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Tits's construction of the Ree groups
v Arjeh M. Colien
CWI
Kruislaan 413
1098 SJ AMSTERDAM

§0 Introduction. Following Tits.[3], we present a construction of the
Ree groups (of the first kind), i1.e., the groups of Lie type,sz(F),

where F is a field of characteristic 3 having an automorphism whose

. _ 3 - . . fe s
square is the Frobenius map x * x on F. (Thus, if T is a finite

2m+1 =
3 for some natural number m.) For any

field, it has order g =
such field F, the corresponding group is defined as a subgroup of
the projective linear group PGL(7,F) stabilizing a specified set

of projective points, on which it acts as a doubly transitive
permutation group. We shall also discuss its normal structure.

The merit of the construction is that no knowledge of Lie algebras

or any other theory.beyond Some elementéry facts from number

theory, linear algebra and group theory is required. A disadvantage
‘of the construction is that quite a few computational checks are
involved cof formulae that seem to'have-cbme out of the blue. This

is at least partly due to the lack of (sufficient) geometry in

these notes. The geometry behind it all, as well as an identification
of the groups constructed here with the "classical" Ree groups can

be found in Tits [3]. We mention here that from the intricate
classification of%finite groups of Ree type, finished by Bombieri [ 1]
in 1980, it immediately foilows that for finite fields F "our
groups" are isomorphic to the "eclassical Ree groups.

I am grateful to Professor Tits for elucidating parts of the text

in [ 3], some helpful comments on an earlier version of these notes,
and’fof supplying Formulae (1.2) bélow.‘These formulae were checked

on a computer by A.E. Brouwer.

For the‘duration of these notes, we let F stand for a field of

characteristic 3 with a nontrivial automorphism ¢ whose square

—

02 is the Frobenius map 3. (When applied to an element of F, these

maps appear in the exponent; this justifies the notation for the
2m+1 3m+1

Frobenius map.) If F is finite of order 3 , then ¢ =

.

Finally, F* denotes the multiplicative group cf F.

§1 The construction. For x,y,z € F, denote by y(x,v,2) thg_projective
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point whose homogeneous coordinates are (x,y,2,1,u,v,w), where

(1.1a) a = x2y o+ xz o+ g0 - KI*3
(1.1b) v = x99 + 2%+ xy? - yz - (2043
and

(1.1c) w = -z2 = xv - yu.

Furthermore, put y, = y(0,0,0), and let « be the projective point
whose homogeneous coordinates are (0,0,0,0,0,0,1). Set

T = {y(x,y,2)[x,y,z € F} and T = r_ U {«=}. The group 2GQ(F) is
defined as the group of all (nonsingular) projective linear
transformations leaving I' invariant. Elements of the group PGL(7,F)
of all projective linear transformations are thought of as matrices,
determined up to a nonzero scalar factor, operating from the

left on column vectors.

We end this section with some useful formulae. If (x,v52,1,u,v,w)

are the homogeneous coordinates of v(x,vy,2), then

-1
(1.2a) Oty (wzy—vzu-vwz)g w - uw’ = 0
(1.2b) (uxz+u2—x2w)0_1v -z + (uwz+w2x—u2v)5—1y =0
(1.20)7 ‘ v9 - u + (v+yz-y2x)0_1x= 0
(1.2d4) vG+2 +i(uwz+w2x—uzv)g— w2 - (uvtzww® = O

These formulae can be verified by applying ¢ to both sides of
the equations and subsequently replacing u,v,w by expressions in
X,v,z using (1.1). These veri i

straightforward. .

The subgroups B, U, H,and G of 2GQ(F). For a,b,c € F there is a

. i e . o2 .
unique projective linear transformation T, 4 . iR GQ(F) extending
? 2

the map on I' given by

(2.1) vy(x,y,2) * Y(X+a,acx+y+b,(a0+1—b)x+ay+z+c)
{oo-*-*oo

It is, again, straightforward to check this, so the proof 1s omitted.



Given a,b,c,d,e,f we have the following multiplicatibn rule.

. (2‘2) taabactd:e:f - ta-l-d’b-l-e-l-agd’f+(2+a0+1d—bd+ea

Thus U := {t ’b’cfa,b,c € F} is a subgroup of 2G (F) fixing « and
regular on I_. Its center 7Z(U) coincides with 1ts pApmutater sub-

group [USUI w{au w' - LU, wuy

(2.3) 7(U) = [UfUl = {to 0 C[c € F}. In particular, U is nilpotent.
b 2 .

- Next, for k € F\N{0}, let hy be the projective linear transformation

whose matrix is of diagonal form with diagonal entries
o+l [ 0+2 c+3 20+3 20+4) ‘

(k,k ,k ,1,k .k Then
(2.4%) ‘ hy Y(x2,y,2) = Y(kx,k0+ly3k0+zz) (x,y,2 € f),
| 2
so H := {hk[k € F*} is a subgroup of "G, (F) ~'x'ng ©, Yg» @nd
normalizing U. Thus B = UH is a subgroup ' of G (F) f1 Xlng ®,
It is readily seen that [B,B] = U. In fact, we need the following

slightly stronger statement later on. Let B"be.a.subgroup of B

properly containing (h_l,U).,Then

(2.5) [B',B'] = U.
Proof: Use (2.3) and»[hk,ta’b’c] =
-1 _
h, t € o Z(U) for all

[
kra,b,e’y-t7a,b,e ((k-1)a, (k9T T-1)p-(x%-1)a""*,0)

a,b € F and k € F¥\{*1} such that h, € B' to derive U <[B',B'].

Since B8'/U = H/(U N H) is abelian, the converse inclusion

also holds. Hence (2.5).

Finally, denote by w the involutory projective linear transformation
determined by the permutation (ex,ev)(ey,eu)(et,ew)<xfthestandardbasis
7. 1
€ yr8y e ’et’eu’év’ew of F', and set G = <B?w), the group generated
by B and w. We claim
. 2
(2.6) G is a subgroup of GQ(F).
Proof. In view of the above and since w(«®) = Ygo we need only

show that w preserves T \{y,} in order to establish this claim.

First of all, we assert that if (x,v,z,1,u,v,w) represents the

point y(x,y,z) of Fm\{yo}, then w + 0.
For suppose w = 0, then by (1.2a), we get v = 0, and hence,

by (1.2b) either u = 0 opr z = 0. Thus z°= uy = 0 in view of (1.1c).
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Hence u = 0 thanks to (1.2c¢). It follows, again by (1.2¢),
o+l

-1 .
that yO = (yz'x)O x, so that either y = 0 or y = x . Consequently,Dby

(1.1b),x = y = z = 0, which is in conflict with Y(x,v,2) F Yo

This proves that w # 0, indeed.

In order to finish the proof of (2.6), notice that for

vy(x,y,z) € Fm\{YO}’ we have

(v ui z\

(2.7) w y(x,y,z) = Y\;ag:;/-
From (1.2a), (1.2d), and {(1.1c), the defining equations (1.1)
(¥,8 2} e 1 follow.

for yi—, = z
\w’>w>w)/

Later on we <chall use that w normalizes H, or, more precisel
) : E) > s

(2.8) wh o t=n (k € F*).

Some geometry. We recall that a quadratic form Q on,F7 is a
homogeneous polynomial on F7 (in the variables‘x,y,;,t,u,v,w3 say)

of degree 2. The quadric associated with Q'is the set of projective

points whose homogeneous coordinates p = (x,y,z,t,u,v,w) satisfy
Q(p) = 0. (Notice that this definition is indeed independent of
the choice of homogenecus coordinates.) The quadric determines
Q up to a scalar multiple. In view of (1.lc) and a quick check
for =, all points of T are easily seen to belong to the gquadric

associated with QO’ where
(3.1) QO(P) = tw + XV + yu + z2 C(p= (X,y,z,t,u,v,w) € .

The converse also holds:

containing T.

Proof. The set A of points of T defined over the ground field T,

consists of 33 + 1 = 28 points. On the other hand, the vector

space of all quadratic forms on F7 has a natural basis @ consisting
of the 28 monomials on F7 of degree? (with coefficient 1).

Consider the 28 x 28-matrix whose TOWS (columns) are indexed by

the elements of A (fesp. ®) -and whose a,o éntry for a € A, o €90

is @(a). Straightforward computation yields that the rank of
+his matrix is 27. This means that there is a unique gquadric

containing A. Hence (3.2). 7 —



There is a standard way to obtain an inner product from the

quadratic form QO’ namely
(p,q) = Q0<p+Ci> - Qu(p) - Q@) = (p,q e r’).

Given a subset X of F7, we denote by XL the subset of F7 consisting
of all vectors perpendicular to X with respect to this inner
product. Ricall that ex,ey,ez,et,eu,ev,eW denote the standard
basis of F , and observe that e,,e  are homogeneous coordinates

for Yoo © respectively.

The linear subspaces {x =y = u = 0}, {x = z = v = 0} and
{y =u=v =20} of F7 are exceptional in the sense that they
contain "more"™ points of I than an "average" 4Y-dimensional

subspace could have. The following statement is based on this

phenomenon.
(3.3) Let (p,p') be an ordered pair‘of nonzero vectors in
{ef,ew}L such that for each A € F there is a point in
I whose homogeneous coordinates are Ap + kgp"+ e, *+ we
for some w € F. Then (p,p') is one of (ez,ev),
(e ,eu), up to nonzero scalar multiplications of both
p and p'.
Proof. Write p = (x,y,z,0,u,v,0) and p' = (x',y',z",0,u',v',0).

Then, for A € F, the projective point with homogeneous coordinates
AD + ch' e+ We, for some w € F belongs to I if and only if
(1.1a) and (1.1b) are satisfied for this vector, i.e., if and only

if the following two formulae hold.

(3.1a) rau o+ A% ut-y%) - Ag(x2y+y'g) - AG+2(x2y'—xx'y)
‘K26+1(X'2y—xx}y’)—Ascx’zy' - A2xz - x0+1(X’z+xz')
{+x0+3(xc+3)_; ngx’z' + Xucxcx's ‘
N A6x'gx3 . X3G+3x'0+3 ' -0
(3.4b) [ Av%-xq(v'—zg)-Azc(xoyg—y'z')-KG+3(X'GyG+y‘GXG)-X6x
—A3(xy2+z’0)-AG+2(x’y2—xyy')-A20+1(xy'2—x’yy’)
<_ kgcx’y’z-FAZyz-PAO+1(y’z+z'y)}-k20+3x20+3
+A56x2qx‘3-ng6x0+3x'g-—qufsxgx'0+3
+A9x’26x3+ ﬁo+6x,20+3 : — - q

1 O

y

1 O



The hypothe51s of (3 3) implies that these two equations hold

for all X € F. By a standard result in algebra, cf. Bourbaki [ 2]
'§5, this implies that the coefficients of most monomials occurring
in the left hand sides, viewed as polynomials in A and A9

vanish. In the case of small fields, however, a littlé caution is
in order. (Recall that F # E}.) If F = Eé7, then o = 9, so

. + .
that, for instance, Aqo =AY 1. Nevertheless, in each of the

equations (3.4), the monomials A,Xz,la,xo,lzc+3, and K30+6 do not

occur in more than one "guise" over any field F under consideration,

so their coefficients vanish. Thus,

u=v = yz = x2y+y’0 = xy2+z'G = u'-y = vr-z9 = x26+3 = x'20+3 = 0.
It immediately follows that either p = ze_ and p' = zcev, or
P = vye, and p' = yqeﬁ, according as y = 0 or z = 0. This settles

(3.3).

The structure of G (F). The group of all projective linear

transformations preserv1ng the quadric accoc1ated with Qg is
a classical group of Lie type B, (F). It will be denoted PGO(7,F).

As a direct consequence of (3. 2), we have

(4.1) 2G,Z(F) is a subgroup of PGO(7,F).

This observation and (3.3) enable us to determine 2GQ(F).

(4.2) The stabilizer in 2GZ(F) of g and « coincides with H.

Proof. First of ail, notice that w interchanges Yg and =, and
hence normalizes the stabilizer in question.

. Suppose g € 2G2(F) stabilizes both‘yo and «. Then.we may view g
as a nonsingular matrix fixing e, and transforming e to a scalar
multiple of itself. In view of (4.1), the set {e 2, } is also
preserved by g. Hence, g preserves the set of all ODde%ed pairs
(p,p') of vectors in F7 with the property that for each A € T
there is w € F such that Ap + 29 p' T e wew represents a point
of T. But the latter set has only two elements according to (3. 2).

These two elements behave differently under @, as

(e _,e. ),

e ,e
w( z? v) 277X

while

1)

wle, ,e ) (e _,e ). -
y’u u’Ty ;



§5

Thus, g(ey,eu) cannot be equal to (Aez,uev) for some A,u € F, [for
otherwise, wgw(ey) = ug(eu) = w(uev) = He ;s but wgw stabilizes
both Yq and », so, according to (3.3) should map ey to a nonzero
scalar multiple of ey or e_, a contradiction] . It follows that g
fixes the projective points with homogeneous coordinates e 5€y>

ey,e and, as e, = m(ev), also e, - In other words, g has diagonal

form, with diagonal, say,
: e

(@,B,Y,l,g,ﬂ,e);

Now, H is contained in the stabilizer of Yo and'w, so after multipli-
cation by hu'l’ a member Qf H, we may assume that a = 1. By

(1.1) applied to gY(i,O,O)’ we get ¢ =n = 6 = 1. The same argument
for wgw yields B = vy = 1, whence g = 1 € H.

The conclusion is that H is indeed the stabilizer in 2GZ(F) of

Yg and «. This finishes the proof of (4.2).
The importance of (4.2) lies in the following immediate consequence

(4.3) G = 2GZ(F) = B U UyB, with uniqueness of expression

at the right hand side. In particular, 2GZ(F) is a

doubly transitive permutation group of T with point

stabilizer B and two point stabilizer H.

In particular,

2m+

q3 and

1, then |U|
3, 3
q (g +1)(g-1).

(w.u) | If F is finite of order q =3
| %e, ()]

|H] = (g-1), so [B]| = q3(q-1) and

The normal structure of ZGZ(F)'

Let N be the subgroup of G = 2G,)(F) generated by U and all its
conjugates. We first show. that N comprises quite a lot of G.

Consider the following identities in G.

(5.1a) wt w o= wt

t_1,0,-19%-1,1,-1°

(5.1b) wt w = t1’1 Owti,—l,Oh—l'

=2

These identities are easily verified by use of (2.1), (2.%) and
(2.7). In fact, the permutations of T on both hand sides of either
equation (5.1) have the same images on «, ?05 and y(1,0,0), so

that they must be equal according to (4.2).



Now; (5.1a) shows that w belongs to N, and this, together with

(5.1b) resulté in h___1 € N. Since N is ncrmal in G, we also obtain
that hk2 = hkwhk-iw is in N for every k € F*.. Thus, N contains

U, w and the subgroup of H generated by all h 9 for k € F* and
h_,. In view of (4.3) this yields 3

(5.2) G = HN, and G/N = F*/F', where F' is a subgroup of F*

containing all nonzero sguares and -1.

(The second part of the statement follows from the first part by

the First Isomorphism Theorem.) From this, we derive

(5.3)  [@,8] =N = [\r N .

Proof. Since [B,Bl = U (cf. (2.5)), we have U C [G, c] As [c,a]
is normal in G, it follows that N € [G,G]. But G/N is abelian

by (5.2), so N D [@,G]l, and the first equality is established.
As for the second equality, by (2.5) applied to B' = B N N, we
have that U € [N,N]. Since [N,N] is characteristic in N and N is
normal in G, the group [N,N] is normal in G, too, so that N C [N,N],

whence N =[N,N], and we are done.
We are now in a position to prove the main result of this section.

(5.4) N is a simple group. Thus, any nontrivial normal subgroup

of G must contain N.

Proof. Let M be aﬁnontrivial normal subgroup of N. As N is doubly
transitive on I (it contains U, w and all conjugates), M must

be transitive. This means that N = M(B N N), implying G = NH = MB
(cf. 5.2). Hence, if g € G, there are m € M and b € B with g = mb,
so that gUg_1 = mUm'1 C MUM = UM (as U is normal in B and contalned

in N). This shows ‘that any con]ugate of U is contained in UM.
‘Therefore, N = UM, and, by the First Isomorphism Theorem,

'N/M = U/U N M. But the right hand side represents a nilpotent group
(cf. (2.3)) while, due to (5.3), the left hand side 1s its own

commutator subgroup.

IR

This can only happen if N/M = {1}, i:e., M = N.

Since -1 is not a square in F and the subgroup of F* of all squares

has index 2 if F is finite, it follows that

(5.5) If ¥ is finite, then G is simple.
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Exercises. Show that

(7.1) There exist fields F as described in §1 such that F*
' does not coincide with its subgroup generated bV -1

and the nonzero squares.

(7.2) For each pair of points of I' with nomogeneous coordinates

p,q, respectively, we have p & {q}

(7.3a) Each'pair'of points of T is fixed by-a unique involution
in G. Given such a pair v,8 denot ebwa theset of points

fixed by the correspondlng involution. lhus Ys8 € Z. 5
. J

(7.3b) G is transitive on the set {ZY 5[Y75 €T, v+ 68}.
2
(7.3c) The stabilizer in G of zy S is doubly transitive on the
2

set £ 5, and contains a subgroup isomorphic to the

- projective special linear group PSL(2,F).

(7.4%) Determine 2GZ(F) for F = F,. Prove that 262(F)55Aut PSL(2,8)

in this case.

2 december 1983



