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Abstract

The conditioning of singularly perturbed scalar Dirichlet problem is considered. It is shown
how this is related to the conditioning of an appropriate associated first order system.
Through this the dichotomy of the solution space (a concept that only makes sense in a
vectorial setting) can be investigated. Two typical equations are studied in more detail, one
with possible boundary layers on both sides of the interval and one with an internal layer (Le.
the turning point case). The results are applied to obtain estimates of global discretisation
errors for difference methods. Several examples illustrate the analysis.
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1 Introduction

Consider the problem

(1.1a) fY" +a(x )y' + b( x)y = f( x), f > 0 (but small) ,

where a, band f are sufficiently smooth functions. Let y satisfy the Dirichlet boundary
condition

(LIb) y(xo) = a, y(xt} = (3, a,(3 E IR .

An intriguing but, as it turns out, nontrivial question is how the solution of (1.1) is behaving
when small perturbations of the data are taken into account, i.e. how large its conditioning
constant is (d. [1]), given the fact that f is a parameter. Another question is whether this
behaviour is related to dichotomy of the solution space (d. [2]), as this is a fundamental
result for first order systems (d. [3]). We shall first try to address the conditioning question
for a simple problem and then derive a meaningful corresponding first order system. In the
sequel let

(1.2a)

(1.2b)

Ilylloo:= max ly(x)l,
.TE[xQ,xll

Ilylll := 7ly(x)ldx ,
XQ

(which also extends to vector-functions by taking any norm for y instead of the absolute
value sign; since these norms are equivalent we may as well take just the 2-norm then).
First consider the special, but instructive, example

(1.3) EY" - Y = f(x), y(O) = 0, y(l) = 0 .

Then, as can easily be checked, the solution is given by

(1.4a)

1

y(x) = Jg(x,s)f(s)ds,
o

where the kernel g(x, s) is the Green's function for the scalar problem (1.3),

(l.4b)
(

I-x .!.±.!.) (1-. ~)
._ 1 e7t - e Vi e7t - e Vi-

g(x,s).- r;: (2) ,
v E 2 eVi<-l

for s ~ x < 1, g(x,.s) is given by an expression similar to (l.4b), but with x and oS inter
changed.

2



1
It follows from (1.4) that Ilylloo ~ II fll 00 , but Ilylloo ~ y'E Ilf111'
This example thus shows that we cannot expect in general that lIylloo ::; Cllfll1where the
constant C is independent of £ (which would amount to a notion of well-conditioning of the
BVP (1.1)). More careful examination of this estimate (which will be done further on for the
more general case) reveals that a quantity 6-1 , defined through

(1.5)
max ly'(x)1

6-1 := xE[xQ,x1l ,

max ly(x)1
xE[xQ,x1l

is often showing up in the bounds.
Rather than (1.1) we may as well consider the ODE in more "standard" form

(1.1 ),
a b f

y" +- y' +- y = - =: q .
£ £ £

We have the following definition.

Definition 1.6. (1.1) is ca.lled well conditioned if there exists a. moderately small constant C
(independent of £) such that Ilylloo ::; C ~ Ilf111.

In the example problem (1.3) we clearly have 6 == JE. Although this means that source
terms may have a large effect, we shall show in section 3 that this is not necessarily so if they
arise from discretisation errors.
Next, consider the "standard" matrix-vector ODE corresponding to (1.1)

(1.6) dy ( 0 )di = Ay+ q , where A:= [0 1]
-~ -~ ,

and a corresponding boundary condition

(1.7) By := BoY(xo) + B 1 y(xt} = C ,

where B o := ( ~ ~ ), B 1 := ( ~ ~ ) and c := ( ~ ) for the Dirichlet boundary condi

tions (LIb). There are two problems associated with (1.6). The first one is the well-known
skewness of A. For our example problem (1.3), e.g., we see that we obtain an obvious fun
damental solution

[ 1 1] (1 x 1x)y (x) := -L _1_ diag e"0 , e- v: ;
..fi -..fi

clearly the vectors (1, (y'E)-1 f, and (1, -(JE)-1 f are nearly dependent for f. small. Simple
calculations show that they give unbounded Green's functions (as f. ! 0) (cr. also [6]); we
return to this matter later.
The second problem is that the forcing term has a systematically zero first coordinate. A
general sensitivity analysis of (1.6) would necessarily include perturbations of the latter as
well. Below we shall see how we take care of this. Instead of (1.6) consider, more generally,
a matrix vector form obtained from (1.6) by transforming the variable through
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(1.8) T := (~ ~).

This special choice of T is induced by the fact that we like to have the first coordinate in the
system to be just y and also that we anticipate y' to be potentially large, so fY' is as good a
choice as, say Jty + fY', with Jl moderate. Define

(1.9a)

Then

y := Ty; A:= TAT-1 .

(1.9b) y' = Ay+ (~q) .

Now let 4l denote the fundamental solution of (1.6), with 84l = I; then this problem has the
following Green's function G(x,s):

(1.10a) G(x,s):= q)(x) (~ ~) q)-l(s), x> s ,

(1.10b) G(x,s):=-ep(x)(~ ~)ep-l(s), x<s.

The transformed problem (1.9b) has, correspondingly, the fundamental solution ~, and the
Green's function G of the form

(1.11a) ~(x):= T4l(x) ,

(1.11b) G(x,s):= TG(x,s)T-1 •

Partitioning G as [~:: ~:~], we notice that only G12 and G21 are different from G 12

and G 21 respectively. The function G 12 (X,S), in example (1.3), appears as the kernel g(x,s)
in (1.4). From the estimates for g(x,s) it follows that max IIG12

11 = O(y'E)l. From some
x,s

more calculations it can also be seen that max IIG21 (x,s)1I = O«VE")-l), which then sug-
x,s

gests to take ~f = JE in (1.8). Actually it can be seen that with this choice of T the resulting
Green's function G is uniformly bounded (in infinity norm). The problem (1.9b) with appro
priate (though fairly general) boundary conditions may therefore be called well-conditioned.
Recall from [3] the following

Definition 1.12. The BliP

(1.12a) y' = Ay +f ,

(1.12b) BoY(xo) +B 1Y(:I:t} = c

1 here and in t.he sequel II . II denot.es some vect.or norm (and associat.ed mat.rix norm)
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is called well-conditioned if there exists a moderately small constant C such that

Ilylloo ::; C[llfl1 1 + IlclW

In [3] it was shown that well-conditioning is related to dichotomy, as defined in:

Definition 1.13. Let there exist a projection P and a moderately small constant K, such
that

x<s- ,

where ep is a fundamental solution of (1.12). Then ep is called dichotomic.

Remark. Both well-conditioning and dichotomy should be considered in a uniform in (
setting in our present context, thus giving a specific meaning to C and K,.

We have (d. [3])

Property 1.14. If (1.12) is well-conditioned, then it is dichotomic; the constant K, for
the latter can be chosen as C(l + 4C). If (1.12) is dichotomic and the BC are chosen so as
to make Boep(xo) + B1ep(xll well-conditioned (assuming Ilepll"" = 1), then (1.12) is well
conditioned.

In this paper we like to explore in more general cases how the well conditioning of the scalar
second order problem is related to that of a suitable associated first order system, which we
can then relate to dichotomy (or lack thereoff, see Property 1.14).

2 Optimal first order systems

In order to assess the (well) conditioning we shall use an explicit representation for the
fundamental solution in terms of two basis solutions of (1.1), say Yl and Y2. A fundamental
solution, 4» say, of (1.6) is then given by

(2.1) 4»(x)'- [Yl(X) Y2(X)]
.- Y~ (x ) y~ ( x ) .

We shall assume homogeneous Dirichlet Be throughout, so

(2.2) Bo = (~ ~), B 1 = (~ ~), c = 0 .

Hence

2The function norms (1.2) will be used for vect.ors as well, where 1·1 has t.o be replaced by II· II then.
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(2.3)

where

(2.4)

{

<P(x)Q-IBo<P(xO)<p-I(S) ,
G(x,s) =

-<P(x)Q-1B1<P(xd<p-I(s) ,

x> s ,

x < S ,

In order to simplify the relations somewhat we now specifically assume, that

(2.5a) YI(XO) = 0, YI(xd = 1 ,

(2.5b) Y2(XO) = 1, Y2(xd = 0 .

For x > s the components Gij of G are then given by

(2.6a)

(2.6b)

(2.6c)

(2.6d)

Gll(x s) = -Y2(X )Y~ (s)
, W(s)'

G 12 ( ) _ Y2(X)YI(S)
X,S - W(s) ,

G21(x s) = -y~(x)Y~(s)
, W(s)'

G 22 ( ) _ Y~(X)YI(S)
x,s - W(s) ,

where W(s) is the Wronskian

(2.6e) W(s) := YI(S)Y~(s) - Y2(S)y~(S) ,

which is assumed to be nonsingular (i.e. YI, Y2 are independent solutions). G l2 is the part of
the Green's function that also appears if one expresses Y in terms of the inhomogenity, i.e.

Xl

(2.7) y(x) = JG I2 (X,s) f~S) ds

Xo

(of course, we then need a counterpart for (2.6a) with x < s as well).
Now well-conditioning of the scalar ODE might seem to be related to a dichtomy of suitable
basis solutions YI and Y2, say IY2(X)1 growing and IYI(X)I decaying as functions of x. The
following example shows that this is not the case and that we have to include the directions
of the vectors (Yi( x), yi( x))T as well, for establishing well-conditioning (in particular we have
to require these vectors to be directionally separated).

Example 1. Consider the following family of ODE's
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" 2x , 2 ( )
€Y + (x+1)(2x+1) Y - (x+1)(2x+1) y=f x ,

If € = 1 we find the basis solutions

1 x X
Yl (X) = x + 1 - T(T +1)' Y2( x) = T .

x E [0, T] , T> o.

Clearly Yl is decaying and Y2 is growing (which can be made more dramatic by letting T
increase). Even the vector solutions (Yl(X), y~(x))T and (Y2(X), y~(x)f of the associated
form (1.6) seem like a dichotomic pair. However, although IIY1(x)1I '" ~ and IIY2(x)11 '" x,

it should be noted that both Yl(x)/IIY1(x)11 '" ( ~ ) and Y2(x)/IIY2(x)11 '" ( ~ ), showing

that they become directionally dependent. In other words, they are not dichotomic according
to definition 1.13 and therefore this problem is not well-conditioned (if one takes T -+ 00).

This is also borne out by considering

G I2 (X s) = (s + 1)2 S [x(x +1) - T(T + 1)] x > s .
, (2s+1)(x+1) T(T+1) ,

Note that the factor [ ] equals -1 for T = 00 and x finite; for x :::::: sand s -+ 00 this expression
becomes unbounded thell. 0

The next fundamental theorem shows how a bound for all blocks of G can be related to
G 12 •

Theorem 2.8. Let

(2.8a)
max lyj(x)1

8-1 := max _xE--'['-xO_.x_1.:....J....,...--,----:

j=I.2 max IYj(x)1
xE[.ro.xd

Then, in the case of dichotomic solutions Yl and Y2

(2.8b)

where C is a moderate constant.

Proof. Since we obtain similar expressions for Gij(x,s) as in (2.6) when x < s, we can
restrict ourselves to the case x > s. The estimates then follow straightforwardly from (2.6)
and explicit estimates for Yl, Y2 obtained in sections 3 and 4. 0

We see that the various components of G have potentially quite different bounds. This
suggests that using the transformation T (see (1.8)) with / = 8 will equilibrate the Green's
functions; hence we have:

Corollary 2.9. If we choose /
to be finite, then

b in (1.8), where 8 is defined in (2.8a) and assumed
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o

where CI and C2 are moderate constants.

We see from this corollary that the associated matrix vector system (1.9), with i = b gives
unbiased estimates of the blocks. Clearly such a choice is also unique if b is proportional to
a power of ( (as it turns out to be in the next sections). We have then

Property 2.10. Let IIG12lloo = O((A), A E JR+. Then the system (1.9) is well condi
tioned iff b = O( (A) and i is chosen asymptotically propertional to b. As far as the choice of
A, this i is unique.

Proof. From Corollary 2.9 we see that IIGII"", = 0(1) by this choice. If either it would
be chosen differently, or b would not have the proper order, IIGlioo would be unbounded.
,

3 Well conditioning; the case of no turning points

In this section and the subsequent one we shall investigate whether and how the conditioning
of suitable scalar ODE can be related to the conditioning of certain optimally scaled asso
ciated first order systems. To this end we shall construct solutions YI and Y2 as defined in
section 2 and try to estimate the quantities G 12 and b of Property 2.10.

Case(i). Consider a generalization of equation (1.3)

(3.1) fY"= b(x)y+f(x)

with the homogeneous Dirichlet boundary conditions

(3.2) y(xo) = 0, y(xd = 0 .

Nonhomogeneous conditions as well a.s the conditions of other types can be considered like
wise. For now let us restrict our attention to the case when b(x) does not have zeros for all
x E [xo, Xl] (i.e. no turning points). The corresponding homogeneous equation

(3.3) " b(x)
y =-y

(

has two linea.rly independent solutions for which the asymptotic representations can easily
be written out using the WKB technique (see, for example, [5]). We have to consider two
possibilities: b( x) > 0 and b(x) < O. For b(x) > 0 the normalized linearly independent
solutions are

. XI I

4 b(xd {J b2:(s) >}
Yl(X) = b(x) exp - vIE ds (1 +O(JE» ,

X

8



(3.4)
X I

Y2(X) = 4 bb~:O; exp { - J bJ;) dS}(1 +O(yIf)) .
Xo

The asymptotic representation (3.4) is true under certain (nonrestricting) smoothness as
sumptions on b(x): the function b(x) should be three times continuously differentiable. We
normalized YI(X) and Y2(X) in such a way that Y1(xd = 1 +O(Jf), Y2(XO) = 1 +O(Jf); it
can also easily be seen that Y1(XO) = 0(1) and Y2(xd = 0(1).
For b(x) < 0 the suitably scaled linearly independent solutions are

(3.5)
x 1

ih(x) =~ exp { - i J Ib(sj;ds}(1 +O( yIf) .

Xo

Note that such Y1(X) = 0(1), Y2(X) = 0(1). (We also keep the assumption on smoothness
of b(x).) It can easily be seen that the solutions Y1(X) and Y2(X) (see (3.4)) are dichtomic
and even such that one of them is strictly increasing while the other is strictly decreasing for
growing x (and sufficiently small f). Therefore the problem (3.1), (3.2) is well conditioned
for b(x) > 0 in the sense of Definition 1.6 with £, given by (2.8a). In our case

£,-1 = max II JV~(1 +O( Jf))11 = 0 ( ~) ,
xE(xo,xI) Y f Y f

where M = max(bt(xo), bt(xd), Le. / = O( Jf), and we should have from Property 2.10 (cf.
Def. 1.6) that

(3.6)

We now estimate Y and its conditioning constant also more directly and obtain a bound in
terms of 11/1100 as well. The solution of (3.1), (3.2) can be written in the form3

XI

(3.7) Y(X,f) = J g(X,s/~s) ds,
Xo

where

(3.8) g(x,s) ==

Jf 1 [J8 bt(Od~]-2 {!b(x)b(s) exp - Jf ,Xo :S x :S s ,
X

Jf 1 [Jx bt(Od~]
-2 {!b(x)b(s) exp - Jf ,s :S x :S Xl .

8

3for simplicity we shall write g(x, s) := G I2
(X, s)
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Here and below by == we mean that in the right hand side we neglect higher order terms in E.

From (3.8) it follows immediately that

(3.9) ..fi 1Ilglloo = max Ig(x,s)l::; - ~ .
x,s 2 min b(x)

x

Hence, by virtue of (3.7) and (3.9)

(3.10)

as was hoped for (cf. (3.6)).
On the other hand, if we want to estimate IIY(',E)lIoo through 111(,)1100, we write

(3.11)

Xl

IIY(',E)lloo ::; m;,x JIg(:,s)lds ·1111100 .
Xo

Let us estimate in (3.11) the part of the integral corresponding to integration from Xo to
x (the other part, corresponding to integration from x to xI, can be estimated in a similar
way):

() Jx \9(x,s)II' {JX

1 1
3.12 m,:x Xo -E- CS = m,:x Xo 2,fi' {!b(x)b(s)'

1
2

max
2m x [

-m(x-xo) ]
l-e 'fi ::; C .

Here m = mln Vb(x).
From (3.11) and (3.12) we have

(3.13)

We see that, depending on the norm we use for the nonhomogeneous term, the conditioning
constants will be different: the conditioning constant is of the order O(,fi) in (3.10) and of

the order 0(1) in (3.1:3).
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Naturally, the transformation T of the linear system corresponding to (3.1) (b(x) > 0) with
I = O(l5) = O(J€) will produce the optimal system (in the sence of the previous discussion).
But in the case of the pulselike (l5-function) nonhomogeneous terms the conditioning con
stant, even for "optimal" systems, cannot be improved in comparison to (3.10). (Notice that
the estimate (3.10) is exact if f(x) = l5(x - x*), where x* E (XO,XI).)
For the case b(x) > 0 the linearly independent solutions ih and ih (ef. (3.5)) are not di
chotomic and therefore we cannot expect well conditioning (see [1]).
Let us now show that the estimate (3.10) is not really so bad if the right-hand side of the
equation (3.1) with b(x) > 0 comes from discretization errors. Once more, consider the
equation (1.3) with zero Dirichlet boundary conditions and e.g. the central (second order)
difference scheme

(3.14)

h h - Xl - Xo ... N 1· - 7\Twere - N lor some an( 1. - 1, ... ,1\ - 1.

The global error ei := Y(Xi) - Yi satisfies the difference equation with the local discretisation
error di as an inhomogenity (ef. [1]):

(3.15)

Here we used the fact that y(x;) satisfies the equation (1.3) at the point Xi. Now consider
the following differential equation for the function e( x), associated with (3.15),

(3.16) fe" - e = d, e( xo) = e( Xl) = 0 .

Here e(x) and d(x) are continuous (e.g. interpolated) versions of ei, di (e(xj):= ej,
d(xj) := d;). From (3.15) we see that for a smooth solution Y

max Idil ~ fCh2 for some moderate C .

The application of the estimate (3.10) to (3.16) gives:

Similarly, from (3.13)

Example 2. Consider the ODE

fY"- Y = f(x) , X E (0,1).

If f is assumed to be smooth, then Y can be written as

11



y(x) = Ae-x/,f{ + Be(x-l)/,f{ +p(X),

where IAI, IBI are not large (if ( 10) and p is smooth. If we now use some local equidistribution
technique (cr. [1]), Le. the grid is chosen such that all local errors are approximately equal,
then we may assume that the modulus of the local error to be ~ TaL, where TaL is some
tolerance parameter. From the analysis (3.14)-(3.16) we then derive that
Ilell oo ~ C TaL (cr. (3.13)). In Table 1 this is demonstrated for a problem with y(O) =
y(l) = 1 and f(x) := (-1 + 41r2()sin 21rx, whence y(x) = e-x/,f{ + e-(X-l)/,f{ + sin 21rx.
Note that this problem has layers and so di in (3.15) is not uniformly bounded in (; hence
equidistribution is mandatory.

( Ilell oo

O.25D-01 O.96D-03
O.63D-02 O.37D-03
O.16D-02 O.10D-02
O.39D-03 O.lOD-02
O.98D-04 O.89D-03
O.24D-04 O.86D-03
O.61D-05 O.80D-03

Table 1. Equidistribution with TOL= 10-3 .

On the other hand, given the nature of the local errors, the stiffness of the problem, charac
terised by (, is alleviated if we choose h = O(d). Clearly the local errors (for the BC above)
are largest in the boundary regious. In Table 2a we have given Ilelloo for various values of
( and h =JE . 2-m , m = 1,2, .... It can be seen from Tables 2b and 2c that both Ildlloo
and IIdlidJE are nearly independent of (. Both estimates (3.10) and (3.13) are fairly well
confirmed.

m 1 2 3 4 .5 6
E

0.25D-01 O.15D-0l O.36D-02 O.90D-03 O.22D-03 0.5.5D-04 O.14D-04
O.63D-02 O.43D-02 O.l1D-02 O.27D-03 O.68D-04 O.17D-04 O.43D-05
O.16D-02 O.39D-02 O.96D-03 O.24D-03 O.60D-04 O.15D-04 O.38D-05
O.39D-03 O.:38D-02 O.96D-03 O.24D-03 O.60D-04 O.15D-04 O.38D-05
O.98D-04 O.38D-02 O.96D-03 O.24D-03 O.60D-04 O.15D-04 O.38D-05
O.24D-04 O.38D-02 O.96D-03 O.24D-03 O.60D-04 O.15D-04 O.38D-05

Table 2a. Ilell oo ; h = .fi 2-m
•

12



m 1 2 3 4 5 6
E

O.25D-Ol O.28D-Ol O.65D-02 O.16D-02 OAOD-03 O.99D-04 O.25D-04
O.63D-02 O.13D-Ol OA2D-02 O.12D-02 O.31D-03 O.79D-04 O.20D-04
O.16D-02 O.13D-Ol OAlD-02 O.12D-02 O.3lD-03 O.29D-04 O.20D-04
O.39D-03 O.13D-Ol OAlD-02 O.12D-02 O.3lD-03 0.79D-04 0.20D-04
0.98D-04 0.13D-Ol OAlD-02 O.12D-03 O.3lD-03 O.79D-04 0.20D-04
0.24D-04 O.13D-01 OAlD-02 O.12D-02 O.3lD-03 O.79D-04 O.20D-04
O.6lD-05 0.13D-Ol OAlD-02 0.12D-02 O.3lD-03 0.79D-04 0.20D-04

Table 2b. Ildll oo ; h = ..fi 2-m .

m 1 2 3 4 5 6
E

0.25D-Ol 0.84D-Ol 0.22D-Ol 0.57D-02 O.14D-02 0.36D-03 0.9lD-04
0.63D-02 O.3OD-Ol 0.92D-02 O.25D-02 0.67D-03 O.17D-03 OA4D-04
0.16D-02 O.27D-Ol O.84D-02 O.24D-02 O.62D-03 O.16D-03 OAlD-04
O.39D-03 O.26D-Ol 0.82D-02 O.23D-02 0.62D-03 O.16D-03 OAOD-04
0.98D-04 O.26D-Ol O.82D-02 O.2:3D-02 O.6lD-03 0.16D-03 OAOD-04
O.24D-04 0.26D-Ol O.82D-02 O.23D-02 0.6lD-03 0.16D-03 OAOD-04
0.6lD-05 0.26D-Ol 0.82D-02 0.23D-02 0.6lD-03 O.16D-03 OAOD-04

Table 2c. Ildlld..fi; h = ..fi 2-m
•

If, on the other hand, the layers are absent, as in the case for y(O) = y(l) = 0, we may expect
the estimate (3.10) to be a qualitatively gross overestimation. This is confirmed by Tables
3a, 3b and 3c where we have given lIell oo , IIdlloo and Ildlld..fi respectively for this problem.

h 0.25D+OO O.12D+00 0.62D-Ol O.3lD-01 O.16D-Ol 0.78D-02
E

0.25D-Ol O.lOD+OO O.26D-Ol O.64D-02 O.16D-02 OAOD-03 O.lOD-03
O.63D-02 O.39D-Ol O.lOD-Ol O.25D-02 O.64D-03 O.16D-03 OAOD-04
O.16D-02 O.l1D-Ol 0.29D-02 O.74D-03 O.19D-03 OA7D-04 O.12D-04
O.39D-03 0.29D-02 0.77D-03 O.19D-03 OA9D-04 O.12D-04 0.30D-05
O.98D-04 O.73D-03 0.19D-03 OA9D-04 0.12D-04 O.3lD-05 0.77D-06
O.24D-04 O.18D-03 OA8D-04 O.12D-04 O.3lD-05 0.77D-06 0.19D-06
0.6lD-05 OA6D-04 O.12D-04 O.3lD-05 O.77D-06 O.19D-06 OA8D-07

Table 3a. lIell oo .
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h 0.25D+OO 0.12D+OO 0.62D-Ol 0.3lD-Ol 0.16D-0l 0.78D-02
f

0.25D-Ol O.19D+OO O.50D-Ol O.13D-Ol 0.32D-02 O.79D-03 O.20D-02
O.63D-02 OA7D-Ol O.12D-Ol O.32D-02 0.79D-03 O.20D-03 O.50D-04
O.16D-02 O.12D-Ol O.3lD-02 O.79D-03 O.20D-03 O.50D-04 O.12D-04
O.39D-03 O.29D-02 O.78D-03 O.20D-03 OA9D-04 O.12D-04 O.3lD-05
O.98D-04 O.73D-03 O.19D-03 OA9D-04 O.12D-04 O.3lD-05 O.77D-06
O.24D-04 O.18D-03 OA9D-04 O.12D-04 O.3lD-05 O.77D-06 O.19D-06
O.6lD-05 OA6D-04 O.12D-04 O.3lD-05 O.77D-06 O.19D-06 OA8D-07

Table 3b. Ildll oo •

h O.25D+OO O.12D+OO O.62D-Ol O.3lD-Ol O.16D-Ol O.78D-02
f

O.25D-Ol O.30D+OO O.16D+OO OA8D-Ol O.13D-Ol O.32D-02 O.80D-03
O.63D-02 O.15D+OO O.8lD-Ol O.24D-Ol O.63D-02 O.16D-02 OAOD-03
O.16D-02 O.74D-Ol OAOD-Ol O.12D-Ol O.3lD-02 O.80D-03 O.20D-03
O.39D-03 O.37D-Ol O.20D-Ol O.60D-02 O.16D-02 OAOD-03 O.lOD-03
O.98D-04 O.18D-Ol O.lOD-Ol O.30D-02 O.79D-03 O.20D-03 O.50D-04
O.24D-04 O.92D-02 O.5lD-02 O.15D-02 O.39D-03 O.99D-04 0.25D-04
O.6lD-05 OA6D-02 0.25D-02 0.75D-03 0.20D-03 O.50D-04 0.12D-04

Table 3c. IldlldVi.

Case (ii). Consider the equation

(3.l7a) fY" + a(x)y' + b(x)y = f(x) ,

with the homogeneous Dirichlet boundary conditions

(3.l7b) y(xo) = 0, y(xd = 0 .

We will discuss only the case when a( x) :f; 0 for x E [xo, Xl]' Without loss of generality, let
us take a(x) > 0 (the case a(x) < 0 can be treated in a similar way).
The two linearly independent solutions Yl and Y2 of the homogeneous equation corresponding
to (3.17) and satisfying the conditions Yl(XO) =0, Y2(Xt} = 0 and Yl(xd = 1, Y2(XO) = 1, can
be found to be (see Appendix for details):

(3.18)

(3.19)

where

( ) ...:... iil (x, f) - Y2 (x, f)
Y1X,f- _( ) ,

Yl Xl, f

( ) ...:... a(xo) . [ JX a(s)ds] [JX b(s) ]
Y2 X,f - a(x) exp - -f- exp + a(s) ds ,

XQ XQ

14



(3.20) ih(x, f) == exp [ - J ~~:j dS]
XQ

is a solution of the homogeneous equation (independent of Y2). For the solutions Yl and Y2
to be dichotomic we require iit (x, f) to be nondecreasing (it can easily be seen that iit > 0
for sufficiently small f). Therefore we have the following condition on a(x) and b(x) (which
is related to dichotomy of Yl and Y2)

J
x b(s)

(3.21) a(s) ds :::; 0 .
XQ

Using Yl(X,f) and Y2(X,f) the Green's function for (3.17), (3.18) can be constructed in the
form

(3.22)

Xo :::; x :::; S ,

S :::; x :::; Xl .

Here W(s) = Yl(S)Y~(s) - Y2(S)Y~(s), It can be shown from (3.18), (3.19) and (3.20) that

(3.23)

Let us now find estimates for I\YII"" (here Y is the solution of the problem (3.17)) in terms of
11/11"" and 11/111' It can easily be seen that in our case

By virtue of (3.18), (3.19), (3.20) and (3.23) it follows from (3.22), that

(3.24) I\glloo = max Ig(x,s)1 ~ Cf, C > O.
x,sE[xQ,xd

Hence we conclude from Property 2.10 that IIYII"" :::; C111/11ll C1 > O. In a similar way it can
be seen that IIylloo :::; C2 11/1100, C2 > O.

4 The turning point case

Here we will discuss some examples involving equations with turning points. We start with
the equation similar to (3.1).

Case (iii). Consider the problem

15



(4.1a) €Y" = b(x)y+ f(x),

(4.1b) y(xo) = 0, Y(Xl) = 0,

Here (4.1a) is defined in the interval (XO,Xl), containing the point x = o. Suppose, that b(x)
has a simple zero at x = 0: b(O) = O. Without loss of generality we may assume that b~) > 0
and is a twice continuously differentiable function. Then it is well-known (d. [5]) that the
homogeneous equation corresponding to (4.1) has twice continuously differentiable linearly
independent solutions Yl (x, €) and Y2( x, €) such that

(4.2a)

Yl(X, €) = f/ b(~) {AiCl~3) + R1 } ,

Y2(X,€) = f/b(~) {BiCl~3) +R2}.

Here ( is a new variable related to x by the formulae

x

~(3/2 =Jbt(s)ds for x ~ 0 ,

o
(4.2b)

o

~(_()3/2 = J(-b(s))tds for x ~ o.
x

Under natural conditions on b(x) the remainders R1 and R2 in (4.2) are of the order O(Jf)
(see [5, pp. 397-400] for details). The solutions (4.2a) (as well as any lineair combination)
are not dichotomic; this follows from the properties of the Airy functions Ai and Bi; both
are oscillatory for ( < 0 (x < 0).

Case (iv). Consider the problem

€Y" + xY' = f(x),
(4.3)

y( -1) = y(1) = 0 .

Two linearly independent solutions of the corresponding homogeneous equation can imme-.
diately be written down (we normalize them in such a way that Yl (-1) = 0, Yl (1) = 1 and
Y2 (-1) = 1, Y2 (1) = 0):

(4.4)
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where

It can easily be seen that these solutions are dichotomic (Y1 is monotonically increasing and
Y2 is monotonically decreasing).
We obtain

(4.5)
max Iyj (x) I 1

6-1 = max x = E = 0 (-) .
j=1,2 max IYj(x)1 yf

x

The Green's function for problem (4.3) can be constructed in the form, similar to (3.22):

(4.6)

-1 ~ x ~ s ,

.2

here W(S,f) = -E· e-2<. Hence, the solution of (4.3) can be expressed as:

1

(4.7) Y(X,f) = J9(X,S/~s) ds .
-1

From (4.7) we have the estimate

(4.8) IlylL>o ~ ~ 1191100 Ilfll l

From (4.6) we see

Let us estimate the first term in the sum above (the second term can be estimated in a similar
manner). From (4.4) and expression for W( s) we have for s ~ 0 (a similar expression holds
for s ~ 0)

1 x

(4.10) 11911100 =
.2 J ~ J ~

max Ee2'£ e- 2< d~ e-2< d~ =
x,sE[O,1]

s -1

1
.2

J ~= nlax e 2< e-2< d~ =
sE[O,1]

s

17



= max f
sE[O,I]

C > o.

Here we made a change of variable .,,2 = e:;/ .
Taking into account the analogous estimate for Ilg21100' we can substitute (4.9) into (4.8) to
get

(4.11)

The estimate above is attainable, for example, for f(x) = 6(x) (6(x) is a Dirac 6-function).
Normally, the estimate for Ilylloo through Ilfll oo involves a conditioning constant that is smaller
in comparision to the one appearing in the estimate through IIf11 1 • In the case of problem
(4.3) we have

(4.12)

1

Ilylloo::; ~ max J Ig(x,s)lds·llfll oo •
xE[-I,I]

-1

The upper bound for a conditioning constant in (4.12) can be easily obtained using (4.10):

(4.13)

1 1

max J Ig(x,s)lds::; J 1191100 ds::; cy'f,
xE[-I,I]

-1 -1

and therefore

(4.14)
c

Ilylloo ::; vIE Ilfll oo •

It is interesting to see how the estimate (4.11) pertains to discretisation errors. Given the
nature of the problem it is only realistic to use non equispaced grids when (standard) finite
differences are being used. Let, defining hi := Xi+! - Xi,

(4.15a)

(4.15b)

2

hi +hi-l

Then we have a local discretization error

( ) d· f(/ h ) [ f "'( ) xi 1/ . )] (h 2 h h h2 ) [f 1/1/( ) xi "'( )]4.16 i = 3 ~i - i-I 3 Y Xi + 2 Y (Xi + i - i i-I + i-I 12 Y Xi +"6 Y Xi

Example 3. Consider the BVP
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1 21€y" + xy' = -- e-X
f,

Vif
y( -1) = y(l) = 0 .

For small €, the right hand-side of the equation approximates a 8 function, centered at O. If
we use a local error distributed mesh, with errors of ~ 0.05, we may expect results accurate
in approximately 2 digits. (N.B. this equidistribution was obtained through using e-x2 If as
a distribution function). The results for various € are given in Table 4.

€ Ilylll Ilylloo lIylloo/Vi

0.50D-01 O.71D+OO 0.13D+01 0.29D+00
0.25D-01 0.72D+OO O.18D+01 O.29D+OO
O.13D-01 O.76D+OO O.25D+01 0.28D+OO
0.63D-02 O.71D+OO O.36D+01 0.28D+00
0.31D-02 0.77D+OO 0.51D+01 0.28D+OO
0.16D-02 0.79D+00 O.71D+01 0.28D+OO
0.78D-03 0.78D+00 0.lOD+02 0.28D+OO

Table 4.

The order of conditioning constant in (4.13) is the same as the one in (4.11). The estimate
(4.14) is very rough, though. It can be shown that the more accurate estimate is

(4.17) II ylloo :S C lIn €I Ilfll oo .

This estimate is attainable, for example, for f(x) = -1, so it cannot be improved.
It follows from (4.17) that the conditioning constant in the estimate of Ilylloo through IIfll oo
is large for small L

Example 4. If we take the BVP

€y" + xy' = -1 ,

x( -1) = x( 1) = 0 ,

we obtain a confirmation of the bound (4.17), see Table 5 (where we have use a locally
equidistributed error of ~ 0.05 in order to have at least two significant digits).
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f Ilylloo Ilylloo/iln fl

0.10D+00 0.10D+Ol Oo43D+00
0.50D-Ol 0.12D+Ol 0.39D+00
0.25D-Ol 0.14D+Ol 0.38D+00
0.13D-Ol· O.17D+Ol 0.38D+00
0.63D-02 0.19D+Ol 0.38D+00
0.31D-02 0.22D+Ol 0.39D+OO
0.16D-02 0.26D+Ol 0.39D+OO
0.78D-03 0.29D+Ol Oo4OD+OO

Table 5.

Appendix 1

Here we show how to obtain the formulae (3.18), (3.19), (3.20). The homogeneous equation
corresponding to (3.17) will be

(A.l)
/I a( x ) / b( x)

y +- y +- y=O.
f f

We seek the two lineaTly independent solutions of (A.l) in the form (see [5]:

(A.2)

x

y(x) = exp[- ~ J a(s)ds]w(x).
2f

Xo

After the substitution into (A.l) we obtain the following equation for w:

(A.3) /I l[a2(x) a'ex) b )]w - - -- +-- - (.1: W = O.
f 4f 2

We assume a(x) =# 0, la'(x)1 < 00, b(x) < 00. For small f the dominant term in the
coefficient by w is a2(x)j4f2 . This dominant term is always positive if a(x) # 0 and therefore
the whole coefficient by w is positive for sufficiently small f. For the following we can fix the
sign of a(x) without loss of generality. Suppose a(x) > O. We now can rewrite (A.3) in a
form similar to (3.3):

(Ao4)

where

/I hex, f)
w = --2- W,

f

a2(x) a'ex)
h(x,f) = -4- +f -2- - fb(x) > °

for small f. But this means that we can write two linearly independent solutions WI, w2 of
(Ao4) using the formulae, similar to (304). Substituting the WI and W2 into (A.2) and taking
into account the asymptotics for h!
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ht( )= a(x)[ ~ (2a'(x) _ 4b(x)) O( 2)] =
X,f 2 1+ 2 f a2 (x) a2(x) + f

we can write the formulae for ih and ih (in normalized form):

x

a(xo) [ J(~ a'(s) _ b(s))d ] -
( ) exp ( ) () s +...-ax 2as as

Xo

x

exp [- J ~~:~ dS] (1 +...) ,
Xo

_ ( ) a(xo) [Y2 X, f = -.- exp 
a(x) J

x a(s) ] [ JX b(s) ]
-f- ds exp a(s) ds (1 +...).

Xo Xo

We need to find the linearly independent solutions Yl and Y2 of (A.l) satisfying the conditions
Yl(XO) = 0, Yl(xd = 1 and Y2(XO) = 1, Y2(xd = O. Naturally, Y2 = fh +.,. and Yl is given
by the linear combination (3.18) of fh and fh-
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