EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Function point analysis : evaluation of a software cost
estimation model

Citation for published version (APA):
Heemstra, F. J., & Kusters, R. J. (1991). Function point analysis : evaluation of a software cost estimation
model. European Journal of Information Systems, 1(4), 229-237.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5817c003-2cfa-45c7-b686-b83017fbb80b

Function point analysis: evaluation of a software cost

estimation model

F. 1. HEEMSTRA and R. J. KUSTERS

University of Technology, Department of Industrial Engineering and Management Science, Section Management Information
Systems and Automation, Research Group Estimation and Control of Software Development, Post Box 513, 5600 MB

Eindhoven, The Netherlands

The menits of function point analysis are discussed. Function point analysis was chosen because 1(15 one
of the most widely used aids for software cost estimation. In the analysis we use data from a large survey
of Dutch organizations, from an experiment on the effectiveness of software cost estimation models and
from a field study aimed at the adjustment part of the FPA model. Conclusions show that it is indeed widely
used and that it performs reasonably well as a product sizer, but that the adjustment part of the mode

is less useful.

Int{roduction

In this paper we present some empirical data on the
usefuiness of function point analysis (FPA), 2 method
used for estimating and controlling software projects.

An extensive investigation by the University of
Anzona gives figures for overruns (Phan ef al, 1988).
Table 1 shows some results of this research.

Table 1 Overruns of costs and duration {Phan ef of, 1988)_

Degree of overruns Percentage of respondents

(N =195
Overruns’ cost Overruns’ duration
(%) (%)
Always or often 410 329
Sometimes 425 49.6
Seldom or never 16.5 17.5
100.0 100.0

In other pubiications, problems with software cost
estimation and control (SCE) are indicated with figures
from everyday practice (Jenkins ef a/, 1984; Thambain
& Wilemon, 1986; van Genuchten & Fierst van Wijnand-
sbergen, 1986; van Lierop et a/, 1991). It is alarming that
it is so difficult for organizations to control the develop-
ment of software.

Given these problems, it is interesting to look at
the methods provided to alleviate them. Among these
methods, SCE models and related tools have often been

Received. 4 April 1991 Accepted. 8 October 1991
© 1991 Operational Research Society Ltd

Eur J Inf Systs. Vol 1, No 4, pp 229-237, 1991

discussed in the literature. We will focus on one of the

most popular of these tools, namely FPA. On the basis

of empirical data we attempt to answer the following
questions:

* Is FPA actually used in practice?

* How is FPA used in practice {by whom, in what stage
of software development, what kind of applications,
and so on)? o

» How good are the estimates made with FPA?

* Are models based on function points better then
models based on lines of code?

o How useful are the FPA adjustment characteristics?

The data comprises:

* A comprehensive survey of software cost estimation
in Dutch organizations.

* An experiment regarding the use of software cost
estimation models,

* A field study of the applicability of the FPA cost
drivers.

We start the next section with a general introduction
to SCE models and more specifically to FPA. The rest
of the paper deals with the evaluation of FPA. In three
subsequent sections the three empirical studies are
described. In the first of these the results of a survey on
software cost estimation are presented and the results
pertaining to FPA are highlighted. Next, in the second
of these we discuss the usefulness of function points as
sizers. In this discussion, use is made of the results of a
field study on the effectiveness of software cost estima-
tion models. In the third of these we look at one specific,
and from our perspective weak, aspect of the FPA model
using results from the field study. The paper ends with
conclusions and recommendations.

229

F J HEEMSTRA and R.J KUSTERS

Software cost estimation models and
function point analysis

Software cost estimation models

In the literature one can find a large number of methods
for determining expected software development costs.
Most of them are a combination of the following
methods that were first described by Boehm (1981):
estimates made by an expert,

estimates based on reasoning by analogy,

estimates based on price-to-win,

estimates based on available capacity,

estimates based on the use of parametric models.
Only methods 1, 2 and 5 provide estimates for the devel-
opment costs. We will concentrate on the last method.
Most software cost estimation models used nowadays
are two-stage models (Heemstra, 1989). The first stage is
a sizer and the second provides a productivity adjust-
ment factor. '

In the first stage, in one way or another, an estimate
regarding the size of the product to be developed is
obtained. In practice, several sizing techniques are used.
The most well-known sizers currently are function point
analysis (Albrecht & Gaffney, 1983) and lines of code
{(Boehm, 1981). But other sizing techniques such as
DeMarco’s function weight method (DeMarco, 1982,
1984) and SEER SSM (Theta Analysis & Systems, 1990)
are used. The result of a sizing model is the size/volume
of the software to be developed, expressed in the
number of lines of source code, statements or function
points. '

In the second stage it is estimated how much time and
effort it will cost to develop the software of the estimated
size. First of ali, the estimate of the size is converted
into an estimate in nominal man-months of effort. Since
this nominal effort takes no advantage of knowledge
concerning the specific characteristics of the software
product, the way the software product will or can be
developed, and the production means, a number of cost-
influencing factors (cost drivers) are added to the model,
The effect of these cost drivers must be estimated. This
effect is often called a productivity adjustment factor,
Application of this cotrection factor to the nominal

boB W

estimation of effort provides a translation into a more
realistic estimate.

Some models, like FPA, are focused more on the
sizing stage. Others, like the well-known COCOMO
model (Boehm, 1981) on the productivity stage and
some models, like Before You Leap (Gordon Group,
1986/1990) cover both stages. The two stages in SCE
models are presented in Figure 1.

Function point analysis

Function point analysis (FPA) was developed by
Albrecht (1979), and made widely available through
user groups (such as Guide and Share). Albrecht was
looking for a method to measure productivity in soft-
ware development. For that purpose he developed FPA
as an alternative to the number of lines of code. It is
currently one of the most widely used models for soft-
ware size estimation. The model has been refined since
its origin (Rudolph, 1983; Jones, 1986; Symons, 1988).
The principle of FPA is simple and is based on the
number of functions the software has to fulfil. These
functions are related to the types of data the software
uses and generates. Within FPA the software is charac-
terised by the following five functions:

1. the external input type,

2. the external output type,

3. the external inguiry type,

4. the logical internal file type,

5. the external interface file type.

For each of these five types the number of simple,
average and complex occurrences that are expected in
the software is estimated. By welghtmg each number
with an appropriate weight and adding them, a number
is obtained, the nominal number or the unadjusted
number of function points. This indication of nominal
size is then adjusted for the influence of the information
processing complexity giving the adjusted number of
function points. For example, a single function point
in a system with a lot of data communication, highly
complex processing and so on is harder to realise and
costs more effort and time than a function point in a
systéem without these demands. Instead of one function

SCE models

productivity stage

sizer stage

based on source
lines of code

not based on source lines of code

based on
function points

based on functional
primitives

and so on

Figure ¥ The two stages of SCE models.

230

FUNCTION POINT ANALYSIS. EVALUATION OF A SOFTWARE COST ESTIMATION MODEL

point the characteristics of the software and the software function points. This number must be translated into an
environment demand an adjustment to, for example, 1.2 estimation of effort and duration. This translation
function points. however is not a part of FPA. An SCE model with a

The final result of FPA 15 an estimate of the size productivity stage is required to carry out this last step.
of the software expressed in the number of adjusted The principle of FPA is presented in Figures 2 and 3.

FUNCTION POINT ANALYSIS not FPA part
Tol/from application boundary
I
users = inputs - logical 14 * general Characteristics.
= outputs — internal application characteristics’
= inguires — files product
other process
application = interfaces means
personnel|
user
UNADJUSTED FUNCTION POQINTS * PROCESSING COMPLEXITY * COST DRIVERS
ADJUSTMENT
1 T L]
information processing size adstment for technical adjustment for non-
complexity technical complexity
Figure 2 Global overview of FPA,
FUNCTION COUNT " max range. factor *2 —*
Type Description level of information processing function total
D -
simple average complex
- i}
IT External input _*3=_ _* =__ _r6=__ max
QT External cutput _r4=__ _* =__ _t ?=_. range
FT Logical internal file L= _*10=__ __*1b=__ factor
El External interface file *B=_ Y 7=_ _*10=__ 25
QT External inquiry __"3=_ _* =_ _* B=__ [
FC Total unadjusted function points
GENERAL INFORMATION PROCESSING CHARACTERISTICS
Characteristics ol Characteristics [al}
€1 Data communications — C8 On-ine update -
C2 Distributed functions — €2 Complex processing -
C3 Performance - €10 Re-usability -
C4 Heavily used configuration — C11 Installation ease —
C5 Transaction rate — C12 Operational ease -
C& On-line data entry - C13 Multiple sites -
C7 End-user efficiency —- C14 Facilitate change
Total degree of influence

Di values

Not present or no influence =0 Average influence =3
Insignificant influence =1 Significant influence =4
Moderate influence =2 Strong influence, throughout = 5§
FC tfunction count} = total unadjusted function points
PC {process complexity) = total degree of influence

PCA (process complexity adjustment} = 065 + 001 *PC

FP {function peint measure} = FC*PCA

Figure 3 Overview of function point analysis,

231

F 1 HEEMSTRA and R.J KUSTERS

Figure 2 gives a global overview while Figure 3 goes into
more detail.

Function points are conceptually different from lines
of code because they attempt to mieasure software
function rather than software product size. For certain
applications, particularly in information systems and
data processing, function points are in fact used as
a size measure. Many existing commercial SCE models
have as sizing techniques FPA or FPA lookalikes. We
mention here the models SPQR/Checkmark (Jones,
1986), Before You Leap (Gordon Group, 1986/1990),
Asset-R (Reifer, 1987), Estimacs (Rubin, 1985), BIS
(BIS/Estimator, 1987), Estimate/1 (Arthur Anderson,
1987). There are also function point extensions for
real-time systems (IITR, 1987; Reifer, 1989). However,
these are seldom used.

On the use of function point analysis

Estimation methods, models and FPA

To determine the actual use of FPA n practice, data
were obtained in a survey (Siskens et af, 1989). This
survey, carried out by the Eindhoven University of Tech-
nology, gives an overview of the present state of the art
of the estimation and control of software development
projects in Dutch organizations. The most interesting
conclusions are:

s 35% of the participating organizations do not make
an estimate of software development costs and time;

* 50% of the responding organizations record no data
on a continuing project;

* 57% do not use cost-accounting;

e 80% of the projects executed by the participating
organizations have overruns of budgets and duration;

¢ the mean overruns of budgets and duration are
50%;

* §2% of the organizations that make an estimate, base
their estimations on intuition and experience; only
16% use formalised estimation methods like cost-
estimation models.

In Table 2 an overview 15 given of the frequency with
which current SCE methods are used.

Table 2 Use of software cost estimation methods.

Method Use Number
%)
Expert judgement 255 94
Analogy method 60 8 226
Capacity problem 20.8 e
Price-to-win 89 32
Parametric models 13.7 51

Note. an orgamization can use more than one method N = 388

The figures show that most organizations make use of
information from past projects in some form or another.

232

This mostly works on an informal basis, because only
50% of the participating organizations record data
on completed projecis. The information will be stored
in the memories of the estimators. Estimates based
on expert judgement and the -capacity method are
popular.

Looking more in detail at the use of SCE models, it
can be seen that FPA is by far the most popular model,
51 organizations use SCE models and 45 of these use
FPA (see Table 3). This result is not surprising because
82% of the responding organizations mainly develop
business applications and FPA has been developed for
estimating this kind of application,

Table 3 The use of SCE models. The total number of
organizations that answered this question was 51. Several
answers were allowed.

Model Number o
Function point analysis 45 52
Other models 36 42
COCOMO 4 5
ESTIMACS 4 5
Putnam/SLIM 3 4
PRICE-S 2 2
SPQR 0 o

The overview shows that the category of Other models
is large. In analysing the answers it was not possibie to
find out if these models were in-house-developed or
commercially available models. However, we have a
strong impression that most of thesec models are in-
house-developed, because many organizations gave an
answer like ‘an adapted version of FPA’ or ‘something
like FPA’.

It is interesting to see if FPA is used in combina-
tion with other estimation methods. Table 4 gives this
overview.

From the figures shown in Table 4 it can be seen that
there is a difference in the frequency disiribution of the
use of estimation methods between FPA users and non-
FPA users. Among FPA users the expert judgement
method is less frequent and the analogy method is more
frequently used. The relative use of (other) estimation
meoedels by FPA users is higher than by non-FPA users.
These figures are not surprising. The analogy method
can only be used on the basis of data from completed
projects. This kind of data is a condition for a justified
use of FPA. For that reason the step from the use of
FPA to using the analogy method is a small one. This
may be an explanation of the high percentage (85.7%).
The low use of the expert judgement in combination
with FPA can be explained by the fact that the judge-
ment of the expert is already involved when using FPA,
There are several explanations for the high percentage
(57.1%) of respondents using FPA in combination with
other models. A positive explanation would be that

FUNCTION POINT ANALYSIS. EVALUATION OF A SOFTWARE COST ESTIMATIHON MODLI

Table 4 FPA in combination with other estimation methods (N = 45).

FPA used in

Anothér SCE model used

Frequency Frequency
combination with (%) in combination with (%)
Expert judgement 11.9 Expert judgement 25.5
Analogy method 85.7 Analogy method 60.8
Other models 57.1 Other models 20.8
Price to win 7.1 Price to win 2.9
Capacity problem 238 Capacity problem 13.7

organizations that use FPA are model-minded and the
step to using other models is made easy. There are also
certain benefits in checking one model against another
and different stages in the life ¢ycle may benefit from
the use of different models. A more pessimistic outiook
is that FPA users have little confidence in the results of
estimates made by FPA, and for that reason are looking
to other models as well. '

Characterisation of FPA users

Analyzing the resuits of the survey in more detail, 1t can
be seen that 53% of the FPA users are organizations with
more than 500 employees and 56% of these users can be
found in organizations with more than 20 empioyees in
the EDP department. Furthermore, FPA in most cases
(48%) is used to estimate small projects (less than 12
man-months - see Table 5).

Takle 5 On the use of FPA

Organization size EDP department Size of project
(number of size (number of {man-months)
employees) employees)

Number % Number Do Size - %
20-49 22 <2 2.2 < 12 48 1
50-99 111 2-9 311 12-48 = 259

100-199 15.6 10-19 11.1 49-200 14 8

200499 17.8 > 20 55.6 > 200 111

> 500 53.3

Almost all FPA users record data on past projects
(96%). The figures for cost accounting (73%) are less
good, Compared with the overall figures, presented in
the next sectiom, it is clear that the figures of the FPA
users are far better (see Table 6).

Table 6 Recording and cost accounting by FPA users.

FPA users Overall
{ %) (%}
Recording 956 50
Cost accounting 73 43

FPA and overruns of budgets and duration

One of the main items in the field study were the over-
runs of budgets and duration experienced by the respon-
dents. Table 7 gives an overview of the budget overruns
of FPA users and non-FPA users.

These figures refer only to organizations that make
estimates of development projects, record data on past
projects and carry out cost accounting. From the 597
organizations that participated in the survey, only
160 satisfied these three demands. 32 of these 160
organizations were FPA users and 128 were non-FPA
users. Remember that overall there were 45 FPA users;
this means that only 72% record data on completed
projects and do cost accounting. To give a more detailed
impression of the overruns, the figures have been
split up in overruns for the categories small projects

Table 7 Cost overruns of budgets for the FPA users and the non-FPA users.

Overruns Small projects Medium-sized projects Large projects Very large projects
(%) FPA (%) Other (%) FPA (%) Other (%) FPA (%) Other (%) FPA (%) Other (%)

0 25.0 32.8 - 15.9 56 11.3 9.5 19.0
< 10 41.7 46.7 43.5 355 22.1 387 238 286
10-49 333 180 56.5 41.1 61.1 41.9 42.9 28.6
50100 - 2.5 - 47 5.6 32 23 8 i4.3
> 100 - - - 28 5.6 4.8 - 9.5
Total 100 100 100 100 100 100 100 160
Number of orgamizations 24 122 23 107 18 62 21 21

233

F 3 HEEMSTRA and R J KUSTERS

(< 12 man-months), medium-sized projects (12-48
man-months), large projects (49-200 man-months) and
very large projects (> 200 man-months). The 128 non-
FPA users are indicated by ‘other’ in the table. For each
category the number of organizations is given. For
example, there are 24 organizations that use FPA to
estimate small-sized projects. 25% of these 24 organiza-
tions have no overruns of budgets, 41.7% have overruns
of less than 10%, and so on. Overruns of more than 50%
do not exist in this category. Analyzing these resuits, the
next hypothesis has been tested: organizations that use
FPA have fewer overruns than organizations that do not
use FPA., :

The. Wilcoxon rank sum W test was used to test
this hypothesis. After testing, this hypothesis had to
be rejected. A detailed analysis showed a Significant
negative relationship between the use of FPA and over-
runs. This means that FPA users have higher overruns of
budgets than do non-FPA users. The detailed analysis
also showed that this relationship is only valid for large
projects. A possible explanation for this disappointing
result is given by de Haas (1988) and Rabbers (1988).
They point out that the implementation and use of FPA
ig not easy, Generally it take vears before FPA can be
successfully implemented in an organization. According
to de Haas and Rabbers, many FPA users do not pay
sufficient attention to this implementation problem. As
a result, FPA is often not used carefully.

FPA and the method of cost estimation

In the survey much attention was paid to the way cost

estimation was done in an organization. Questions were

formulated such as:

(1) How many iimes is an estimation made during a
software development project?

(2) When during development is an estimation made for
the first time?

(3) In what detail is an estimation made (split up into

" phases, activities)?

(4) Who makes the estimate?

The answers to .questions (1) and (2) are given in
Table 8, to question (3) in Table 9 and to question (4) in
Table 10. As can be seen from Table 8, the majority of
FPA users make an estimate only once during a develop-
ment project. This is not surprising because FPA is used

Table 8 Frequency of estimation, and the point at which an
estimate 15 made for the first time.

Frequency of % First point of estimate %
estimation

Once 45.6 After the first global description 59.0

Twice 22.0 After specification phase 30.1

3-5 times 10.4 After design phase 10.9

> 5 times 22.0

mainiy for small projects, as mentioned before. Table 8
also shows that FPA is mainly used in the early stages of
software development. This is not surprising either,
because FPA claims to be applicable early in the life
cycle.

The only rematk about Table 9 is that FPA does not
actively support a detailed estimate. We cannot obtain a
distribution of effori for phases and activities by using
FPA.

Table 9 Detail of estimate.

Level of detail o
Complete project 281
Per phase of project 32.9
‘Per activity per phase 390

234

Table 10 shows that only a few organizations using
FPA have a independent department or person.respon-
sible for cost estimation. We do not believe there:should
be such a department/person. It is not wise to-split up the
responsibility for making an estimate on the one hand,
and for adhering to it when doing the project on the
other hand. To guarantee a high level of commitment,
the developers themselves have to be involved in ‘the
estimation process.

Table 10 Those involved in making an estimate.

Function Frequency
(%)
Controller/management 28.1
Development team 59.4
Project estimator 9.4
Project management 93.8
Customer 438

Other 9.4

FPA users and thew problems

The FPA users were asked to indicate the main problems
encountered in using FPA; the resuits are shown in
Table 11.

Table 11 Problems 1n using FPA

Problem Frequency

(%)

Subjectivity in determining input 28

Lack of uniformity of definitions 9

Problems with calibration of FPA 13

Problems with sizing 26
Insufficient insight in project to determine

model parameters 20

Other 4

Two points are particularly interesting 1n these replies.
The first is that FPA users need support in the definition

FUNCTION POINT ANALYSIS. EVALUATION OF A SOFTWARE COST ESTIMATION MODEL

and interpretation of terms used within FPA. Subjec-
tivity unmistakably plays an important role in the use of
FPA Experienced users have solved this lack of objec-
tivity by using rules of thumb in counting and weighting
the function points. The second is the high percentage of
FPA users who have problems with sizirig the software.
This is remarkable because FPA has been developed as
a means to estimate software size and is normally con-
sidered to be a strength of the model.

FPA: usefulness of the sizer

In the previous section, some results concermng the use
of FPA in Dutch organizations were presented. From
this it can be seen that it is by far the most widely used
model and thus warrants closer examination. It can also
be seen that the resulis obtained by organizations using
the model were, if anything, even worse then those
obtained by other organizations. This shows that the
use of a model by itself will not necessarily lead to
improvements. In this section, we take a closer look at
the foundation of FPA, namely its principle of expres-
sing the size of a product in function points. For this, we
will use the results of an experiment performed last year
in a large multi-national corporation.

The object of this study was to obtain an evaluation
of several software cost estimation models. In an experi-
mental setting we asked fourteen experienced project
managers to estimate effort and duration of a project.
For this, data on a real project were used. The managers
were asked to:
¢ make a first estimate,

o make an estimate using an automated version of a

model, ' .

o to do this again, using another model,
e to make a finai estimate, using all information
obtained up till then. '

The results of this experiment are presented in Table
12. A more detailed description of this experiment can be
found in Kusters et af (1990).

Before starting this experiment a selection of models
was made. The iniention was to use only the most pro-
mising models, since this was an expensive experiment
and we wished to be as efficient as possible. Several selec-
tion criteria were used, of which one was the demand

Table 12 Summary of experimental resuits

that KLOC (thousands of lines of code) was not to be
used as a sizing measure. As mentioned before, some
models use this measure for software size, but this is
problematic. It is not easy to estimate the size of a pro-
duct in lines of code in a relatively early phase in the
development. Van Viiet (1987) draws a parallel to the
conception of a novel. How can an author estimate
the number of pages of a new book? FPA seems to be
a better alternative for the sizing problem. Referring to
the author of the book, he surely has some ideas about
the number of characters, the location and the time and
scope of the book. FPA is based on that same idea.
Instead of estimating the number of lines of code, an
indication of functional aspects of the software to be
developed must be given.

In the study we assumed that lines of code could
not possibly give a proper indication as to the size of
the product. In order to test this assumption the project
leaders were asked to estimate the number of lines of
code needed for the system At the same time, since both
models used in the experiment support FPA, estimations
of the number of functions were obtained. This gives the
opportunity to compare both sizers. Direct comparison
is impossibie, since the measuring scales are not coni-
patible, so we decided to use the coefficient of variation
to see which sizer is the most consistent. The results were
as follows:

Coefficient of variation
» using lines of code 0.59
¢ using FPA 0.23

On the basis of this material 1t is clear that lines of
code as an estimator for size in an early stage of systems
development is outperformed by a readily available
alternative, namely function points. This conclusion is
confirmed by the fact that only seven out of the fourteen
project managers thought themselves capable of making
an estimate of size in lines of code. Also, during a dis-
cussion which concluded the expenment, there was a
consensus on this point.

We think that this is a sufficient indication for the
usefulness of function points as a means for estimating
the size of a system. In the next section we will have a
closer look at the technological complexity adjustment
part of the FPA model.

Effort fman-months)

First Estimate using Estimate using Final Actual
estimate Model A Model B estimate
Average ' 28.4 27.7 48.5 27.7 8
Standard deviation 183 14.0 139 12.8

Model A was Before You Leap (Gordon Group, 1986/1990), Model B was Estimacs (Computer Associates, 1986)

235

F J HEEMSTRA and R.J KUSTERS

FPA: usefulness of the cost driver part
of FPA

The cost driver part of FPA contains fourteen char-
acteristics concerning the information processing com-
plexity of the software. Each factor is capable of
changing the nominal size estimation by 5%. The total
effect of the adjustment will cause the final estimate to
end up between 0.65 and 1.35 of the nominal size.

In order to test the usefulness of this part of the model
we took a closer look at the use of FPA in one large
organization. The organization is the national sales
organization of a manufacturer of computer hardware.
It also provides a range of software services for its
clients. In the organization the use of FPA has been
mandatory for several years. Management even went as
far as- making FPA a strategic product for the organiza-
tion. The organization was one of the first to use FPA
in the Netherlands, so providing us with the best possible
source of information.

Within this organization it was seen that some project
managers obtained better results with FPA than others.
It was the feeling of management that these good results
were caused by some people having a better understand-
ing of the adjustment part of FPA. It was therefore the
object of the study to capture the knowledge of one of
the better FPA users in an expert system, thus providing
this knowledge to all users.

We started by looking at nine major projects to see the
way in which FPA had been used, paying specific atten-
tion to the cost driver part. To our surprise, we noted
that for one-third of the projects the cost driver part of
FPA had not been completed. For the other projects the
average value of the correction factor was 1.01. This is
suspiciously close to 1, i.e. no effect.

We then interviewed nine project managers, all FPA
users, in order to find out what lay behind this. Their
first reaction was that they considered the adjustment
characteristics to be ‘unimportant’. When following this
up it appeared that they thought the definition of the
characteristics was insufficiently accurate. Furthermore
it was their opinion that a number of characteristics were
outdated.

A series of in-depth interviews with the acknowledged
FPA expert, a project manager with many years’ FPA
experience, confirmed this view, This expert did not use
the FPA adjustment part either. Instead he calculated
some kind of productivity factor. In the remainder of the
study a small expert system was built, providing partial
support in determining this factor (Bruns, 1989).

From this field study it may be deduced that the
usefulness of the cost driver part of FPA is relatively
low. We believe this is partly due to the way the effect
of the cost drivers is passed on to the nominal estimate.
If we look at the COCOMO factor ‘complexity’, which

236

15 defined in a way similar to the FPA factor ‘complex
processing’, we see that the effect of the COCOMO
factor by itself is just as large as the effect of all FPA
factors combined. And it must be admitted that the
COCOMO supposition is the more realistic one.

Another problem, which was already noted in the
interviews, is that the FPA adjustment does i_'n(_)t cover the
most important technological complexity characteristics
and that some characteristics are trivial; for instance, the
characteristic ‘online data entry’. It is difficult nowadays
to find information systems where online data entry is
not a regular feature.

Conclusions

In this paper we discussed the merits of the FPA model,
FPA was chosen because it is one of the most widely used
aids for SCE. In the discussion we used data from a
large survey of Dutch organizations, an experiment on
the effectiveness of software cost estimation models and
a field study aimed at the adjustment part of the FPA
model.

The survey confirmed that FPA is widely used, at least
ini the Netherlands. This in itself is a development that
is to be recommended. The standard use of such a tool
should provide organizations with information that can
be used to learn from their previous experience in a
more methodical way. However, using the tool by stiself
will not solve ali the problems in this area. This can be
illustrated by the relatively poor results obtained by
organizations using the model. They scored worse than
organizations that did not use the model.

However from the experiment it could be seen that
FPA performed quite well as a sizing measure. It cer-
tainly outperformed lines of code as an estimator within
the setting of our experiment. It remains to be shown
how the two metrics compare in a setting where a more
methodical approach towards estimating lines of code
(e.g. Delphi) is taken. However these results confirm
that FPA as a sizing measure is more acceptable for the
estimators. This indicates that they will be more likely to
use it. The common use of sizing and estimating méethods
should advance the state of the art within an organiza-
tion. In such a situation FPA can play the role of a
common ‘language’, allowing the various parties to
communicate on a lower level of abstraction, namely the
FPA inputs.

Finally, the field study showed that the adjustment
part of the model is less than satisfactory. Experienced
users showed no faith whatsoever in the adjustment
characteristics. A subseguent analysis of the characteris-
tics confirmed this view. However it could be questioned
whether any model is capable of performing well in this
respect. In our experience there are more arguments
against than for the idea of a small set of generally

FUNCTION POINT ANALYSIS. EVALUATION OF A SOFTWARE COST ESTIMATION MODEL

applicable cost drivers. This shows that the use of a
model will always have to be approached with some care.

A model is not a machine where questions are entered at
one side and correct answers appear at the other end.

References

ALBRECHT A J (1979) Measuring application development produc-
tivity In Proc Joint SHARE/GUIDE/IBM Application Develop-
ment Spmposium, Monterey, October 1979,

ALBRECHT A J and Garrney J E (1983) Software function, source
lines of code, and development effort prediction: a software science
validation. IEEE Transactions on Software Engineering SEX6).

ARTHUR ANDERsON (1987) Estimate/I, documentation Method/1:
attomated project estimating aid

BIS/EsTiMATOR (1987) User Manual version 5 0. BIS Applied
Systems

BoEHM B'W (1981} Software Engineering Econontcs. Prentice-Hall,
Englewood Cliffs, New Jersey

Bruns B (1989} Begroten van automatiseringsprojecten Master
Thesis, Faculty of Informatics, University of Technology,
Eindhoven

COMPUTER ASSOCIATES (1986) CA-Estimacs User Guide, Release 5 0.

DeMarco T (1982) Controlling Software Projects Yourdon, New
York

DeMarco T {1984) An aigorithm for sizing software products Per-
Jormance Evaluation Review 12, 13-22.

GENUCHTEN VAN M and FIERST vaN WUNANDSBERGEN M (1989) An
empirical study on the control of software development In Pro-
ceedings of the International Conference on Organisation and
Information Systems, Bled, September 1989, pp 705-718

Gorbon Group (1986/1990) Before You Leap, User’s Guide (1986)
Before You Leap Mk, {f, User’s Guide (1990}

Haas B M G oe (1988) Function point analysis in short (i Dutch). In
Proceedings of the Conference on FPA in Movement: the Practice
of FPA in the Netherlands and the USA, NG1-SIC, Schevemingen,
21-22 November 1988, pp 13-22

HeemsTRA F J (1989) How Expensive is Software? Estimation and
Control of Software Development (in Dutch) Kluwer, Deventer,
The Netherlands

[ITR (1987) A Descriptive Evaluation of Software Sizing Models Pre-
pared for headquarters USAF/Airforce Cost Center, Washington,
DC 20330-5018, by IITR, 4550 Forbes Boulevard, Suite 300,
Landham, MD 20706-4324

JEnkins A M, Naumann J D and WeETHERBE] C (1984) Empirical
investigations of systems development practices and results fnfor-
mation & Management 7

Jones C {1986) Programming Productivity McGraw-Hill, New York

KusTteErs R, HEEMSTRA F J and vaN GENUCHTEN M {1990} Are soft.
ware cost estimation models accurate? fnformation and Software
Technology 32(4), 187-190

Lieror van FL G, Vowkers RS A, van GenucHTeNn M and
Heemstra F 1 (1991) Comrolling software projects: is it -better
to have one project in control than ten in option? {in Duich)
Informatie 33(3), 198-200

PHAN D, Vocer D and NunaMaker J (1988) The search for perfect
project management. Compuferworld September

RaBBERS R K (1988) Introducing FPA at PTT-Telecom (in Dutch) In
Proceedings of the Conference on FPA in Mavement: the Practice
of FPA in the Netherlands and the USA, NGI-SIC, Scheveningen,
21-22 November 1988, pp 319-331

REIFER [§ (1987) Softcost presentation 1o the third CGCOMO Users’
Group Meeting, Pittsburgh, Pennsylvania, November

RetfEr D J (1989) Asser-R Manual Reifer Consultants, 25550
Hawthorne Boulevard, Suite 208, Torrance, California

RusiN H A (1985) A comparison of cost estimation toels In Proceed-
ings of the 8th International Conference on Software Engineering,
1EEE,

Ruporpe E E (1983) Function Poimt Analyses, Cookbook Private
publication, 371983

Siskens W J A M, HeemsTrA FJ and STELT H van nER (1989) Cost
control of software projects; an empitical nvestigation (in Dutch)}
Informatie 31(1), 34-43

Symons R C (1988) Function pownts analysis. difficulties and improve-
ments [EEE Transactions on Software Engineering January

THAMBAIN H J and WiLemon D L ¢1986) Criteria for conirolling
projects according to plan Project Management Journal June

THETA ANALYSIS & SysTEMS LTD (1990) SEER Manual.

V0LIET 1 C van (1987) Software Engineering Stenfert Kroese,

237

