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Abstract

Continuum approaches are reviewed which set out to model localised deformations that act as a
precursor to final fracture in quasi-brittle materials. The role of material instabilities in trigger-
ing strain localisation is discussed as well as that of dispersive wave propagation in setting the
strain profile in localisation bands (fracture process zones). Some numerical examples are given
of structures made of concrete and fibre-reinforced polymers and ceramics in order to illustrate
the discussion.

Keywords: Higher-order Continua, Softening, Fracture, Localisation, Finite Element Analysis

1 Introduction

The simulation of fracture processes in quasi-brittle materials is a complicated field of research.
The inhomogeneous deformations that occur even in carefully executed servo-controlled experi-
ments make the task of obtaining reliable and reproducible experimental results difficult and
challenging at the same time for the experimentalist. However, the difficulties inherent in mod-
elling the experimentally observed phenomena in a physically realistic manner and in a mathe-
matically consistent fashion, and subsequently in translating this model into efficient and robust
numerical simulation software also set a major task for theoreticians and numerical experts.

Essentially, two different approaches can be distinguished in modelling fracture processes
in quasi-brittle materials like concrete, rock and ceramics. Firstly, we have discontinuum
approaches, in which the crack is modelled by introducing geometric discontinuities in the
numerical simulation. Secondly - and this will be the subject of this treatment - fracture and
damage processes can be modelled by setting up appropriate constitutive models within the
framework of continuum mechanics. This for instance enables modelling micro-cracks, voids
and micro-structural defects at the continuum level.

A major problem when using a standard, rate-independent continuum for modelling
degradation processes is that beyond a certain level of damage accumulation the governing set
of partial differential equations changes type. In the static case the elliptic character of the set of
partial differential equations is lost, while, on the other hand, in the dynamic case we observe a
change of a hyperbolic set into an elliptic set. In both cases the rate boundary value problem
becomes ill-posed and numerical solutions suffer from spurious mesh sensitivity.

The inadequacy of the standard, rate-independent continuum to model failure zones cor-
rectly is due to the fact that force-displacement relations measured in testing devices are simply
mapped onto stress-strain curves by dividing the force and the elongation by the original load-
carrying area and the original length of the specimen respectively. This is done without taking
into account the changes in the micro-structure that occur when the material is so heavily dam-
aged as in fracture processes. Therefore, the mathematical description ceases to be a meaningful
representation of the physical reality.

To solve this problem one must either introduce additional terms in the continuum
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description which reflect the changes in the micro-structure that occur during fracture, or one
must take into account the viscosity of the material, In both cases the effect is that the governing
equations do not change type during the damage evolution process and that physically meaning-
ful solutions are obtained for the entire loading range. Another way to look upon the introduc-
tion of additional terms in the continuum description is that the Dirac distributions for the strain
at failure are replaced by continuous strain distributions, which lend themselves for description
by standard numerical schemes. Although the strain gradients are now finite, they may be very
steep and the concentration of strain in a small area is then referred to as strain localisation or
localisation of deformation.

This paper starts by reviewing the role of material instabilities in potentially destabilising
structural behaviour and in causing loss of well-posedness of the rate-boundary value problem.
Then, various methods that set out to cure the loss of well-posedness at damage evolution are
elucidated, such as non-local approaches, gradient models, Cosserat models and the inclusion of
rate-dependence. Finally the role of dispersion in setting the strain profile in localisation zones
is reviewed.

2 Material instabilities

At the continuum level the driving forces behind localisation phenomena are material instabili-
ties, that is, the constitutive relationship that relates stress to strain violates the stability criterion
that the inner product of the stress rate & and the strain rate &y is positive, Hill (1958), Maier
and Hueckel (1979):

&;6,>0. (M

Obviously, this inner product becomes negative when, in a uniaxial tension or compression test,
the slope of the homogenised axial stress - axial strain curve is negative. We call this phe-
nomenon strain softening. By using the terminology ‘homogenised’ we refer to the fact that ini-
tial flaws and boundary conditions necessarily induce a non-homogeneous stress state in a speci-
men. In particular during progressive failure of the specimen these flaws and local stress con-
centrations will cause strongly inhomogeneous deformations of the specimen. The procedure
that is normally utilised to derive stress-strain relations, namely dividing the force by the virgin
load-carrying area and dividing the displacement of the end of the specimen by the original
length so as to obtain stress and strain respectively then no longer reflects what happens at a
micro-level and loses physical significance. Nonetheless, we may still employ this procedure in
a continuum description provided that we account for these micro-structural changes by includ-
ing additional terms in the model.

There is also a class of material instabilities that can cause the inner product of stress rate
and strain rate to become negative without the occurrence of strain softening as defined above.
These instabilities can arise when the predominant load-carrying mechanism of the material is
due to frictional effects such as in sands, rock joints and in pre-cracked concrete. At a phe-
nomenological level such material behaviour usually results in constitutive models which, in a
multiaxial context, have a non-symmetric relation between the stress-rate tensor and the strain-
rate tensor. This lack of symmetry is in itself sufficient to cause loss of material stability, even if
the slope of the axial stress-strain curve is still rising, Rudnicki and Rice (1975).

Limiting the discussion to incrementally-linear stress-strain relations, that is the relation
between stress rate &;; and strain rate £;; can be written as

d'U:Dijklékl ) 2)
with Dy, the material tangential stiffness tensor, inequality (1) can be formulated as
éile:jklékl>O . (3)

The limiting case that the inequality of (3) is replaced by an equality, marks the onset of mate-
rial instability. Mathematically, this is associated with loss of positive-definiteness of the
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material tangential stiffness tensor Dy
det(Dijkl + Dklij) =0. €]

Material instability can lead to structural instability. For a structure that occupies a volume V
Hill's definition (1958) guarantees stability if

[ 240,av>0 )
12

for all kinematically admissible £;;. Obviously, violation of inequality (1), i.e. loss of maerial
stability, may lead to violaion of identity (5), thus opening the possibility of structural instabil-
ity. Accordingly, the mere existence of material instabilities (e.g. strain softening) may lead to
structural instability, even in the absence of geometric destabilising terms.

In itself this observation does not explain the frequently reported pathological behaviour
of finite element computations for constitutive models where positive-definiteness of Dy, fails
at some stage of the loading process. Indeed, the crucial consequence of the loss of positive-
definiteness of the material tangent operator Dy is not that it may cause structural instability,
but that it may result in loss of ellipticity of the governing se of rate equations. Mathematically,
loss of ellipticity occurs if

det(njDijkln,)=O ’ (6)

where the summation convention with respect to repeated indices has been adopted. Physically,
condition (6) indicates the existence of a discontinuity (with the normal vector ;) in the veloc-
ity gradient and is coincident with Hill’s condition for the propagation of plane acceleration
waves in solids, Hill (1962).

Assuming small displacement gradients loss of material stability as expressed by (4) is a
necessary condition for loss of ellipticity. To show this we first substitute the strain rate field that
derives from a piecewise homogeneous deformation, cf. Knowles and Sternberg (1978), de
Borst (1986):

EU=1/2(n,mj+njm,) N €))

with m; an arbitrary vector, in the condition for loss of material stability, i.e. £;Dyyéy =0, so
that m;n ;D myn; =0. This identity holds for arbitrary my if and only if

det(l/znj(D,-jk,+Dk,,-j)n,)=0 . 8)

Because the real-valued eigenspectrum of n Dy is bounded by the minimum and maximum
eigenvalues of 1on;(Dyy + Dyy)ny, det(Van (D + Dyydny) always vanishes prior to satis-
faction of eq.(6). Since eq. (8) can only by satisfied if material stability is lost (eq.(4)), it follows
that loss of ellipticity can only occur if we have loss of material stability,

Ellipticity is a necessary condition for well-posedness of the rate boundary value problem,
in the sense that a finite number of linearly independent solutions are admitted, continuously
depending on the data and not involving discontinuities, Benallal et al. (1991). It is emphasised
that ellipticity is a local condition and is but one of the three conditions that are necessary for
well-posedness of the rate boundary value problem. The other two conditions for well-
posedness are satisfaction of the boundary complementing condition, which excludes the emer-
gence of stationary surface waves (Rayleigh waves), and the satisfaction of the interfacial com-
plementing condition, which excludes the emergence of stationary interfacial waves (Stonely
waves), Needleman and Ortiz (1991).

3 The standard continuum approach for localised failure computations

The essential deficiency of the standard continuum model is most simply demonstrated by the
example of a simple bar loaded in uniaxial tension, Figure 1 (Crisfield 1982, de Borst 1986).
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Figure 1. Strain-softening bar subject to uniaxial loading,
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Figure 2. Stress-strain diagram (left) and response of an imperfect bar in terms of an
stress-average strain curve (right).

Let the bar be divided into 2 elements. Prior to reaching the tensile strength f; a linear relation
is assumed between the (normal) stress o and the (normal) strain &:

oc=Ee, ©)

with E Young’s modulus. After reaching the peak strength a descending slope is defined in this
diagram through an affine transformation from the measured load-displacement curve. The
result is given in the left part of Figure 2, where &, marks the point where the load-carrying
capacity is totally exhausted. In the post-peak regime the constitutive model can thus be sum-
marised as:

e=¢e*+¢l, (10)
which constitutes a decomposition of the strain into an elastic part £°:

& =FElo, (11)
and a contribution due to inelastic effects (eg, cracking or plastic slip)

g=hYo- 1), (12)

where h plays a role for the inelastic strain &' similar to that of E for the elastic strains. In case
of degrading materials /2 <0 and A is termed a softening modulus. For simplicity sake % is now
assumed to be a constant (linear softening). Eq. (12) may also be thought of as an integrated
form of the evolution equation for the stress rate after failure:

o=fi+he. (13)

Now suppose that one element has a tensile strength that is marginally below that of the
other m—1 elements. Upon reaching the tensile strength of this element failure will occur. In
the other, neighbouring elements the tensile strength is not exceeded and they will unload elasti-
cally. The result on the average strain of the bar £ is plotted in the right part of Figure 2 for dif-
ferent discretisations of the bar. The results are fully dominated by the discretisation, and
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Figure 3. Deformed configurations for carbonfibre-reinforced ceramic.
Left: coarse mesh (973 elements). Right: fine mesh (15568 elements).
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Figure 4. Load-displacement diagrams for carbonfibre-reinforced ceramic composite.

convergence to a ‘true’ post-peak failure curve does not seem to occur. In fact, it does occur, as
the failure mechanism in a standard continuum is a line crack with zero thickness. The finite
element solution of our continuum rate boundary value problem simply tries to capture this line
crack, which results in localisation in one element, irrespective of the width of this element. The
result on the load-average strain curve is obvious: for an infinite number of elements (71 — co)
the post-peak curve doubles back on the original loading curve.

The example of the micromechanical simulation of a carbonfibre-reinforced ceramic com-
posite (SiC) of Figure 3 (for details on the computation the reader is referred to Schellekens,
1992, and to Weihe, 1992, who prepared the finite element discretisations) is well suited to
demonstrate that the above considerations for a simple one-dimensional example also hold for
more complicated stress situations. Finite element simulations for three different degrees of
refinement of the discretisation were run. As is shown in Figure 3 for the coarsest and the finest
mesh the deformations always localise in a single row of elements and the load-deformation
curve of Figure 4 shows an identical pattern as suggested in the load-displacement curve of Fig-
ure 2 for the one-dimensional bar.

From a physical point of view the above behaviour is unacceptable and when we adhere
to continuum descriptions one must enrich the continuum by adding higher-order terms, either
in space or in time, which can accommodate narrow zones of highly localised deformations.
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Figure 5. Load-displacement diagrams for carbonfibre-reinforced ceramic composite
using a fracture-energy model.

0.0

4 The fracture-energy ‘trick’

As an intermediate solution between using the standard continuum model and adding higher-
order terms a number of authors (Pietruszczak and Mréz 1981, Bazant and Oh 1983, Willam
1984) have proposed to regard the area under the softening curve in the left part of Figure 2 as a
material parameter, namely the fracture energy Gy:

Gf=Jadu=jas(s)ds. (14)

Carrying out the integration for a linear softening diagram and assuming that the strains are con-
stant over the band width (an assumption commonly made in numerical analyses) we arrive at
the following relation between the strain £, at which the residual strength is exhausted, and the
fracture energy Gy

_2Gy

= }[7 ,

with w the width of the localisation zone. The softening modulus £ is thus given by:
wh?

2G;’

which is now a function of the element size. We now carry out an analysis for the tension bar of

Figure 1 and give one element a tensile strength marginally below the other elements. Beyond

the peak stress the tangential relation between the stress o in the bar and the displacement u
then reads:

&y

h= (15)

AT (19
In a standard continuum localisation always occurs in one element, i.e. w=L/m. Using eq. (15)
we can then rewrite eq. (16) as
u/L 1 2G;
5 b7 + m , an

which shows that the solution in the post-peak regime is now only dependent upon the material
parameters E, Gy and £, and the structural size L.

The example of the carbonfibre-reinforced ceramic composite (SiC) of Figure 3 also
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Figure 6. Numerical model of test set-up for FE analysis of Split-Hopkinson bar.

Figure 7. Displacement patterns of concrete specimen at r = 0. 50 - 107 s.

serves as a nice illustration of the potential as well as the limitations of fracture energy type
models. When we prescribe the fracture energy Gy as an additional material parameter Figure 5
shows that the global load-displacement response now indeed becomes insensitive to the dis-
cretisation. However, locally nothing has altered and localisation stil] takes place in one row of
elements. This is logical, since the loss of ellipticity occurs at a local level, even though the
energy that is dissipated remains constant by adapting the softening modulus to the element
size. For numerical simulations this implies for instance that severe convergence problems are
usually encountered if the mesh is refined or if in addition to matrix failure the possibility of
interface debonding between matrix and fibres is modelled by inserting interface elements in the
numerical model. Also, the frequently reported observation still holds that the localisation zones
are biased by the discretisation and tend to propagative along the mesh lines. This can be nicely
demonstrated with the example of impact loading a concrete specimen in a Split-Hopkinson
device, Figure 6 (Sluys 1992). The results for the deformed specimen at failure is shown in Fig-
ure 7 for three different discretisations in the region between the notches. We observe a clear
spurious localisation pattern with the localisation concentrated in a single band of elements
which generally follows the mesh lines and occasionally jumps from one row to the next and
back without any physical motivation.

5 Non-standard continuum models

The deficiency of the standard continuum model with regard to properly describing strain locali-
sation can be overcome by introducing higher-order terms in the continuum description, which



256 de Borst et al

are thought to reflect the microstructural changes that take place at a level below the continuum
level. Examples of such changes are void formation in metals and crack bridging phenomena,
e.g., Van Mier (1991) in the context of concretes, Essentially, one then departs from the concept
of a “simple’ solid (Noll, 1958) which has been the starting point for virtnally all modern devel-
opments in continuum mechanics.

A number of suggestions have been put forward for non-standard continuum descriptions
that are capable of properly incorporating failure zones. These include the non-local damage
model of Pijaudier-Cabot and Bazant (1987), the use of the Cosserat model (Miihlhaus and Var-
doulakis 1987, de Borst 1991, 1993) and the gradient models (Aifantis 1984, Schreyer and Chen
1986, Lasry and Belytschko 1988, Miihlhaus and Aifantis 1991, de Borst and Miihlhans 1992),
Here we will limit ourselves to a brief discussion and an example of a gradient-enhanced Rank-
ine plasticity model (Pamin 1993). The essential feature of gradient plasticity theory is that the
yield function not only depends upon the stress o and an equivalent inelastic strain measure 7,
but that there is also a dependence upon gradients of 7', e.g., the Laplacian;

=5, 7, VY. (18)
If we denote by o, the major principal stress and by & the instantaneous tensile strength, then
f=o1-6(/ V¥, (19)

When it is further assumed that the dependence upon the gradient term is linear - the simplest
possible case - then eq. (19) further reduces to

f=o1-&(y) -2V (20)
In the example calculations that will be presented below ¢ has been taken proportional to the
rate of hardening (or in the present case softening): ¢=1295/9y". The material parameter / has
the dimension of length and represents the gradient influence. For /=0 the standard plasticity

model is recovered,
The gradient-dependent Rankine plasticity model has been applied to four-point bending

has also proposed the nonlinear softening function that has been used and has provided the
material data: Young’s modulus E = 40 GPa and Jt =33 MPa. The Poisson’s ratio v has been
assumed to be equal to zero, and the internal length scale and equivalent fracture strain at com-
plete strength degradation have been taken as /=3 mmand g, = 9.92 1073, respectively, The
loading configuration including some aspects of the numerical discretisation are shown in Fig-
ure 8. Nine-noded quadrilateral elements with four integration points have been used. Details of
the employed mixed finite element formulation are given by de Borst and Miihlhaus (1992) and
Pamin (1993),

paritive studies were undertaken with a 90% reduced value of the tensile strength f,. As shown
by Pamin (1993) this modelling trick just marginally affects the results.

6 Rate-dependent continuum models

From a physical point of view the introduction of rate dependence is perhaps the most natural
way to regularise ill-posed initial value problems which arise because of the introduction of
damage or frictional effects. Here we adopt a simple, linear rate-dependent smeared crack
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Figure 8. Four-point bending test on a plain concrete beam (Hordijk, 1991),
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Figure 9. Computed and experimentally obtained load-displacement diagrams.
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Figure 10. Contour plots of equivalent fracture strain for the final states
(10 mm notch on the left, 30 mm notch on the right).
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Figure 12. Axial strain profile in the notched area at f = 0. 45 - 10~ S.

model as developed by Sluys (1992). In it the major principal stress degrades according to

P
a=ﬂ+hg'+m—af:~, @1

with m a rate-sensitivity parameter which has been taken equal to 0.1 Ns/mm? in the calcula-
tions presented below. As in the gradient-dependent model (cf, eq. (20)) the present model can
be considered as a perturbation on the evolution equation (13).

Using the rate-dependent smeared crack model as defined in eq. (21) the experiment of a
concrete specimen under impact loading in a Split-Hopkinson bar (cf. Figures 6 and 7) has been
reanalysed. The incremental displacement patterns are shown in Figure 11. The most striking
difference with the displacement pattern of Figure 6 is that localisation now does not proceed
along the element lines and is no longer confined to the rows of elements between the notches.
This is even more obvous when the strains in the vertical direction are plotted (€yy) as has been
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done in Figure 12. We observe a clear branching of the cracks.

A basic drawback of the use of viscosity to restore well-posedness of the rate boundary
value problem is the fact that the regularising influence gradually vanishes for the rate-
independent limit or for very slow processes. This is shown below for the case of matrix failure
in a carbon-epoxy composite. It has been assumed that a Duvaut-Lions softening viscoplasticity
model with a Von Mises flow contour could be utilised to mode! the matrix faiture.

In the composite a periodic arrangement of the fibres is assumed which results in a natural
choice for the reference volume element (RVE). The unidirectional composite (50% fibre vol-
ume fraction) is loaded in transverse tension as shown in Figure 13. The material properties of
the Apollo IM 43-750 carbon fibres and the Ciba-Geigy Araldite Epoxy matrix are given by
Schellekens and de Borst (1993).

By virtue of symmetry only a quarter of the RVE had to be discretised using 170, 336
and 1348 quadratic plane-strain triangular elements respectively. In the vertical direction free
contraction of the RVE is allowed whereas an equal displacement constraint was imposed on the
nodes of the right boundary. The response of the three meshes was calculated for different val-
ues of the loading rate &;;. The results of this mesh-refinement study are presented in Figure 14
in which the load-displacement curves of the right boundary of the RVE is shown. They con-
firm that for low loading rates some spurious discretisation effects again enter. Interestingly
enough, this effect is less significant when interface elements are included in the model to simu-
late debonding between matrix and fibres. Apparently, the failure mechanism then changes such
that the inherent mesh dependence for slow loadings becomes less important. These results for
the viscoplastic continuum are in sharp contrast with those of the fracture-energy based contin-
uum model, where no converged results could be obtained for the case that a softening model
for the matrix failure was combined with an interface model for debonding.

6.4 (um]

Figure 13. Geometry of RVE of a carbon-epoxy unidirectional composite.

%107 Load N/um 125 %107 Load N/um
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Figure 14. Load-displacement curves for the right boundary of the RVE.
Left: Effects of strain rate for the case without debonding.
Right: Effect of the inclusion of debonding on the structural response.



260 de Borst et al.

¢ [m/s] -3
1200 1 £ [X107]
————————————————————————— - C,
800 0.8
4004 It 0.4
0 ! , , 0.0

I
00 02 04 06 08 10
k [1/mm)] - x [mm]
Figure 15. Wave dispersion in a one-dimensional bar with gradient plasticity.
Left: Phase velocity as a function of the wave number.
Right: Stroboscopic picture of development of the strain profile.

7 Wave dispersion and localisation

All higher-order continua as well as rate-dependent continuum models share the property that,
unlike the standard, rate-independent continuum, wave propagation becomes dispersive, that is,
waves with different wave numbers propagate with different velocities and, consequently, the
shape of a pulse is altered during propagation. This phenomenon, which is of crucial importance
for modelling localisation under dynamic loading conditions, will be discussed below for the
case of a one-dimensional gradient-dependent elastoplastic bar.
For a one-dimensional continuum and assuming linear softening the gradient plasticity
theory of eq. (20) reduces to
- e
i, =
c=fi+the +C'ﬁ’ (22)
To analyse wave propagation in a gradient-dependent one-dimensional element we differentiate
eq. (22) with respect to ¢ and combine the result with the constitutive equations (10), (11), the
kinematic equation £=0v/dx with v the axia] velocity, and the equation of motion

06/9x = pd*v/r? with p the mass density. After differentiation of the result with respect to x
we obtain

o= 35 -h=—=0, (23)

dx* 2 9x2012 cz o ox2

with ¢, =+/E/p the bar wave velocity. Substitution of the general form of a single harmonic
wave

v(x, 1) = A exp(i(kx — w1)) (29

with @ the angular frequency and k the wave number, into the wave equation (23) gives the dis-
persion relation for the gradient-dependent bar

Tk~ EcL k2 + (E+h)c? o - hk? =0 . (25)
Considering the positive root for @

_5(8411 1 841/) E+h oy %y
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it becomes clear that the classical non-dispersive relation (cf, Sluys, 1992) is recovered when
¢ — 0. The phase velocity ¢ = w/k of the harmonic wave reads

h—-ck?
e NErnae @n

which relation has been plotted in the left part of Figure 15. The phase speed ¢ depends on the
wave number k and, consequently, wave propagation is dispersive for the gradient-dependent
bar. Owing to the fact that different harmonic waves propagate with different velocities the
shape of a pulse is altered and, in contrast to the standard continuum model, a loading wave can
be transformed into a stationary localisation wave. For a gradient-dependent model the phase
speed therefore not necessarily becomes imaginary at the onset of softening as in a standard
continuum model. From eq. (27) it follows that the phase velocity remains real if

/ I/ [
k2 71 and thus A2<2x1 ,with I= 7 (28)
c

The parameter { is the internal length scale in the gradient-dependent model. If k < I~ or wave
length 4 > 27z | we recover the situation in which a disturbance v is unbounded and stability
in the sense of Lyapunov is lost (i.e. a small disturbance of boundary data resuits in large
changes of the response). However, strain-softening regions remain small and no wave lengths
larger than 27/ can occur because they do not fit within the strain-softening region. Conse-
quently, all phase velocities remain real because the first-order wave with the lowest wave num-
ber (largest wave length) has a wave number which is larger than the critical value in eq. (28).
In a numerical simulation we observe that all higher frequencies which are present in a loading
wave vanish under the influence of nonlinear material behaviour and we obtain a stationary har-
monic localisation wave with a width equal to the maximum wave length w = 4 =27, This is
shown clearly in the right part of Figure 15, which gives a stroboscopic picture of the strain pro-
files along the bar. Upon reflection of the wave to the left (fixed) boundary of the bar the yield
limit is exceeded and softening occurs. As observed from the right part of Figure 15 initially a
sine-like strain profile develops with a width equal to w = 2z, which is in agreement with the
results of the dispersion analysis. A new stage in the localisation process is entered when the
strength contribution due to local softening has vanished in some part of the localisation zone.
According to eqs. (27) and (28) the wave length A then increases and the wave speed becomes
positive. The localisation zone is no longer stationary, but extends.

I o

8 Concluding remarks and outstanding problems

In this contribution current developments have been reviewed for modelling localisation and
fracture via continuum methods. Various promising approaches exist, but there is no such a
thing like a panacea which cures the shortcomings of standard, rate-independent continua upon
the introduction of strain softening and/or non-symmetry in the constitutive rate equations.

No completeness is claimed. This holds true especially with respect to outstanding prob-
lems which hamper the effective and accurate numerical prediction of the failure and post-
failure behaviour of structures, In the authors’ opinion the most pressing issues that require fur-
ther attention for failure computations are:

+ The proper determination of the additional model parameters that emerge in the higher-
order and rate-dependent continuum models when compared to the classical approach.
Especially in higher-order continua this problem is not solved easily, since the additional
parameters are not directly derivable from elementary tests such as uniaxial or triaxial
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programme, these parameters could not be measured because for homogeneous deforma-
tions there is no effect of the higher-order continuum models. Therefore, one must pro-

ceed in a semi-inverse manner, whereby the experimental results of different types of tests
are fitted in the post-peak regime,

The steep (but finite!) strain gradients that occur in higher-order and rate-dependent con-
tinua during failure require that very fine meshes are used to capture the failure mode
properly. If such analyses are to be carried out on nowadays’ or even tomorrow’s comput-
ers, then the use of adaptive mesh refinement techniques or spectral overlay methods is a
conditio sine qua non., A problem is the development of proper criteria for mesh refine-

ment in inelastic, non-standard continua. Although necessary this will probably not prove
an easy task.

The combination of stochastic methods with higher-order continuum models for localised
deformations. Little work has been done, and is basically limited to Mente-Carlo simula-
tions (Carmeliat 1992),
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