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Abstract 

In marine applications, it is often necessary that a vessel maintains its position and 

orientation in the sea or follows a certain reference trajectory. Examples of such vessels are 

cable-layers, ice-breakers and offshore supply vessels. Moreover, nowadays freely floating 

oil drilling platforms are built, which can operate in seas where the water depth is too large 

for maintaining position merely by means of anchors. This positioning and orientation 

keeping issue demands for a so-called dynamic positioning (DP) system which maintains 

the desired position exclusively by means of active thrusters. 

In this project, the subject of the dynamic positioning system is a floating body, which 

will be used t o  investigate the rolling behaviour of ships. A model of this body is derived, 

describing the motion of the floating body with three degrees of freedom. Furthermore, 

the influence of the environmental disturbances (waves) on the body is included. These 

disturbances consist of two important contributions, namely an oscillatory wave motion 

and wave drift. As the dynamic positioning system only has to  compensate for the drift, 

certain filtering properties have to be included, which are achieved by using both a con- 

troller and an observer. 

Using Lyapunov methods, the controller and observer are designed and the dynamic posi- 

tioning system is proven to be stable in a global sense for bounded yaw-rates. Simulations 

with the complete system confirm this. 

The DP  system is implemented on an experimental setup, in which thrusters are used as 

actuators. Identification of these thrusters reveals threshold values in the characteristics. 

Due to this, and some other hardware problems, the lateral and rotational degree of 

freedom cannot be controlled a t  the same time. The experiments, in which only the two 

translational degrees of freedom are controlled, show that the body can be stabilised to 

within a small region around the origin, thus achieving a satisfactory control result. 



In marinetoepassingen is het vaak nodig dat een vaartuig zijn positie en orientatie in 

zee vasthoudt of een bepaalde trajectorie volgt. Voorbeelden van zulke vaartuigen zijn 

kabel-leggers, ijsbrekers en bevoorradingsschepen. Bovendien worden er tegenwoordig vrij 

drijvende olieplatformen gebouwd, die in zeeen kunnen opereren waar de waterdiepte te  

hoog is om alleen door middel van ankers de positie vast te  houden. Dit probleem van 

positioneren en orientatie houden, vraagt om een zogenaamd dynamisch positioneer (DP) 

systeem, waarbij de gewenste positie exclusief wordt vastgehouden door middel van actieve 

thrusters. 

In dit project is het onderwerp van het dynamisch positioneer systeem een drijvend 

lichaam, hetgeen gebruikt zal worden voor het onderzoeken van rol-gedrag van schepen. 

Er is een model van dit lichaam afgeleid, dat de bewegingen van het drijvend lichaam met 

drie vrijheidsgraden beschrijft. Bovendien is de invloed van verstoringen ten gevolge van 

de omgeving (golven) toegevoegd. Deze verstoringen bestaan uit twee belangrijke bijdra- 

gen, namelijk een oscillerende golfbeweging en drift. Aangezien het dynamisch position- 

eer systeem alleen maar hoeft te  compenseren voor de drift, moeten bepaalde filterende 

eigenschappen toegevoegd worden, welke bereikt worden door het gebruik van zowel een 

regelaar als een waarnemer. 

De regelaar en waarnemer zijn ontworpen gebruik makend van Lyapunov methoden en 

stabiliteit van het dynamisch positioneer systeem is in globale zin aangetoond voor be- 

grensde giersnelheden. Sirnulaties met het complete systeem bevestigen dit. 

Het DP systeem is getest op een experimentele opstelling , waarin thrusters worden ge- 

bruikt als actuatoren. Identificatie van deze thrusters duidt op drempelwaarden in hun 

karakteristieken. Hierdoor, en door enkele andere hardware problemen, kunnen de lat- 

erale en rotationele vrijheidsgraad niet tegelijkertijd geregeld worden. De experimenten, 

waarin slechts de twee translerende vrijheidsgraden geregeld worden laten zien dat het 

lichaam gestabiliseerd kan worden tot in een klein gebied rond de oorsprong, waarmee een 

voldoende regelresultaat bereikt wordt. 



Notation 

General Notation 

Latin Symbols 

aji 
b 

fi 
foil fii 

scalar 

(column) vector 

matrix 

null vector or matrix 

unit matrix 

transpose of a vector a or matrix A 

inverse of a matrix A 

total derivative of a with respect to time t 
estimate of a 

= a - 6, estimation error in parameter a 

scalar function of one variable 

largest, smallest eigenvalue of A ,  respectively 

absolute value of a 

Euclidian norm (for matrices, llA/l = JAmax(ATa) is used) 

collection of real numbers 

i = 1,2 ,3 ,  j = 1, . . . ,5;  transfer function coefficients 

vector with bias forces and moments 

thruster forces 

thruster curve parameters 

vector with restoring forces and moments 

vectorial function with perturbation terms 

vectors with perturbation terms 

wave transfer function approximation 
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angular velocity about y-axis 
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angular velocity about z-axis 
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time 

velocity in x-direction 

input vector 

velocity in y-direction 

vector with zero-mean Gaussian white measurement noise 

velocity in x-direction 

vector with zero-mean Gaussian white noise 

x-position 

body-fixed distance from the origin to the centre of gravity 

vectorial concatenation of x, and q 

vectorial concatenation of xo and b 

y-position 

output 

x-position 

linear combination of y and b 

linear transformation (r = T($)x) 

system matrix 

input matrix 

thruster configuration matrix 

output matrix 

matrix with Coriolis and centripetal terms 

damping matrix 

potential damping 

damping due to skin friction 

damping due to vortex shedding 

damping due to wave drift 

intensity scaling matrix 
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desired 

error 

front 

degree of freedom (i = 1,2,3)  

sensor number (i = 1, . . . , 6 )  

thruster number (i = 1,. . . ,5)  

surge-direction 

reference 

sway-direction 

yaw-direction 

wave model 

added masslinertia 

rigid body 



Chapter 1 

Introduction 

In marine applications, it is often necessary that a vessel maintains its position 

and orientation in the sea or follows a certain reference trajectory. Examples 

of such vessels are cable-layers, ice-breakers and offshore supply vessels. More- 

over, nowadays freely floating oil drilling platforms are built, which can operate 

in seas where the water depth is too large for maintaining position merely by 

means of anchors. 

1 .  Problem Formulation 

These position and orientation keeping issues demand for the definition of a so-called 

dynamically positioned vessel (Fossen, 1994): 

A dynamically positioned vessel is a vessel which maintains its position ( 'xed 

position or predetermined track) exclusively by means of $active thrwters.  

A dynamic positioning (DP) system thus has to make sure that a vehicle maintains 

a specified position and orientation, unaffected by the disturbances acting upon it. In 

order to do so, proper counteracting forces have to attenuate these disturbances such 

that the positioning goal is achieved. Additionally, there are strict safety requirements 

upon a positioning system used in practice, due to the high risk for crew and equipment, 

especially in severe weather. 

Currently, research on a phenomenon called parametric rolling is carried out at the Me- 

chanics and Ocean Engineering section of the Mechanical Engineering department at the 

Technical University Hamburg-Harburg. This is a phenomenon, which occurs when large 
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container ships navigate on the sea while waves are overtaking the ship (a so-called fol- 

lowing sea). Due to coupling between the ship motions in different directions, very strong 

rolling motions (rotation about an axis from aft to fore) can occur, which is called para- 

metric rolling. Many container ships have lost containers due to this and this can even lead 

to capsizing. In order to investigate this phenomenon in a model setup, a floating body 

has to maintain its position and orientation relative to the waves by means of actively 

controlled thrusters. Due to the waves, an uncontrolled floating body would, however, 

attain an orientation where the waves come from either the port or starboard side (a 

so-called beam sea situation). A dynamic positioning control system will provide a solu- 

tion to this problem as a fixed heading and position can be maintained. Therefore, the 

following problem definition is formulated for this project: 

Design, analyse and test a dynamic positioning system for a floating body, such 

that a specific position and orientation relative t o  the waves can be maintained. 

Outline of the Report 

In order to obtain a solution to the problem stated in the problem definition, a mathe- 

matical model of the ship in the experimental setup and a suitable positioning controller 

have to be designed. 

For this purpose, first, a model of the ship and the environmental disturbances acting on 

it is derived in chapter 2. 

Secondly, chapter 3 describes the design of a model-based observer of the ship and envi- 

ronment model. Moreover, a controller is designed based on the output of the observer. 

Next, the experimental setup is discussed in chapter 4, where important properties of the 

experimental setup are discussed. Furthermore, the parameter values for the model are 

given. 

In chapter 5 ,  the implementation of the controller on the experimental setup is elucidated. 

Moreover, simulation and experimental results are discussed for a typical experiment. 

Finally, conclusions are drawn and some recommendations for future research are made 

in chapter 6. 



Chapter 2 

Model for Dynamic Positioning 

This chapter discusses the mathematical model, used to describe the dynamic 

positioning of the floating body. A general description of modelling of marine 

vehicles can be found in appendix A. In this chapter, first, the ship model 

will be discussed in section 2.1. Next, a suitable model for the environmental 

disturbances acting on the floating body is presented in section 2.2. Finally, the 

ship model and environment model are combined into the complete dynamic 

positioning model. 

2.1 Dynamic Positioning Ship Model 

2.1.1 Kinematics 

The general motion of a marine vehicle is described by 6 degrees of freedom, using two co- 

ordinate frames; an earth-fixed reference frame, and a body-fixed frame (see appendix A. 1 

for details). 

However, in the dynamic positioning problem, considered in this project, a surface ship 

has to maintain its position exclusively by means of active thrusters. Therefore, only 

motions in a horizontal plane, namely surge, sway and yaw, are considered, whereas the 

heave, roll and pitch motions are neglected. As a result, the position, velocity and force 

and moment vectors, as given in appendix A.l ,  reduce to the following: 

q = [x, y,$J]T; u = [ u , u , T ] ~ ;  T = [x,Y, N ] ~ .  

The kinematic relation (A.4) reduces to 

rl = J ( d u  = J($J)v, 
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with rotation matrix 

Furthermore, in chapter 3, the time derivative J of the transformation matrix will be 

needed. The expression for this is the following: 

J($) = $sJ($) = rSJ($), with S = 1 0 0 . [:: r' :a (2.4) 

2.1.2 Dynamics 

To describe the dynamics of the floating body, two important contributions are worthwhile 

mentioning. Namely, the dynamics consist of the rigid-body dynamics and the contribution 

of hydrodynamic forces and moments. The hydrodynamic forces and moments are included 

as two terms; as added mass and damping terms and as environmental disturbances. The 

latter will be discussed in section 2.2. A description of the rigid-body dynamics and the 

hydrodynamic forces and moments can be found in appendices A.2 and A.3, respectively. 

The floating body, considered here is known to have xy (port-starboard) symmetry. The 

body-fixed coordinate origin is set to the centerline of the ship (yG = 0). Moreover, it is 

common for slender surface ships to decouple the surge motion from the sway and yaw 

motion (see Fossen, 1994). These simplifications result in the following expressions for the 

rigid-body mass-matrix and the rigid-body matrix with coriolis and centripetal terms, 

respectively: 

Here, m denotes the mass of the ship, I], denotes the moment of inertia of the ship around 

its center of gravity for rotations in yaw-direction and XG is the distance in x direction 

from the body-fixed coordinate system to the center of gravity of the ship. 

Next, added mass and inertia have to be considered. Once again, the surge motion is 

decoupled from the sway and yaw motion. Furthermore, as stated in appendix A.3.1, the 

added mass coefficients are evaluated for zero frequency for positioned ships. The following 
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expressions result: 

where, for instance, the hydrodynamic added mass force YA in the sway direction due to 

an acceleration .i. in yaw direction can be found from YA = Y++. Note that the diagonal 

elements in MA are positive by sign convention, which means that the diagonal added 

mass coefficients are negative themselves (for example Xi, < 0). 

Moreover, for hydrodynamic damping of dynamically positioned ships, linearized damping 

is assumed. Here, once again, the surge motion is decoupled from the other two motions. 

The damping matrix is given by: 

Note, that the damping matrix does not necessarily have to  be symmetric. Furthermore, 

the restoring forces and moments do not have to be taken into account for surface ships 

that are metacentric stable (see appendix A.3.3). As a result, the 3 DOF dynamic posi- 

tioning version of the general equation of motion (equation (A.l l )  in appendix A.3) can 

be stated as: 

MU + C(V)V + DV = T~ + T, 
where M = MRB + MA and C ( u )  = CRB(u) + CA(V)  are given as: 

It  can be seen that the mass matrix is symmetric and positive definite (M = M~ > 0). 

Moreover, for dynamic positioning, the ship operates a t  very low velocities. Hence, an 

additional assumption is to neglect the term C ( v ) v ,  which is quadratic in the velocities. 
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2.2 Dynamic Positioning Environment Model 

In the experimental setup, the environmental disturbances on the floating body consist of 

waves. In general, these disturbances are both additive and multiplicative to the equations 

of motion. Here, however, they are assumed to be only additive, such that the principle 

cf superp~s i t im h d s .  In cmtrc! systems design, it is cernrnen t c  split these additive dis- 

turbances into first-order wave disturbances (relatively high-frequent oscillatory motions) 

and second-order wave drift (see Fossen, 1994). A detailed treatment of these two distur- 

bances is given in appendix A.4. Using this approach, the first-order wave disturbances 

are modelled by means of a linear wave approximation model and the second-order wave 

drift by means of a bias model. 

2.2.1 First-Order Wave Disturbances 

In analogy to the model in appendix A.4.1, for each DOF of the ship, a fourth-order wave 

model is used. This is given as a state-space description (z, E and y E IR3): 

JZ and A are diagonal matrices containing terms with the dominant wave frequency and 

relative damping coefficients in x, y and $J direction: 

Furthermore, I is the 3 x 3 identity matrix and K ,  is a diagonal matrix containing the 

wave intensities kWl, kw2 and kW3 in the three degrees of freedom. Note that  the first- 

order wave disturbances do not directly appear in the equations of motion. Instead, the 

output (2.12) is added to the measured position and heading, as will become clear in the 

section 2.3. 
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2.2.2 Second-Order Wave Drift 

For modelling the second-order drift forces by means of a bias model, the model from 

appendix A.4.2 can be used directly, with the difference that b E lR3. This results in the 

following: 

b = -Tblb + Ebwb,  (2.15) 

were, 5, is a vector with bias forces and moments, Tb is a diagonal matrix with bias time 

constants Tbi (i = 1,2 ,3)  (typically chosen large), wb is a vector of zero mean Gaussian 

white noise processes and Eb is a diagonal matrix scaling the amplitude of wb. 

2.3 Complete Dynamic Positioning Model 

By combining the ship and environment models, given in the previous two sections, the 

complete ship and environment model for dynamic positioning is obtained. The following 

results: 

Equations (2.16)-(2.20) form a state-space model for the ship and the wave environment 

with zw E lR12 and q, b, v E lR3. This model has quite a linear nature, apart from the 

rotation matrix J($).  As can be seen in equation (2.20), the output of the model contains 

the additive first order wave disturbances (the term Cwzw). Fathermore, a measiirernent 

noise term v is added here. Based on this output, an observer and controller will be 

designed in chapter 3. The control T depends on the layout of the thrusters in the ship, 

which will be discussed in chapter 4. 



Chapter 3 

0 bserver and Controller Design 

In this chapter, the design of the dynamic positioning system is discussed. 

In order to arrive at the final controller, firstly, the general idea behind the 

controller will be discussed in section 3.1. Here, it will become clear that an 

observer is needed and it is illuminated what properties are necessary for a 

dynamic positioning system. Next, the derivation of the observer and the con- 

troller are discussed in section 3.2 and 3.3, respectively. Finally, the complete 

dynamic positioning system is given in section 3.4. 

3.1 General Idea 

As stated in the section 1.1, a dynamic positioning (DP) system has to make sure that 

a ship maintains its position and heading actively by means of thrusters. In most cases, 

however, only position measurements are available. Consequently, filtering and state es- 

timztion are importarit features of a DP system, as will be explained next. Namely, the 

velocities of the vessel must be calculated from the position and heading measurements 

using some kind of state estimator. Unfortunately, the measurements are corrupted with 

sensor noise as well as coloured noise due to wind, waves and currents. The dynamic 

positioning system should only counteract the slowly varying disturbances (second order 

wave drift) to  avoid unnecessary wear and tear in the propulsion equipment. Otherwise, 

excessive thruster modulation would be required to compensate for the first order wave 

disturbances. For this purpose, so-called wave-filtering techniques are applied, where the 

position and heading measurements are separated in low-frequent (drift) and high-frequent 

(wave disturbance) components. 

Several control strategies are available to achieve the aforementioned properties. Firstly, 
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Kalman filtering techniques can be applied to separate the high-frequent first order wave 

disturbances from the low-frequent wave drift, such that only the latter can be used 

for feedback (see for example Fung and Grimble, 1983). Alternatively, observer-based 

dynamic positioning control is possible, in which a non-linear observer is used to  estimate 

the low frequent wave drift together with the vessel's velocities. Subsequently, the observer 

outputs are used for positioning control. This method is, for instance, described in Fossen 

and Strand (1999), Strand (1999) and Lindegaard (2003) and will be explained in the 

next sections. 

0 bserver Design 

In order to  obtain estimates of the low-frequent position components, an observer for the 

model, described in section 2.3, is derived in this section. This observer has to reconstruct 

the low-frequent component r]  from the measurement equation y = r]  + y, + v (see equa- 

tion (2.20)). Additionally, an estimate of the low-frequent velocity v has to be obtained. 

To achieve these properties of the observer, the wave model will also be included, such 

that the observer will act as a notch-filter in the frequency range of the wave disturbances. 

3.2.1 Assumptions 

In the design of the observer, some assumptions have to be made with respect to the 

Lyapunov stability analysis. These assumptions are the following: 

M = M~ > 0. The mass matrix of the ship is assumed to be symmetric and 

positive definite. This is true for surface ships with port-starboard symmetry for 

low velocities, as explained in section 2.1.2. Furthermore, it is assumed that the 

added mass terms are independent of the wave-frequency (M = 0); a condition 

which is also satisfied for the DP problem (see appendix A.3.1). 

w, = wb = 0. The wave disturbance model and the bias model are driven by zero- 

mean Gaussian white noise. These terms are not included in the observer model and 

the Lyapunov stability analysis since the observer model is driven by the estimation 

error instead (see Fossen and Strand, 1999). 

v = 0. The zero-mean Gaussian white measurement noise is not included in the 

Lyapunov analysis since this term is considered to  be negligible compared to the 

first order wave disturbances qw. 
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J ( 7 )  = J ( y )  or J($) = J($ f $,). The amplitude of the first-order wave-induced 

yaw-angle disturbance is assumed to be small. Namely, $, will be less than 1" 

for normal sea conditions and less than 5" for extreme weather situations (Strand, 

1999). 

By applying these assumptions to the DP ship and environment model (2.16)-(2.20), the 

foliowing system modei resuits: 

Furthermore, for notational convenience, equations (3.1), (3.2) and (3.5) are combined 

and written in state-space form as: 

x o  = AOXO + BoJ($)u, 

Y = Cox01 

where xo = [xz, qT]" and: 

3.2.2 Non-linear Observer 

A full-state non-linear observer, copying the dynamics (3.1)-(3.5) is the following (see 

Fossen and Strand, 1999): 

Here, y = y - 6 is the innovation error and K1 E and K2, K3, K4 E I R ~ ~ ~  are 

observer gain matrices to be determined later. y > 0 is an additional scalar tuning para- 

meter. The general structure of the observer can be seen in a block diagram representation 

in figure 3.1. 
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Bias estimator 

3 
I I I - .......................................................... 

Wave estimator j y 
i K1 

.................................................................... 
7 

Y S 6 

Measurement 
equipment 

Figure 3.1: Schematic block diagram representation of the observer. 

Next, a similar notation as in (3.6) and (3.7) is obtained by writing (3.9), (3.10) and (3.13) 

in state-space form: 

AT - T T  where xo = [x,, ] and: 
? 7 

Matrices Aoj  Bo and Co are defined as in (3.8). 

In order to obtain expressions for the observer error dynamics, the estimation errors are 
- A 

defined as i5 = u - fi, b = b - b and iiio = xo - xo. Hence, the error dynamics can be 

written as: 

where use is made of the fact that y = Coiiio. Next, a new output is defined, consisting 

of a linear combination of the estimation errors: 
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and a vector x is defined as r 7 

L J  

such that (3.17)-(3.20) can be written in compact form: 

where 

3.2.3 Stability Analysis 

In the following, the stability of the observer will be proven. The error dynamics (3.22)- 

(3.24) are depicted in block diagram form in figure 3.2, where two new error terms are 

defined as: 

E, = - J ~ ( $ ) x ,  E,  = J ( $ ) f i .  (3.26) 

Figure 3.2: Schematic block-diagram showing the dynamics of the position/bias and ve- 

locity estimation errors. 

Hence, the observer error dynamics consist of two linear sections, interconnected through 

the bounded transformation matrix J ($ )  . 
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Next, the stability of the complete observer is assessed. This is summarised in the following 

theorem (see Fossen and Strand, 1999): 

Theorem 3.1 (Global Asymptotic Stability of the Observer) 

[Jnder the assumptions stated in section 3.2.1, the non-linear observer given by equa- 

tions (3.9) - (3.13) is globally asymptotically stable. 

Proof. The proof of Theorem 3.1 consists of a tuning procedure for the observer gain 

matrices and a Lyapunov analysis. First, the tuning procedure is described. 

To assess the stability of the error dynamics (3.22)-(3.24), Lemma 3.1 is needed: 

Lemma 3.1 (Kalman-Yakubovich-Popov (KYP) Lemma) 

Let Z(s) = C(sI - A)-'B be an  n x n transfer function matrix, where A i s  Hurwitz, 

(A, B) is controllable, and (A,C) is observable. Then, Z(s) is  strictly positive real (SPR) 

i f  and only i f  there exist positive definite matrices P = PT and Q = QT,  such that (Khalil, 

1996): 

For a y > 0, and for the observer gain matrices with the following structure: 

the elements kji > 0 of the observer gain matrices can be chosen such that the mapping 

E, H Z satisfies the KYP lemma. This mapping consists of matrices A, B and C, given in 

equation (3.25). Because of the diagonal-like structure of the observer gain matrices, the 

mapping E, F-+ 2 can be described by three decoupled transfer functions. Furthermore, 

this mapping can be written as two consecutive mappings: E,  H y and y ++ 2,  each with 
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their own diagonal transfer function matrix. In the frequency domain, this can be written 

as : 

x(s) = H ~ y , ~ ( ~ ) ~ ~ ( ~ ) l  with Hey,z(s) = Hq,,jj(s)H5,i(s), (3.30) 

where the transfer function matrices H,,,,(s) and H5,+(s) are computed from (3.17), 

(3.18) and (3.20) (using y = Co5io) are found to equal: 

Consequently, the diagonal component i (i = 1,2,3)  of these transfer function matrices 

can be written as: 

where the coefficients in (3.33) are given by: 

In order to obtain the desired notch-filter effect of the observer, a desired shape of transfer 

function hfV,.,(s) (i = 1, 2, 3) is specified as a double notch filter in series with a low-pass 

filter: 

Here, Jni > Ji determines the notch depth and w,i determines the cut-off frequency of the 

filter. Note that,  in general, this cut-off frequency is higher than the dominating wave 

frequency as the latter typically lies close to the desired bandwidth of the DP system. 

The filter gains in matrices K 1  and K2 can be found by equating (3.33) and (3.40), which 

gives the following expressions: 
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In order to meet the SPR-requirement (Lemma 3.1), there are some restrictions in selecting 

for example tni and the gain in matrices K g  and K4. Namely, the three decoupled transfer 

functions hav,,(s) (i = 1 ,2 ,3 )  all have to have their phase between -90" and +90° to  

satisfy the KYP lemma (stated otherwise, their Nyquist plot has to lie completely in the 

right complex half-plane) . By applying the following tuning rules for Tbi, ksi and k7i, this 

requirement can easily be met (Fossen and Strand, 1999): 

An example of the complete transfer function h ~ y , i - ( ~ ) ,  with properly selected filter gains, 

is depicted in figure 3.3. The notch effect of the observer can clearly be seen here. 

Figure 3.3: Example of the observer transfer function in yaw-direction (see also sec- 

tion 5.2.1). 

However, the transfer function contains a relatively narrow notch, which indicates that the 

observer will not be robust for changes in wave frequency. As a solutioii to this problem, 

the observer could be made adaptive to the wave frequency, as is done in Strand (1999). 

Next, the stability of the observer (3.9)-(3.13) is proven by Lyapunov analysis. Consider 

the following positive definite and radially unbounded candidate Lyapunov function: 

As required for this Lyapunov function, V = 0 for fi, x = 0 and V > 0 for v, x # 0. 

Time differentiation of (3.47) and applying the assumptions stated in section 3.2.1 gives 

the following: 

v = ?bTA4fi + ?fiTMb + kTp5  + xTpk .  (3.48) 
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By using equation (3.22) and (3.24), this can be rewritten as: 

Furthermore, as the system (3.22)-(3.23) satisfies the KYP Lemma, A ~ P  + P A  = -Q 
n T  n and +I- r = C .  Additionally, it is used that 2 = C5. Hence (3.49) simplifies to: 

- T 
which is zero for fi, 5 = 0 and negative definite. As a result, fi and 5 = [%:, ijT, b IT 
converge asymptotically to zero, which completes the proof. 0 

3.3 Controller Design 

Next, the derivation of a non-linear PID-like position controller for the system without 

observer is discussed (Lindegaard and Fossen, 2003; Lindegaard, 2003). The controller 

will be linear in the sense that the PID terms are linearly bounded in the error variables. 

The non-linearity comes from the fact that the kinematics are included in the design. 

3.3.1 Controllability 

Firstly, it has to be determined whether the system for which the controller is designed 

is controllable or not. The ship dynamics, without wave disturbances and bias model, are 

given in equation (2.17) and (2.19) and are stated here again, for convenience: 

Controllability can be illustrated by considering the system for a fixed heading angle, for 

instance $ = 0 ,  which results in a linear system: 

This linear system is controllable. Furthermore, J ($)  can be evaluated for any $ E [0, 2n-] 

without becoming singular. Moreover, for a time-varying signal $(t), also a controllable 

system results, as J($(t))  maintains full rank. Hence, for arbitrary $(t), a controllable 

system is obtained, which implies that (3.51)-(3.52) is controllable. 
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3.3.2 Controller 

In order to derive a control law for the system (3.51)-(3.52), the desired positions, veloci- 

ties and accelerations are specified as qd, ud and bd, respectively. The general tracking 

case is considered here, although ud = rid = 0 for dynamic positioning. This yields the 

following expressions for the position and velocity errors: 

Next, the following PID-like tracking control law is proposed (see Lindegaard and Fossen, 

2003), where the integrating action is obtained from an additional state e: 

Here, matrices K,, Ki, Kd E R~~~ are the proportional, integral and derivative gain 

matrices, respectively. Note that K ,  and Kp are put to the left of the rotation matrix 

JT($), which makes them body-fixed gains, independent of the heading of the ship. 

Furthermore, the last two terms in (3.56) are feedforward terms. When the reference 

trajectory is prescribed such that jld = J($)ud, that is, the reference is consistent with 

the kinematics of the ship model, the control law can be inserted in (3.52), which yields 

the following closed-loop system: 

3.3.3 Stability Analysis 

By defining q = [ST, q:, v:lT, the closed-loop system (3.57)-(3.59) can be written in 

with 
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As the system is controllable, arbitrary eigenvalues can be assigned to matrix A,. Fur- 

thermore, because T-'(+) = TT(+) for all +, the eigenvalues of T T ( $ ) ~ , T ( + )  equal 

those of A,. 

In contrast to linear systems, however, A, being Hurwitz is not a sufficient condition for 

concluding stability of (3 .60) .  As will become clear in the following, the limiting factor 

wi!! b e  t h e  y 2 ~  r a t e  $ = r .  ?Jame!y, fnr small yax rates, [ r ( t ) [  5 r,,,, asympt~tic stability 

of (3 .60)  can be conciuded and if r,,, is larger than any physical limit of the system, 

this stability holds in a global sense. Moreover, increasing the gains in the gain matrices 

K,, K ,  and Kd results in a larger r,,, due to controllability. This is summarised in the 

following theorem (see Lindegaard and Fossen, 2003): 

Theorem 3.2 (Global Asymptotic Stability of the Controller) 

Consider the system (3.51)  -(3.52) with controller (3 .55)  -(3.56) .  

Suppose Ir ( t )[  5 r,,, 'd t 2 to. The origin q = 0 of (3 .60)  is  locally asymptotically stable, 

provided r,,, > 0 is  suficiently small and i f  and only i f  K,, K i ,  Kd are chosen such 

that A, defined by (3 .61)  is Hurwitz. If r,,, is  larger than any physical upper limit for 

Ir(t) 1, (3 .60)  i s  said to  be globally asymptotically stable. 

Proof. For concluding stability of the closed loop system (3.57)-(3.59) ,  necessity of A, 

being Hurwitz is obvious. Sufficiency is proven as follows. First, a transformation z = 

T ( + ) q  is defined. Its time derivative ,5 is given by: 

where the time derivative of T(+)  is calculated in a similar manner as in equation (2 .4 ) :  

with S given in (2.4). 

If and only if A, is Hurwitz, there exists a P = pT > 0 such that for a given Q = Q~ > 0 

PA, + ATP = -Q. (3.65)  

Next, consider the following positive definite radially unbounded candidate Lyapunov 

function: 
T T V = q T (+)PT(+)q = zTpz.  (3.66)  
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Time differentiation and making use of (3.63) yields the following: 

Here, Amin and A,,, denote the smallest and largest eigenvalue of their respective argu- 

ment. As can easily be seen from (3.68), v is negative definite for r,,, small enough, 

which means that (3.60) is asymptotically stable. In fact, this region corresponds to the 

region of attraction of the closed-loop system. Note that its size only depends on the 

maximum allowable yaw rate r,,,. This completes the proof. 0 

Bound on yaw rate. Moreover, the bound on the yaw rate can be calculated using 

techniques for linear matrix inequalities, as is shown next. From (3.67), it can be seen 

that if the function 

for all t > to,  then v is negative definite and (3.60) is asymptotically stable. As the 

function f (r)  is linear in r, it suffices to show that f (r,,,) < 0 and f (-r,,,) < 0 to 

conclude that f (r)  < 0 for all Ir(t)l 5 r,,,. For a given closed-loop matrix A,, the bound 

r,,, can be calculated by solving a special case of an LMI problem, a so-called generalised 

eigenvalue problem (see Lindegaard and Fossen, 2003): 

minimise p 

P=PT>O, p > O  

subject to ?ST + S;P < -p (PA,  + ATP) 

-PST - S?P < -p(PAc + ATP) 
where r,,, = 1/p. This generalised eigenvalue problem can be efficiently solved using for 

instance the LMI-toolbox in MATLAB (Gahinet et al., 1995). 

3.4 Dynamic Positioning System 

Now that the observer and the controller have been derived separately in the previous two 

sections, they have to be combined to obtain the complete dynamic positioning system. 
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Therefore, new error variables are defined similar to (3.54), in which the state estimates 

from the observer are used: 

Next, the control law (3.55)-(3.56) is modified to contain these new error variables. More- ,. 
mer, the estimated heading angle $ is used ins ted  nf $. The followi~g observer-feedback 

controlier results: 

Because of the estimated heading angle, the state estimates appear non-affinely in the 

control .i. However, due to the inherently linear characteristics of the system and the linear 

bound in 1 1  ~ ( 4 )  - Ill, asymptotic stability can still be concluded. This is surnmarised in 

the following theorem: 

Theorem 3.3 (Global Asymptotic Stability of the Total System) 

For the system (3.51)-(3.52) there exists an  observer whose errors f j  and i5 converge 

asymptotically to zero (see Theorem 3.1). The o bserver-feedback control (3.72) -(3.73) 

will, then, guarantee global asymptotical stability of q = [cT, q:, v:lT under the same 

assumptions as stated in Theorem 3.2, namely: 

1. The gains K,, Ki and Ki are chosen such that A,, defined i n  (3.61) is Hurwitz, 

2. The yaw-rate is  smaller than the upper bound following from the stability analysis 

of the controller, that is Ir(t) 1 < r,,,. 

Proof. In equations (3.72)-(3.73), the observer-feedback controller was given. By defini- 

tion, in the derivation of the observer it is given that f j  = q - f j  and G = v - 6 ,  which 

yields the following expressions for the error terms: 

Furthermore, the term with the rotation matrix can be rewritten as: 

JT (4) = JT ($ - 4) = JT ($1 + JT ($1 ( J (4) - I). 
To save space, the rotation matrix will, in the following, be denoted with a subscript 
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notation: J, - J ( a ) .  Applying (3.74)-(3.76) to the input (3.73) gives: 

i = -M (Ki[J;+ J;(J+ - I)][+K,[J;+ J;(J+ - I ) ] ( q e - i j )  +Kd(ve- f i ) )  

+Dvd + M u d  

= -M (Ki J;[ + K,J&, + K ~ v ~ )  + D V ~  +  MU^ 

-M (Ki[J;(JqJ -415 +K~[J;(J$ - I ) I q e  -KpJ;J4ij -Kdf i )  

= r - M (K,[J;(J~ - I ) ] (  + K,[J;(J+ - I ) ]qe  - K, J;J+ij  - K ~ D )  , (3.77) 

where T equals the original control (see equation (3.56)). Consequently, the following 

closed loop system is obtained: 

t = q e -  f i 7  (3.78) 

rle = J+ve, (3.79) 

ire = -(M-ID + K ~ ) v ~  - K, J ; ~ ~  - K~ J;[ 

- K , [ J ; ( J + - I ) ] ~ - K , [ J ~ ( J ~ - I ) ] ~ ~ + K , J ~ J ~ ~ ~ + K ~ ~ ~ .  (3.80) 

The estimation errors i j  and fi can, in this way, be seen as perturbation terms, connecting 

the observer error dynamics to the closed loop dynamics. Using q = [tT, $, v:lT and 

q = [ijT, fiTIT, (3.78)-(3.80) are written in state-space form: 

4 = TT($)AcT($)q + Q(q, 3, (3.81) 

where A, and T($) are defined in (3.61) and (3.62), respectively. The perturbation term 

g(q,  q) has the following structure: 

with the individual terms: 

- 
91 = -la> 

This output-feedback system can be regarded as a cascaded system, containing the error 

dynamics of both the state feedback system and the observer: 

where system C p  contains the relevant observer error dynamics. Furthermore, the observer 

error dynamics have been shown to be globally asymptotically stable in Theorem 3.1. 
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Additionally, Theorem 3.2 assures stability of C1 with g(t ,  q,  q) = 0 for bounded yaw rates 

(the limit r,,,). Thus, the stable system C1 is perturbed with the asymptotically decaying 

observation error. For concluding stability of this cascaded system, results from Panteley 

and Loria (1998) are used. However, a slightly modified version of these results is given 

in Lindegaard (2003), which states that the cascaded system is stable if: 

the unperturbed system C1 is globally asymptotically stable and satisfies some 

bounds on a Lyapunov function (these bounds are not explained here); 

the function g(t,  q, q) satisfies the following bound: 

where Qi : -+ for i = 1 ,2  are continuous and Qi(0) = 0. 
- - 

The first condition is satisfied from Theorem 3.2. For details, see Lindegaard (2003). This 

means that for concluding stability of the total system (3.85)-(3.86) , it has to be checked 

whether the function g(t ,  q ,  ij) satisfies the bound in the second condition. This is done in 

equation (3.88), where use is made of the fact that 1 1  JT($) 1 1  = 1 and 1 1  ~ ( 6 )  - I I 5 2141. 

with the following linear functions Qi : - -+ lR>o  - for i = 1,2: 

As these functions satisfy the requirements stated in the second condition above, the proof 

is complete, meaning that the cascaded system is globally asymptotically stable. 0 



Chapter 4 

Experimental Setup 

In this chapter, a description of the experimental setup for the dynamic posi- 

tioning system is given. Next, some features of this setup are discussed more 

in detail in section 4.2 and 4.3. Furthermore, a spectrum of the wave-induced 

motion of the ship is given and the model parameter identification is described 

in sections 4.4 and 4.5, respectively. 

4.1 Setup Description 

In figure 4.1, a schematic representation of the experimental setup can be seen. 

1 floating body 

2 wave tank 

3 hydraulic actuator and wave flap 

4 artificial beach 

5 cable actuated position sensors 

Figure 4.1: Schematic representation of the experimental setup. 

In this setup, the floating body is located in a wave tank (15 mx1.5 mx1.5 m), in which 

waves can be generated by means of a wave flap at one end of the tank. This wave flap 
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is operated by a hydraulic actuator moving in harmonic motion. Both the amplitude and 

the frequency of this motion can be prescribed, corresponding to  the resulting wave height 

and frequency, respectively. At the other end of the wave tank, an artificial beach prevents 

wave reflection. 

As can also be seen in figure 4.1, six thin wires (0 0.45 mm) are connected to  the floating 

bed;.. These wires cmsist of EL p r t  with fixed length and a part that wmes frnm a ca- 

ble actuated position sensor (the WSlOSG from ASM Automation Sensorik Messtechnik 

GmbH). This electromechanical sensor translates linear motion into a proportional elec- 

trical signal. The cable, with a length of 1 m, winds onto a cable drum on a shaft, which 

is tensioned by a coil spring, providing a specified constant pull-in force (approximately 

3 N) to  maintain cable tension. This rotary motion is converted to an electrical signal 

by means of a precision potentiometer. In section 4.2, the position measurement of the 

floating body will be discussed in detail. 

The dynamic positioning system, as discussed in chapter 3 is implemented on a 2.5 GHz 

Pentium PC with 2 GB RAM. This PC collects the data from the position sensors via a 

measurement card (from Meilhaus Electronic) and sends data to the propulsion devices 

through the serial port. The DP system is designed using MATLAB/~IMULINK. Using the 

Real Time Workshop in MATLAB and the Simulation Interface Toolkit from LabVIEW, 

the model is compiled in order to be able to use the model in LabVIEW. Here, the 

connection between the computer and the input/output ports is established such that the 

dynamic positioning system can be tested on the experimental setup. 

Figure 4.2: Picture of the floating body in the wave tank. 

A picture of the floating body can be seen in figure 4.2. The wooden body has a length of 

1.37 m, a width of 0.46 m and a height of 0.41 m. Furthermore, the two edges in length 

direction a t  the bottom side are chamfered. In order to obtain a draught of approximately 

0.20 m, weight is added in the form of steel rods. Because the floating body is to be kept 
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a t  velocities around zero, rudders can not be used in the positioning system. Instead, as 

a propulsion system, thrusters are used, which can operate only one way. These thrusters 

pump water from below the body through tubes to the thruster outputs located in the 

sides of the body. In total, six thrusters are located in the body such that the three 

degrees of freedom of interest can be controlled. Each thruster is driven by a brushless 

DC electromotor, controlled by a separate unit that maintains the desired rotational 

velocity. The separate thruster units are powered by two battery packs of 9.6 V each. The 

rotational velocity results from an input signal to  the control unit which is a hexadecimal 

number between 00 and FF (between 0 and 255 in decimal notation). On a printed circuit 

board, a programmable microcontroller is located for each control unit, in whose memory 

a table is stored that contains the relation between the given input number and the actual 

input number. Thus, the relation between the input and the rotational velocity can be 

prescribed/modified. 

Moreover, 

located in 

for 

the 

the controller, it is important to determine how the thruster 

body. This is depicted in figure 4.3. 

Back Front 

outputs are 

Figure 4.3: Drawing of the body, with the location of thrusters 0 to 5. 

The relation between the control T and the thruster outputs can be described by the 

so-called thruster configuration matrix B, and is given in the following relation: 

where the input vector u = [fo, f i ,  fi, f 3 ,  f4, f5IT contains the thruster forces. The thruster 

configuration matrix equals: 

The variable r denotes the horizontal distance from the thruster output to  the center of 

gravity of the body as seen in figure 4.3. More information on the thrusters follows in 

section 4.3, together with the procedure to modify the input-output behaviour. 
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In the next four sections, various parts of the experimental setup are discussed more in 

detail, in order to be able to use the dynamic positioning system in practice. 

4.2 Position Measurement 

In order to uniquely determine the position of the floating body, cable actuated position 

sensors are used as, due to the limited time for the project, contactless measurements 

were impossible. Three cables (from sensors 1, 2 and 3) are attached to a point at the 

front of the ship and three (sensors 4, 5 and 6) to a point at the back. In this way, all 

ship positions and orientation angles can be determined except the roll angle q3 about an 

axis through these two points. For the dynamic positioning system, however, only x, y 

and $ are necessary. The sensor positions can be described by vectors xi = [xi, yi, ziIT 

(i = 1 , .  . . ,6 ) ,  relative to an origin located at a fixed point in the wave tank. These 

positions have been measured and are given in table 4.1. 

Table 4.1: Sensor position coordinates. 

The position vectors of the points at the front and the back of the floating body are 

obtained from calculations, given in appendix B. In this way, the vectors 

Sensor 

1 

2 

3 

4 

5 

6 

are computed. Next, the horizontal positions and the heading angle of the ship follow 

from 

xi [m] 
2.828 

2.908 

2.828 

10.752 

10.578 

10.752 
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where xTef and yTef are the rest positions of the floating body. For the heading angle, 

a very small compensation is necessary, due to inaccuracy in the measured sensor 

positions. Due to  measurement noise from the cable actuated position sensors, the calcu- 

lated position will also contain noise. The standard deviations of this noise is determined 

experimentally and given in table 4.2, together with the reference positions/angle. Fur- 

thermore, due to  the relative small angle between the three cables at  one side of the 

body, the resolution of the position measurement is not the same for the three directions. 

The sensors themselves have a resolution of approximately 1 mm. An experimentally de- 

termined estimate of the resolution in the separate directions is also given in table 4.2. 

Table 4.2: Measurement reference positions/angle and standard deviation of the mea- 

surement noise. 

4.3 Thruster Curves 

Coordinate 

x 

Y 

@ 

As already described in section 4.1, a programmable microcontroller is available for each 

thruster, which stores the relation between the given input number and the actual input 

number (both between 0 and 255). This can be used to  modify the input-force curves of 

the thrusters and to  obtain a linear relation between the input number and the force. In 

order to  do this, the thruster force has to be measured. 

For this purpose, a thin steel wire is tied to  the floating body a t  a thruster output. This 

wire guides the thruster force, by means of a pulley, to a force transducer, whose working 

principle is based on strain gauges. As a result, a voltage, proportional to  the thruster 

force is obtained. For a large number of input values, the corresponding thruster forces 

are measured for each thruster in this way. During operation, the motors warm up, which 

has influence on the thruster characteristics. Furthermore, the thrusters show different 

behaviour for increasing and decreasing input values. 

Reference [m] or [rad] 

6.899 

0.840 

0.006 

Next, these curves are modified, using the look-up table in the microcontroller memory, 

ai [m] or [rad] 

9.5.10-~ 

5.5.10-~ 

7 . 6 . 1 0 ~ ~  

Resohtior, [m] or [rad] 

l . l ~ - ~  

5.10-~ 

1 .10-~  
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such that a linear relation between the input number and the thruster force is obtained. In 

this approach, the values for the increasing and decreasing input values are averaged. After 

that,  the curves are measured again. This can be seen in figure 4.4, where, additionally, 

a linear fit to the modified curve is made using least squares. This fit will be used in the 

dynamic positioning controller. 

20, 

Input [-I 
Figure 4.4: Example of an original, modified and fitted thruster curve for thruster 1. 

In this figure, it can be seen that the behaviour of the modified curve is approximately 

linear. A problem, however, is that for small input numbers, already a relative large force 

is generated by the thruster. This comes from the fact that the thruster device needs a 

certain minimum force to generate a water flow due to pressure losses. As this behaviour 

is inherent to the thruster devices, it will be included in the controller. Hence, the relation 

between the input n and the thruster force f i  (i = 0 , .  . . , 5 j  is given by: 

for n = 0 
fi = for i = 0, .  . . , 5 ,  

foi + fiin for n > 0 

where the constant and linear terms for each thruster are given in table 4.3. 

Obviously, thruster 0 has a different characteristic. This is caused by the fact that the 

thruster unit showed increased wear due to an alignment mismatch between the motor and 

the pump part. After modification of the curve, however, this results in a lower minimum 

force. Furthermore, the thrusters do not have the same threshold value in force (the second 

column in table 4.3), which causes difficulties for the dynamic positioning system in the 

experimental setup as will become clear in chapter 5. 
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Table 4.3: Thruster curve parameters for the linear fit. 

Thruster 

4.4 Wave-Induced Motion 

In the previous chapter, it is explained that a wave model will be used in the observer 

design. Therefore, the wave-induced motion of the floating body is measured for some 

settings of the hydraulic actuator of the wave flap (amplitude and frequency), such that 

it can be determined whether the wave and drift models provide proper approximations. 

For this purpose, the position of the ship is measured for five minutes. Next, spectral 

analysis of this signal is carried out in MATLAB. An example of the amplitude plots of 

the spectra for the three degrees of freedom is given in figure 4.5. 

Note, that the high frequent measurement noise can be seen in the spectra, as well as 

the low-frequent second order wave drift. It  can also be seen that, especially in y and 

$-direction, low frequencies are present in the measured signal. This is caused by a slow 

combined swaying and yawing movement, due to the influence of the cable actuated 

position sensors. This low-frequent periodic motion cannot be described properly by the 

drift modei. However, this causes no probiems, as wili be seen in chapter 5. 

Furthermore, figure 4.5 shows the wave-induced motions, approximated using the fourth 

order wave model, described in section 2.2.1, after some manual model parameter tuning. 

It  can be seen that a good match is obtained for the dominant wave frequency, which 

means that the fourth-order wave model is suitable to describe the wave-induced motion. 

The parameters for this situation are given in table 4.4. 
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Frequency [Hz] 

Figure 4.5: Example of the wave-induced motion for a wave frequency of f = 0.94 Hz 

and a wave flap voltage of V = 200 mV. 

Table 4.4: Example of the parameter values for the wave model (values correspond to  

the spectra in figure 4.5). kWi and kbi are the noise intensities in the first and 

second order wave disturbance models, respectively. 

4.5 Parameter Identification 

Direction 

x 

Y 

d) 

In order to use the dynamic positioning system, designed in chapter 3, the parameters in 

the model have to be identified. Parameters like m and I, are measured using a mass bal- 

ance and a special setup for measuring the moment of inertia, respectively. Furthermore, 

the body-fixed coordinate system is chosen to coincide with the centre of gravity and the 

woi [rad/s] 

1 . 8 8 ~  

1 . 8 8 ~  

1 . 8 8 ~  

Ji [-I 
0.01 

0.02 

0.03 

k 
0.01 

0.01 

0.05 

kbi 
0.02 

0.02 

0.002 
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dimensions of the model are measured. 

In order to obtain expressions for the added mass and potential damping of the system, 

the numerical software package AQWA is used. Using the finite element program FemGV, 

a mesh of the body surface is created. Next, using radiationldiffraction theory, the added 

mass and potential damping are calculated for a range of frequencies in AQWA. In order 

t~ find the appmpriate added mass and d2~1ping vdues fer dynamic pesitiening, the 

obtained curves are evaluated for zero frequency (limf,o M A ) .  These curves, however, 

are only estimates, because added mass is highly influenced by the presence of walls and 

finite water depth, as is the case in the experiment. 

The potential damping evaluates to be zero for low frequencies, as stated in ap- 

pendix A.3.2. Furthermore, other damping terms contribute to the damping matrix D. 

As it is very difficult to obtain or measure these parameters in a straightforward manner, 

values from Strand (1999) are used after applying some scaling. Namely, the parameters 

for a model ship, smaller than the floating body in this project, are given here. As a conse- 

quence, some robustness analysis of the dynamic positioning system has to  be performed 

for these damping parameters. 

Summarising, this results in the model parameters given in table 4.5. 

Table 4.5: Parameter values. 

Parameter k Value I Parameter Value 



Simulations and Experiments 

In this chapter, the simulation and experimental results for the dynamic posi- 

tioning system will be discussed for a typical experiment. First, however, some 

implementation issues are discussed in section 5.1. 

5.1 Implementation Issues 

As stated in section 4.1, the dynamic positioning system is designed in MAT- 

LAB/SIMULINK. Moreover, the combination between the desired input (3.73) and the 

thruster forces, using the thruster configuration matrix B, in (4.2), is established. Namely, 

for each thruster, a lookup table is included with the thruster curve (as found in sec- 

tion 4.3). In order to take into account the threshold values in these curves, an overall 

threshold values for the thrusters, used for sway and yaw direction of the body, is im- 

plemented. This threshold value equals the largest threshold value in table 4.3. Due to 

the differences in threshold values, this would otherwise lead to differences in the forces 

between two thrusters that are to apply an equal force. In this way, thrusters 1, 2, 3 

and 4 cannot generate a force below 4.08 N. This affects the performance of the dynamic 

positioning system in a disadvantageous way, but no other solution was found for this. 

Furthermore, the algorithm for the position measurement (see appendix B) is implemented 

in SIMULINK. After the model is compiled and combined with LabVIEW, it has the six 

wire lengths as input from the experimental setup and gives six thruster input values as 

output to the thruster devices. 

Finally, in both the simulations and the experiments, a fixed step solver is used. After 

some initial experimenting, the 0 ~ ~ 4 - s o l v e r  (fourth-order Runge-Kutta) is found to give 

satisfactory results. 
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5.2 Simulation Results 

In this section, the simulation results will be discussed for a wave frequency of f = 0.94 

Hz and a wave flap voltage amplitude of V = 200 mV. This experiment will also be 

used in the next section and is considered to be representative for the movements that 

the fioating body car; findergo. A part ~f the measured p ~ s i t i ~ n ,  used f ~ r  ca!cu!ating the 

spectra in figure 4.5, is depicted in figure 5.1. 

Time [s] 

Figure 5.1: Part of the measured position: z (solid), y (dotted), $ (dashed). 

The spectrum of the wave induced motion at this particular setup is depicted in figure 4.5 

and the wave and drift model parameters are given in table 4.4. 

5.2.1 Observer Tuning 

Firstly, the observer has to be designed to be strictly positive real (SPR), by choosing the 

observer gains kji, j = 1, . . . , 7 ,  i = 1 ,2 ,3  according to equations (3.41)-(3.46). Using 

these equations, a relatively straightforward tuning procedure can be used, as, for each 

degree of freedom, only five parameters have to be tuned (wOil Inil WCil  kGil kTil i = 1,2,3). 

Additionally, the parameter y has to be chosen. After some tuning, the parameters, given 

in table 5.1 are found. 

An example of the typical form of the transfer function was already given in figure 3.3 for 

yaw-direction. The notch effect and the low pass-filter can clearly be seen here, as well 

as the high low-frequent gain, enabling proper second-order wave drift estimates. The 
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Table 5.1: Observer parameters to satisfy the SPR requirement. Additionally, y = 0.1. 

parameters in the last two columns in table 5.1 are found from simulations in the time 

domain. 

An example of the behaviour of the observer can be seen in figure 5.2, where the results 

of a simulation using only the observer are depicted. In this figure, both the measured 

(simulated) and estimated position are depicted. 

Direction 

x 

measured I estimated / 

-0.02 1 I I I I I I I I I I 
0 10 20 30 40 50 60 70 80 90 100 

Time [s] 

woi [rad/s] 

1 . 8 8 ~  

Figure 5.2: Simulation of the measured (thin line) and estimated (thick line) position 

using the observer. 

From this figure, it becomes clear that the observer succeeds in filtering a large portion 

of the first order wave disturbances from the measured signal. however, because of the 

Cni [-] 
0.03 

wCi [rad/s] 
3 . 2 ~  

k6i 

20 

kTi 

200 
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SPR-requirement, there is limited tuning freedom in the observer. As a result, the notch 

in the observer transfer function cannot be arbitrary deep and the filtering of the first 

order wave disturbances is not complete. 

5.2.2 C~wtroller Tuning 

Next, the controller has to be tuned. This can, for instance, be done by pole placement or 

by loop shaping techniques. In the latter, it should be noted that only a PID-controller 

can be used. However, a notch filter and a low-pass filter are already included in the 

observer. 

In the case, discussed here, loop shaping techniques are used, where the cross-over fre- 

quency is set to  approximately 0.2 Hz. As both the mass matrix and the damping matrix 

are diagonal, the total system can be seen as three decoupled SISO systems, resulting 

in diagonal gain matrices. After some tuning, the values in table 5.2 are found for the 

elements in the proportional, derivative and integrating gain matrices (K,, Kd and Ki, 

respectively). Note, that for all three directions, the same controller is used. 

Table 5.2: Parameter values for the PID-controller. 

Furthermore, the maximum allowable yaw rate for concluding stability for this controller is 

calculated using LMI techniques, as described in section 3.3.3. This results in r,,, = 28.7 

rad/s, which is assumed to be larger than the maximum achievable yaw rate of the system. 

Hence, this controller is stable in a global sense. 

Simulation results with this controller are depicted in figure 5.3, where the dynamic po- 

sitioning system (both the observer and controller) is switched on after 60 seconds. In 

this figure, it can be seen that the DP system succeeds in bringing the floating body back 

to the origin. However, asymptotic stability is not achieved. This is caused by both the 

incomplete wave-filtering, as stated in the previous section, and the threshold values of 

the thrusters. Namely, the thrusters cannot produce the necessary small forces to reduce 

small position errors. In spite of these shortcomings, however, the resulting positioning 

error is small. 
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-0.02 1 I I I I I 

0 20 40 60 80 100 120 

Time [s] 

Figure 5.3: Simulation of the measured (thin line) and estimated (thick line) position 

using the total dynamic positioning system, switched on after 60 seconds. 

Finally, as stated in section 4.5, the robustness for the added mass and damping parame- 

ters is to be investigated. This is necessary because these parameters are highly influenced 

by the presence of walls in the vicinity of the floating body and the water depth. From 

this analysis, it follows that the dynamic positioning system is robust for changes in these 

parameters. Even in cases with quite unrealistic parameter values, similar results to the 

ones in figure 5.3 are obtained. 

5.3 Experimental Results 

Next, the dynamic positioning system is tested on the experimental setup. Firstly, the 

observer is tested without the controller, for the wave frequency of f = 0.94 Hz. The 

results using only the observer are depicted in figure 5.4. 

By comparing figure 5.4 with figure 5.2, it can be seen that, in the experiment, similar 

results are obtained as in the simulation. Namely, it is clear that the filtering of the first- 

order wave disturbances is not complete as some oscillatory motion remains in the filtered 

signal. However, because of the SPR-requirement of the observer, better filtering is not 
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Figure 5.4: Experiment with the observer only. Measured (thin line) and estimated (thick 

line) position. 

possible. A difference between the simulations and the experiments, however, is that the 

floating body undergoes large low-frequent periodic motions in the experiment, which 

are not modelled in the simulations (as stated in section 4.4). Although some first-order 

wave disturbances remain in the filtered signal, these low-frequent motions are estimated 

properly. 

Finally, the complete dynzmic positioning system is tested on the experimefittal setup. 

During testing, it is found that,  due to hardware problems, it is impossible to  use the 

dynamic positioning system for controlling both the sway- and yaw-directions a t  the same 

time. These hardware problems are probably caused by the coupling between the thrusters 

used for sway- and yaw-direction (both use thrusters 1-4), the threshold values in the 

thruster curves and the cable actuated position sensors influencing the yaw direction in 

particular. Moreover, the thruster motors run warm during operation, which can affect 

both the parameters foz and fiz of the thruster curves. Naturally, not each thruster will 

be influenced in the same way. Furthermore, as discussed in section 4.3, the behaviour 

of the thrusters as a function of the input value is different for increasing and decreasing 

input values. 
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Therefore, only results for the dynamic positioning system are given with the controller 

active in surge and sway direction (tests using the controller in yaw-direction separately, 

show that it functions properly). In fact, this yields a 3 DOF system with actuators 

capable of influencing only 2 out of 3 DOFs. If all 3 degrees of freedom have to  be 

controlled, the problem is that of an underactuated system, for which the observer and 

controller, proposed in chapter 3, are no longer valid. Linearising this system, similar to  

the approach in section 3.3.1, yields a system that is not controllable anymore. Therefore, 

different approaches should be used for controlling underactuated systems, but due to  

limited time, this has not been done. 

However, without considering the yaw degree of freedom to  be controlled, the system 

is controllable and not underactuated. This approach is followed here. Hence, only the 

stability analysis in chapter 3 changes, but this is omitted here. 

During the experiment, the observer and controller are switched on after 60 seconds. 

The measured and estimated positions are depicted in figure 5.5. For completeness, the 

measurements and estimates in yaw-direction are also given. 

Time [s] 

Figure 5.5: Experiment with the total dynamic positioning system in surge and sway 

direction only. Measured (thin line) and estimated (thick line) position are 

depicted. 
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As can be seen from figure 5.5, the DP system succeeds in stabilising the two DOFs 

considered around the origin. Additionally, it can be seen that both the measured and 

estimated heading angle are biased. This can be attributed to the thruster behaviour and 

the position measurement system, as described above. 

Moreover, figure 5.6 shows the position of the centre of gravity of the floating body in the 

z-y-plane f ~ r  this experimer,t. Here, it car, be seer, that the final accuracy obtained is about 

f 0.003 m in x-direction and f 0.02 m in y-direction, which is quite a satisfactory result 

for only two out of three degrees of freedom controlled, especially when the resolutions in 

table 4.2 are taken into account. 

Figure 5.6: Measured (dotted) and estimated (solid) position in the x-y-plane during the 

experiment. 

Finally, figure 5.7 shows a zoom plot of the X -  and Y-components of the cmtrol 7. The 

threshold values in the thruster curves can be observed in this figure because only a certain 

minimum force can be generated. After some large thruster inputs in the beginning, it 

can be seen that, during the rest of the experiment, the thrusters have sufficient force for 

keeping the floating body on its place. 

The tuning procedure for the observer and controller, is explained more in detail in ap- 

pendix C, for easy use of the DP system with the experimental setup. Additionally, a 

description of the MATLAB- and LabVIEW-files, used to obtain these results, is given. 
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Figure 5.7: Zoom plot of the control T in X- and Y-direction. 



Conclusions and Recommendations 

In order to design a dynamic positioning system for a floating body in three degrees of 

freedom, firstly, a model has been derived to describe both the rigid-body dynamics and 

the environmental disturbances acting on the body. For the latter, a modelling method is 

chosen, that is suitable for control systems design. 

The dynamic positioning system only has to compensate for the low-frequent second-order 

wave drift in the environmental disturbances and not for the first-order oscillatory motion 

caused by the waves. For this purpose, the dynamic positioning system consists of both an 

observer and a controller, designed using Lyapunov analysis. The non-linear observer can 

be designed to have the desired wave filtering properties, but has limited tuning freedom 

due to a strictly positive real requirement in its transfer function. This requirement is 

needed for concluding asymptotic stability. On the other hand, this results in a relatively 

straightforward tuning procedure for the observer. Furthermore, the controller - a PID 

controller with the non-linear rotation matrix included - is proven to be stable in a global 

sense when the maximum allowable yaw-rate exceeds the maximum achievable yaw-rate 

of the floating body. The complete dynamic positioning system, consisting of both the 

observer and controller, is also proven to  be asymptotically stable in a global sense. 

In the simulation model, the threshold values in the thruster characteristics are included, 

as these form an important property of the experimental system. Simulations with the 

dynamic positioning system show that, due to  this behaviour, no asymptotic positioning 

is achieved, but small fluctuations around the desired position remain. 

Tests with the system on the experimental setup show that,  due to the influence of the 

cable actuated position sensors and the threshold values in the thruster curves, only the 

surge and sway degree of freedom can be controlled at the same time (the yaw-direction 

can, however, be controlled separately). Nevertheless, the dynamic positioning system 
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succeeds in stabilising the remaining degrees of freedom of the floating body around the 

origin with relatively small error bounds (f 0.003 m in x-direction and 4~ 0.02 m in y- 

direction). More important, the maximum allowable yaw-rate using this controller by far 

exceeds the maximum achievable yaw rate of the system (r,,, = 28.7 rad/s). Hence, an 

appropriate dynamic positioning system for two degrees of freedom is designed. 

Tc improve the design of the dynamic positioning system and to  overcome the difficulties 

in the experimental setup, the following recommendations can be made. 

First, a solution to the threshold values in the motor characteristics should be found. 

This can either be done by choosing different motors, more capable of operating a t  low 

rotational velocities, or by altering the steering units for the motors, which control the 

rotational velocity, such that low rotational velocities can be generated more accurately. 

Secondly, a contact-less position measurement system would overcome the difficulty that 

the cable actuated position sensors influence the degrees of freedom in an undesired way. 

Optical or hydroacoustic techniques could be used for this. Alternatively, linear and an- 

gular acceleration measurements with &rift compensation could provide a solution. 

Furthermore, t o  overcome the effect of the narrow notch in the observer transfer function, 

the observer could be made adaptive to the wave frequency. Consequently, due to the 

relatively straightforward tuning procedure, the observer gains could, in that  case, be 

tuned automatically. 

Moreover, it would be better to use a smaller floating body in the experimental setup. 

Namely, the present floating body has rather large inertia properties and is relatively large 

in comparison to the wave tank width. As a result, it causes a lot of disturbance in the 

wave field, thus influencing the hydrodynamic properties in an undesired way. 

Finally, it would be worthwhile investigating the performance of more advanced controllers 

on the dynamic positioning problem, as only a simple PID-like controller has been used 

up till now. 



Modelling of Marine Vehicles 

A.1 Notation and Kinematics 

The rigid-body motion of marine vehicles can be described by means of 6 degrees of free- 

dom (DOF), since 6 independent coordinates are necessary to uniquely determine the 

position and the orientation of the vehicle. Three coordinates correspond to the trans- 

lational motion along the x-, y- and z-axes, whereas the other three correspond to the 

orientation and rotational motion. For marine vehicles, these degrees of freedom are con- 

veniently called surge, sway and heave for translational motions and roll, pitch and yaw 

for rotational motions. Moreover, for each degree of freedom, forces and moments are act- 

ing on the vehicle. These components, together with their time derivatives, are explained 

in table A.I. 

Table A . l :  Notation used for marine vehicles. 

DOF 

motion in x-direction (surge) 

motion in y-direction (sway) 

motion in z-direction (heave) 

rotation about the x-axis (roll) 

rotation about the y-axis (pitch) 

rotation about the z-axis (yaw) 

linear and 

angular velocity 

position and 

Euler angles 

forces and 

moments 

In the analysis of marine vehicles, two coordinate frames are defined. (see figure A.l). 
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Figure A . l :  Body-fixed and Earth-fixed reference frames. 

The moving reference system XoYoZo is the so-called body-fixed reference frame. Com- 

monly, the origin 0 of this system is chosen to coincide with the center of gravity (COG) 

of the vessel. The axes of the body-fixed frame are chosen along the principal axes of 

inertia of the vessel and are defined as: 

Xo - longitudinal axis, directed from aft to fore, 

Yo - transverse axis, directed to starboard, 

Zo - normal axis, directed from top to bottom. 

The motion of the body-fixed frame is described relative to an inertial reference frame or 

Earth-fixed frame. Hereby, it is assumed that the accelerations of a point on the surface of 

the Earth can be neglected, since the motion of the Earth hardly affects low speed marine 

vehicles. As a result, the Earth-fixed frame X Y Z  is an inertial frame. 

In order to describe the position and the orientation of the marine vehicle, the following 
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vectors are defined: 

 ere, q denotes the position and orientation vector with coordinates in the earth-fixed 

reference frame and v denotes the linear and angular velocity vector with coordinates in 

the body-fixed frame. Finally, T describes the forces and moments acting on the vehicle 

in the body-fixed frame. 

A . l . l  Velocity Transformations 

The vehicle's path relative to the inertial space can be described by a velocity transfor- 

mation: 

ql = J1(772)% ( A 4  

where J l ( q 2 )  denotes a rotation matrix which depends on the Euler angles 4 ,  0 and $. For 

the relation between the angular velocity vector v2 and the Euler rate vector Q2 = [4,0, $1 
a similar relation holds, namely: 

It  should be noted that the angular velocity vector v2 cannot be integrated directly, as 

this has no physical meaning. 

The velocity transformations are commonly described by a sequence of three rotations. 

The resulting expressions for the transformation matrices in (A.l) and (A.2) are given 

here, whereas the interested reader is referred to Fossen (1994) for the detailed computa- 

tions. 

where c., s. and t .  denote cos(.), sin(.) and tan(.), respectively. Note that J 2 ( q 2 )  is unde- 

fined for a pitch angle of 0 = f 90". For surface vessels however, this will be no problem. 

Combining (A.1) and (A.2), the kinematic equations can be written in the following vector 

form: 
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A.2 Rigid-Body Dynamics 

The 6 DOF equations of motion for a marine vehicle can be derived by the Newton-Euler 

formulation or by the Lagrangian formulation. It is worthwhile mentioning that in the 

latter formulation a special principle has to be applied. Namely, in order to formulate the 

equations of motion in terms of the body-fixed reference frcme, the generdized velocities 

v = [u,v,  w,p,q, rIT are used as generaiized coordinates. Direct integration of the gen- 

eralised angular velocities has no physical meaning. Therefore, Lagrange's equations in 

terms of quasi-coordinates have to  be used (see Meirovitch, 1990). 

The general 6 DOF rigid-body equations of motion are derived in Fossen (1994) and are, 

written in vector form, the following: 

T where -MRB = -MRB > 0 is the positive definite rigid-body inertia, matrix, CRB(v)  = 

-c:, (v)  is the matrix with Coriolis and centripetal terms and T R B  = [X, Y, 2, K, M, NIT 

is a generalized vector with external forces and moments. As a simplified version of the 

equations of motion for dynamic positioning of ships is given in section 2.1.2, there is no 

need for giving the complete expressions for the matrices in equation (A.5) here. 

A.3 Hydrodynamic Forces and Moments 

A lot of different methods for the calculation of sea loads on ships are available in lit- 

erature. One of the most popular, is a linear potential method, where the pressure field 

of the wetted surface is determined from superposition of the radiation and diffraction 

problem (see Fakinsen, 1990). These two sub-problems will be discussed next. 

Radiaton-Induced Forces 

Radiation-induced forces are the forces acting on the body when the body is forced to 

oscillate with the wave excitation frequency and there are no incident waves. These forces 

can be written as the sum of three components: 

1. Added mass due to the inertia of the surrounding fluid, 

2. Radiation-induced potential damping due to the energy carried away by the gener- 

ated surface waves, 

3. Restoring forces and moments due to Archimedes (weight and buoyancy). 
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The contribution of these forces ( r R )  can be written in vector form as (Fossen, 1994): 

Here, the first two terms in the right-hand side correspond to added mass contributions, 

D p ( v )  is the potential damping term and g (q )  contains the restoring forces. Moreover, 

i:: additim t e  petentia! damping, ether damping eE&s hwe tc! be included: 

where Ds (v ) ,  D w ( v )  and D v ( v )  denote damping effects due to skin friction, wave drift 

damping and vortex shedding, respectively. The total radiation-induced and damping 

forces r~ can, hence, be written as the sum of equation (A.6) and (A.7): 

where the total damping matrix D ( v )  is defined as: 

Froude-Kriloff and Diffraction Forces 

These are forces on the body when the body is restrained from oscillating and there are 

incident regular waves. These forces will be discussed in the context of environmental 

disturbances acting on the marine vessel in section A.4, which is a common approach in 

control systems design. 

Combining the forces and moments acting on the body, as described above, the vector 

TRB with generalized forces and moments in (A.5) can be written as: 

Here, TH is given in (A.8), TE is a vector with environmental forces and moments and r 

is a vector with thruster forces. Inserting (A.8) in (A.lO) and combining with (A.5) yields 

the following vectorial representation of the equations of motion: 

Mu + C ( v ) v  + D ( v )  + g(q )  = 7-3 + r, (A. 1 1) 

where M = MRB + M A  and C ( v )  = CRB(v) + CA(v) .  

In the next three sections, the hydrodynamic terms in equation (A. l l )  will be discussed 

in detail. 
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A.3.1 Added Mass and Inertia 

Often, added mass is misunderstood to be a finite amount of water connected to the 

submerged vehicle such that the vehicle and the fluid represent a new system with a mass 

larger than the original system. This is not true since the vehicle oscillations force the 

whole fluid to oscillate with a certain amplitude (which decays with increasing distance 

to the vehicle). Added (virtual) mass should, however, be understood as pressure-induced 

forces and moments acting on a body, which are proportional to the body's acceleration. 

The added mass of a certain vehicle is frequency dependent and highly influenced by for 

example water depth and presence of reflecting surfaces in the vicinity of the vessel. Often, 

numerical packages are used to approximate the added mass coefficients. For positioned 

ships, it is a good approximation to assume the added mass matrix to be frequency 

independent. Moreover, the added mass coefficients are evaluated for zero frequency, as this 

asymptotic value is of interest for dynamic positioning. Hence, the added mass matrix is 

positive definite and symmetric: MA = M: > 9. Equivalently, the hydrodynamic matrix 

with Coriolis and centripetal terms is skew-symmetrical and also frequency independent: 

C,(u) = -c:(v). 

A.3.2 Hydrodynamic Damping 

As mentioned before, the hydrodynamic damping of an ocean vehicle is mainly caused by 

a combination of four damping components (see equation (A.9)), which will shortly be 

explained next. 

Potential damping D p ( u )  is radiation-induced damping due to the fact that an os- 

cillation body generates waves that carry away energy. Similar to added mass, potential 

damping is frequency dependent. For low frequencies, howe~ier, potedial damping does 

not occur as virtually no waves are generated in this case. 

Skin friction damping Ds(v) can be split in two parts: linear skin friction is caused 

by laminar boundary layers and quadratic skin friction is caused by turbulent boundary 

layers. The linear part is most important when designing a control system for positioning 

of ships. 

Wave drift damping D w ( v )  can be seen as an added resistance for surface vessels 

moving through the waves. This damping is proportional to the square of the wave height. 

Damping due to vortex shedding D v ( v )  is damping in a viscous fluid which can be 

interpreted as a drag force acting on the vehicle. 
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It  is difficult to obtain analytical expressions for all of these damping types. However, 

it can be stated that the hydrodynamic damping matrix (see equation (A.9)) is strictly 

positive ( D ( v )  > 0), since damping forces are known to be dissipative. 

A.3.3 Restoring Forces and Moments 

In addition to  the added mass and damping forces, a vessel will also be affected by 

restoring forces caused by the weight and buoyancy. These restoring forces are equivalent 

to the restoring forces in a mass-spring-damper system. These static considerations are 

referred to as metacentric stability, meaning that a metacentric stable vehicle will resist 

inclinations away from its static equilibrium point in the horizontal plane. The restoring 

forces and moments only influence the heave, pitch and roll movement of a marine vessel. 

Hence, for positioning of surface ships, these forces do not have to be taken into account 

as long as the ship is metacentric stable, which is assumed to be the case. 

A.4 Environmental Disturbances 

This section describes the environmental disturbances acting on a marine vessel and meth- 

ods to model them. More specifically, three types of environmental disturbances can be 

considered: 

waves (wind generated), 

wind, 

ocean current. 

In general, these disturbances are both multiplicative and additive to the dynamic equa- 

tions of motion (A.ll).  However, it is assumed here, that the principle of superposition 

can be applied, which means that only additive disturbances are considered. 

Furthermore, only waves can be generated in the experimental setup, as discussed in chap- 

ter 4. Therefore, the description of the other two disturbances is omitted. The interested 

reader is referred to Fossen (1994). 

As mentioned in section A.3, the forces generated by waves are called Fkoude-Kriloff 

and diffraction forces. Generally, these forces can be considered as pressure forces and are 

computed by integrating these pressure forces over the wetted body surface. This pressure 

is both induced by the undisturbed waves and created by the vehicle when the waves are 

reflected from the vessel surface. 
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The method considered here, consists of splitting the environmental disturbances in first- 

order wave disturbances (relatively high-frequent motions) and second-order wave drift. 

This will be discussed in the next two sections. 

A.4. l  First-Order Wave Disturbances 

The motion of waves is normally observed to have only one or a few dominant frequencies. 

The first-order wave disturbances consist of the wave-induced oscillatory motion that a 

vessel undergoes. In control system engineering, it is common to  model this oscillatory 

motion by a linear approximation to the wave spectrum in the form of a transfer func- 

tion (see for example Fossen, 1994). For simplicity, it is assumed in these models that the 

wave spectrum only has one dominant frequency. This wave model can be written in the 

frequency domain as: 

Y(S) = h(s)w(s)7 (A. 12) 

where y(s) is the wave elevation, h(s) is the wave transfer function approximation and 

w(s) is a zero mean Gaussian white noise process with unit intensity. Often, a damped 

oscillator is used for modelling the transfer function h(s) for each DOF: 

(A. 13) 

where kwi denotes the wave intensity for DOF i ,  woi denotes the dominant wave frequency 

and & is the relative damping coefficient in direction i. Typically, ti is chosen < 1. 

To obtain a better representation, a fourth-order wave transfer function approximation 

for each DOF can be used (Lindegaard, 2003), which is given by: 

(A. 14) 

A realisation of this transfer function in state-space for a single DOF with xw E IR4 can 

be written as: 

Here, scalars Ri = w& and Ai = 2&woi are introduced to simplify the notation. Figure A.2 

shows a typical representation of this wave transfer function approximation. 
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Figure A.2: Example of a wave transfer function approximation. The parameters are cho- 

sen as woi = 1.88~ rad/s, ti = 0.03 and kwi = 0.05. 

For ships moving with a forward speed U ,  the dominant wave frequency would have to be 

modified. For positioned ships, however, this so-called frequency of encounter equals the 

dominant wave frequency. 

A.4.2 Second-Order Wave Drift 

Waves acting on a vessel induce forces on it. These forces are, in control applications, 

often modelled as bias forces acting on the vessel. A suitable model for describing these 

bias forces is a first-order Markow process: 

b = -T'y1b + Ebwb (A. i8) 

Here, b is a vector with bias forces and moments, T b  is a diagonal matrix with bias time 

constants Tbi (i = 1, . . . ,6 )  (typically chosen large), wb is a vector of zero mean Gaussian 

white noise processes and Eb is a diagonal matrix scaling the amplitude of wb The bias 

model accounts for slowly varying forces and moments due to second-order wave loads. 

In addition, the bias model will account for slowly-varying unmodelled dynamics and 

actuator thrust losses (Strand, 1999). 



Position Measurement 

B . l  General Idea 

In section 4.2, it is elucidated that the position of the floating body is determined by 

means of 6 cable actuated position sensors. This section describes the derivation of the 

equations that are necessary obtain the position vectors of the front and the back of the 

floating body. In figure B. l ,  a schematic representation of the floating body can be seen, 

where the sensors are numbered as in the experimental setup. 

Figure B.l: Schematic representation of the floating body and the cable actuated position 

sensors. 

The sensor position vectors xi = [xi, yi, % I T  (i = 1,. . . ,6 ) ,  relative to a wave tank fixed 

origin, are measured and given in table 4.1. The sensor coordinates satisfy the following 

properties: 
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Note, that these relations can always be satisfied by defining two separate coordinate 

systems for the front and back side. Here, however, the sensors are positioned such that,  

in addition t o  (B.l) and (B.2), zl = x3 = x4 = ,745 holds (see table 4.1) and the x-axes 

are parallel. Therefore, only one coordinate system is necessary for describing the sensor 

positions. 

I;'rom the six wire lencrths di ( a  = 1 
\ 

6 )  the p s i t i ~ n  zf = [zj, yf,  and zb = 
1 . .  . 1 " J l  

[xb, yb, zbIT have to be determined. Consider the front of the floating body in figure B.1, 

where sensors 1,2 and 3, with wire length 11, l2 and 13, respectively, uniquely determine 

x f .  Namely, this point has to lie on the intersection of three balls, located in position 

x, with radius li (i = 1,2,3) .  This gives two solutions, one on each side of the position 

sensors. Due to  geometry considerations, only one of these solutions is valid and, hence, 

the position vector is known. This will be explained in the next section. 

€32 Calculation of the Position Vectors 

For the front side of the floating body, the equations for the three balls are given as: 

or, written in component-form: 

2 
11 = (XI - ~ f ) ~  + (yl - yf)2 + (21 - ~ f ) ~ ,  (B.6) 
2 

12 = (22 - xf)2 + (y2 - ~ f ) ~  + (22 - ~ f ) ~ ,  (B.7) 

1; = ( ~ 3  - ~ f ) ~  + (93 - ~ f ) ~  + (23 - ~ f ) ~ .  (B.8) 

By subtracting (13.8) from (13.6) and applying @.I) ,  the foliowing resuits: 

This equation can be solved for the y-position of the point a t  the front of the body, 

yielding 

Next, this value is used in equations (B.6) and (B.7) to obtain: 

(B. 10) 

(B.11) 

(B. 12) 
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where the right-hand sides are conveniently written a's cl and c2, respectively. Next, sub- 

tracting (B.12) from (B. l l )  gives 

2 2 
(XI - x ~ ) ~  - ( 2 2  - xf)  + (21 - ~ f )  - (z2 - = c1 - c2, (B. 13) 

which can be solved for zf as a function of x f :  

To save space, variables af and bf are introduced (see equation (B.14)), such that 

Now, (B.15) is inserted in (B. l l )  and, after some manipulation, the following quadratic 

equation in xf is found: 

(1 + b;)~; + (2afbf - 2x1bf - 2xl)xf + x i  - e l +  (zl - u ~ ) ~  = 0. (B. 16) 

By redefining the terms in (B.16) as 

the roots of this equation can be found from the ABC-formula: 

(B.17) 

(B. 18) 

(B. 19) 

By considering figure B. l  together with the sensor coordinates in table 4.1, it can be seen 

that only one solution is valid, namely 

In this way, the position xf = [xf, yf ,  zflT can be determined from equations (B.21), 

(B.lO) and (B.15). The position vector xb can be determined in a similar way, with the 

only difference, that the other solution of the ABC-formula is used. 

From the positions of the two points on the floating body, the coordinates x, y and $, 

relative to the origin 0, can be derived by considering figure B.2. 
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Figure B.2: Top-down view of the floating body. 

From this figure, it can clearly be seen that the following relations hold: 

4 = arctan - (:: :: ) 
(B.22) 

(B. 23) 

(B .24) 

The minus sign is added in (B.22), because the sensor positions are measured with the 

x-direction opposite to the one depicted in figure B.2. For the heading angle, it holds that 

-90" 5 5 90°, due to the limited range for the sensors. Therefore, the positions and 

the heading angle are uniquely determined. 



Tuning Procedure 

C.1 File Description 

The file description consists of three parts. Firstly, m-files, for command-line use in MAT- 

LAB are given. Next, the SIMULINK model-files are described and, finally, the LabVIEW- 

files are given. 

Matlab m-files. 

In table C. 1, a description of the m-files, needed for the use of the dynamic positioning sys- 

tem, is given. All of the files, except the first one, need the general input-file sim-input .m. 

Table C.l: M-file Description. 

sim-input . m 

s h i p r o b u s t .  m 

Initialisation file with the simulation parameters. This file con- 

tains three parts: ( I )  a part with the tuning parameters, (2) a 

part with the fixed parameters and (3) a part with the parame- 

ters for SIMULINK. 

File to calculate the maximum allowable yaw-rate for concluding 

stability of the controller (calculated using LMI-techniques for 

which the LMI-toolbox is needed in MATLAB ). 

File to check the Strictly Positive Realness of the observer, 

needed for concluding stability 

File to  examine the robustness properties of the closed loop sys- 

tem under a change of parameters. This robustness is expressed 

in terms of the location of the closed-loop poles and the maxi- 

mum allowable yaw-rate (once again, the LMI-toolbox is required 

in MATLAB). 
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sim-ship . m 

wave-position . m  

plot-obs-only . m  

Table C.l: M-file Description. 

File to simulate the behaviour of the floating body without ob- 

server or controller. 

File to simulate the behaviour of the ship model together with 

the observer model. 

File to  sirnulate the behaviour of the ship mode with the con- 

troller only. 

File to simulate the behaviour of the complete DP  system, that 

is, the ship model with the observer and controller included. 

File to compare the measurements from pos i t i onmain .  v i  with 

simulations from s h i p .  rndl, such that the wave and bias model 

can be tuned by means of the time responses and the spectrum. 

File to plot the measurements from obs-only .mdl. 

File to plot the results from the measurements from the complete 

Dynamic Positioning system. 

Simulink model-files. 

The model files are given in table C.2. 

Table C .2: Model-file Description. 

contr-only . rndl 

Model-file that contains the ship model. I 
Model file that contains the ship model and the observer. I 
Model file that contains the ship model and the controller. 

Model file that contains the total dynamic positioning system. 

Model file that contains the position measurement part for 

use with LabVIEW. 

Model file that contains the observer for use with LabVIEW. I 
Model file that contains the controller without observer for 

use with LabVIEW 

Model file that contains the complete Dynamic Positioning 

system for use with LabVIEW. 
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LabVlEW Virtual intruments. 

For LabVIEW, the following virtual Instruments (VI's) are available (table C.3), each 

located in a separate folder containing the necessary sub-VI's: 

Table C.3: LabVIEW Virtual Instruments. 

1 pos i t ionmain .v i  I VI that measures the position of the floating body (belongs 

observermain.vi  

con t ro l l e rma in .  v i  

Model use and compilation. 

The models for use in LabVIEW in table C.2 are used as follows: 

to  the SIMULINK model pos i t ion  .mdl). 

VI that contains the position measurement and the observer 

(belongs to the SIMULINK model obs-only . mdl) . 

VI that contains the position measurement and the con- 

troller without observer (belongs to  the SIMULINK model 

contr-only . mdl). 

completemain. v i  

0 sim-input . m is run 

VI that contains the complete Dynamic Positioning system 

(belongs to the SIMULINK model complete .mdl). 

0 The relevant SIMULINK model is opened in MATLAB by (for example): 

open complete.md1 

0 LabVIEW is shut down in case it is still running 

0 The model is compiled by pressing [Ctrllf [B] 

0 The generated .DLL-file is copied into the relevant LabVIEW folder 

0 The LabVIEW model is started 

e After stopping the experiment, the relevant .mat data-file is to  be copied into the 

folder where the MATLAB m-files, described in table C. l ,  are located. 

C.2 General Tuning Procedure 

In order to obtain a working dynamic positioning system, the following tuning procedure 

is advised, where it is assumed that the system parameters do not need to  be modified. In 

general, it is advisable to  run sim-input . m  before every compilation, to make sure that 

the right parameters are available in the workspace of MATLAB. 
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0 Appropriate simulation parameters are set in sim-input .m 

0 The position measurement device is switched on 

0 sim-input .m is executed and position.md1 is opened and compiled ([Ctrl]+[B]) 

e The rest position of the body is checked using positionlnain.vi 

e A frequency and voltage is set for the wave flap in the signal generator and the wave 

generator is switched on 

0 position_main.vi is started and a measurement is performed for preferably 150 

or 300 seconds. Note that incorrect spectra will be calculated from the position 

measurement if not all the cables for measuring the position are under tension! The 

file that is generated (position.mat) is copied into the appropriate MATLAB-folder. 

0 using wave-position.m, the parameters for the wave and bias model (frequency, 

damping and variances) are tuned in sim-input .m, such that the measurements are 

matched. This happens both by matching in the time domain (drift model) and in 

frequency domain (wave model and measurement noise). 

0 The observer is designed to be Strictly Positive Real by tuning the observer pa- 

rameters in sim-input .m and plotting the transfer functions using check3PR.m (in 

order to  do this, the dimensionless damping coefficient in the observer (Cni)  has to 

be chosen approximately three times as large as the one in the wave model) 

0 The observer is tested in simulation by using sim-obs .m 

0 The observer is tested on the experimental setup using observermain.vi (after 

obs-only .mdl is compiled), until it works satisfactorily. To check this, the generated 

obs-only .mat is copied into the MATLAB-folder and plot -obs-only. m is executed. 

0 A controller is designed by modifying the tuning parameters in sim-input .m In- 

creasing the gain gives better results, but do not increase it too much because of 

the limited filtering properties of the observer 

0 The controller is tested in simulation by running sim-obs-contr .m 

The degrees of freedom to be controlled are selected in sim-input .m 

0 complete .mdl is compiled and completemain.vi is started in LabVIEW. The DP 

system can be switched on manually 

0 complete . mat is copied into the MATLAB-folder and plot xomplet e . m is executed. 
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