P~ !Cj)k(X) - Il(B(x,r»-1 
k=1 k=k +1 o 

00 

f (V V
k

) dll 12 L 2 \ -I Pk 
q>k(x) - Il(B(x,r» ~ 

k=kO+1 B(x,r) 

00 2 00 

J L 2 
I 21 -1 ::s; 2 Pk I (jlk (x) I + 2 P

k 
Il(B(x,r» 

k=kO+1 k=kO+1 B(x,r) 

2 
~ 2e: + 2 J 

B(x,r) 

So we have proved that 

( ~ Pk2)~ lIe-e(r)1I <e:6+ L 
x x P k=1 

o < r < rO • 

f (Vvk ) dll 1

2 

B(x,r) 

(V v
k

) dll \2 ~ 

o 
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We now came to the main result of this paper. 

(5) Theorem (Measure theoretical Sobolev lemma). 

For each f E R(X) there can be chosen a representant 1Jf in Vf such that the 

following statements are valid 

00 

i) Of = I (f,vk) ~k where the series converges pointwise on M. 
k=i 

ii) For each x E M the linear functional f + Vf(x) is continuous on the 

Hilbert space R(X); its Riesz representant is e . 
x 

00 

iii) Suppose I P~ l~kl2 is essentially bounded on M. Then the convergence 
k=i 

in i) is uniform outside a set of measure zero NO' Moreover 

3 V 
8>0 XEM\NO 

I (1Jf) (x) I < S "f II • p 

iv) For all x E M\N . p 

(7)f) (x) 
-I 

= lim ~(B(x,r» f (Vf) dll . 
r-l-O B(x,r) 

Proof. 
00 

Let f E R(X) and put Vf = I (f,vk)CPk' So obviously Vf E Vf. 
k=1 

i) Since (f,e) = 
x p 

pointwise on M. 

00 

ii) Trivial, because 1Jf(x) (f, e ) . . 
x p 

and since ex E R(X) the series converges 

iii) By assumption there ~s a null set NO such that 

S < 00 
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Thus for each f € R(X) we get the estimate 

for all K,L € N with K > L, uniformly on M\NO. 

iv) Let x € M\N and let f € R(X). Then 
P 

(Vf) (x) = (f , e.) = lim (f, e. ( r) ) = 
x P r+O x P 

00 

= lim ~(B(x,r»-1 I 
r+O k=1 

Summation and integration can be interchanged because 

00 

I I 1(f,vk)Vvkl d~::; 
k=1 B(x,r) 

::; (kt I -2 I (f,vk ) 12 d" )1 ct Pk 
B(x, r) B (x, r) 

::; IIfll~ 
(kL 

2 IIVvkll~2(M'1l) ) ~(B(x,r» . Pk 

Thus we find 

(1)f) (x) -1 
lim 11 (B (x, r» 
r+O 

-1 
lim ~ (B (x, r) ) 
dO 

f (Vf) d~ . 

B(x, r) 

r 2 
Pk ) 

2 )! IVvkl d~ ::; 

o 
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n Illustrations (The classical Sobolev embedding theorems on [O,2~J ). 

n On the n-dimensional cube C = [O,2~J we take the usual measure 
n 

1S well-defined and 6 has an orthonormal basis of eigenvectors 

= (_1_ )n/2 ikl x iknx 
~(x) 2~ e .•. e 

n where k € ?l , k 

Theorem (5) leads to the following result. 

(6) Corollary. 

Let m € N with m > n/2, and let 0 :$ Q. < m - n/2, Q. €?l. Then there is a null 

(Q.) -m/2 
set Nn such that for each u € 6 (L 2(C

n
)) there exists a representant u 

of u with the following property: For all CL € (:IN u {O})n, \et\:$ Q., there 

exists y such that 
et 

Here V
CL 

denotes the differential operator VCL = 

1I.lI
m 

the Hilbert space norm of t:,-m/2(L
2

(C
n
)). 

and 
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Proof. 

- -m/2 - L () - f -Note f~rst that t:,. ~s a bounded operator on 2 C
n 

sat~s y~ng 

A-m./2 _ (k2 2)-m/2 d f h h Va _ -Ial 
Ll e

k 
- 1 + 1 + ••• + k

n 
e

k
, an urt er t at e

k 
- ~ 

a -m./2 
So the operator V t:,. is Hilbert-Schmidt if the series 

22m 
(I - k 1 + ••• + k

n
) 

converges. Comparison with the integral 

dX
1 

..• dx 

shows that for 2m - 21al - (n- I) > 1 this indeed is the case. Hence we find 

I I a -m/2 
that for a :;; t < m - n/2 the operator V t:,. is Hilbert-Schmidt. Since 

J ek (x) I = I, X € [0, 21TJ
n

, it also follows that the function 

x 1+ L I (Vat:,. -m/2 e
k

) (x) I is bounded on C . 
k€~n n 

So Theorem (5) and the previous observations yield the desired result. 

(Cf. [YoJ.) D 
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Epilogue. 

One of the authors (De Graaf) has set up a new theory of generalized functions, 

[G]. This theory is based on holomorphic semigroups. Each nonnegative self-

adjoint operator A in a Hilbert space X gives rise to a space of generalized 

functions TX A' In [G] each generalized function F is an initial condition , 
u(O) = F of the equation 

du 
dt -Au. 

The corresponding solution uF has to satisfy uF(t) € X, t > 0, and 

LA -tA 
UF(t+T) = e- ~(t), t,T > O. (Heuristically, uF(t) = e ~(O).) 

m 
E.g. for each w € X and m > 0, A w is a member of TX A' , 

Based on this theory of generalized functions, a theory of generalized eigen-

functions has been developed, see [EG], where a central role is played by 

Theorem (5) and by the so called commutative multiplicity theory (cf. [Br]). 

The main result in [EG] can be stated as follows: 

-tA ' Let A be a self-adjoint operator in X such that the operators e t > 0, 

are Hilbert-Schmidt. Then any self-adjoint operator T extendable to a closed 

operator in Tx,A has a complete set of generalized eigenfunctions in Tx,A' 

Moreover to almost each point A in the spectrum of T with multiplicity m
A 

there correspond precisely m
A 

generalized eigenfunctions out of this complete 

set. 
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